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A three-dimensional finite element analysis has been used to simulate the
coupled static and dynamic behaviour of compliant ocean structures.
Nonlinearities which result from large deflections, reduced or zero
stiffness in compression, and nonconservative fluid loading are considered.
The spatial variation of fluid loading is also addressed. The structures are
assumed to be in the Morison regime. Linear wave theory is used and
multidirectional seas may be simulated. A variable current profile may be
specified and concentrated masses and loads, as well as foundation
properties, may be modelled. Updated Lagrangian coordinates and a
residual feedback, incremental-iterative, solution is adopted. Viscous
relaxation is used to start the static solution of problems with small initial
stiffnesses. The dynamic solution is performed in the time domain and
uses the Newmark integration scheme. Consistent mass matrices are
developed for both beam-column and cable elements. The directionality
of the hydrodynamic added mass is accounted for, as is the discontinuity
of the mass density for elements which pierce the water surface. Examples
are presented of an articulated tower, of a guyed tower, and of a tension
leg platform.
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The economic production of petroleum in deep water Compliant tower concepts
requires structures which often test the limits of existing Compliant structure concepts may be classified in one
technology. Compliant production platforms are one such of four categories:
class of deep water structures. Since they are compliant,
these structures must be designed dynamically. Also, since Articulated towers
they are exposed to loads which vary in a nonlinear way Guyed towers
and are themselves mechanisms which behave in a nonlinear Tension-leg platforms
manner, their analysis is highly complex. In this study a Floating production facilities
finite element model is developed which deals with non- :
linear dynamic problems of compliant platforms. The concepts differ mainly in the means by which the
A compliant ocean structure is one which moves sig- loadings are transmitted to the seabed and in the form of
nificant lateral distances when subject to wave and wind the anchorage to the sea floor. They all resemble inverted
loadings. It relies upon its dynamic softness to reduce pendulums, with excess buoyancy replacing gravity loads.
maximum transmitted anchorage loads. Unlike the fixed The articulated tower consists of a vertical column to
structure where structural velocities and accelerations are which buoyancy has been attached near the water surface
. small and the time-varying wind and wave loads may be and to which ballast is usually added near the bottom.
treated as a time series of static problems, the compliant The tower is connected to the sea floor through an articu-
structure has significant kinematics and the role of struc- lated hinge joint to a base which may be of either piled or
tural mass, added mass, and damping must be considered. gravity-type. The tower itself may be either a tubular
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column or a trussed steel latticework. The structure is
dynamically tuned to have a natural period removed from
periods of high wave energy.

The articulated tower was among the first of the more
elaborate compliant designs to see ocean service. It is
presently being used as single point mooring and loading
terminals, control tower and flare structures and, coupled
to a resident tanker, as early production facilities in the
North Sea and in the Atlantic Ocean. The structure is
typically designed for water depths of 200-600 ft (65-
200 m) but concepts have been developed for water depths
in excess of 1200 ft (400 m). The dynamics of articulated
tower! ™ structures in two and three dimensions have been
explored.

The guyed tower is a rectangular lattice column con-
nected to the sea floor by either a piled foundation or
a gravity-type foundation. The tower is long and slender
and depends upon a group of relatively slack guy lines for
lateral stability in resisting wave and wind loads. An impor-
tant distinctive feature of the guys is the clump weights
which are attached to the cable guys and which initially
are at rest on the sea floor some distance from both the
tower and the cable anchors. Since it is desired from
operating requirements to have a relatively stiff system for
normal sea conditions the tower is tensioned to be fairly
rigid and the clump weights are sized to remain on the
bottom. In survival sea conditions, the system becomes
more compliant when the clump weights leave the bottom.

A guyed tower was first constructed as an instrumented
model in 293 ft (89 m) of water®® in the Gulf of Mexico.

" Test data showed that a simplified analysis would not
adequately describe the kinematic and dynamic response
of the structure as a function of time. Recent work® has
considered the nonlinearities of the combined analysis
of tower and guys in a hydrodynamic environment. A non-
linear stochastic analysis of a tower using spring idealiza-
tions for guys has been performed using the Fokker~
Planck equation.” Currently, simplified models are being
developed that are suitable for parametric study.®

The tension-leg platform is a semisubmersible vessel
which is moored to the sea floor by a number of pre-
tensioned vertical tendons connected to a template which
is piled in place. Like the articulated towers, these struc-
tures are free to move in surge and sway. They also have a
more limited freedom in yaw, while roll, pitch, and heave
are severely restricted by the pretensioned tendons. The
natural periods of the structure in surge, sway and yaw
must be greater than the wave periods of significant energy.
The heave, roll and pitch natural periods, on the other
hand, being much shorter, must be less than the significant
wave energy periods.

A tension-leg platform®!° first saw ocean service in
1974. The nonlinear d?/namics of the tension-leg platform
have been considered'”**? in terms of a Mathieu-Hill equa-
tion. While many investigators were examining instabilities
of tension-leg platforms,'™!” others'®"?° were examining
computational techniques for both linearized frequency-
domain analyses and time-domain solutions.

Floating production facilities are similar 1o tension leg
platforms in that they both use a semisubmersible vessel
as a platform. They differ by having a catenary-type of
anchoring system rather than tendons. The structure is
free to move with relatively larger amplitudes in the roll-
pitch-heave modes. It is required .that natural periods in all
modes be removed from significant wave energy periods.
Floating production tacilities have been in service since
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1975 in the North Sea. Ten such units are presently in
operation worldwide.

Objectives

In this paper an algorithm for the nonlinear coupled
analysis of a compliant guy-structure system in the ocean
is presented. There exists a significant amount of work
dealing with separate components of the structure. The

_dynamic response of the platform, governed by the

Morison equation with cables modelled as sprin%s, has been
treated.?!"** Likewise, many investigators'®25-2® have
analysed catenary moorings using either finite elements or
finite differences.

Generally the motions of the guy-structure system are
determined in a decoupled procedure wherein the guys are
first represented by springs with load-deflection character-
istics similar to those of the static guy system. The plat-
form is then dynamically analysed using these representa-
tions. The resulting motions of the platform are then
applied to a dynamic model of the guy cluster and the
resulting loads in the cable-to-tower connection are com-
pared to those of the spring-platform analysis.

There is a problem in that approach: it is presupposed
that the procedure is valid and the results are forced to
fit an assumed character. Since the coupled dynamic
problem involves numerous nonlinearities, it is difficult to
assess the validity of the assumptions of decoupled analysis
in a qualitative manner.

Model tests of guys and theoretical calculations indicate
that there is a need for a coupled analysis which incor-
porates the nonlinear behaviour of the total system.® One
main reason is that theoretical work indicates that there
is hysteretic energy dissipated in the guy system. Certainly,
hydrodynamic drag loads on the cables are energy dissi-
pators, and they are spatially and directionally dependent.
Not only are the drag loads dependent on the spatial
orientation of the cable but they are also dependent on
the directionality of the waves or current, being greater
when moving against the waves or current. A nonlinear
coupled analysis which can deal with such phenomena pro-
vides a means to quantitatively assess the validity of
decoupling assumptions and also the range of that validity.

The algorithm used in the computer program developed
during the course of this work is a residual feedback scheme.
This is an incremental and iterative technique in which the
load may be applied in steps with a full Newton-Raphson
iteration to convergence at each step. Static problems with
low initial stiffness are considered using a viscous relaxation
procedure incorporated into the algorithm. An implicit
scheme is used for the numerical integration in time.

Basic concepts and assumptions

The compliant structure is, in general, a complex one, being
composed of many different elements, chain, cable, rope,
tubulars, structural sections, plate, etc. In addition, the
loadings are a complex interaction of gravity, buoyancy,
waves, current, wind and seismic activity. It is necessary to
make certain simplifying assumptions. Derivation of the
element stiffness matrices is carried out using the principle
of virtual displacements and the Rayleigh-Ritz method of
approximate solution.”® Mass matrices may be derived in

a manner analogous to the stiffness matrices by means of
D’Alembert’s principle.
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Beam-column element

The primary components of the compliant platform are
the beam-column elements which approximate the rigid sup-
port frame. They are subject to the following restrictions:

Elements are composed of a linearly elastic material.
Although the beam-column elements may undergo large
displacements, deformations are assumed to be suffi-
ciently small for small-deflection theory to be valid
within the elements.

Elements are considered to be sufficiently long for trans-
verse deformations due to shear to be negligible com-
pared to those due to bending.

Bending moments of inertia about the major and minor
axes need not be the same, and polar moments of inertia
may be independent of bending moments of inertia.
Hydrodynamic coefficients are assumed to be inde-
pendent of the orientation of the beam and are assumed
to apply to an axisymmetric body. No account is taken
of variation in Reynolds number or Keulegan-Carpenter
number within the flow.

The beam-column is a two-noded straight element.
Deformation of the element is described by three transla-
tional and three rotational degrees-of-freedom at each node.
The displacement or location of the element is described
solely by the three translational degrees-of-freedom. The
element is thus subparametric and it is derived using small
deflection approximations, but accounting for the non-
linear effect of axial load on bending stiffness. The resulting
stiffness matrix consists of a linear part, as given by
numerous authors,?® and a nonlinear part, known as the
geometric stiffness matrix, given in Table 1.

Calculation of the internal load for the beam element is
complicated by the fact that the nodes have rotational
degrees-of-freedom. Implicit in the assumption of small-
deflection theory is the use of small angle approximations.
The internal loads are calculated using the instantaneous

Table 1 Geometric stiffness matrix for beam F, = force in element,
L =length

0 0 -
3 3 3 3
L? L L? L
36 3 36 3
L? L L? L
0 0
4L 3 —L
L
FiL aw -L
30 L
0
38 3
L? L
36 3
Sym — IR,
v L? L
]
aL
L 4l
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stiffness matrix and nodal displacements. When the element
undergoes large rigid body rotations, the use of the total
rotational angle will lead to erroneous results since the
small angle approximations are no longer valid. To correcily
calculate the internal load using updated Lagrangian coordi-
nates and the small-deflection element, it is necessary to
calculate the relatively large rigid body rotations and then
subtract them from the total nodal rotations. The resultant
relative angles of rotation are small, provided the structure
is initially well proportioned, or provided the discretization
is sufficiently fine.

Cable element

The second structural element found on most compliant
structures is the guy, or cable, element which provides lateral
stability to the structure. Cables behave in an inherently
geometrically nonlinear fashion and linear approximations
are sufficient only for problems with small deflections and
low sag-to-span ratios. The cable elements of this analysis
are subject to the following assumptions:

The cable elements are composed of a linearly elastic
material and are assumed to possess negligible flexural
and torsional stiffnesses.

In the slack condition, determined by the absence of .
tension, zero structural stiffness is assumed, but inertia
loads due to cable mass and added mass are transmitted
to the connecting structure.

The cables are assumed to be cylindrical in shape and
hydrodynamic load coefficients are assumed to be
independent of cable orientation and local kinematics
of water particles.

The cable is a straight two-noded isoparametric element
in which both displacement and deformation are described
by nodal translations. Tuah® derived the linear and non-
linear stiffness matrices for updated Lagrangian coordinates
in the global reference frame. The stiffness matrix is given

=171 AgE —-C

by:
I -
+
Ll-1 1] L*|-C ¢

where T is the cable tension, L is the element length in the
updated configuration, 4, = initial area, £ = elastic modu-
lus, 7 = 3 x 3 identity matrix, and:

b b
Cy =xPx] + x5xf —xPxf — xfx]f

T

)

The values .:c,’-J and x; are the instantaneous global coordi-
nates of the beginning node and end node, respectively, of
the element.

Foundation element

The compliant platform is eventually anchored to the
sea floor by one or more of a variety of foundation devices.
There is, of course, interaction between the sea floor and
the structural anchorage. To account for this interaction a
simple foundation element is used. It is subject to the
following restrictions:

Foundation stiffness is linear over the range of applied
loads and may have different stiffnesses in each of the
six degrees-of-freedom.

Energy dissipation by the soil is assumed to occur as
equivalent viscous damping, with the damping para-
meters specified separately for each of the six degrees-
of-freedom.
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Any effective mass of the foundation must be repre-
sented as a lumped mass at the foundation to structure
connection, and hydrodynamic loads on the foundation
are ignored.

Loads

In addition to gravity loads the compliant structure is
influenced by buoyancy, waves, currents, tides, wind loads,
seismic loads and a variety of live loads peculiar to the
purpose of the structure. Only loads due to gravity, buoy-
ancy, waves and currents are considered in this work. The
buoyancy force is applied to all members for which dis-
placed volume is specified and is applied only to those
elements or portions of elements which lie below the still
water level. :

Wave loads on a differential segment of a cylinder are
calculated using a generalized form of the Morison equation
which accounts for orientation of the cylinder axis and for
relative motions of the fluid and the structure:3'~3

aF) = [%pCDDIﬂfv—éi‘vl(ﬁf'v"d?r)

T T
+Zp(ca + l)Dzﬁﬁv _ZpCaDzaﬁv] dx;' (2)

where éﬁ-v and 6?’ are the components of cylinder velocity
and acceleration normal to its axis, p is density, D is dia-
meter, z and &Y arc the components of fluid velocity

and acceleration normal to the axis and dx; are components
of differential distance along the axis. The parameter Cpp

is the empirical drag coefficient and C, is the added mass
coefficient.

Current loads without waves

In the ocean, current direction need not coincide with
wave direction and may vary with depth. The speed may
also change with depth. To permit a realistic description,
a profile which may vary in both magnitude and direction
with depth is considered. The current is assumed to be
steady and to have no vertical component.

Combined wave and current loads

Wave and current loadings naturally occur simultane-
ously. An exact treatment of their combined kinematics
is a complicated problem. Fortunately, a simple super-
position scheme has been shown to be adequate®® for most
situations when the Morison equation is used. Provided
that the particle velocities are summed before calculating
the drag load, the nonlinear effects due to the interaction
of current and wave are negligible.’® When the drag force
is properly accounted for the combined force equations
becomes:

. N . N N, .N N s N
Fi =J [%pCDDIu?Hi —qi Wiy + 9 =4y
L

™ T )
+o PG+ ) D ~2C, 0%} axi 3

where 9% are components of steady current velocity

normal to the axis.

Linear wave theory is used with no adjustment for tree
surface effects. When a current is present, the wave charac-
teristics need to be moditied to reflect the current upon 24

which the wave is superimposed. If the current is uniform,
one may derive the kinematics in a reference frame moving
at a constant velocity which freezes the wave form with
respect to time.> If the current profile varies with depth,
the problem is more complicated.?” An ad hoc procedure
is used here to account for the apparent wave frequency
shift. A weighted average current in the wave direction is
calculated.

Load discretization

Concentrated loads are applied directly to the nodes
but distributed loads on elements due to gravity, buoyancy,
current, and waves must be transformed to equivalent loads
applied at the nodes. The nodal loads that are sought are
those which, if applied to the element at the nodes, would
produce the same strain energy in the element as the distri-
buted load would when the element nodal degrees-of-freedom
are fixed. These fixed-end forces may be derived using
virtual displacement principles. For one-dimensional
elements such as the cable and the beam, exact solutions
are possible and the nodal forces are recognized as the
fixed-end forces of elementary structural analysis.

Buoyancy loads are assumed to act over elements with
constant cross-section and hence with uniform displaced
volume. But, since elements may pierce the surface, the
buoyancy load is not necessarily continuous over the entire
length of the element. Hydrodynamic loading may also be
discontinuous for the same reason, and the loading is
generally not uniform over the submerged part of the
element. To allow the use of reasonably large elements
and to produce an accurate load profile for arbitrarily
defined combinations of wave, current, and buoyancy, an
influence function is used to calculate the fixed-end forces.
If the reactions due to a point load of unit magnitude on
the element are known, the reactions from any load distri-
bution may be calculated as the sum of the reactions due
to a series of point loads whose magnitudes are determined
by the loading function.

To permit the use of an arbitrary current profile and also
to reduce computational effort, the hydrodynamic load
intensities are calculated at a fixed number of equally
spaced elevations from sea bottom to the still water line.
Between each elevation, load intensity is assumed to vary
linearly. The fixed-end forces are calculated by first inter-
polating to find the load intensity at the end nodes of the
submerged element and to find the location with respect to
the beginning node of the remaining calculated load inten-
sities, Then the fixed-end forces due to each trapezoidal
load prism are calculated.

Equations of motion

Newton’s second law for a multiple degree-of-freedom
system may be written in component notation as:

Myd; + Cydj + Kya; =Fi (0 + F} 4

where the force vector is composed of the restoring force
Kiqj, the s}irugtural damping force, Cj;4;, the forcing
function F;7(z) and any steady loads F3. M;; is the mass
matrix, K; is the structural stiffness matrix, Cy; is the
structural damping matrix and q; is the vector of structural
displacements.

Since structural damping is generally assumed small with
respect 1o hydrodynamic damping. the second term in
equation (4) is neglected in this work. Integration of
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equation (3) over the length of the member, L, and substi-
tuting the result into (4) leads to the relation:

. Ny N N _ .
MyG; +Kijq; ='[%PCDDW£ lag +oY —aq?)

s
+4—p(ca+1)p2a§"

bid
GGt L e )
where:
3
=¥ @Y +a) —Vpe (6)

i=1

is the resultant relative velocity of node .

Solution methods

For large-deflection statical problems, the stiffness matrix
becomes a function of the displacement vector:

Fi=Kiaw) q; )

Generally the nonlinear problem is solved by first linear-
izing the nonlinear relationship and then performing some
form of incremental, or iterative, or combined incremental-
iterative solution. No matter which solution scheme is
selected, the structure needs to be analysed in a consistent
reference 5o that the true loads, displacements, and strains
can be calculated. Small-deflection analyses are performed
using a Lagrangian reference in which the position of the
structure after loading is measured from the original
position. For such analyses the deformations are small and
the strain-displacement relationship is linear. When com-
bined with a linearly elastic stress-strain relationship, the
resultant load-deflection relationship is linear.

The rigid body translations of the nodes become impor-
tant relative to deformation when displacements are large.
In structural analysis there are two generally used methods
of dealing with these large displacements, the total Lag-
rangian formulation and the updated Lagrangian formula-
tion.? The former uses the Green-Lagrange strain tensor,
which contains nonlinear terms, to account for large
displacements in the element formulation. The latter
permits the use of small-displacement theory by updating
the nodal coordinates in a manner that accounts for the
large displacements. The updated Lagrangian formulation
was selected for this work.

In the updated Lagrangian technique the coordinates in
which the elements deform are local coordinates. The
orientation of these local coordinates is determined from
the current nodal coordinates which are calculated from
the displacement results of the most recent increment or
iteration. The deformations of the elements due to previous
loads are converted to equivalent internal nodal forces and
are treated as preload. This preload cancels that part of the
applied external load which would cause the existing
deformation and leaves only the difference between the
external and internal load to cause additional deformation.

Static solution techniques

If the nodal displacements are large, the stiffness matrix
becomes a function of the displacements. To solve the non-
linear relations, a residual feedback technique is used.®

the nonlinear matrix equation in a Taylor séries about the
displacement vector, g;, evaluated at an approximate dis-
placement, g7 ~!. A following superscript denotes iteration
number and Ag;’ is a correction to g/ "' The displacement
vector, q}) is defined as the initial displacement. When only
first order terms in the Taylor expansion are retained, and
when it is recognized that:

oF; n-i

[ ,(q,a] - .
where K ,-'}“ is the tangent stiffness matrix, the equation
becomes:

Flqi ™ +Aq)=Fiq@)" ' + K[} Aq) 9)

The load F;(q,)" " is the load required to keep the struc-
ture in the shape represented by the displacements g7 !
and it is equivalent to the internal load R} ™! caused by
these displacements.

The algorithm can be converted to an incremental-
iterative scheme by simply defining the first iterations to
the stiffness matrix, K f’, and to the internal load vector,
R?, at time, ¢ + At, as those determined at the previous
time, ¢. That is: .

t+AtK;;-lAq}I= t‘\"AZ'F;’I__t*'AtR?-l ‘ (10)

where a leading superscript denotes increment number; the
initial value of the internal ioad is that determined from the
previous convergent load step, and the initial value of the
tangent stiffness matrix is also determined from the con-
figuration of the previous step.

Many compliant structures possess an initially low, or
zero, stiffness with respect to transverse loads when in their
still water configurations. Attempting to solve the stiffness
equation without some sort of starting modification results
in either a singular matrix or in extremely large estimates
of initial displacements and in the probability of slow, or
no, convergence.

To accommodate low initial stiffness, the residual feed-
back scheme has been modified to include viscous relaxa-
tion, a procedure that gives excellent convergence in cable
problems.®®>*% [t is implemented by the addition of a
viscous drag to the iterative part of the residual feedback
algorithm:

Cha;+K5'Aql =FF —R} (1

where gy is a vector representing the rate of displacement
and C7j; is an arbitrary damping matrix, usually selected as
a constant multiplying the identity matrix, i.e. CJ; = C"§;,
where 3;; is the Kronecker delta. Since the rate of displace-
ment is the change in displacement with respect to two
iteration steps, equation (11) may be written as:

[C"8;; + K3 Aq} =F} —R} (12)

To eliminate the artificial stiffness as the iteration
proceeds, the value of C" is decreased each iteration, i.e.:

"= ucnt (13)

where u is a decrement parameter specified to give rapid
convergence. The selection of u is problem-dependent and
should be chosen by trial and error. The selection of an
initial value for C also affects convergence and is adjustable
by use of a damping factor, 8. In this work C is initially
calculated as C® = BMin (Kpyiat delem Where (Kaxial delem

is the average of the axial stiffness for all the elements of

The iterative part of the algorithm is derived by expanding 252 particular type. The symbol Min indicates that the least
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average stiffness among the element types is used. The
selection scheme is purely arbitrary, but it has been shown
to give acceptable results.

Dynamic solution techniques

Because of the strong nonlinearity of both the hydro-
dynamic loading and the structural response, the equation
of motion is solved in the time domain. The algorithm
selected is the Newmark method, an implicit self-starting
scheme which has been used with success for several non-
linear problems. 344!

The acceleration is assumed to vary according to some
known function during each time step:

PG =g+ [ =8 + £2 A% A (14)
and
T =g+ g a0 + [(G - @'+ oA A
(15)

where { and « are parameters. Substituting equations (14)
and (15) into the equation of motion and solving for
1+4t4., one obtains:

ki’_nAt ;= r+At[}i (16)
where:
Kii =aoMy +a,Cij + K
t+Atf;~ii = t+AtFii +Mij(ao tqj +a, tqj + 113".1';') (17)
+Cy(ar’qy +aa'q; +as'G))

and

1 ¢ 1
Qo=-— ay=— ay=—
°7 aar YTaar P aar

(18)
4 ) At/ )

ay=—- dg=—— as=—|(—-—
3 2a 4 o s 2\a

Equation (16) constitutes an equivalent static problem
from which ¢; can be determined. Recommended values of
the « and { parameters are 0.25 and 0.5, respectively.®
These values provide an unconditionally stable integration
scheme for the linear problem and generally provide good
stability characteristics for the nonlinear scheme. The
scheme has not been proved unconditionally stable for all
nonlinear problems, but proofs of its unconditional stability
for specific problems have been obtained.**

An improved nonlinear integration scheme can be for-
mulated by adopting a residual feedback at each time step.
Iteration proceeds until dynamic equilibrium is achieved.
If the inertia and damping terms are treated as equivalent
loads, the residual feedback scheme may be extended to
include damping®® and may be written as:

t+Atan-1t+Atnn t+ArCn—lt+At~n
Mij q; + ij qj
+ K71 A — t+At -1
+ t+ar :; 1 q;x t+AtFEl R? (19)
where:
-1 5
t+étq;x _ t+Aqurj + Qq}’ (20)

In a manner similar to the derivation of the purely incre-
mental scheme with equation (20) substituted for **4%g;

’7
equation (19) is solved for **4"A47 to obtain:
t+AL - n _ t+Atfgn _ t+Atpn-1
A,,Aq, - }‘,' Ri
— 1Az t+Ar, n-1
Miao" =g}

t+Atn t+Ar n-t
- Cij‘al 4 )

which is the desired recursive formula for an equivalent
static problem. The solution to equation (21) then proceeds
as was described previously for the combined incremental
and iterative statical problem.

The external force F ,H in equation (4) contains the
hydrodynamic drag term:

FP =4pCoDIVi I + 3} =4} (22)

However, Q}V at time ¢ + At is as yet unknown. If this non-

linear drag term were moved to the left side of equation

(19), a nonlinear set of equations would result. This prob-

lem is avoided by using a scheme patterned after Anagno-
43 N

stopoulos.™ The value for §;" is the value calculated from

the last time step, 'q}v . The force F? is thus:

t*AtFiDn — lPCDDl V{_an[t-fAt(ai_Vn + van) — tqﬁv
(23)
where:

3
IV{VI = (Zl (t +At(z-l11}/n + ,U;Vn) . tq}V(n-l))lg)l/Z
’=

(24)

The drag component of the hydrodynamic force is thus
approximated at the beginning of each iteration but the
approximation is upgraded with each subsequent iteration.

Validation problems and results

The computer program developed to implement the algo-
rithms presented in the previous section was validated by a
series of test problems.

Problem 1: Steady tow of a cable with sphere

The first problem demonstrates the accuracy of the
calculation of hydrodynamic drag forces on the cable
element and confirms the validity of neglecting tangential
drag forces. The problem was originally presented by
Webster™ and the experimental curve was determined by
Gibbons and Walton.* The structure consists of a long
wire terminated by a spherical mass. The wire and mass
are towed by a surface vessel at a steady speed of 10.5
knots. The particulars of each of the 10 elements in the
model are as follows:

Cable

Diameter 0.350in
Submerged weight 0.169 Ib/ft
Element lengths 280.0ft
Total cable length 280.0ft

E * A value 1.92 x1051b
Drag coefficient 1.5
Spherical body

Diameter 1.0ft
Submerged weight 58091b
Drag coefficient 0.23

The problem was started with the cable suspended
vertically, and viscous relaxation was used. The convergence
tolerance was 0.01, the initial artificial damping constant
68601b/ft, and the damping and decrement parameters
0.001 and 0.05, respectively. Convergence was réached in
11 iterations. The final configuration at a speed of 10.5
Knots is plotted in Figure 1. Webster's results and the
experimental results of Gibbons and Walton are ajso shown.
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Figure 1 Steady tow of a cable with spherical end mass. Tow
speed, 10.0 knots; convergence tolerance, 0.01

The present results compare favourably with the experi-
mental curve. The convergence of the viscous relaxation
solution in 11 iterations is a great improvement on the 91
iterations to convergence required by Webster’s solution
in which viscous relaxation was not used.

Problem 2: Steady current on an articulated tower

A simple articulated tower was modelled and subjected
to steady current. The result for steady lean of the tower
was then compared to an analytic solution® in which the
tower was modelled as a rigid body. The model is shown in
Figure 2 with geometric and dynamic particulars. The
mechanical properties of the shaft are: area = 1.456 m?,
inertia =3.580m*, modulus =2 x 10! Pa. The drag coef-
ficient used was 0.5 and the inertia coefficient was 2.0.

A steady uniform current of 0.9125 m/s was applied
to the tower and the steady angle of inclination was found
to be 0.0205 rad. The angle of inclination calculated
analytically is also 0.0205 rad. The convergence tolerance
used by the program was 0.01. Since the tower has no
stiffness in the horizontal directions when in the vertical
position, the viscous relaxation option was used to start
the solution. The following parameters were used: initial
artificial damping constant = 3.9 x 10° N/m, damping
factor =0.00001, decrement factor =0.0005. Convergence
was reached in five iterations. Figure 3 shows a plot of the
solution convergence.

Problem 3: Articulated tower in waves

The articulated tower of Problem 2 was subjected to a
30m, [7s wave. All parameters were as in Problem 2
except the drag coefficient which was set to 1.0. The time
increment was 1.75s and the convergence tolerance was
0.01.

The response is shown in Figure 4 along with results
obtained by Kirk and Jain.! There is a difference in the
form of the initial response, although the solutions appear
to approach each other in the steady-state. Kirk and Jain'
claimed they required -0 special starting procedure and
that the solution was sufficiently damped to be independent
of starting procedure and to give steady-state response
almost immediately. They used an explicit integration
method as opposed to the implicit Newmark method used
in this work. It is not known what the precise reason for
the discrepancy is, but it is suspected to be in the differ-

ence in the integration methods and starting methods used. 27
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To obtain an idea of the dynamic response of the tower,
it was leaned to the maximum amplitude of excursion
from the previous problem, and released. The convergence
tolerance was again 0.01. The dynamic response is shown
in Figure 5. The logarithmic decrement was measured for
each half cycle and the effective damping parameter calcu-
lated. The results are tabulated below.

Half cycle Damping factor, §
1 -

2. 0.17

3 0.09

4 0.08

5 0.06

These results indicate a system that is not heavily damped
as would be implied by the results of Kirk and Jain.! The
present results were determined, however, using the
Newmark integration scheme, so the results are not inde-
pendent. When the forced results are compared with the
free oscillation results, the undulation of the forced results
fits well with the undulation of the free oscillation results,
as would be expected, leading one to believe that the
algorithm is functioning properly.

The articulated tower was subjected toa 30m, 17s
wave plus a 0.9125 m/s current moving at 90 degrees to
the wave direction. Calculated x-y motion of the tower
top and the Kirk and Jain results' are shown in Figure 6.
Again, the initial amplitudes are large, but the motion of
the tower predicted by the present algorithm is otherwise
very similar to the results of Kirk and Jain.!

Problem 4: Two-dimensional guyed tower in waves

A two-dimensional model of a guyed tower was formu-
lated to demonstrate the use of beam, cable, and founda-
tion elements and to demonstrate solutions in which some
of the elements are assumed to participate in a quasi-static
manner. A definition sketch is shown in Figure 7. The

- tower was modelled as two beam elements, one extending

from the pinned base to the guy connection and one from
the point of guy connection to the deck mass. The two
guys were each modelled as three cable elements termi-
nated at the sea floor by a foundation spring whose hori-
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O 10 20 30 40 50 60 70 80 9C 100
Time (s}

Figure 5 Free oscillation of an articulated tower in still water.
Convergence tolerance, 0.01; time step, 1.75s; CPU time/real

time, 1.12 28
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zonta] stiffness was equivalent to that of the length of
cable which usually extends from the clump weight to the
guy anchor. The physical properties of the model used in
the analysis were as follows:

Environment Deck

Water depth 1500 ft Mass
Wave period 10s
Wave height 30ft

466.4 k slugs
Rotational inertia 0

Column

Mass density 0.0024 9 k slug/ft3
Weight density 0.0160 kip/ft*
Elastic modulus 4.176 x 10°kip/ft®
Cross-sectional area 62.8ft?

Second moment of the area (about 1.571 x10°% ft*
x5-x3 and x3-x} axes)
Torsional constant

Displaced volume

3.142 x10*ft?
312.5 fé/ft

Drag width 115.0ft
Drag coefticient 0.7
Inertia coefficient 1.814
Guys

Mass density

0.0152 4 k slug/ft®
Weight density

0.426 kip/11?
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Elastic modulus 0.43 x 107 kip/tt?

Cross-sectional area 0.3341 ft?
Displaced volume 0.3341 ft¥/ft
Drag width 1.458 ft
Drag coefficient 0.7

Inertia coefficient 20

Initial tension at tower 1250 kip
Foundation springs

Horizontal stiffness 957.7 kip/ft

Vertical stiffness 1 x 10" Kip/ft

For the solution in which quasi-static cables were
assumed, the mass density, drag coefficient and inertia
coefficient of the cables were set equal to zero so that the
cables performed as static catenary springs. The time step
selected was 0.5s and a convergence tolerance of 0.01 was
used.

The horizontal displacements of the deck for both the
dynamic and the quasi-static solutions are shown in
Figure 8. The quasi-static solution is seen to overpredict
the amplitude of deck movement by 20-100% in the 45s
of data plotted. These results imply that the deck accelera-
tions are overpredicted when the guys are modelled as
springs.

Quasistatic cables

Dynamic cables

Deck X-displacement (i)
[e)

P W W S SO S S A

1

i 1 1

N T Y T TR U SN S WU I S |
20 24 28 32 36 40 44

‘ Time (s)
Figure 8 Transverse displacement of guyed tower deck vs. time.

Wave 30 ft-10s; convergence tolerance, 0.01; time step, 0.5s;
CPU time/real time, 6.71
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Figure 9 Guy tension vs. time
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The guy tensions at the connection point for the dynamic
and the quasi-static solutions are plotted in Figure 9.
The quasi-static solution overpredicts the peak tension and
the times at which peak loadings occur are significantly
different. The shape of the dynamic trace of the load is
attributable to the spatial dependence of hydrodynamic
loading on the guys.

Problem 5: Tension-leg structure in waves

A simplified tension-leg structure was subjected to
waves as an additional demonstration of the versatility of
the techniques employed in this work. A surface piercing
cylindrical buoy was moored to the bottom by a single
cable (see Figure 10). The particulars are as follows:

Column

Mass density 0.2529 kg/m*
Weight density 1.229N/m?
Elastic modulus 2.1 x108N/m?
Cross-sectional area 2.066 m®
Second moment of area 75.55 m*
Torsional constant 151.3m*
Displaced volume 223.8m%m
Drag width 16.88m

Drag coefficient 0.7

Inertia coefficient 2.0

Cable§

Mass density 1.023 kg/m?
Weight density 10.03N/m?
Elastic modulus 2.1 x 108 N/m?
Cross-sectional area 0.397m?
Displaced volume 0.397m*m
Drag width 1.422m

Drag coefficient 0.7

Inertia coefficient 2.0

Viscous relaxation was used to obtain the inertial equi-
librium position of the structure. The parameters are as
follows: initial artificial damping constant = 596 139
nt/m/s, damping factor = 1.0, decrement factor = 0.05,
water depth =450 m, wave period = 15 s, wave height =

15 m. The time step selected was 0.5 s and the convergence
tolerance was 0.01.
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Figure 11 Transverse displacement of tension leg structure vs.
time. Wave 15m~15s; convergence tolerance, 0.01: CPU time/real
time, 3.96

- The horizontal displacement of the cylinder top and
bottom are plotted in Figure 11. The bottom of the
cylinder, being restrained by the tether, shows a more
attenuated response at the wave frequency than does the
top of the cylinder. The response appears stable and
appears to be approaching steady state at the conclusion
of the time record.

Conclusions

A three-dimensional, large-deflection finite element pro-
gram has been developed which is capable of simulating the
static and dynamic behaviour of large compliant ocean
structures. The structures are assumed to be in the Morison
regime and to be composed of cable and beam-column
elements. No vortex shedding, diffraction effects, nor
material nonlinearities are considered. Linear wave theory
is used and multidirectional irregular seas may be simulated
by a series of regular waves. Current may be included as an
arbitrary current profile varying in magnitude and direction
with depth. Concentrated masses and loads as well as
foundation properties may also be modelled.

The use of updated Lagrangian coordinates and a
residual feedback solution scheme has been shown to be a
valid technique for solving the geometrically nonlinear
problem. Static problems indicate that the scheme yields
excellent results in comparison to available theoretical
solutions. Furthermore, these results were obtained with
liberal convergence tolerances and large element discreti-
zations.

It has been confirmed that the viscous relaxation
method is an excellent method to start the static solution
of hardening nonlinear problems with little or no initial
stiffness in one or more degrees-of-freedom. The method
is particularly efficient when used on articulated structures
which use buoyarncy for stability. More iterations are
required when the method is used on cable problems and
on problems using both cables and beams. but the tech-
nique is still superior to dynamic relaxation’ for the
examples considered in this work.

The sclection of the coefficients in the relaxation pro-
cess depends upon experience. However, some observa-
tions can be made to determine if the selected coefficients
are adequate and if they can be improved. If insufficient
initial stitfness is added. the structure remains unstable and

30

this instability will be exhibited in the first iteration by a
zero or negative pivot during reduction of the equations.
If the decrement factor is too small, a similar situation will
occur in a subsequent iteration. Conversely, if the decre-
ment factor is large and the initial stiffness is large,

the convergence plot will appear like the free response of
an overdamped system subject to a step load and the
soluticn will converge exponentially. An optimum solution
appears like the [ree response of an underdamped system
and exhibits some overshoot, as in Figure 3, but a heavily
damped solution resulting from large initial artificial stiff-
ness and a large decrement factor will permit a solution to
be obtained only at the expense of additional iteration
cycles. '

The iterative Newmark method has been shown to
provide good solutions to nonlinear dynamic problems in
the time domain even at time steps and convergence toler-
ances which are large compared to those often suggested in
the literature. The algorithm has been shown to give reason-
able results for hydrodynamic solutions. However, although
these results are similar to published results, there is enough
disparity to warrant investigation of the performance of
this and other algorithms compared to experimental
results.

Results of the guyed tower show that for the examples
presented, the use of static spring models of the guys leads
to an overprediction of the tower motion and also of the
guy tensions. There is also a large difference in the time
phase of the tensions and in the form of the tension versus
time plots. The tension-leg problem demonstrates that the
algorithms are capable of handling tension-leg structures
and that the solution is stable over a long time history.

In general the algorithms selected and used in this work
perform in a manner which is satisfactory for their in-
tended function. The techniques require a considerable
amount of computer time to obtain solutions compared
to the computer time usually required by linear analyses.
As the nonlinearities increase in strength, the computer
time for similar problems increases greatly but there is no
apparent degradation in the accuracy of the results for the
test problems considered.
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