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EXECUTIVE SUMMARY

A probabilistic model for the calculation of year-round ice loads on fixed
offshore structures in the Beaufort Sea was developed. The model uses probabilistic
descriptions of different ice parameters in appropriate ice-structure interaction
models to produce probabilistic load descriptions. These are then used in extremal
analyses to produce the probability distributions of the extremal forces for any loading
scenario or combination of scenarios. Such extremal load distributions are directly
applicable to the choice of design criteria against ice. The study considered
cylindrical and flat sided vertical structures as well as upward and downward breaking

cones.

The year was divided into three distinct seasons, namely summer, winter and
break-up. Appropriate criteria for season boundaries were defined and the effect of
the uncertainty regarding season boundary dates is considered in the model. An
extensive review of data sources was carried out to obtain the best available
descriptions of the different ice parameters. The review covered environmental ice
parameters such as ice thicknesses, velocities and geometric characteristics, as well
as the mechnical behaviour and properties of ice. The data was then analyzed and

used to fit probability distributions to each parameter.

Appropriate ice-structure interaction models were used for each combination of
loading scenario and structural geometry. New models were developed in cases where
the available models were not adequate for the purposes of a probabilistic study.
These developments included an overall discrete ice feature interaction model for
multi-year floes and ice islands. The model is an energy dissipation model which
considers the influence of first-year ice behind the ice feature, and is applicable for
both vertical and conical structures by using appropriate local force models. Multi-
year ridges are incorporated in this model by changing the local ice geometry to
account for the presence of the ridge. Other developments in ice structure interaction
included the application of the reference stress method to the calculation of level ice
loads on a cylindrical structure fully embedded in the ice, at low velocities.



Different extremal models were used to determine the probability distributions
of the annual maximum loads. In most cases, these models lead to closed form
solutions which result in significant reductions in the required computation effort.
Discrete interactions such as ice island, multi-year floe and first-year ridge impacts
were treated as a compound Poisson process. Loads from first-year leve] ice were
treated as continuous random processes for the winter season where a full ice cover
exists, and as interrupted processes for the break-up season where patches of open

water are present in the ice.

The methodology was combined in a fully interactive computer package
(BOREAS). The package is designed such that the user can input the appropriate
environmental descriptions and ice mechanical properties for the considered location
to obtain site specific results for the structure under consideration. Te package has
default values for all parameters but the user can change the distribution type and
statistical parameters for any desired ice parameter. The program offers flexibility
regarding the input parameter values and distribution types, including the option of
describing any parameter by a set of data points without using a mathematical
distribution. The program has thorough data checking, and convenient data retrieval
options. Besides, producing site specific results, the program can be used to carry out
sensitivity analyses to determine the most important ice loading scenarios and

parameters.
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NOTATION

acceleration
ice feature dimension perpendicular to its direction of motion
ice concentration

diameter

modulus of elasticity

probability density function of X
force

horizontal force

vertical force

curnulative distribution function of X
ride-up height on conical structure
moment of inertia

characteristic length

mass

number of events

probability of occurrence of (*)
density of ice features per unit area
time

velocity

failure vertical load

weight

width of structure

peak load during event i

extremal load (Max{ X i=1,2,...})
section modulus

orientation of ice feature
specific weight
coefficient of variation

strain
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strain rate

rate of occurrence
mean

Poisson's ratio
standard deviation




Chapter |
INTRODUCTION

The present report is the result of a joint industry study carried out for the

following participants:

Arco Oil and Gas Company

Conoco Inc.

Elf Aquitaine Petroleum

Gulf Canada Resources Inc,
Ishikawajima-Harima Heavy industries Ltd.
Kajima Corporation

Minerals Management Service

Mobil Research and Development Corporation
Norwegian Contractors

Sohio Petroleum Company/BP Alaska Exploration Inc.
Taisei Corporation

Tecnomare S.P.A,

Union Oil Company of California

The study was carried out by Det norske Veritas (Canada) Ltd., with the
assistance of Mr. D.F. Dickins of D.F, Dickins Associates Ltd., Vancouver, B.C., who
provided much of the environmental data used in the study, and Mr, K.R. Croasdale of
K.R. Croasdale and Associates Ltd. who advised the project team in the area of ice-

structure interaction.

The geographical area of concern is the Beaufort Sea, along the Canadian and
Alaskan coast, up to water depths of 60 m (200 ft.) - Figure 1.l1. The methodology is,
however, general enough to be of use for other areas as well. This study was
motivated by the need for ice load models applicable to the selection of design criteria
which satisfy reasonable safety requirements at the optimal level of economy for
structures in the Beaufort Sea. This objective has been approached by applying
probabilistic methods which have been successfully used to achieve optimal designs in
numerous areas of structural engineering. A comprehensive probability-based model
has therefore been developed for global ice loads resulting from the different ice-
structure interaction scenarios encountered in the Beaufort Sea. These include
movements of landfast ice, impacts with multi-year floes and combinations of multi-

year and first-year ice,



(uo1321 3jaQ SzUSNDRY - BAg 1oneag
ay3 ut Juswdojaaap uoqresoaphy 10§ g1 uo paseq)
B9S HIOnesg 3 Ul SUOKIIpUOD) 93] JPuim *1°] 2anSiy

Moty

i\

hu.h Ol n‘ g ! y
"o dl Q‘ l‘ .‘ " o O
-
f ‘ U 1SYvi-
. A x(Ox(Og.p.l\ e

g

72

=y ﬁu.- s_ox.‘ _
\ W RN
/ NOZ NOILISNY¥L_

\ . .\

mw&o:um&?_.f / \ /
LT '

ISIMHIION 35" S 7 awouwaar /

=% NOYNA  /

, 3:3.

VASVIV




A schematic representation of the approach is shown in Figure 1.2. A series of
scenarios (as defined in Section 2.3) are considered. These are analyzed separately and
later integrated into an extreme load analysis algorithm. An important feature of the
developed model is its modular form. The statistical treatment of each load scenario
and the ice-structure interaction model for each type of interaction are dealt with in
separate modules, which can be amended without affecting other modules at later
stages. In fact, the model is designed such that the user can replace a certain module

with a relatively minor effort.

The maximum load resulting from a certain ice-structure interaction scenario in
a given period of time depends on the environmental parameters relating to this
scenario. For multi-year floes, for example, the maximum load depends on the ice
concentration, floe diameter, velocity, thickness and mechanical properties. These
parameters are all uncertain and are, therefore, modelled probabilistically based on
environmental ice data. There is an added uncertainty, due to variations in the length
of the season during which a scenario is applicable. This uncertainty affects the
extremal analysis, as will be discussed in Sections 3.7 and 3.8, and is taken into

account in the model.

The probabilistic modelling of the ice load environmental input parameters is the
first step in dealing with each scenario, as illustrated in Figure 1.2. These models are
then used with an appropriate ice-structure interaction model, in a Monte Carlo
simulation to produce a probabilistic description of the load during an interaction
event. The latter is then used in an appropriate extremal model to obtain the
probability distribution of the maximum load resulting from the scenario under
consideration in the specified time period. As mentioned eralier, the maximum load
distributions for different scenarios can be later combined to produce the final
extreme load distribution for any combination of scenarios. These extremal
distributions can be expressed in different formats, such as the probability of load
exceedance or the return period relationship, and used to choose appropriate design

loads.
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A computer package (BOREAS) was developed to perform the analysis discussed
above. The package, for which a user's guide is described in Volume II of this report,
consists of three separate programs for pre-processing, computing, and post-
processing. The pre-processor is used to create an input file which contains a defini-
tion of the seasons and load scenarios to be considered, as well as all the required
environmental parameters, ice mechanical properties, and structural parameters. This
program is fully interactive and contains default values which can be used or modified
by the user. The main program performs the analysis for the user-defined scenarios
and creates a database and output files which contain the results. The post-processor,
which is also interactive, allows the user to extract the results for any load scenario or
combination of scenarios in the desired format. The program is structured with data-
retrieval features, such as back-up files and restart options, in order to minimize the
cost of running. Safety features such as data checking and parameter bounds are also

implemented.

The results of the model are demonstrated by example runs in Chapter 6. Both
the model and the computer program give good results, which are directly applicable
to the choice of design loads for fixed arctic structures.




Chapter 2

HAZARD IDENTIFICATION

2.1 Ice Conditions

The study area for this project covers both the U.S. and Canadian parts of the
Beaufort Sea, as shown in Figure 1.1. Ice conditions within this area vary spatially and
temporally, as detailed in Chapter 4 of this report. A general description of ice
conditions is given in this section as background information for the characterization
of the problem. The polar pack rotates continually in a clockwise direction in the
Beaufort Gyral, carrying old ice from east to west through the Beaufort Sea. Multi-
year ice in nearshore waters, say less than 30 m depth, originates from the polar pack,
the boundary of which is normally north of 72 degrees latitude.

The rate of movement of ice is at its maximum during the summer (open water)
season, at which time floes can move at speeds up to about | meter per second. After
freeze-up, which usually occurs in October, the rate of movement decreases to an
average of less than a third of the open water average. There is also first-year ice
coverage, increasing in thickness during the winter and decreasing at later dates as the

break-up season approaches.

As a result of the distinctive seasonal characterics of the jce within the Beaufort
Sea, the ice conditions were described according to the season and location in the
Beaufort Sea. These seasonas and scenarios within each season are described in detail
in Sections 2.2 and 2.3. The ice parameters are characterized in Chapter 4 of the

report.

2.2 Seasons and Season Boundaries

In order to estimate the length of each season, it is necessary to define suitable
criteria to describe the boundaries between each of the three seasons. The situation is
illustrated in Figure 2.1. The boundaries between different seasons should be defined,
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such that the ice conditions within each season are similar from the point-of-view of
ice-structure interaction. The criteria for the beginning of each season were defined

as shown in Table 2.1.

TABLE 2.1

Definitions of season boundaries

SEASON BEGINNING

Summer < 30% of first-year ice remaining.

Winter 80% of first-year ice is white { > 30cm thick).
Break-up < 80% of first-year ice remaining.

It is noted that the dates at which the season transition criteria are satisfied will
vary from year to year. This is illustrated in Figure 2.2 for the Canadian Beaufort
Sea, with an illustration of the possible load scenarios in each case. Season boundary
dates are modelled probabilistically (see Section 4.2.1), and these models are used to
derive probability distributions of the season lengths, as will be discussed in Chapter 6.

2.3  Ice Load Scenarios

One of the most important steps in the present analysis is the identification of
the scenarios to be considered. The scenarios are defined so that the ice=structure

interaction calculation methods are common to each scenario.
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The identification of appropriate load scenarios is related to the ice conditons
which may occur during different seasons at the locaton of interest. In order to
forecast the loads resulting from any scenario, a set of input parameters which
determine the frequency and severity of the scenario should be estimated. Table 2.2
shows the agreed categorization of load scenarios according to the season and the
water depth. The table includes a list of the environmental parameters required for
the statistical and ice-structure interaction models selected for each scenario (see
Chapter 5). The basic scenarios are illustrated in Figure 2.3,

It is noted that interactions with discrete features such as first-year ridges and
multi-year floes are not considered in the landfast zone in the winter. This was based
on a study of the patterns of movement of landfast ice, as is detailed in Appendix A.
It was found that the net movement of the landfast ice cover is typically very small (in
the order of a few meters per season), and therefore the probability of encountering a
discrete feature is very small. On the other hand, even if an interaction occurs, the
penetration of the structure into the feature will be small, and high loads will not
develop. The results of the calculations substantiating this conclusion are given in

Appendix A.

The manner in which the different scenarios are dealt with in the model is shown
in Figure 2.4, The ice-structure interaction scenarios grouped on a seasonal basis in
Table 2.2 (the top of Figure 2.4), can be regrouped into three major categories on the
basis of similarities in the interaction process, as shown in the bottom of the Figure.

These models are:

I. Areal feature interaction, covering ice islands in the summer, and multi-year
floes during all seasons. Multi-year ridges are considered as part of the multi-
year floe in this model. This is based on the random floe model, which was
developed to investigate the probability of ridge encounters during a floe
interaction. Details of this model are given in Appendix B, and are discussed
further in Section 5.3.1.
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Movement of first-year level ice, which covers both the landfast and the active

ice zones in the winter closed-water and break-up seasons.

First-year linear feature interactions which during the winter closed-water
season in the active ice zones, and the break-up season in all zones.

Structural Geometries

The structural geometries considered in the study are as follows:

Vertical-sided structures with cylindrical sides (i.e. circular in plane) or flat
sides {i.e. polygonal in plan). The polygon can have up to 20 sides, and can be
defined by the coordinates of its apexes with respect to an arbitrary set of axes
through its centre. The polygon must be concave with respect to its centre.

Upward and downward breaking cones.
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Chapter 3

PHILOSOPHY AND APPROACH

3.1 Decision-making Under Uncertainty

Information on the appropriate probabilistic models in the structural design
process can be used in a wide range of contexts. These could consist of general design
questions, such as choice of structural system, or for formulating design loads. The
overall approach is shown on the decision trees of Figure 3.1. The focus of the present
report is to develop the relevant probabilistic information pertaining to global ice
loads for fixed offshore structures in the Beaufort Sea. This information can be
obtained in several forms, and is therefore useful for a variety of purposes. The end
use will not be discussed further here, since this is beyond the scope of the present

report.

One of the consequences to be considered in structural design is safety, and
design generally involves the trade-off between safety and economy. This might
include strategies such as evacuation in the presence of an ice island (for example) -

and again consideration of such aspects can flow from the results of the present work.

It is generally acknowledged that absolute safety is not a realistic objective.
Rather, the question of risk to a structural system should be considered, and this

involves two aspects:

- probability of the undesirable event, failure in the present cases; and

- consequences of the undesirable event.

For the purposes of the present work, attention is focussed on the first of these
aspects, and specifically on the determination of the probability distribution for load -
curve A in Figure 3.2. It is considered useful to outline the methods for the

calculation of failure probability.
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Load Curve A Probability of Exceedance of Load w

Resistance Curve B

} n -
g Load or Resistance
Load W ol

Resistance R

Y

Figure 3.2. Illustration of the Calculation of the Probability of Failure
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3.2 Probability of Failure and Reliability

The reliability of a structure, component or system, is generally defined as (1 -
pf), where P is the probability of failure. We shall therefore concentrate on the
evaluation of Ps In Figure 3.2, let W represent load and R resistance. These could be
the lateral ice loads on a Beaufort Sea structure, and the lateral resistance to sliding,
respectively. The probability density functions {pdf) for W and R are denoted fw(w)
and fR(r), respectively. To evaluate the failure probability, consider the random

quantity

Z =R -W (3.1
with probability density function f,(z).

Failure occurs if Z is negative, i.e. R ¢ W. Therefore,

0
pe = J f,(z) dz.
w® (3.2)
Now f-,(z) can be obtained from fw(w) and fR(r) by the following convolution integral:

fz(z) =}° fR(x) fw(x-z) dx
T (3.3)

where x is a common {dummy) variable measuring load or resistance. The derivation
of (3.3) is standard, and is based on the assumption of independence of load and

resistance.

Therefore,

0 =
Py = _‘;"w {m fR(x} fw(x—z) dxdz )

This integral is not readily evaluated in closed form, except in special cases which are
not of practical importance. However, numerical integration can always be seen as an

alternative provided this level of detail is required.
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Cases in which the failure probability can be evaluated using standard normal
tables include the case of two normal, and two lognormal distributions. In the former
case, let the means and variances be (pw, Uwz) and (ug, GRZ) for W and R
respectively. Then Z = R - W is also normal (uR - Uy OR * ng) based on our
assumption of independence, and Ps is the value of the cumulative distribution function

(CDF) corresponding to the value Z = Q,
For lognormal random quantities, it is easier to consider:

Z = R/W. (3.5)
Let the means and coefficients of variation (éw = GW/‘”‘W and Sp = cR/uR) be
iy 8y) and (up, 85) for W and R respectively. Then the logarithm of Z is normal

with mean and variance equal to:

up (1 + 8212

= &n{ )

Henz (1 . sy172°"
Hw R (3.6)

2 2 2
Oynz = an( (1 + §p) (L + &) (3.7)

Consequently, the probability of failure is equal to:
R

Py = Pr (W < 1) = Pr (gnZ < 0), (3.8)

which is the value of the normal CDF at ¢nZ = 0.

Numerical techniques to determine the reliability of a component or structure
are widely used. Level II reliability methods are extremely powerful in the case of
multi-dimensional failure spaces: instead of just two random quantities (load and
resistance), there are many more, for example, scantlings, material properties,
loadfactors, and model uncertainties. For complex systems, Level II methods are

superior to Level III methods, based on an "exact”, but lengthy, probabilistic analysis,
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using a full-distributional approach. Among the important Level Il algorithms, is the
popular first-order second-moment methods (Cornell, 1969). In the DnV program,
PROBAN, for example, on an adequate value of Pgs is found by linear approximation of
the normal transformation of a user-defined limit-state function.

Level Il methods are limited to relatively simple systems and are based on
numerical integration and Monte Carlo algorithms. When only two random quantities
are in play, the Level IIl method boils down to a numerical solution of equation (3.4),
as performed by the DnV program PROF for four arbitrary probability distributions.

The result of the calculation of ps can be quite sensitive to the distributions
used. Figure 3.3 (Lind and Davenport, 1972) shows the wide variation of p; at
different values of nominal safety factor (mean resistance , mean load) for various
distributions of R and W. Therefore, it is important to study‘the underlying process -

one of the motivations for the present study.

3.3 Statistical Analysis of Ice Loads

3.3.1 General

In most cases of Arctic environment, the loads imposed by floating ice can be
considered to be a series of discrete events, e.g. arrivals of ice floes or ice islands.
Even in the case of landfast ice movement, these can be taken to be the result of a
series of discrete events such as storms or sudden changes in temperature.

Before proceeding to a detailed analysis of ice loads, it is useful first to review
the approach to the study of extremes for waves. Here, the practice is to consider
short-term sea states, in which certain parameters (HS, significant wave height; T, the
average wave period) are considered as constant. The maximum wave height during
the duration of such a stationary sea state is then calculated. Subsequently, long-term
sea states vary in time. The result of this could, for example, be represented in a joint
probability distribution of Hs and T. These results are then used to compound the
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results for short-term sea states to obtain distributions of maximum wave heights
over the long-term. An extremal distribution, i.e. of the maximum wave height, can

also be derived.

The approach to ice loads is similar in several respects. For example, the
numbers of arrivals of multi-year ice floes at a structure is proportional to the multi-
year ice concentration, C. Now C will vary significantly from one season to another,
so that for a long-~term statistical assessment, the results for a given C = ¢ must be
compounded by the probability distribution of C.

The similarities between ice loads and other environmental loads should not be
over-emphasized. The approach has been followed of modelling the ice-load scenarios

from first principles.

3.3.2 Discrete arrival process

Generally, a quantity that varies randomly in time can be modelled by means of
a stochastic process. This can be either a continuous parameter process, or a discrete
parameter process. In the former, the continuous time axis is used as a time
parameter, whereas in the latter, the value of a random quantity is specified at fixed
points in time, e.g. the end of each month. As was pointed out in Section 3.3.1, many
events such as arrivals of multi-year floes or ice islands, can be modelled as arrivals in
time of load-events, as illustrated in Figure 3.4. After each arrival, there will be a
random fluctuation in load, as illustrated in the figure. The first requirement of the
present study is seen as the modelling of the main arrival process. Let the peak load
within each arrival be Xl’ Xz, X3, sy OCCUrring at times tl’ toy Ty wey @S shown in
Figure 3.4. Then these arrivals can be modelled realistically by means of a Poisson
process, with each of the arrival events Ei’ Ez, E3, ey Say, corresponding to a
subsequent peak load, Xl’ XZ’ X3, arer s
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Figure 3.4. Schematic Representation of Discrete Arrival Processes
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The Poisson process deals with a continuous time parameter, vet the individual
arrivals are discrete. The use of this model can be justified on the basis of several
arguments. The Poisson process is the limiting case for a binomial distribution, in
which one considers a series of trials with probability of success at constant value p.
Imagine each floe originating in the Arctic gyre as being a "trial". Then the binomial
distribution gives the probability of n successes in m trialst Pr{N=n) = bln| m,p) =
(;n) pn(l-p)m'n. In this and the Poisson distribution, the number of successes is random.
In the limit, as p , 0, but keeping the expected value |, = (mp) constant, we obtain the

Poisson distribution:

-\ n
= = = 8w =
PF(N—R) - p(n,v) — ns [ I"l - 0,1,2’9050 (3.9}

The process to the limit in this case appears to represent a reasonable model of the
arrival at a fixed point (or small area) in the Arctic of various features {floes, ridges,

st

The Poisson process is technically a random point process. This provides a
mathematical model for a physical situation characterized by highly localized events
occurring at random points in a continuum. In its usual form, it is a counting process
in which the value Nt = Z all i Ei is obtained for a given time, t, using the notation
Ei = [ for a "success" or occurrence and Ei = 0 for "failure”. The summation is over
possible (countable) points n. This is illustrated in Figure 3.5.

The rate of the Poisson process, ), is illustrated in Figure 3.5. Although } is
often introduced as a constant, this is not a necessary assumption for the use of the
Poisson process model. This fact is of great importance in the present study, because
the arrival rate is proportional to concentration and velocity (for example), both of
which vary continuously in time. The evaluation of the expected value, y, or equiva-

lently, the mean arrival rate j will be dealt with in subsequent sections.
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Figure 3.5. Illustration of the Poisson Counting Process



- 28 -
The formal assumptions underlying the Poisson distributions are as follows
{Snyder, 1975):
(i) Pr (Nto =0 =1

(ii For times t in the interval t, < $ < t, the increment N_ . = N, - N, is Poisson
— 1

distributed with parameter Vi - vgh

(ut - vs)n e-(vt - vs)
Pr(Ng = n) = o
(iii) The increments in {Nt; t > 0] are independent.

The function vy is a non-negative, non-decreasing function of t. The third
condition above implies that the number of points in intervals that do not overlap are

statistically independent, for any size or position of two intervals.

The Poisson distribution can be derived on the basis of general concepts
(conditional orderliness, evolution without after effects), as in Snyder (1975). For our
purposes, we need to recognize the nature of the process: independence and that the
rate need not be constant. On the latter point, we can illustrate this property by
considering a pseudotime, t', as follows. If the rate does vary with time, say 3 = (1),
then we can transform )(t)dt » ,dt’, such that j is constant in t'. The same Poisson

distribution resuits in the two cases,

It should be noted that the Poisson distribution and process is appropriate even
for a variable rate, but special attention has to be paid to the distribution of the time

to the next event, or to the kth event, and so on. The formulae based on a constant

rate {(e.g. the Erlang distribution) will no longer apply.
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The progression from a Poisson counting process to a compound Poisson process
is relatively straightforward. We continue with the inhomogeneous Poisson process,
but to each point where an increment occurs, we associate an auxiliary random
quantity. This would, in our case, be the quantity of interest associated with the ice
load-event (load, mass, velocity, kinetic energy). In the compound Poisson process,
this will be sampled from a family of mutually independent, identically distributed {iid}
random quantities. It is usual in this process to accumulate (add) the values of the
auxiliary random quantity. Let the values be denoted {X 1’ XZ’ X3, . Xi’"'}' Rather
than the total } All N=n X,» We are interested in the maximum, i.e.

Max {Xl, Xz, 54y Xi! L Xn}. (3-10)

It should be emphasized that the number of the entries }{n can be random, with a
Poisson distribution of the random quantity N. The extremal problem associated will
obtain the maximum value given by (3.10), and will be addressed in Section 3.7,

Extremal Analysis.

3.4 Calculation of Expected Numbers of Arrivals

The analysis of the Poisson process described in Section 3.3 requires an estimate
of the expected number of arrivals, v or alternatively, the mean arrival rate, X, given

by:

t
v = [ a(s) ds = 3t
0 (3.11)

where A(s) is the arrival rate (intensity), at time s, and t = total time under
consideration.
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341 Areal ice features

This subsection will be concerned with features such as floes or ice islands, as
against lineal features (e.g. ridges). The ice feature is modelled as follows (see Figure

3.6

B is the lateral dimension of ice feature, at right angles to velocity. B

is random with probability density function (pdf), f4(b);
A s the area of ice feature, with pdf f A(a);
1 is the velocity of the ice featre, with pdf fv(v};

C is the ice concentration (proportion of surface covered by ice

category under consideration), with pdf o)

Velocity and concentration can be correlated, with joint pdf

fC,V(C’V);

R is the density of ice features, i.e. the number per unit area, with pdf

fR(r); and
Ws is the width of the structure.

It should be noted initially that:

c=r [af,la) da = ra (3.12)

where 3 = mean area.
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Figure 3.6. Areal Ice Feature Interaction Scenario
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Then, for a short period of time, At:

Pr{collision) = A(t)At = r(b + W_) vat (3.13)

It the probability distributions, f~ ,(c,v) and f,(b) reflect the changing
3
conditions during the total interval of time considered (e.g. concentration changes

with time), then:

x= I

C

= (b + W_) v f {(c,v) f,(b) dc db dv
3 s C,V B (3.14)
in which we have assumed stochastic independence of B with respect to C and V (this

assumption could be avoided if necessary).

Then:
b + Ws
e [/ ev fC,V(C’V) dedv (3.15)
or
_ b «+ Ws -
L o= -***a-.ﬂw (C V + GCV), (3«16)

where the bars denote mean values and Ocy = covariance between C and V. Note

that Oey = 0Oy Py where Pcy is the correlation coefficient.

1.4.2 Linear ice feature

The methodology described in Section 3.4.1 for areal ice features is also
applicable with slight modifications to linear ice features such as ridgs. It is noted
that the development of the result in Eq.(3.16) does not require making any
assumptions regarding the direction of ice movement. The methodology is therefore
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equally applicable to summer ice load scenarios, where separate features move
independently, and to winter cases, where the ice features all move in the same
direction with the first-year ice cover. For a linear feature (j.e. a ridge), the width in

a direction perpendicular to the direction of motion is given by (see Figure 3.7):
b = £ cosa + w sina, (3.17)
where L is the feature length, with pdf fL(R.), w is its width with fw(w), and o is its

orientation measured from the direction of motion. The average width b is therefore

given by:

b= J[] (& cosa + w sina) £, (8) fy(w) fr(e) d& dw do (3.18)

Under the assumption of independence between L, W and @, and assuming that the
angle a is uniformly distributed between 0 and 7, Eq. (3.18) simplifies tos

ol
i
31N
—
i
L
%1
A

(3.19)

An ice ridge is usually embedded in the surrounding level ice. The rate of
interaction is therefore conditional on the presence of level ice. In other words, one is
interested in the rate of interaction with a multi-year ridge during (i.e. given)
interaction with a multi-year floe. The concentration C in this case represents the
percentage of the area of level ice covered with ridges. Consequently, the correlation
between C and V discussed in Section 3.4 for free-floating areal features is not
applicable in this case. The average rate can be calculated by substituting b from
Eq.(3.19) into (3.16), setting O, = 0in the latter and substituﬂng Z w for a. This leads

tol

>
8]
ol
<t

4]

(T + w + w )
s (3.20)

o
=]
€1
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— Features Randomly Positioned
-~ Features Randomly Oriented

A= 24, @ [l+W+Ws]

d, = Number of Ridges Per Unit Area
v = Averoge Velocity

l = Average Ridge Length

W = Average Ridge Width

W, = Width of Structure

Figure 3.7. Iustration of the calculation of the average interaction
between a linear feature and the structure
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3.4.3 High concentration of multi-year ice - congestion effects

This subject was investigated from two points of view: (1) the effect of
correlation between concentration and velocity on arrival rates (as illustrated in the
minutes of 3rd project meeting); and (2) queuing theory. The result of the first
analysis showed that even a small (negative) correlation could have a marked effect on
the arrival rates. The second is described in this section.

With regard to queuing theory, consider a queuing system where the structure
represents the server. The ice floes (or features generally) arrive at the server. These
wait if there is already a floe (cusomter) there. The server mechanism deals with the
arrivals which eventually depart. We are interested in such aspects, as the number of
floes (customers) in the waiting line (queue-length problem), for appropriate arrival
and service processes. The rate of the arrival process A was addressed in Sections
3.4.1 and 3.4.2. The serving time t in the present application is the interaction time

before the clearing of the floe.

For a Poisson arrival process with rate A, and an exponentially distributed
serving time with mean p o it can be shown that the probability distribution of the
number of floes in the queue N, can be given by {Clarke and Disney, 1970):

A L .n
P.{n) = (1 - &2)(=)", n=20,1, 2, ...
N My My T (3.21)

This equation was used with a range of reasonable values for A and u 4 to assess
the probability of having more than one floe in the queue at any given time. For an
arrival rate of one floe every 30 minutes, for example, the probabilities of having
more than one floe in the queue are .001 and .009 for average interaction times of |
and 3 minutes, respectively. For a rate of one floe every two hours (which is more
representative if very small floes are not considered), these probabilities are .0007,
0006, and .006 for average interaction times of 1, 3 and 10 minutes, respectively.
This illustrates that multiple collisions are unlikely to be an important factor for

multi-year floe interactions.
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3.5 Generic and Updated {Collision-Conditional) Data

Environmental data that affects the collision probability must be specially

treated in calculating the situation at the instant of collision. Examples of this are:

- diameter of an ice floe, since Pr{I|B = b) = (b+ws), and
- velocity of a floe or other feature, since Pr(l|V = v) = v,

in which I denotes the event "impact”. To appreciate this kind of parameter, consider
the "area swept out" by the ice feature per unit time. The diameter, or velocity, as in
the examples above, lead to an enhanced probability, since this is an increasing
function of the "area swept out", which in turn is directly proportional to diameter or

velocity as noted above.

Now to the point: since larger or faster floes (or features generally) are more
likely to collide, then floes that collide are more likely to be larger and faster. To
illustrate this, consider the probability distribution of velocity for a floe chosen at

random in the Beaufort Sea. Let this distribution he fv(v).

The distribution f, (v} will be termed generic. The updated (collision-conditional)

distribution is denoted fvl i(v [1) and is deduced using Bayes' theorem as follows:

f (1lv) f.(v)
v v

where N is a normalizing constant equal to:

f f f.,{v) dv.
atl v Hiv v (3.22)

Now fI l V(II v) © v, as noted above. Therefore,
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v £,(v) v f,{v)
f {vil) = v = v
v [y tylv)dv N (3.23)

While we have used floe velocity V in the above example, the same methodology
is applicable to other parameters such as floe diameter, circular floes, or more
generally the dimension presented to structure (at right angles to velocity vector -
Figure 3.6), as will be discussed later in this section.

A typical example of the above procedure is illustrated in Figure 3.8,

A case of particular usefulness is that of the gamma distribution; we take this to

be as follows:
(v ) = f,(v) = —L ya~l e'V/S v, 0
vy 'ja’ B \4 an(.) ? > 0 (3.24)
B l''a
This distribution has been found to provide reasonable fits for velocity and diameter
data. Now in this case, the updated distribution becomes:
£, (v = —L— vae VB, v o, (3.26)
vty 2
8or{q)

Now, the form vae'V/ B indicates a gamma distribution with parameters , + 1 and gt

H -
fy v = —p——va e V8, v 5 0. (3.27)
l Ba r(a+i)
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We arrive in this case at the interesting and useful result: if the generic
distribution is yfV[a,B} with mean = g8 and variance = a8 2, then the updated
distribution is also gamma, Y(“'l a +1,8), with mean {y +1®, and variance = (¢ +18 2.

The result of updating the pdf of the floe width B is slightly different because
the probability of impact is proportional to (b + WS), where WS is the width of the
structure. Taking this into account in the same procedure used for the velocity, the

updated pdf is given by:

o) (b + W) fa(b)
f I =
B 17l [ (b + W) ta(b) d b (3.28)

For a gamma distribution of B, Y(bl as 8) the final result is given by:

Vs B
- . Y(b!a,g) + -
B+WS B+W

fBlI(bII) = . Y(b!a-i-l,s), b_)_O (3‘29)

5

which is a mixture of the generic gamma pdf and a modified gamma pdf which is

obtained by increasing the value of 4 by unity.

3.6 Area-Diameter Relationship for Discrete Ice Features

Normally we have the relationship a = 5 bZ/#, and the equivalent diameter b for
an irregularly-shaped ice floe or feature should be calculated using this relationship,

from the measured area.

If we are considering a set of floes with equivalent diameters b and areas a
varying from floe to floe, we can treat the value of these parameters as random {B or
Al. ) (This was done in Section 3.4.) In order to calculate the mean floe diameter,
taking into account the variation from floe to floe, we note that:
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a = [ a fy(a) da; (3.30)

this was used in Eq.(3.12) in calculating concentration ¢ from ¢ = ra, where r = density

of ice features.
Now we can write Eq.(3.30) as:

2
-~ b
a = [ T~ fp(b) db, (3.31)

and it should be noted that:

2
fa(b) = f (1) . I (3.32)

by the usual rule for the transformation of random quantities. The expression (3.31)

can be written as:

T .n o2 (3.33
a =% [b° f,(b) db, )
ie. 3 =1 (52, og) (3.34)

where gg = variance of B. This follows from the definition of Ope

Eq.(3.34) should be used when one is considering collections of ice floes or ice

features, for instance, in concentration-density relationships.

Strictly speaking, the calculation of average diameter from area (b = 2 a/r for
an irregularly shaped ice feature is correct for coverage calculations. Yet the
appropriate calculation for mean projected length (or diameter) for use in calculation
of collision probabilities gives a different value. The two are identical in the case of
circular features, but differ in the case of linear features. Therefore the collision rate
calculations have been formulated on a different basis (Section 3.4).
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3.7 Extremal Analysis

3.7.1 General introduction

Very often we are considering a series of random quantities {X i,xz,.....,xn}.
These might be a series of global impact loads on structures, and for design purposes,

we are interested in the maximum of these, i.e. in

Y = ma)((xi, XZ’ LI N xn)u (3035}

In general, n can be random (in which case it is denoted by upper case N), and the

variety of situations is illustrated in Figure 3.9 (Maes, 1986).

The probability distribution for a given (single) interaction is termed the parent
distribution, fx(x). The extreme distributions for any integer n are easily generated by
considering the cumulative distributions provided, a further assumption is made. The
most convenient and usual assumption is that the repeated "sampling" of the parent
distribution is on the basis of independent and identically-distributed random
quantities, i.e. that the same distribution fx(x) applies each time the uncertainty

regarding successive loads are considered.

Let the cumulative distribution function of X be Pr(X< x) = Fy(x). Then for n
values of load, with n fixed (not random), let

Y = max()(i, X Ceany Xn). (3.36)

2,
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Figure 3.9. Various Types of Random Processes
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Thens
FY(Y) = Pr(y < y)
= Pr{All X < vy}, (3.37)
1
n
i.e. F (y) = F (y)
Y X (3.38)

The effect of this is to "shift" the probability distributions to the right, as n increases.
The question of random N will be addressed in the next sub-section (3.7.2).

3.7.2 Random N: Poisson process

It was shown in Section 3.3 that the Poisson model is quite widely applicable to
the succession of load events in Arctic engineering. We will assume in this section
that the random number of load events N is Poisson-distributed, with expected value v
= X t, to be computed as outlined in Section 3.4. Then:

-y n

PN(n) = ‘e;"'-ﬁ"?-y———’ (3:39)
and

Fy(y[N=n) = Fp(y). (3.40)

Combining these two equations, we have:
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e v, n
F ( ) = F (Y)
v Tl T x (3.41)
- F -y (1-F) n
e v - e v - (\jp)
“lat g n! ’ (3.42)

in which the shorthand F z F, (y) has been used.

Now Eq.(3.42) can be written as;

-uF n
_ =y (1-F) e V' ( F)
Fy(y) = eV Yall n Y

and noting that the summation is over an entire probability distribution (i.e. to unity),

we have (in full):

Fyly) = exp(-,(1 - Fyely))) (3.45)

This is also the probability of non-exceedance, i.e. Pr(N = 0), for a Poisson process
with rate (1 - F) - as also described in Maes (1986), see also Figure 3.10. Typical
results are illustrated in Figure 3.11, showing the density function fx(x) for a single
encounter and the extreme load density function fy(y) for different values of . The
spike at y = 0 corresponds to no events in the Poisson process.
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3.72.3 Combining different scenarios

It is reasonable to assume that the extreme loads for successive seasons will be
independent of each other, given the ice conditions for the period {e.g. year) in
question. It is suggested that such factors as persistence of heavy ice conditions be
handled by means of treating concentration, for instance, as correlated from one
season to another. Then knowledge of the ice loads in one season will not lead us to
amend our distribution for the next season - the basic condition for independence.

If the successive seasons are denoted 1,2,3 ..., and if the associated extremal
distributions are denoted Fy l(yl)’ Fyz(yz), FYB(YB)’ ..., then the final extremal

distribution for n successive seasons is:

n
Fy(y) ‘—*}I Fy_(yi)‘ (3.46)
i=l i
% A
) &““- — L T W Y A — A i S— -

N Py, [95 % [ [

Figure 3.10. Exceedances of the intensity y
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dx1072 Spike at origin for event of
*no collision” in Poisson process
(depends on M)
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Figure 3.11. Hlustration of the Parent and Extremal Probability
Density Functions (the Spike at Origin Represents the
Event of "no impacts” in the Poisson Process)
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3.8 Asymptotic Distributions of Extremes

If one considers the maximum of n independent and identically distributed
random quantities (with n being deterministic):

Y = max(XI, Xz, LR | xn}’ (3.46)

one obtains a rather striking result. Under wide conditions, the probability distribution
of Y tends to a nondegenerate limiting distribution, as n + », The limiting
distribution is:

Fyly) = exp(-e™Y ), (3.47)

where y‘ = (y-a)/b, where a and b are normalizing constants. It should be noted that
the double exponential distribution (3.47) is arrived at if one starts with virtually any
of the common distributions for the "parent" random quantity X (e.g. exponential,
normal, lognormal, ...}. The principal exceptions are the pathological distributions of

the Cauchy and the Pareto type.

It is also worth noting that if there are enough occurrences of X in a period of
time to justify the use of the extreme distribution (3.47), then if we have m repetitions
of the period of time, the new extremal is derived from Eq.(3.47) on the basis of the

following:

L (X3 _(¥zazh in(m))

Fy = (expt-e P )M exp (-e b )y (3.48)

where F' is the "new" extremal, which has the same form as (3.47), but with a "new"

value of a:

a * a+ b &n (m). (3.49)
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Chapter 4
DATA ANALYSIS AND PROBABILISTIC MODELLING OF ICE CONDITIONS

4.1 Software

Software was developed to assist in the analysis of the raw data which was
compiled during the course of the study. Figure 4.1 is a flow chart for the program,
The data is entered in a histogram form (i.e. number of data points in different
intervals of the parameter values). Once the data has been entered, the program
allows for a choice of distribution types, depending on the data type. If the pararneter
is discrete, the options are Binomial and Poisson distributions. For continuous
parameters, the program allows for a Gamma, Beta, Exponential, Normal, Lognormal,
or Uniform distribution. In each instance the distribution parameters can be
calculated from the data, or entered by the user. This option allows for varying the
mean and standard deviation of the data, to determine its sensitivity,

To determine whether the data set fits the distribution type chosen, the Chi-
square goodness of fit test is applied. The test is based on comparing the data
histogram to the assumed distribution. The deviation of the data from the distribution
is quantified by the Chi-square statistic ()(2), which is calculated from:

2

| E, g (4.1)

Oi is the observed number of points in bin i {(from data);
Ei is the estimated number of points in bin i (from distribution); and
k is the number of bins.

It can be shown that the deviation )"(2 itself (given by Eq. (4.1)) has a Chi-square
probability distribution which depends on the number of bins k, hence the name of the
test. The level of significance is defined as the probability that the calculated
deviation )(2 is to be exceeded. A level of significance of .05, for example, means that
one uis willing to accept the hypothesized distribution as a good model for the data if
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Figure 4.1. Flow Chart of Software for Testing the Goodness of Fit
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the resulting deviation is less than the deviation associated with a probability of
exceedance of .05 {y 20 5).

Following the performance of the test, the program prints the data and
distribution parameters, as well as the results of the Chi-Square test. Plots of the

data histogram and the fitted distribution can also be obtained.

4.2 Selection of Parameter Distribution

This section reviews each of the different environmental and mechanical ice
parameters individually, identifying the sources of data and the selection procedure to
arrive at a single distribution type for each parameter. Contained in Appendix C are
tables with the original data, which was used to arrive at a distribution to represent

each variable,

The Chi~Square goodness of fit test was performed using different distributions
for each parameter. The choice of mathematical distributions to be attempted was
based on their consistency with the parameter bounds and histogram shape. In general,
the distribution with the highest level of significance above .05 (i.e, lowest Chi-Square
value) was chosen. In some cases, the data was only available in histogram form where
a large number of data points are grouped in a small number of bins. This is known to
result in low levels of significance, thus making the Chi-Square test overly restrictive
(Cochran, 1952). In such cases, the choice of distribution was based on visual

comparison with the data histogram using the graphic output of the program.

It is important to note that the mathematical distributions which are chosen for
each parameter are defined over the whole range of the parameter. In certain cases,
as will be highlighted later in this section, the data set does not cover the whole
parameter range. For example, there is a lower bound of 0.76 m on ridge height data.
In such cases, the distribution must be inferred over the range of data that does not
exist, before it is used as input to the program. This aspect will be discussed further

in Volume II of this report,
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Research into each of these parameters was conducted by Det norske Veritas,
and via subcontract by D.F. Dickins and Associates of Vancouver, British Columbia. In
the instances where data was not publicly available in sufficient quantity, an estimate
was made based on prior experience of the researchers. Those parameters which were
described based on the experience of the researchers are highlighted in the table of
default values (Table %.1). It should be emphasized at this point that the model
developed in this study allows the user complete freedom in selecting a distribution
type and parameters of a given input parameter. The results of the data analysis
carried out in the study are used as default values in the computer model.

4.2.1 Season boundaries

In the following, season boundaries are defined by the time lapse in days referred
to January 1. Standard deviations are also given in days.

4.2.1.1 Start of break-up Canadian Beaufort

The Atmospheric Environment Service (1953 - 1984) recorded ice concentrations,
primarily during the non-winter months. By analyzing these records, the start of

break~up was determined.

For this study, the start of break-up was defined as the date when first-year ice
concentrations were reduced by at least 20% from their mid-winter levels (usually to
&/10 first-year ice or less). Table 4.1 displays the results of the data analysis for the
start of break-up in the Canadian Beaufort for various distances from the shore (see
Figure 4.2). Based on the results in Table 4.1, it was decided to use the Normal
distribution to describe the start of break-up in the Canadian Beaufort Sea.

NORMAL
= 173 days = June 22

i
, = 18.095 days

The original data is summarized in Table C.1 in Appendix C.
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TABLE 4.1

LOCATION | DISTRIBUTION | up.in | opata 2 LOS
(DAYS) (DAYS)

20 - 40 km Gamma 177 i5.5 0.856 0.652

Beta 177 15.5 2.230 0.328

Lognormal 177 15.5 0.603 0.740

Normal 177 15.5 G.643 G.423

60 - 80 km Normal 165 17.4 4.395 0.04

Beta 165 17.4 7.316 0.068

Lognormal 165 17.4 6.483 0.011

Gamma 165 17.4 3.981 0.050

&80 - 100 km Normal 173 15.5 3.44] 0.064

Beta 173 15.5 5.526 0.01%

Gamma 173 15.5 3.463 0.063

Lognormal -- -- -- No fit

possible
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TABLE 4.1 (continued)

Start of Break-Up Canadian Beaufort

LOCATION | DISTRIBUTION | ,pane | oo |2 LOS
(DAYS) (DAYS)

100 - 120 km Beta 175 13.3 4.755 0.093
Gamma 175 19.3 3.063 0.216
Normal 175 19.3 3.756 0.153
Lognormal 175 19.3 3.238 0.072
120 - 140 km Beta 175 19.9 5.112 0.164
Normal 175 19.9 3.923 0.141
Gamma 175 19.9 3.093 0.079
Lognormal 175 19.9 4.234 0.120
All Sections Normal 173 18.1 20.861 0.004
0 - 140 km Beta 173 18.1 24.163 0.001
Gamma 173 18.1 20.449 0.002
Lognormal 173 18.1 33.609 0.000
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4.2.1.2 End of break-up Canadian Beaufort

The ice charts compiled by Atmospheric Environment Service (1953-1984) were
used to determine a date for the end of break-up. Final break-up was defined as the
date when f{irst year ice concentrations were reduced by at least 70% from their mid-
winter levels (i.e. to 3/10 first-year ice or less). Table 4.2 summarizes the results of
the data analysis. The normal distribution was selected to describe the end of break-

up in the Canadian Beaufort.

NORMAL
=187 _ July 6
= 22.9 .

5 22.9 days

The original data set is in Table C.2 in Appendix C.
4.2.1.3 Freeze-Up Canadian Beaufort

Data was compiled from Atmospheric Environment Services (1953 - 1984) and
Table 4.3 below summarizes the results of the data analysis.

The data provided was not adequate to analyze for individual sections; therefore,
the entire data set (0 to 140 km) was studied. None of these distributions meet the
Chi-3quare test requirements at the .05 level of significance, however, the Normal
distribution had the highest leve] of significance and was therefore selected as the

most representative.
NORMAL
= 309 days - Nov. 5

g 22.8 d
5 = 22.8 days

The original data set is in Table C.3, Appendix C.
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TABLE 4.2

End of Break-Up Canadian Beaufort

LOCATION | DISTRIBUTION | ... | oo o LOS
(DAYS) (DAYS)
20 - 40 km Lognormal 187 19.0 1.085 0.581
Beta 187 19.0 3.305 0.347
Normal 187 19.0 0.666 0.415
Gamma 187 19.0 0.209 0.648
60 - 80 km Lognormal 179 26.0 3.856 0.145
Normal 179 26.0 3.645 0.302
Beta 179 26.0 4.778 0.311
Gamma 179 26.0 2.608 0.271
80 ~ 100 km Lognormal 186 20.5 3.457 0.178
Normal 186 20.5 2.437 0.296
Beta 186 20.5 3.864 0.277
Gamma 186 20.5 2.032 0.362
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TABLE 4.2 (continued)

End of break-up Canadian Beaufort

LOCATION | DISTRIBUTION | uo.xs | opata | X2 LOS
(DAYS) (DAYS)
100-120 km Lognormal 192 23.4 4,715 0.194
Normal 192 23.4 3.991 0.262
Beta 192 23.4 4.485 0.214
Gamma 192 23.4 3.026 6.226
120-140 km Lognormal 194 22.9 2.369 0.306
Normal 194 22.9 3.959 0.266
Beta 194 22.9 4.223 0.238
Gamma 194 22.9 1.106 0.576
All Sections Lognormal 187 22.9 23.078 0.606
Normal 187 22.9 [12.811 0.171
Beta 187 22.9 14.278 0.113
Gamma 187 22.9 16.738 0.033




- 58 -

TABLE 4.3
Freeze-Up Canadian Beaufort
2
LOCATION DISTRIBUTION UDATA ODATA X LOS
(DAYS) (DAYS)

All Ranges Lognormal 309 22.8 27.541 0.00
Normal 309 22.8 16.857 0.005
Beta 309 22.8 30.624 6.00

Gamma 369 22.8 25.772 0.00

k.2.1.4  Start of break-up Prudhoe Bay

The source of the limited database was the Atmospheric Environment Service
(1953-1984). The ice charts were not as comprehensive for the Prudhoe Bay area, as in
the Canadian Beaufort. There was, however, sufficient data to analyze for the entire
Prudhoe Bay area. The results of the analysis are shown in Table 4.4.

TABLE 4.4
Start of break-up Prudhoe Bay
2
LOCATION DISTRIBUTION UDATA ODATA X LOS
(DAYS) (DAYS)

All Sections Lognormal 199 20.6 39.671 0.000
Norrmal 199 20.6 7.224 0.204

Beta 199 20.6 8.721 0.121

Gamma 199 20.6 5,838 0.212
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The normal distribution was chosen as being most representative of the data set.

NORMAL
. 199 days . July 18
g F 20.6 days

The original data is contained in Table C.4 in Appendix C.
4.2.1.5 End of break-up Prudhoe Bay
Once again, because of the relatively small database compiled from Atmospheric

Environment Service {1953-1984), all sections were combined to represent the entire
Prudhoe Bay region. Table 4.5 summarizes the results.

TABLE 4.5
End of break-up Prudhoe Bay
LOCATION | DISTRIBUTION | \rara | onata | o LOS
(DAYS) (DAYS)

All Sections Lognormal 219 24.3 6.629 0.157
Exponential 219 24.3 11,939 0.063

Beta 219 24.3 10.029 0.123

Normal 219 24.3 8.213 0.145

Gamma 219 24,3 6.821 0.234

The Normal distribution was selected to represent the data.
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NORMAL

b s 219 days . August 1
g = 24.3 days

The original data is provided in Table C.5 in Appendix C.
4.2.1.6 Freeze-Up Prudhoe Bay
Atmospheric Environment Service (1953-1984) ice charts provided the database
for determining the freeze-up date in Prudhoe Bay. The data was treated as one
section, as opposed to individual ranges because of the limited size of the database.
Table 4.6 summarizes the results of the analysis.

TABLE 4.6

Freeze-Up Prudhoe Bay

LOCATION DISTRIBUTION UDATA ODATA X LOS
(DAYS) (DAYS)

All Sections Lognormal 310 21.8 72.611 0.600

Normal 310 21.8 16.458 0.002

Beta 310 21.3 22.664 6.000

Gamma 310 21.8 16.337 0.003

The Normal distribution was selected to represent the data.
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NORMAL

. 310 day _ Nov. 6
= 21.8 days
o

The original data is in Table C.6 in Appendix C.

4.2.2 Summer Season

4.2.2.1 Summer multi-year floe speeds

Marcellus and Morrison (1982), Danielewicz and Pilkington (1980}, and Marcellus
(1985) were identified as sources of data for determining the multi-year floe speed
during the summer. The results of the data analysis are stated in Table 4.7. No fit

TABLE 4.7
Summer multi-year floe speed

DISTRIBUTION | ... DATA xz LOS |  COMMENTS
TYPE cm/s) cm/s)
Gamma [5.63 11.851 171.843 0.00 1980 data
Exponential 15.63 11.891 338.939 0.00
Lognormal 15.63 11.891 430,586 0.00
Gamma 18.618 14.247 336.450 0.00 1979 data
Exponential 18.618 14.247 371.318 0.00
Lognormal 18.618 14.247 6352.064 0.00
Gamma 17.131 13.213 445.295 0.00
Lognormal 17.13] 13.213 1,059.207 0.00 Combined
“Exponential 17.131 13.213 682.19¢6 0.00 Data
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was found to satisfy the Chi-Square test with the data provided, because of the very

large number of data points, and the relatively few bins (i.e. the speed intervals were

too large).

It was decided that the Gamma distribution best described the data, based on the

results of the analysis for the combined data set. The mean also agreed quite closely

to that of other data sources (Marcellus, Morrison (1982)). A discussion of the analysis

used to reach this conclusion despite the fact that the data is grouped too coarsely, is

presented in Section 4.2.7.

GAMMA
o = 13.213 cm/s

The data provided by Morrison (1985) is listed in Table C.7.

4.2.2.2 Multi-year floe thickness

Three sources of publicly available data were identified, namely Marcellus and
Morrison (1982), C-CORE (1980), and AIDJEX (1976). The latter was selected as the

most suitable data set and analyzed with the results given in Table 4.8.

are in agreement with the experience of the researchers.

TABLE 4.8
Multi-year floe thickness

These resuits

2
DISTRIBUTION UDATA ODATA X LOS COMMENTS
TYPE (m) (m)
Gamma 3.89 1.584 1.549 0.671
Normal 3.89 1.584 3.198 0.362
Lognormai 3.89 1.584 4.150 0.245
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The gamma distribution was selected based on the results in Table 4.3.

GAMMA
gy =3.89m
g = I.584 m

The original data set is in Table C.8&.

%.2.2.3 Multi-year ice concentration - Canadian Beaufort

Multi-year summer ice concentrations were obtained from the Atmospheric
Environment Service (1953-1984). The concentrations were found for various sections

along a line running north from North Point (see Figure 4.2).

No distinction was made between second year and multi-year ice floes. The
results of the data analysis are summarized in Table 4.9, It should be noted that for
ice concentration, only the average value and standard deviation are required for the
model, and not the distribution type. The original data set is contained in Table C.9,

of Appendix C.
4.2.2.4 Multi-year ice concentration - U.S. Beaufort

Multi-year ice concentrations were compiled from the Atmospheric Environment
Service (1953-1984) for a representative line running north from Prudhoe Bay (see
Figure #.2).

No distinction was made between second year and multi-year ice floes. The
results of the data analysis are summarized in Table 4. 10. As mentioned in Section
4.2.2.3, only the average value and standard deviation are required, and not the
distribution type. The original data set is contained in Table C.10, Appendix C.
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TABLE 4.9

Summer Ice Concentration - Canadian Beaufort

Section Average Standard

(km) Concentration Deviation
(Ratio) (Ratio)
0-20 2/10 7/10
20 - 40 3/10 1.0/10
40 - 60 4/10 1.2/10
60 - 80 6/10 1.6/10
80 - 100 J7/10 1.8/10
100 - 120 .9/10 2.0/10
120 - 140 /10 2.1/10
140 - 160 1.3/10 2.4/10
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TABLE 4.10

Summer Ice Concentration - U.S. Beaufort Sea

Section Average Standard
(km) Concentration Deviation
0-20 I.1/10 1.3/10

20 - 40 1.1/10 2.1/10

40 - 60 1.5/10 2.5/10

60 - 30 1.7/10 2.8/10

Reports by Spedding (1974), Spedding (1975), and Barton et al. (1972) were used
to obtain data for this parameter. A summary of the data analysis is provided in Table

4.11.

4.2.2.5

Ice island fragment diameter
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TABLE 4.11

Ice island fragment diameter

DISTRIBUTION | 20 U LOS | COMMENTS
TYPE (m) (m)
Gamma €9.987 43,134 28.937 G.00 No fits to data.
Exponential 69,987 43,134 162.912 ¢.00 Numerical distri~
Lognormal 69.987 43,134 6.082 0.014 bution selected.

The data analysis did not yield a "good fit" for ice island fragment diameter.
Therefore, a numerical distribution was chosen with the following parameters.

NUMERICAL
B = 70.0 m
og=431m

The original data is recorded in Table C.11 of Appendix C.
4.2.2.6 Ice island diameter

Data for this parameter is very sparse. In a paper by Dunwoody (1983), a mean
ice island diameter of 12 km was estimated. This compares very well with the results
from a report by De Paoli et al. ( 1982), who studied the major ice shelves which calve
ice islands and identified cracks in the shelves. This lead to estimates of the area
which would calve from the ice shelf preducing an ice island. The ice shelves studied
and the equivalent diameter of the potential ice islands (assuming a circular shape),
are listed in Table C.12 of Appendix C.
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A numerical distribution was chosen to represent ice island diameter with the

following properties:

NUMERICAL
i - 12.5km
= 7.07 km

4.2.2.7 Ice island/fragment thickness

In the paper by Dunwoody (1983), the assumption was made that the thicknesses
of both ice islands and fragments were similar to that of the ice shelves which calved
them. Based on this assumption, a mean thickness of 40 m was calculated. This value
compared very well with the results from the study by De Paoli et al. (1982). Table
C.13 contains the thicknesses of the major ice shelves responsible for ice islands and

fragments.

A numerical distribution was generated using this data with the following

parametres,
NUMERICAL
i = 39.75m
g - 14.5m

5.2.2.8 Ice island / fragment speed

It was assumed that the same forces which acted on a multi-year floe would also
act on an ice island or fragment {(Dunwoody, 1933). Therefore, the velocity
distribution for ice islands and fragments was approximated by the speed of a multi-
year floe in the summer (see Section 4.2.2.1). This is as follows:
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GAMMA
W= 17031 em/s
o = 13.213 cm/s

4.2.2.9 Ice island density

In the paper by Dunwoody (1983), the following assumptions were made with
respect to calculating the ice island density:

i) on average, there are two ice islands in the Beaufort Gyre at any one time;

ii)  the Beaufort Gyre is approximately 2,000,000 km2 in total area. Therefore,
there is one ice island per 1,000,000 ka; and

iii}  the concentration of ice islands in the Canadian Beaufort Sea should be directly
proportional to the multi-year ice floe concentration. Therefore, given that the
average concentration of multi-year floes, in summer, is .66/10, the density of
ice islands is equal to .066 ice islands per 1,000,000 kmz, for the Canadian
Beaufort. Using the same logic, and given that the average summer multi-year
floe concentration is 1.35 tenths in the U.S. Beaufort, the density of ice islands
is .135 islands per 1,000,000 km2 in the U.S. Beaufort.

For the purpose of this study, this parameter was taken as deterministic, and equal to
‘066 and .135 islands per 1,000,000 km? in the Canadian and U.S. Beaufort

respectively.
4.2.2.16  Ice island fragment density
Ice island fragments result from the break-up of ice islands when they ground

near the shore line. Because the total combined area of ice island fragments should be
equal to the total area of ice islands, the rough assumption can be made that the
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density of ice island fragments is equal to the density of ice islands multiplied by the
average number of fragments per ice island. This value has been chosen as 100
fragments per ice island, therefore resulting in a density of 6.6 fragments
/1,000,000 km2 for the Canadian Beaufort and 13.5 fragments per 1,000,000 km2 in the
U.S. Beaufort.

4.2.2.11  Multi-year floe average ice pressure

Data summarized by Nessim (1984), was generated using small scale tests. No
publicly available data was identified for multi-year ice crushing strength from large-
scale tests. Based on experience, the following density function was chosen for the

effective average ice pressure.

EXPONENTIAL
u = 0.5MPa
= 0.5MPa

Further study is required in this area, to arrive at a better defined estimate of

this parameter.
4.2.2.12  Multi-year flexural strength

Results from large-scale tests, typically in-site cantilever beam tests, were
recorded by Schwarz and Weeks (1977) and Takekuma (1983). Figure 4.3 illustrates
results from several studies, with a range of ice flexural strength from 0.1 Mpa to 0.5
MPa. It was concluded, based on the references cited, that the following distribution
be used to describe multi-year ice flexural strength.

NORMAL

0.25 MPa
0.15 MPa

#

Q
H!
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Figure 4.3. Results of In-Situ Cantilever Beam Test
(Takekuma, 1983)

4.2.2.13  Multi-year ridge length

Publicly available data could not be located, therefore the past experience of the
researchers was used, and the average multi-year ridge length was estimated to be
150 m. Only the average value of this parameter is needed for the mode! and

therefore it is treated as deterministic,
4.2.2.14  Multi-year ridge height

Data was not publicly available for this parameter, however, by analyzing first-
year ridge heights (Section #.2.3.3), and utilizing past experience, the following

distribution was selected:
EXPONENTIAL

U = 0.9m
G.9m

EH
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The average ridge height appears to be rather low in comparison with familiar
values of data averages. This is because available data sets only contain ridges above
a given cut-off value, whereas the distribution used is adjusted to cover all ridge

heights starting at zero.

4.2.2.15  Multi-year ridge coverage

Using a paper by Weeks, et al. as guidance, combined with past experience, the
available value of this parameter was estimated. It was concluded that, on average,
30% of a multi-year floe would be covered by multi-year ridges. Further study and
documentation is required to quantify this parameter more accurately.

4.2.2.16  Multi-year floe diameter

The two sources of data identified were Spedding (1979) and Weeks, et.al. (1577).
The data compiied by Spedding was selected because it contained a large number of
data points and included floes of all sizes. Weeks' data, as will be illustrated, served

to verify the conclusions derived from Spedding.

The data by Weeks (see Table C.14 of Appendix C) was collected for locations
near Pt, Barrow and Cape Simpson as shown in Figure 4.4. The results of the data
analysis are summarized in Table 4.12. It is noted that the chosen fit was based on
visual agreement, since the data was too coarsely grouped to allow a successful Chi-

Square test,
GAMMA

100.3 m
150.7 m

=
t

[}
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TABLE 4.12

Summer multi-year floe diameter - Alaskan Beaufort

DISTRIBUTION | iy, s ODATA © LOS | COMMENTS
TYPE (m) (m)
Lognormal 321.1 172.6 - - Cape Simpson
Exponential 3211 172.6 313.1 0.00
Gamma 321.1 172.6 330.7 ¢.00
Lognormal 269.6 198.5 865.0 0.00 Pt. Barrow
Exponentjal 269.6 198.5 451.7 0.00
Gamma 269.6 198.5 270.9 0.00

It should be noted that for both the Cape Simpson and Pt. Barrow data sets,
there was a lower bound of 100 m diameter, below which floes were not recorded. To
verify the choice made using Spedding's data, assume that one is only interested in
floes larger than a certain cutoff value d*. The probability distribution of the
diameter of these floes can be obtained by truncating the distribution for all floes at
d* and normalizing for values of d > d* such that the area under the curve is 1.
Choosing d* = 100 m, the new distribution created, after truncating and normalizing
the original gamma distribution, has a mean of 265.79 m (see Figure 4.5). This
compares very well with the mean values calculated using the data by Weeks (see
Table 4.12), and therefore supports the decision to use the data compiled by Spedding.
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Figure 4.5. Distribution of Multi-Year Floe Diameters
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%.2.2.17  Ice island/fragment average ice pressure

The average ice pressure for ice islands and fragments was assumed to be equal

to the average pressure of multi-year ice (see Section 4.2.2.11).

EXPONENTIAL
| = 0.5 MPa
o = 0.5 MPa
4.2.3 Winter season

4.2.3.1 First-year level ice thickness

Data was obtained from Richardson and Burns (1975). In this report, ice
thickness measurements were monitored north of Cape Parry, North West Territories,
over a period of several years. From this data, an ice growth curve was constructed,
and is shown in Figure 4.6, This figure represents the growth of landfast ice,
approximately .0085 m/day, over the course of a winter in the Beaufort Sea. It was
assumed that this data was representative of both the Canadian and U.S. Beaufort Sea.

The original data set is summarized in Table C.16 of Appendix C.
4.2.3.2 Peak landfast ice speed

This parameter is defined as the speed at a local peak on the velocity time trace
as shown in Figure 4.7. Several sources of data were identified and included; Spedding
(1973, 1975, 1975, 1977) and Croasdale and Spedding (1972). Displacement data of the
landfast ice was measured using telemetry and tape extensions. From this data, which
was obtained on an hourly basis, a computer generated the speed traces, which are
shown in Figure #.6. The resolution of the data, according to Spedding, was limited to
speeds above 0.5 ft/hr (4.23 x 10~ m/s). All speed peaks above this lower limit were
recorded and are summarized in Table C.17 of Appendix C.
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Figure 4.7. Computer Generated Speed Traces
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This data was analyzed, and the results summarized in Table 4.13. For each
water depth interval, the digitized data was used as a numerical distribution to model
ice speed because no mathematical distribution had an acceptable level of

significance.

To permit an extremal analysis, the average number of events (peak speeds) per
month had to be estimated from the data. This calculation is detailed in Table C.18 of
Appendix C, and is summarized in Table 4.14. This information was extracted from

the same references used to calculate the average landfast ice speed.
4.2.3.3 First-year ridge height

The sources of data identified for this parameter were Wright and Schwab (1979),
and Wright, Gupta and Lusssenburg (1982). A summary of the data analysis is provided
in Table 4.15 From the data analysis, the distributions selected to represent first-year

ridge height in the shear zone were as follows:

EXPONENTIAL
i = 0.9 m
= 0.9m

For the pack ice zone, the following was selected:

EXPONENTIAL

H

0.69 m
0.69 m

The distribution average is lower than the data average by 0.76 m in both cases.
This is due to the fact that the data is given only for ridges higher than 0.76 while the
distribution was inferred for the whole range of ridge heights starting at zero.
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TABLE 4.13
Landfast peak speed distribution
Zone Distribution UDATA ODATA x2 LOS
Type (m/hr) {m/hr)
> 607 Gamma .548 L8438 22.33 0.034
{(>18.3m) Lognormal .548 .848 52.22 0.00
Exponential 5438 .8438 136.304 0.00
40*-60" Gamma .336 . 247 85.943 0.00
(12.195- Exponential .336 247 32,142 0.00
Lognormal .336 .247 14.085 0.00
20401 Gamma 314 .295 13.157 0.022
(6.098 - Exponential 314 .295 42.166 0.00
Lognormal 314 .295 44.603 0.00
g.20 Gamma 0.3 197 22.545 0.00
(0-6.098 m) Exponential 0.3 .197 47.829 0.00
Lognormal 0.3 <197 65.189 G.00
All Gamma .392 .302 942,106 0.00
Depths
Combined Exponential .392 302 707.574 0.00
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TABLE 4.14
Landfast ice speed peak distribution
NUMBER OF PEAKS

WATER TOTAL TOTAL AVERAGE AVERAGE

DEPTH HOURS PER HOUR PER MONTH
0 - 20 ft 25,910 380 1467 x 1072 10. 560
(0-6.098m)
20 - 40 ft 8,952 276 3.083 x 1072 22.198
(6.098-12.195 m)
40 - 60 £t 5,952 921 1.547 x 107} 111,410
(12.195-18.293 m)
5 60 ft 1,128 158 1.401 x 107} 100.850
ALL DEPTHS 40,083 1,735 4.392 x 10°2 31,165

Average/month calculated as:

(Average/hour) x (24 hrs/day) x (30 days/mo.)
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TABLE 4.15

First-year ridge height

2
ICE DISTRIBUTION| o X LOS COMMENTS
ZONE TYPE RAFA RATA
SHEAR Exponential |1.66 0.99 14.558 | 0.104 | 1980-81 data.
Gamma l.66 0.99 156.842 | 0.095
PACK Exponential |1.45 0.68 16,799 | 0.052
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4.2.3.4 First-year ridge orientation

Data for this parameter was recorded by Wright and Schwab (1979). A summary
of the data analysis is provided in Table 4.16 _below.

TABLE 4.16

First-year ridge orientation

2
ICE DISTRIBUTION MDATA ODATA X LOS COMMENTS
ZONE TYPE (deg-) (deg.)
SHEAR Beta 90.45 43.70 L4748 | 0.225 | Beta distribution
fits all data sets.
PACK Beta 92.25 46,84 2.509 ! 0.121

The results of the data analysis indicate that the Beta distribution is appropriate
for first-year ridge orientation with the parameters given in Table 4.16 for each ice
zone. The method for measurement of the ridge angle is shown in Appendix C along
with Table C.20, which lists the data set. It is noted that this parameter was not
required for the final model and is included here for reference.

4.2.3.5 First-year ridge frequency
Two references were studied for this parameter, namely Wright and Schwab

(1979), and Spedding (1979). A summary of the data analysis for the first reference is
given in Table 4.17.
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TABLE 4.17
First-year ridge frequency
2
ICE DISTRIBUTION UDATA O9DATA X LOS COMMENTS

ZONE TYPE (/km) (/km)
SHEAR Beta 14.21 8.25 9.868 | 0.130

Gamma 14,21 8.25 18.417 | 0.002
PACK Gamma 14.93 7.95 10.719 | 0.097

This parameter was not required in the final model where ridge frequency of
occurrence was estimated from areal coverage information (see Section 4.3.2). The
data analysis is presented here for reference. The original data from Wright et al.
(1979) is provided in Table C.21.

4.2.3.6 First-year ridge cohesion

First-year ridges are mostly composed of unconsolidated rubble, and as a result,
are usually studied using soil models. Prodanovic (1981) used a value of 0.035 MPa as
the cohesion pressure in first-year ridges, and was used as a deterministic value in this

study.

4.2.3.7 First-year ridge friction angle

_ The internal friction angle was estimated by Prodanovic (1981) to be 25°, and
this was used as a deterministic value in this study.
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4.2.3.3 First-year ridge coverage

Using the same sources as for estimating the multi-year ridge coverage (see
Section 4.2.2.14), the coverage was estimated to have an average value of 30% of the

floe area.
4.2.3.9 First-year ice pressure

Ice pressure was treated as a random process for which the pressure at a local
peak is the sum of two components, namely the process mean and a random component
(see Sec. 6.4.2). Results from large-scale tests to determine the pressure of first-year
ice in the crushing mode were not found in the public domain. A process average value
of 0.3 MPa was selected based upon judgemental adjustment of the average ice
pressure for multi-year ice. The extremal pressure component was assumed to have a
mean value of 0.2 MPa, and a standard deviation of 0.15 MPa. These were used in a
double exponential extremal density function (see Section 3.8). Further field data are

required to better quantify this parameter,

4.2.3.10  First-year ice flexural strength

This parameter is treated in a similar manner to the average pressure (Section
%.2.3.9), as the sum of a process average and a random component. Several sources of
data were reviewed to arrive at an average value for the flexural strength of first-
year ice. These sources included Frederking (1978), Schwarz and Weeks (1977), and
Takekuma (1983). The results shown earlier in Figure 4.3 combined with data from
Frederking (1978), led to the conclusion that the average flexural strength of first~
year ice was approximately 0.20 MPa.

No data could be found to estimate the extremal component of flexural strength
and this was based on judgement. The selected mean value for the flexural strength
extremal component is 0.1 MPa, with a standard deviation of 0.05 MPa. The double
exponential distribution was used (see Section 3.8).
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4.2.3.11  First-year ridge speed
First-year floes containing first-year ridges would move with the whole ice cover
during the winter. As a result, the speed of these ridges can be modelled using winter
ice speeds (see Section 4.2.3,15). The chosen distribution is:

GAMMA

0,062 m/fs
0.073 m/s

Q
"

4.2.3.12  First-year ridge length

An average value of 130 m is used. This is based on the value used for multi-

year ridge length since it is believed that the two types of ridges are similar in length,

4.2.3.13  Winter ice speed - shear zone and pack zone

A USCG study by Murphy et al. (1983), analyzed the tracks of buoys from the
Canadian to U.S. Beaufort during the winter season. This study was considered more
suitable than the results obtained from McGonigal and Wright (1977), and was
therefore used in the data analysis. F igure 4.8 is a sketch showing the position of the

buoy during the course of the study.

The data consisted of net daily drift speeds, which were calculated based on
displacements measured every 24 hours. To verify that the fit obtained was applicable
to both the U.S. and Canadian Beaufort Sea, the data set was divided geographically
into Canadian and U.S. measurements, as recorded in Table C.22 in Appendix C. The
results of the data analysis are summarized in Table 4.18.
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The Gamma distribution, fitted to combined data set, was selected as

representative of winter ice velocities in the shear and pack ice zones.

GAMMA
u = 0.062 m/s
o = 0.073m/s

4.2.3.1%4  Multi-year ice concentration

The ice charts provided by the Atmospheric Environment Service (1953-84) do
not provide detailed information for the winter season. Using the limited data
available, the mean concentration was determined to be 0.2 tenths, with a standard
deviation of 0.4 tenths. This value was used for both the U.S. and Canadian Beaufort

Sea.

4.2.3.15  Pack ice pressure

Based on a paper by Jordaan, LJ., et. al. (1985), which reviewed several sources
of data (Figure 4.10), the following was used for pack ice forces:

NORMAL
o =  0.05MPa

4.2.3.16  Other winter parameters

. Several other winter parameters were found to be equal to the values for the
summer season, and these are listed below in Table 4.19
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TABLE 4.138

Winter ice speed

LOCATION | DISTRIBUTION | ynATA | oDATA & LOS COMMENTS
TYPE (m/s) (m/s)
Canadian Exponential 0.060 0.53 0.281 | 0.59% Murphy et al. (1983)
Beaufort
Gamma 0.060 0.053 - - No fit possible
Lognormal - ~ - - Murphy et al. (1983)
U.S. Exponential 0.065 0.092 17.621 | 0.000
Beaufort
Gamma 0.065 0.092 9.214 | 0.002
Lognormal - - - - No {fit possible
Both U.S. Exponential 0.062 0.073 10.425 | 0.005
& Canadian _
Gamma 0.062 0.073 4.735 | 0.09%

Beau:fort .
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Figure 4.10. Summary of Pack Ice Pressure Data
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TABLE 4.19

Winter parameters

Parameter Report Section Referenced
Muiti-year floe thickness 4.2.2.2
Multi-year floe diameter 4,2.2.15
Multi-year average ice pressure 4.2.2.11
Multi-year ice flexural strength 4.2.2.12
Multi~year ridge coverage 4.2.2.14
Multi~year ridge height 4.2.2.14
Multi-year ridge length 4.3.2.12
4.2.4 Break-Up Season

4.2.4.1 First-year ice thickness

The ice thickness was considered to be a maximum at the time of break-up, due
to the continuous growth during the winter season. For this parameter, a

deterministic value of 1.5 m was chosen.

4.2.4.2 Break-up speeds Prudhoe Bay

Data for break-up speeds in Prudhoe Bay were based on a study by
Oceanographic Services, Inc. (1980). Table 4.20 summarizes the results of the data

analysis.
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TABLE 4.20

Break-up speed Prudhoe Bay

STATION |DISTRIBUTION | u, . OnNATA X LOS COMMENTS
NO. TYPE (cm/s) (cm/s)
1 Lognormal 4.140 3.08 17.198 0.004 5 Minute
Exponential 4.140 3.08 54.633 0.000 Movements
Gamma 4.140 3.08 8.985 0.110
Lognormal 2.291 1.934 4.132 0.127 I Hour
Exponential 2.291 1.934 1.384 0.709 Movements
Gamma 2.291 1.934 2.772 0.250
3 Lognormal 7.534 7.800 116.411 0.000 5 Minute
Exponential 7.534 7.800 138.105 0.000 Movements
Gamma 7.534 7.800 142.222 0.000
Lognormal 5.055 6.005 5.471 G.361 I Hour
Exponential 5.055 6.005 5.246 0.513 Movements
Gamma 5.055 6.005 7.599 0.180
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TABLE .20 (continued)

STATION | DISTRIBUTION HDATA ODATA X LOS COMMENTS
NO. TYPE (cm/s) (cm/s)
4 Lognormal 12.429 9.768 61.392 0.000 3 Minute
Exponential 12.429 9.768 75.505 0.000 Movements
Gamma 12,429 9.768 67.659 0.000
Lognormal 4.549 5.552 6.155 0.188 1 Hour
Exponential 4.549 5.552 7.066 0.315 Movements
Gamma 4.549 5.552 8.558 0.128
All Lognormal 8.018 8.157 99.89%4 0.000 3 Minute
Stations
Exponential 8.018 8.157 146.903 6.000 Movements
Gamma 8.108 8.157 151.361 0.000
Lognormal 4.177 5.225 4.325 0.633 1 Hour
Exponential 4.177 3.225 3.148 0.642 Movements
Gamma 4.177 5.225 9.287 0.158
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Figure 4.11 shows the area where the stations were located. There is a large
difference between the means of the 5-minute movements and the l-hour movements.
The ditfference can be attributed to the fact that I-hour measurements are averaged

over a longer period of time (1 hour) than 5-minute speeds,

The distribution selected to represent the break-up speeds in the Prudhoe Bay
area is the Exponential distribution, based on the l-hour measurements from all
stations,

EXPONENTIAL

u = 4.177 cm/s

o= 4,177 cm/s

The original data is listed in Table C.23 found in Appendix C.

4.2.4.3 Other break-up parameters

Table .21 summarizes the break-up parameters which have been defined in

previous sections of this report.
4.2.5 Ice Behaviour
4.2.5.1 Elastic modulus of ice
Values of the elastic modulus of ice vary in a wide range depending on the type
of ice and loading direction (Lainey and Tinawi, 1984). A deterministic value of 5 GPa
was selected for this study.

%.2.5.2 Poisson's ratio of ice

This parameter was assigned a deterministic value of 0.3 {Hutter, 1975).
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TABLE #.21
Break-up parameters
Parameter Report Section Referenced
First-year ridge coverage 4.2.3.8
First-year ridge height 4,2.3.3
First-year ridge length 4.2.3.14
First-year ridge friction angle 4.2.3.7
First-year ridge cohesion 4.2.3.6
Level ice crushing strength 4.2.3.9
Mean of extremal pressure component 4,2.3.12
S.D. of extremal pressure component 4.2.3.12
Multi-year floe concentration 4.2.3.17
Multi-year floe speed 4.2.2.2
Multi-year ice crushing strength 4.2.2.11
Multi-year ridge coverage 4.2.2.14
Multi~year ridge height 4,2.2.13
Multi-year ridge length 4.2.2.12
Environmental driving force 4.2.3.19

%.2.5.3 Creep constants

The reference stress method was used to calculate the forces exerted by the ice
on the structure, as will be discussed in Section 5.4.1.2. The basic creep law for ice is

as follows:

where A is the creep multiplier

n is the creep exponent
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Both n and A are treated as deterministic values. The creep exponent is taken as
n = 3, Sinha (1981). The creep multiplier A was determined from the slope of strain
rate-maximum stress curve for in situ tests on specimens stressed in a direction
perpendicular to the c-axis (Wang, 1979). This lead to a value of A = 10”5(MPa)'3.s'I'

4.2.6 Default values

The default values are listed in Table 4.22. In many cases, these values were
based Chi-Square fits to actual data. Those parameters highlighted by a single
asterisk (*) indicate the use of limited data along with experience and judgment.

Those with double asterisks (¥*) were based solely on the researchers' estimates.

Table 4.22 contains only those parameters which were used in the final mode].
Some environmental parameters were analyzed in the initial stages of the study, but
were later found to be unnecessary for the selected models (e.g. linear ridge
frequency). These parameters were included in the previous sections of this chapter
for completeness, but do not appear in Section 4.22.

TABLE 4.22
Parameter Default values

PARAMETER DISTRIBUTION DISTRIBUTION COMMENTS
TYPE PARAMETERS
Start of break-up Normal u = 173 days = June 22
Canadian Beaufort g = 18.1 days
End of break-up Normal u = 187 days z July 6
Canadian Beaufort g = 22.9 days
Freeze-Up Normal y = 309 days = Nov. 5
Canadian Beaufort o = 22.8 days
Start of break-up Normal p = 199 days = July 18
Prudhocf Bay g = 20.6 days
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TABLE 4.22 (continued)

Parameter Default values

PARAMETER

DISTRIBUTION
TYPE

DISTRIBUTION
PARAMETERS

COMMENTS

End of break-up
Prudhce Bay

Freeze-Up
Frudhoe Bay

Summer multi-year
floe speeds

Multi-Year floe
thickness-Winter
and Summer¥

Multi-year ice
concentration
Summer - Canadian
Beaufort

Multi-year ice
concentration
Summer - U.S.
Beaufort

Normal

Normal

Gamma

Gamma

Beta

Beta

p = 219 days = Aug. 7

o = 24.3 days

u = 310 days = Nov, §
o = 21.8 days

nu=.71 m/s

g= 132 m/s
u=389m
o=1.584m

u{0-20)=.2/10
5(0-20)=.7/10
1(20-40)=.3/10
o(20-40)=1./10
u(46-60)=.4/ 10
o{40-60)=1.2/10
u(60-80)=.6/10
a(60-80)=1,6/10
1(80-100)=.7/10
o(80-100)=1.8/10
u(100-120)=.9/10
o(100-120)=2.0/10
u(120-140)=,9/10
0(120-140)=2.1/10
u(140~160)=1.3/10
o(140-160)=2.4/10

u(0-20)=1.1/10

o{0-20)=1.3/10

1{20-40)=1.1/10
o(20-40)=2.1/10
u{40-60)=1.5/10
o(40-60)=2.5/10
1(60-80)=1.7/10
o{60-80)=2.8/10

(.-.) represents the range of
distance offshore north
of North Point.

(.-} represents the range of
distance offshore north of
Prudhoe Bay
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TABLE 4.22 (continued)

Parameter Default values

PARAMETER DISTRIBUTION DISTRIBUTION COMMENTS
TYPE PARAMETERS
Ice island Numerical u=70.0 m
fragment diameter o=43.1m
Ice island diameter* Numerical u=12.5km Inferred from cracks in
0=7.07 km ice shelves
lce island/ Numerical U=39.75m Inferred from the thickness
fragment thickness* o=14.5m of ice shelves
Ice island/fragment Gamma u=.171 m/s Assumed to be the same as
summer speed* 0=.132 m/s muiti-year floe speed
Ice island density Deterministic u=.066 islands
Canadian Beaufort* per 1 million km?2
Ice island densjty Deterministic u=.135 islands
U.S. Beaufort* per 1 million kmZ2
Ice island Deterministic u=6.6 fragments
fragment density per 1 million km?2
Canadian and U.S.
Beaufort*
Multi-year ice Exponential u=0.5 MPa
average pressure** 0=0.5 MPa
Multi-year ice Normal u=0.25 MPa
flexural strength* 0=0.15 MPa
Multi-year ridge Deterministic u=136.8 m
length**
Multi-year ridge Exponential u=0.9 m
height* 0=0.9m
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TABLE 4.22 {continued)

Parameter Default values

PARAMETER DISTRIBUTION DISTRIBUTION COMMENTS
TYPE PARAMETERS
Multi-year ridge Deterministic 30%
coverage®
Multi-year flce Gamma p=100.3 m
diameter g=150.7 m
Ice island/fragment Same as multi-year ice
average ice pressure*
First-year level Deterministic 00835 Monthly mean ice thicknesses
ice growth rate are calculated from growth rate
Peak landfast ice
speed
water depth
0-6.1 m Numerical p=8.2x10- m/s
C=5.4x10-3 m/s
6.1-12.2 m Numerical p=8.7x10-3 m/s
0=8.2x10~3 m/s
12.2-18.3 m Numerical p=9.3x10-3 m/s
0=6.9x10"5 m/s
>18.3m Numerical p=1.5x10-% m/s
0=2.4x10-4 m/s
First-year ridge
height
Shear Zone Exponential p=0.9 m
¢=0,9 m
Pack Zone Exponential u=0.69 m
g=0,69 m
First-year ridge Deterministic u=0.035 MPa
cohesion
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TABLE 4.22 (continued)

Parameter Default values

PARAMETER DISTRIBUTION DISTRIBUTION COMMENTS
TYPE PARAMETERS
First-year ridge Deterministic n=25°
friction angle
First-year ridge Deterministic u=30%
coverage
First-year ice Deterministic 1=0.3 MPa
average pressure**
Extremal component Double

first-year ice
average pressure**

First-year ice
flexural strength*

Extremal component

first-year ice
tlexural strength*»

First-year ridge
length**

Winter ice speed

shear and pack zone

Multi-year ice

concentration winter

U.S, and Canadian
Beaufort*

Pack ice pressure*

Exponential

Deterministic

Double
Exponential

Deterministic

Gamma

Beta

Normal

tenths
tenths

Q-
it #
oo
Lo N




TABLE 4.22 {continued)

Parameter Default values
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PARAMETER DISTRIBUTION DISTRIBUTION COMMENTS
TYPE PARAMETERS
Break-up speed Exponential u=0.042 m/s Same for Canadian Beaufort
Prudhoe Bay 0=0.042 m/s
Break-up thickness Deterministic p=l.5m
first-year ice
Elastic modulus Deterministic 5GPa
of ice
Poisson's Ratio Deterministic 0.3
Creep Constants
Exponenent - 3
Multiplier - 1072 (MPa)y 3571

* Based on limited data combined with judgment

¥* Based on judgment

4.2.7

Discussion of results

For the most part, the data analysis led to satisfactory results regarding input

parameter distribution types and parameters.

The criterion which was selected in

order for a distribution to be considered a "good fit" for a given set of data was a level

of significance greater than or equal to 0.05. In some instances, however, the data set

was too coarsely defined (i.e. too few bins for the number of data points) to meet the

0.05 level of significance criterion. To overcome this problem, several strategies can

be used. They are as foliows:
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i) sensitivity analysis;
i) using the original histogramj; and
iii) performing the Chi-squared test on the taj] portion of the data.

It was felt that sensitivity analysis to the distribution type could be left to the
discretion of the user. Using the final model the distribution types for any parameter
can be varied to determine their influence on the final outcome.

Using the originai histogram, or describing the data as a humerical distribution,
is a very appropriate solution to the problem. The program allows the user to define
the cumulative density function for a given parameter, with a maximum of 20 points.
The model then uses this numerical distribution as a description of the parameter

concerned.

Finally, a Chi-squared test can be performed on the taj] portion of the data. The
justification for this action is that it is the latter portion of the data which js of

primary interest in the current model.

As an example of how this method is applied, the summer multi-year floe speeds
were examined. Table C.7 in Appendix C lists the raw data, which have too many
data points for the number of bins, consequently no fit is possible based on the Chi-
squared goodness of fit test, When the data |s analyzed more closely, a trend towards
obtaining a "better fit" for the gamma density functions was evident, as the Chi-
squared test is applied to the tail portion of the data. This finding supports the use of
the gamma density function despite the low value of the level of significance over the

whole data range.
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Chapter 5

ICE-STRUCTURE INTERACTION MODELS
5.1 General

In order to estimate ice-structure interaction loads, the ice is usually idealized
in two respects, namely geometry and constitutive behaviour. Geometric idealizations
are needed to allow the use of structural analysis theories which are developed for
man-made structural elements with regular geometries. Examples are the idealization
of an ice sheet as an homogeneous plate with uniform thickness, or the idealization of
a ridge as a beam with uniform cross-section. Combined with appropriate models of
the stress-strain relationship of ice, the interaction process can be analyzed and the
force between the ice and the structure calculated.

In a global sense, ice acts as a medium to transmit such environmental forces as
winds and currents to the structure. Consider, for example, an ice floe moving at a
constant velocity (i.e. in equilibrium) under the effects of wind/current drag, and
forces from surrounding ice. If the floe motion is obstructed by a rigid structure,
forces develop in the contact zone which introduce accelerations to the floe motion.
The maximum force on the structure will be governed by one of the two folllowing
conditions {Croasdale, 1980):

a) The interaction may end if the forces exerted by the structure introduce
sufficient inertial forces to stop the floe or change its direction of motion such
that it loses contact with the structure. This is a giobal consideration which

requires modelling the ice movement under the environmental driving forces and
the forces exerted on the ice by the structure.

b)  If the driving forces are sufficiently high, the condition described in a) above
may not be reached before the structure is fully enveloped in the ice feature, as
shown in Figure 5.1 b. In this case the contact width is at its maximum value
and the local indentation problem reaches its steady-state maximum load. Any
further energy dissipation will occur at the same load level, and the maximum
load can therefore be calculated from a local model.
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Floe
Local Velocity

Contact Width

Structure

(a) Transitiona! Cose of Increasing Contact Width

Local Velocity
Floe

Contact Width

Structure

(b) Steady State Case of Maximum Constant Contact Width

Figure 5.1. Ilustration of the transitional and steady state cases
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The applicability of either of the conditions a) and b) mentioned above depends
on the interaction scenario and the magnitude of the driving forces in comparison to
the potentiai local forces between the ice and the structure. If the driving forces
transferrable to the structure are farge, condition b) is likely to apply and a local
model based on the deformation of the ice in the interaction zone is appropriate. An
example of this case is the movement of a first-year ice cover against the stucture.
The ice cover is usually large enough so that its movement will not be affected by the
structure. The structure is fully embedded in the ice, and the force can be calculated
from the failure or creep stresses of the ice along the width of the structure,

depending on the rate of movement.

On the other hand, if the driving forces transferrable to the structure are small
in comparison to the potential local forces, the maximum local forces will not be
reached. The use of a local mode] would lead to an overestimation of the load and
thus a global model as described in a) above is necessary. It is essential in a
probabilistic analysis of the present type that these aspects be adequately accounted
for to eliminate a systematic overestimation of the load values. The main scenarios
for which this consideration applies are those associated with multi-year floes and ice
islands. Impacts with such features are generally eccentric, and a portion of the
original kinetic energy of the feature will be dissipated in rotation. This is true even
for cases where the multi-year floe is surrounded by first-year ice. The first-year ice
will exert stresses on the multi-year floe which are of the same order of magnitude as
the ridge building stresses. Once the local ice structure interaction force reaches a
value which equilibrates this force (considering other inertial forces), the multi-year
floe starts to move relative to the surrounding first-year ice and the floe can rotate
and clear around the structure. A multi-year ridge is a locally thickened part of a
multi-year floe, which can exert higher local forces on the structure. These forces,
however, contribute to the overall floe movement and this factor should be taken into

account,
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As shown in Table 5.1, the different loading types corresponding to different
features in the three seasons considered can be Categorized in three major interaction
cases. These cases along with the approach used for each are summarized in Table
3.1.  After a brief discussion of the constitutive behaviour of ice, the models
developed and used for each of the cases in Table 5.1 will be discussed.

TABLE 5.1

Approaches used for different
ice-structure interaction models

Case Scenarios Force Calculation
Approach
Areal Feature ~ MY Floes in all seasons Global ice feature
Interaction (with MY ridges) load model

- Ice islands

Level Ice - Winter full FY ice cover Local force model
(all zones)

- Break-up partial ice cover
(all zones)

Linear Ice Rubble - FY ridges in the active ice Local force model
zone (winter and break-up)
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3.2 The Mechanical Behaviour of Ice

The estimation of ice-strucure interaction forces is highly dependent on the
postulated material behaviour of ice. This is true for both local models, which are
based entirely on stress analyses of the ice, and global models, which require the
definition of a force-penetration curve for the ice. In this section, the key aspects to
the behaviour of ice and the chosen material models for the different types of
interaction are discussed. Two types of ice will be considered, namely intact ice and
rubble. The properties of rubble are needed for the evaluation of forces from first
year ridges, whereas the properties of the intact ice are needed for all other loading

scenarioes.

3.2.1 The mechanical behaviour of intact ice

For the present study, the material behaviour of ice is modelied according to the

mode of ice deformation in each type of interaction as follows:

a)  Indentation:

This covers the movement of first-year or multi-year jce against a
vertical-sided structure. In this mode, the dominant type of ice behaviour
depends on the deformation rate. In the landfast ice zone, average ice speed
during the winter season is approximately 0.5 m/hr. For a 100-m wide structure,
this corresponds to a nominal strain rate of about 1.4 x 10‘6 (see Secton 5.5 for
details of calculating the strain rate), which is well below the creep-crushing
transition strain rate of about 10”3 . Under these conditions creep dominates the
interaction. The ice flows around the structure and does not fail. The secondary

creep law for ice is given by (Sinha, 1981):

n ' (5.1)
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where £ is the strain rate;
g is the stress; and
A,n  are the creep constants of ice.

Experimental evidence (Sinha, 1981, and Lainey and Tinawi, 198%) indicates that
n =3 and that A = 10" (MPa)™> sec.” L.

The creep law in Eq. (5.1) is for uniaxial loading under a constant stress -
The use of this law to derive a solution for the indentation problem under a

constant velocity is the subject of Section 5.5.

For other load scenarios, such as summer impacts, and high rate winter and
break-up interactions with tirst-year ice, ice velocities are high enough to result
in local crushing of the ice. Three different types of behaviour will take place,
depending on the distance from the indenter, as shown in Figure 5.2. The intact
ice in Zone I will behave as a visco-elastic material as discussed earlier. Zone II
contains a progressively damaged material which provides the transition between
the intact ice in zone [ and the completely crushed ice in Zone IIl. Such failure
patterns have been observed in small-scale and large-scale indentation tests
(Kurdyumov and Kheisin, 1976, and Timco, [986), and have been recognized as
the key aspects to proper modelling of the indentation problem. In fact, some
analytical work has been carried out (Tomin, et.al.,, 1986) in this area, but this is
still in the early stages of development,

The most common presently available approach to model the ice response
in indentation is based on deducing the crushing strength of ice from its uniaxial
strength by multiplying the latter by several factors (Korzhavin, 1962). These
factors represent the effects of multi-axial confinement, incomplete contact,
loading rate, and shape of the structure, and are usually determined using semi~
empirical approaches. For example, the indentation factor which quantifies the
multi-axial stress effects can be determined as a function of the aspect ratio
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577 ZONE 3

o fi:/ Crushed Ice
Ve

-~
ZONE 2
Partly Cruskh
Ice

ZONE 3
Intact Ice

Figure 5.2. Ilustration of the ice response for high speed indentation
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(ratio between contact width and ice thickness) based on the theory of plasticity
(Michel and Toussaint, 1977). Also the contact area reduction factor can be
quantified on the basis of a statistical approach which assumes that crushing
occurs independently at different small zones within the contact area {Kry,
1977).

In the present study, a constant average indentation pressure is used for
each interaction event. This value is randomly selected from the probability
distributions given in Chapter 4 for this parameter. The ice is assumed to be a
rigid-crushing material, and the deformation of ice beyond the crushing zone is
not accounted for. The rationale behind this choice is summarized as follows:

i) At high loading rates, the deformations of ice beyond the crushing zone are
small and the interaction will be governed by the flow of the crushed ice.

ii}  Experimental evidence from large-scale tests indicates that the use of
empirical indentation constants to extrapolate from small-scale test
results gives unrealistically high loads. This is due to the imperfections
and weaknesses in natural ice which do not exist in laboratory ice. Also,
the assumptions used in the determination of the indentation factors do not
model the actual phenomena which have been observed in recent

indentation tests, as discussed earlier.

iil)  For global load evaluation it is sufficient to estimate the average pressure,
and details of the pressure distribution are not needed.

iv)  The dependence of the average pressure on the aspect ratio {ratio between
the contact width and the ice thickness) is very weak for high aspect
ratios, which are characteristic of Beaufort Sea structures. This can be
seen in Figure 5.3 (Marcellus and Morrison, 1982), where the slope of the
average pressure versus aspect ratio curve is very flat for aspect ratios
higher than 10.
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The average ice pressure should be based on the best large-scale

experimental evidence available.

b)  Bending

Ice fails in bending against sloping structures. The bending resistance of
ice is not a basic property, but is a manifestation of its tensile resistance. Ice is
an extremely brittle material with low tensile resistance. Since conical
structures in the landfast ice zone are not considered in this study, loading in
bending will always be at relatively high rates. Elasticity dominates the ice
behaviour at high rates and, therefore, elastic behaviour is used throughout the
study for ice deformations in bending.

5.2.2  The behaviour of ice rubble

Ice rubble behaves like a granular material (Prodanovic, 1981). The shear
strength (r) of ice rubble can be expressed as a function of its cohesion ¢ and angle of
friction ¢ 35 follows:

T = L 4 o tan¢ (5-2)
where g I8 the normal stress on the shear plane,

This granular material model is used in the study for calculating loads from first-

year ridges.
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5.3 Areal Feature Interactions

This case covers interactions with areal features, such as ice islands and multi-
year ice floes. It covers both open-water summer collisions, and Closed-water
interactions where the feature is surrounded by first-year ice. Multi-year ridges
within a multi-year floe are also considered as part of this model. For this case, a
detailed ice-structure interaction model, which accounts for the global considerations
of the feature motion, was developed. Such a model was deemed appropriate for the

following reasons:

L. Multi-year jce is believed to be the most serious hazard which would govern the

design load in most cases.

2. Maximum forces calculated from local failure stresses are seldom reached in this
case. This is due to the fact that an ice feature collision with a structure is
generally eccentric, Causing some of the initial kinetic energy to be transformed
into rotation. In most cases, the initial kinetic energy of the ice feature will be
completely dissipated (i.e. the ice feature stops) and/or the ice feature will clear
around the structure before there js enough local penetration to expose the full
width of the structure to the ice. The maximum force in such cases will be
lower than that based on maximum local forces. This effect was accounted for

to avoid force over estimation.

3. Some of the proposed force models for multi-year jce featues give upper bound
forces based on assumptions which are not consistent with a probabilistic
analysis. The treatment of multi-year ridges as beams, for example, assumes
that they move perpendicular to their longitudinal axis and that they are Joaded
Up to failure by a point load in the middle, Considering that ridges are randomly
oriented and that they are usually embedded in multi-year floes in which the
structure penetrates only a limited distance, the above-mentioned beam
assumptions can be seen to have a small probability of occurrence. Moreover,
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the average length of multi-year ridges is about 150 m. For structures in the
order of 100-m wide, the point load assumption is unrealistic. A random floe
model was developed to assess the probability of encountering a ridge during
interaction with a multi-year floe. The height and orientation of the ridge were
modelled probabilistically, and the probability of encountering a ridge in a given
penetration distance was calculated. Details of this model are given in Appendix
B. Based on this analysis, it was decided that multi~-year ridges should be
incorporated in the overall multi-year floe crushing model. This allows
probabilistic modelling of their orientation and point of contact, and allows for
the consideration of the effect of load increases due to the local thickening of

the ice on the overal] floe motion.

The overall model is depicted in Figure 5.4. The ice feature can be embedded in
first-year level ice as shown in the figure, or it can be free-floating. The problem can
be divided into two distinct parts as follows:

1. The overall interaction problem, which deals with the motion of the feature

under the forces acting on it.

2. The local problem, which is concerned with the calculation of the local forces
between the feature and the structure.

Even with simple assumptions regarding the constitutive behaviour of ice (as
discussed in Section 2.2.1), the problem is non-linear. There is a geometric non-
linearity which results from the interdependence between the local force and the
movement of the ice feature. It is noted that energy models have been used before for
open-water, free-floating features (e.g. Fidjestoel, i'983}. This methodology is
extended here to include the effects of forces from surrounding ice and to account for
local variations in thickness due to the encounter of ridges.

The overall interaction problem and the local interaction problem will be
discussed separately in the following sections.
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Level lce (FY)

ice Feature (MY)

Direction of Motion

Structure

Figure 5.4. Overall areal feature collision model
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5.3.1  Overall areal feature model

The forces acting on an ice feature as it interacts with a structure are depicted

in Figure 5.5. The assumnptions made are as follows:

1. The ice feature is circular with radius R ¢ and uniform average thickness ty.

ii.  There is no friction between the multi-year floe and the surrounding ice.

iii.  There is no relative translation between the ice feature and the surrounding ice
in the initial stages of interaction. Relative translation starts when the force
exerted on the floe by the structure reaches the maximum force which can be
sustained by the first-year ice along its contact with the tloe, causing the floe to

"break-out" from the surrounding ice. This break-out force is equal to the ridge-

building force.

lv.  After the break-out event disccused in (iii.) above, the pressure on the ice
feature from the surrounding ice is uniformly distributed along a line
perpendicular to the direction of the relative velocity between the ice feature
and the surrounding ice.

v.  The velocity of the surrounding ice remains constant throughout the interaction.

The equations governing the motion of the feature are as follows:

{Ft)} = (m)[a(r)) (5.3)

t
VoY a1 = [Veolaeg { {a(t)};, a1 (5.4)
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First Yeor Level ke

v = First Yeor Level ice Velocity

v = ke Feature Velocity
% = Relative Velocity Between Multiyear Floe and First Yeor ke

= First Yeor Leve! ice Force or Multivear Floe

Ty

Fy ,F; = Forces Exerted by Structure on Multiyear Floe

Figure 5.5. Closed water interaction model
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t
[Xcol2x1 * [ VGt g dt (5.5)

i

{Xc(t)} 20y

[

Ve ax = (T 550 Va ()] 5, (5.6)
where F is the resultant of the forces acting on the feature, m is the mass, a is the
acceleration, V is the velocity, X is the centroid Iocation, Tis a transformation matrix
from global to local velocity, and t is the time. Subscripts G and C refer to points G
and C on Figure 3.5, and denote global and local motion parameters, respectively.
Subscf‘ipt 0 denotes the value of a parameter at t = 0. The parameters in Equations 5.3
to 5.6 are all in vector and matrix form, with the dimensions given as subscripts to the
Vector or matrix in each case, These matrices contain the standard parameters of

planar motion.

The vector { F(t)} can be given as:

{F(t)}Bxl = {FC(U}BxI M {Fg(t}hxl (5.7)

where F C(t) is the force from the structure on the ice feature, and F (t) is the force
from the surrounding level ice. Based on assumption (jv) above, Ff.(t) can be expressed

as:

(P a1 = (C)aeslV, - Vo(t)),,, (5.8)
where
o - 204t R, I 0 0
Ve 0 1 0
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and gy = stress from surrounding ice;
t s = thickness of surrounding ice;
Rf = radius of ice feature; and
v = magnitude of the velocity of the surrounding ice relative to the

ice feature.

The local contact force can be expressed as a function of the feature position

and local velocity as:

(Fe(t)}3y) = (FlXg, Voo D)y, (5.9)

Details of equation (5.9) constitute the local force model which will be discussed in
Section 5.3.2 for different structural geometries.

Using Equations {8) and (9) in equation (7) leads to:

(FUO oy = (Fegy Voo )5, + ()35 {V, - Vg (1)} (5.10)

Equations (5.3) to (5.6) and (5.10) can be solved in a time-stepping algorithm to obtain
a time history of any of the time-dependent parameters. The problem is non-linear
due to the interdependence between the forces and the motion of the ice feature.
Newmark's Beta method (Bathe and Wilson, 1976} is used in an iterative solution to
reduce the error at the end of each time step to an acceptable tolerance.

The soiution of the problem begins by determining the position of the floe upon
initial contact, and the initial contact point. This can be obtained from the geometry
of the problem as shown in Figure 5.6. For the axisymmetric circular structure in
Figure 5.6(a), the eccentricity, e, between the floe centre and the centre of the
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structure is given., This can be used to write the equations of the floe perimeter at an
arbitrary position along the y axis and the perimeter of the structure in a set of x-y
axes, which have the centre of the structure as an origin, and are parallel and perpen-
dicular to the approach velocity direction. The point of contact is the point on the
structure which is closest to the floe perimeter along the y axis (i.e, point which mini-
mizes the distance y in Figure 5.6(a)). For a polygonal structure (see Figure 5.6(b)),
the problem is not axisymmetric and the approach angle o is also required as input.
Since the structure is originally defined in a fixed set of axes (xo-yo), a transformation
must be applied first to rotate these axes through an angle g, The equations of the
sides of the structure can then be defined in the x-y axes and the point of contact can
be obtained by minimizing the distance along the y-axis between the structure and the
tloe as before. The coordinates of the floe centre at initial contact can then be found

from simple geometry,
The interaction continues untii one of the following conditions is satisfied:
i The kinetic energy of the ice feature is reduced to zero (i.e. the feature stops);

i, The centroid of the ice feature starts to move away from the centroid of the

structure. This signifies the clearing of the ice feature; or

ili,  The ice feature begins to move away from the structure in the local contact
area, This condition is illustrated in Figure 5.7 and signifies loss of contact
between the ice feature and the structure,

The maximum allowable interaction time is two hours, Although test runs show that
this limit is not expected to be reached, it is imposed as a programming safety

feature,

3.3.2 Local force models

The objective of local force models is to determine the force between the ice
feature and the structure as a function of the position of the ice feature (the
penetration), and the local feature velocity at the contact point (i.e. to define the



Structuce

(a) For circular structure

(b) For polygonal structure

Figure 5.6 Ilustration of the location of the initial ice feature contact position
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(a) Circular structure
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lce Fegture

Structure \

{b) Polygonal structure

Figure 5.7 lllustration of local velocity directions signifying
loss of contact between the ice feature and the struchure
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relationship in Equation 5.9). The main assumption regarding the ice response is that
the direction of the resultant local force in the horizontal plane is opposite to the
direction of the local velocity. The magnitude of the force depends on the structural
geometry. Models used for vertical structures and conical structures will be discussed

separately in the following.
5.3.2.1 Vertical-sided structures

The local force on a vertical structure is obtained by multiplying the average ice
pressure by the projection of the contact area on a plane perpendicular to the
direction of the local velocity., For penetration in flat ice, the projected contact area
is obtained by multiplying the ice thickness by the projected width shown in Figure 5.8,
The projected width is defined as the distance in a direction perpendicular to the local
velocity between the extreme Points of the part of the structure embedded in the ice
feature. This width is obtained by rotating the axes through the angle of the Jocal
velocity direction (new axes are denoted X|-Y in Figure 5.8), and locating the points on
the structure which are inside the floe and have extreme yj-coordinates. The contact
width is the difference between Yl max 2nd ¥ min 3s shown in Figure 5.8,

If a ridge is encountered within the floe, the force is calculated in the same
manner as for flat ice, using the actal shape of the contact area. The Kovacs idealized
multi-year ridge cross-section (Wright et.al., 1978) is used (see Figure 5.9). Given the
ridge orientation upon coming in contact with the structure, the initial point of con-
tact can be found in a similar manner as discussed in Section 5.3.1 for the initial con-
tact of the ice feature. Due to the variation of thickness in the ice, the contact area
has an irregular shape, as shown in Figure 5.10, and must, therefore, be calculated by
integration. The integration limits are the points on the structure with maximum and
minimum Y| coordinates (as discussed earlier in this section for flat ice and shown in
Figure 5.8). For the case shown in Figure 5.10, these points are points A and B in the
figure. The projected area is calculated by subdividing it into smaller areas. The
cross-section of the ridge is divided into sections corresponding to portions of the
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(b) Polygonal structure

Figure 5.8. The contact width between the stmcﬁn-e and an ice feature
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cross-section with a given slope (see Figure 5.10). The total area js calculated as the
sum of the contact areas between the surface of the structure and each of the ridge
sections. This reduces the problem to carrying out the integration for one section with
a given slope angle. The same methodology is used for polygonal structure by carrying
out the integration in segments corresponding to the polygon sides.

5.3.2.2 Conical structures

For conical structures, two different local processes take place during different
phases of the interaction, namely crushing and ride-up. When an jce feature comes
into inital contact with a cone, local crushing of the ice occurs (see Figure 5.11) in the
contact zone. This crushing results in increasing vertical and horizontal forces
between the structure and the cone. The horizontal force in this case represents the
required local force input to the overall global interaction mode! described in Section
3.3.1. The vertical force, which does not affect the in-plane equilibrium of the ice
feature, increases up to the value which fails the ice in bending. When this takes
place, the broken ice pieces begin to ride up the cone (or ride down in the case of a
downward breaking cone). The local forces associated with this process are those
forces needed to lift (or submerge) the broken jce pieces on the cone surface. When
all the broken ice pieces have ridden up the cone, the feature comes in contact with
the structure once more and crushing begins. In this case, the jce crushes against the
cone and sustains the ice pieces riding-up at the same time. A second bending failure
occurs when the net vertical force at the contact area reaches the bending failure
force of the ice feature. Ride-up then begins again, and this alternation between ride-
up and crushing continues until the interaction terminates, As the riding ice pieces
reach the top of the cone (or bottom of a down-breaking cone), they clear around the
structure and thus cease to contribute to the ride-up force,

It is assumed that the edge of the ice feature js always perpendicular to the local
ice movement., This is a reasonable simplifying assumption for conical stsructures,
because in most cases, the penetration of the cone into the ice feature js large enough
to make the shape of the ice edge irrelevant to the analysis.
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Shade of Projected

Contact Area
Figure 5.10. The contact area between a MY ridge and a circular structure
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Figure 5.11. Local interaction process between an ice feature and an
upward-breaking conical structure
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(@) The Crushing Phase

It is assumed that the crushing force, F, is perpendicular to the cone surface (i.e.
no friction condition), and is equal to the contact area projected on a plane
perpendicular to the force direction multiplied by the average ice pressure. The
horizontal and vertical components of the crushing force (Fyp F\) can be obtained by
multiplying the average pressure by the projection of the contact area on the vertical
and horizontal planes respectively (see Figure 5.12). The total horizontal and vertical

forces on the floe are given by:

F = F + P COSa
H H (5.11)

FV - P sing

oy
]

(5.12)

where P is the force from the ride-up ice (see Figure 5.12), and a is the cone slope

angle. P is given by:
P =w (sing + |, cosy) (5.13)

where w is the ride-up weight and ,, is the friction coefficient between the ice and the
structure.

The total horizontal and vertical forces on the structure are given by:

F, = F + W cos 5 (sin o + | cos 4)
HS H (5.14)

F, = F *wceos 4 (cos 4 - sin 4) _
vs v (5.15)
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For downward breaking cones, the weight, w, in Egs. (5.13) to (5.15) is replaced by the
difference between the buoyancy and the weight.

The crushing process continues until the net vertical force on the floe, va,
reaches a critical value corresponding to the bending failure of the ice. The latter is
calculated using Croasdale's approach, in which the ice is treated as an elastic plate on
elastic foundation (reference). Croasdale used a 2-dimensional model based on a flat,
sloping surface and then adjusted the resulting force by multiplying it by the ratio of
the breaking length to the contact length (see Figure 5.13). The critical breaking

force can be expressed as (reference):

b)

Y = 0,68 g E

er f Ly,

(5.16)

where g is the flexural strength of ice, Y,, Is the specific weight of water, E is the
modulus of elasticity for ice, t is the ice thickness, and %, is the breaking length of
ice. The length, f4,s Can be expressed as (Figure 5.13):

b
'Q'b:"["z""'wzc)

’ (5.17)
where b is the contact width and %. is the characteristic length given by:
_ Et> 1/4
L. = | 5 )
¢ 12y, (I-vy)
Tw v (5.18)

and y is Poisson's ratio for ice.
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Figure 5.13 Croasdale's 2-dimensional corrected model for bending
failure load of ice on conical structures
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B}  The ride-up phase

Ride-up forces are the forces necessary to lift the broken ice pieces out of the
water in the case of an upward breaking cone, or to submerge them on the underside of
a downward breaking cone. Ride-up forces are calculated from the model in Figure
3.1% (@) It is understood that the ice will not bend in the fashion shown in Figure
5.14(a), but wili ride-up in small discrete pieces, as shown in Figure 5.14 (b). The
idealization in Figure 5.14a) allows for the calculation of the ride-up force for any
given penetration using one simple approach. The approximation Invoived is very
small; because the forces needed to turn the jce pieces from the horizontal position to
the cone-slope position (see piece 2 in Figure 5.14(b)) are much smaller than the forces
needed to lift the ice pieces out of the water. It is worth noting that this model
assumes that the ice pieces will ride-up and clear around the structure. If the cone is
not designed properly, the ice pieces may be trapped under the oncoming ice and
proper clearing will not take place,

The forces on the fioe and the structure can be calculated from Equations 5.11
to 5.15 by substituting zero for FH and Fy» and including the above water weight of
the ice piece currently riding up in the calculation of w. The ride-up process continues
until the ice feature comes into contat with the structure once more. [t is noted that
the height of ice on the cone from which the ride-up weight is calculated cannot

exceed the cone freeboard,

If a ridge is encountered during the interaction, the above mentioned crushing
force, failure force and ride-up force will be increased, The crushing force of the
ridge is calculated on the basis of its average thickness using the same methodology
described in (a) above. The limiting vertical force is that necessary 1o cause out of
plane failure of the jce including the ridge. To consider the different possible
positions, angles and possible failure modes of muiti-year ridges would be an extremely
compiex task. Therefore it was decided that the increase in out of plane failure load
can be accounted for by increasing the bending resistance of the ice in Equations 5.]6.
This increase could be made probabilistic and based upon the randomness in ridge
dimensions location and orientation, and can he quantified on the basis of some
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calibration work of individual ridge Interaction cases. For the present version, the
increase in out of plane failure force was based on the force necessary to fail the ridge
{causing two hinge cracks) as an inifinite beam on elastic foundation. This force is

given by (Hetenyi, 1946):

Ve = —¢— o (5.19)

where Zx is the section modulus about a horizontal axis (bottom for upward breaking
cones and top for downward breaking cone), and E.C is the characteristic length of the

beam given by:

¥

QE}'X
£ = (o

)0.25
c 7 Yy b

(5.20)

where Ix is the ridge moment of inertia about a horizontal axis and b is the ridge
width., The parameters Zx, Ix and b are calculated from the Kovacs idealized ridge
cross section (Figure 5.9), The Force V. is added to the force necessary to fail the
floe (see (a) above) along the circumference of the failure zone after subtracting the
part of this circumference which lies on the ridge and is accounted for by Eq. (5.19).
This method is expected to lead to conservative results and further research should be

carried out to refine this methodology.

The ridge ride-up force is calculated using the same method in (b) above, after
distributing the additional wight due to the ridge over the failed area of the ice (see
Figure 5.13).

5.3.3 Exam ples

Force histories for some ice structure interaction events, calculated using the
global and local models described in Section 5.1 and 5.2, are given in this section.
These examples serve as illustrations of the application of the model and as

verification of its results,
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The first set of examples are given in Figure 5.15 for a summer multi-year floe
collision. The floe is # m thick and has a diameter of 1 km. The initial floe velocity is
0.25 m/s, and the eccentricity of the collision is 200 m. The average ice pressure is
I MPa. The example illustrates the effect of the shape of the structure on the energy
dissipation process, and consequently, on the maximum force value. Three cases are

considered as follows:

a)  a square structure (100 m x 100 m), with the initial direction of motion

perpendicular on one of the flat sides of the structure;
b) a circular structure of 100 m diameter; and

¢} asquare s’crﬁzcture (100 m x 100 m), with the initial velocity direction parallel to

one of the structure diagonals.

It can be seen that the maximum force can vary substantially depending on the
development of the contact between the ice and the structure. If the ice contacts the
structure at a flat side (case A), the contact area is initially large and the force rises
quickly. On the other hand, if the ice contacts an edge (case C), the contact develops
slowly and the resulting maximum force is much lower. The circular structure (case B)

is an intermediate case between cases A and B.

Figure 5.16 shows a force history for a multi-year floe interaction with a 100 m
diameter circular structure in the winter. As shown in the tigure, the floe is | km in
diameter, 5 m thick and was initially moving with the surrounding 1.5 m thick first-
year ice at 0.2 m/s. The eccentricity of the interaction is 200 m. The average multi-
year ice pressure is | MPa, and the pressure from the surrounding ice on the floe is 0.1
MPa.  The total force is plotted along with the x and y force components
(perpendicular and parallel to the initial direction of jce movement, respectively), The
peak load occurs when the muiti-year floe breaks out of the surrounding ice. The total
force drops after this event takes place, and remains at an almost stable level, After
the peak load occurs, Fy decreases gradually, while Fx increases as the floe rotates

around the structure.
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Sample force history results for a winter multi-year floe
interaction




The force histories for three rmulti-year floe interactions involving multi-year
ridges are given in Figures 5-17(@) to 5-17(c). The parameters used in each case are
shown on the figures. It can be seen that a sudden rise in the rate of force increase
occurs when the ridge is encountered due to the increase in thickness. It is also worth
noting that the interaction stops shortly after the ridge is encountered in each case.
This is a reflection of the effect of the increased local force on the overall

deceleration and clearing of the multi-year floe.

Figures 5.18 and 5.19 show the force histories for multi-year floe interaction
with upward and downward breaking cones respectively. The crushing strength of ice
used is 0.5 MPa, the flexural strength is 0.2 MPa, the modulus of elasticity is 5 GPa,
and the friction coefficient is 9.15. Comparison between the two figures shows that
the maximum force occurs during ride-up for the upward breaking cone and during
crushing for the downward breaking cone. This is a reflection of the buoyancy effect,
which reduces the load in the case of the downward breaking cone. In general, loads
on downward breaking cones are smaller than those on upward breaking cones, because
tess force is required to submerge the ice, and then to lift it out of the water. [t is

noted that multi-year ridges are not included in the results of Figures 5.18 and 5.19.

5.4 First-Year Level Ice Interactions

This scenario is depicted in Figure 5.20. The movement of first-year ice covers
is generally not significantly affected by the presence of a structure. This is due to
the fact that the magnitude of the driving forces under which such a large ice surface
moves are much higher than the forces exerted on the ice by the structure. As
discussed in Section 5.1, the forces on the structure under these conditions are
governed by local considerations regarding the maximum stresses, which can bhe
susfained by the ice in the vicinity of the structure. The models presented in this
section for the forces resulting from the movement of first-year ice against the

structure are, therefore, based on local force models {see Table 5.1
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RS The brittle mode

As discussed in Section 5.2, ice responds in a brittle manner at high loading
rates, and the ice behaviour is dominated by crushing. Velocities which lead to this
behaviour are dominant in the active ice zones {(pack zone in the U.S. Beaufort and
shear zone in the Canadian Beaufort} during all seasons, and in the landfast ice zone
during the break-up season., Given the average lce pressure (g)during an interaction

event, the force (F) can be calculated from:
F o= aDt {5.21;

where D is the width of the structure perpendicular to the direction of ice movement,

and t is the ice thickness.
5.4.1.2 The creep mode

In the landfast ice zone, ice movement speeds are usually in the range which
results in strain rates well below the creep-crushing transition, Only under special
circumstances, such as the event of the "breaking off" of a large area of the landfast
ice cover during a storm, are the ice velocities likely to reach the threshold of brittle
behaviour. Under these conditions, the crushing model discussed in Section 5.4.1 is
used. For normal landfast ice movements, the forces are calculated from a creep
solution.  The model is zlso used for the low velocities (l.e. below creep-crushing

transition) in the active ice zones,

A simple and accurate creep solution can be obtained using the refsrence stress
method (Ponter et.al,, [983). In general, the force F on the structure at a given ice

movement speed v can be calculated from the equilibrium condition given as:




F\; = J - I 7 -
v bt {5.22}
where Gij is the stress tensor;
81;’ is the strain rate tensor;
v is the volume; and

the relationship between g.. and £ is given by the creep law in Eq. (5.1)
i
(Section 5.2).

Clearly, the difficulty in calculating the force from Eq.(5.22) is in finding the
stress distribution required to evaluate the integral on the right hand side of the
equation for any values of the constants A and n in the creep law (see Eq.(5), Section
5.2). The essence of the reference stress method is to evaluate this integral using an
approximate method which is based on the solutions of two prablems with the same
geometry as the problem considered, but with two different constitutive laws of the
creeping material. These constitutive laws need not include the actual constitutive

law for ice. Equation (5.22) can be rewritten in the approximate form:

Fv = o ;:(C:R}V

R R {5.23)

where GQ is defined as the reference stress, VR is defined as the reference volume,
K

and E(GR) is the actual creep law of the material considered.
The reference siress is defined such that its ratio to the plastic vield sirass is

equal to the ratio between the force F for the actual constitutive law of the material,

and the yieid force, ¥, obtained from a plastic solution. Thus:

y {5.24)
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The evaluation of 0, asa function of E from Eq.(5.24) requires a plastic solution
to evaluate Y for a given Uy. It is noted that the use of a plastic solution does not

imply that the ice behaves in a plastic manner.

The only unknown quantity in Eq.(5.23) (besides F, which is to be calculated from
the equationj, is V. This is where a second solution of the problem is required, This
should be a creep solution for any value of the creep exponent (n in the creep law of
Eq.5.1). An elastic solution can be used, along with the viscous-elastic analogy
(reference), to produce a creep solution for a purely viscous material {i.e.n = 1}, Once
this solution is obtained, it can be used in Eq. (5.23) with Ops as previously defined in
Eq.(5.24), to obtain Vy. Equation (5.23) can then be used to evaluate the load F for

any speed, v, and any constitutive law, 'E(GRL

Equation (5.23) can be rewritten, by expressing °p and VR in terms of non-

dimensional constants ¢ and § as follows (referencel:

1D\
\,f’}

F = ¢ Dt o ( v
' (5.25)

R

where D is the width of the structure, and t is the ice thickness.

As mentioned earlier, 4 and { are specific to a given geometry of the probiem
and are, therefore, dependent on the aspect ratio, D/t. For the plane stress case, the
shape of the in-plane stress distribution is independent of D and t. This is a useful
property, because it allows the same values of ¢ and ¥ to be used for different values

of D and t, for which plane stress conditions can be expected to prevail.

in order to evaluate the constants ¢ and ¢ for the problem in Figure 5.29%al, a
160 m diameter circular indenter embedded in a i-m thick ice sheet was considered.

The problem was idealized, as shown in Figure 5.21. There are no standard plastic and




Figure 5.21

Geometry and boundary conditions for the problem of circular
indenter in an ice sheet
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Creep solutions for this problem, and therefore, finite element solutions were used.
The finite element mesh is shown in Figure 5.22. The c-axis of columnar sea-ice is
most commonly randomly oriented in the horizontal plane. This type of ice has axially
symmetric mechanical properties about the vertical axis, Since we are dealing with a
plane stress problem, where the properties along the vertical axis to not affect the in-
plane stresses, the results of isotropic solutions are applicable. For the finjte element
analysis, the eight-node isoparametric plane stress element shown in Figure 5.23 was
used. The contact problem was modelled using 3-node interface elements, as shown in
Figure 5.24. The FE package ABAQUS (reference) was used for the analysis.

A plastic solution gives a value of ¢ = 1.174. The other parameter {, was
calculated from a creep solution with a creep exponent n = 3 and a Ccreep multiplier
A=10"0 (MPaB s)“l {references). An ice velocity of 10 % m/s was used. The stress
distribution and the load history for this solution are given in Figure 5.25. This
solution gives a y value of G419, In order to verify this result, ¢ was calculated again
using a solution for a purely viscous material (i.e. n = 13 All other parameters had the
same values as for the creep solution. The stress distribution and load history for this

solution are given in Figure 5.26. This solution yielded a value of .424 for 1y,

The conclusion of this analysis is that for the creep mode, Eq. (5.25) is used in
calculating loads on vertical structures, fully embedded in an ice sheet with ¢ = 1,174
and ¢ = 0.42. Although this result s based on a circular structure, it s generalized for
a polygonal structure by using a value of D equal to the width of the structure, in a

direction perpendicular to the direction of motion.

3.4.2 Conical structures

The material and structural models used for the movement of leve] jce against a
conical structure are the same as was used for calculating the local forces for an areal
ice feature interaction (Section 5.3.2.2). lIce is assumed to fail in bending, and to ride-
up (or down) the structure until it clears, The maximum force will occur when half the







Figure 5.23 Eight-node isoparametric plane stress element used for the problem

of a circular indenter in an ice sheet
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Figure 5.28, Description of the interface elements used for the problem of a

circular indenter in an ice sheet
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cone is covered with ice, and the vertical encroaching ice sheet (?v in Figure 5.12) has
reached the bending failure force of the ice. At this instant, the ice sheet starts to
siide up {or down) the cone, and the horizontal force between the ice sheet and the
structure (?H in Figure 5.12) can be calculated using the relationship between the
normal reaction to the cone and the friction force at sliding. Forces on the structure
can be calculated by substituting the appropriate values of w, FH’ and Fv, which
correspond to the present assumption, into Eqs. (5.14) and (5.15) (refer also to Figure
5.12(b)). For an upward breaking cone, w is the weight of a volume of jce equal to
surface area of half the cone muitiplied by the ice thickness. This is given by:

t 2
W= 2R H/tan - (H/tan ) .
C@s . ™y a & 3 vi (5.26)

where t is the ice thickness, Rw is the water line radius of the cone, H is the cone

freeboard, is the cone slope to the horizontal, and . is the weight of ice per unit
a

volume. For a downward breaking cone, . is to he replaced by W -~ ., where W is

ks

the weight of water per unit volume.

The vertical force, FV’ Is equal to the sum of jce bending failure load, and the
vertical component of the force between the riding ice and this ice sheet. This leads

to

Fo, = ¥ + wisin cos in
Y cr {z+ 1 a) St % (5.27)

where %f{‘? is given by Eq. (5.16), and  is the coefficient of friction between the ice
< u

and the structure, The horizontal force, B is then given by:
H
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F . B sin, + ,, COS,

H © LV C(}Sa - ; Sif’%a (5-28}

The vertical and horizontal forces on the structure Fy ¢ and FHS can be obtained by
substituting Eqs.(5.26), (5.27), and (5.28) into Egs. {5.14) and (5.15).

5.5 First-Year Ridges

First-year ridges exist in the first-year ice, and move with the ice cover. As
discussed in Section 5.4, this movement is driven by sufficient environmental forces to
cause the structure to penetrate through the entire first-year ridge, and a local force

model based on the maximum force sustained by the ridge is appropriate in this case.

5.5.1 Vertical structures

An idealized first-year ridge cross section is shown in Figure 2.57 (a)
(Prodanovic, 1979). As a Columb-Mohr material (see Section 5.2.2), the rubble can fail
in one of the two modes shown in Figure 5.27 (b) and (¢}, namely crushing or shear. An
upper bound force on the structure due to rubble crushing can be calculated by
postulating a clearing mechanism such as the one shown in Figure 5.27 (b) and finding
the force necessary to shear the ice along the boundary of the clearing ice. For the
shearing failure shown in Figure 5.27 (b), the force on the structure is simply equal to

the integral of the shearing stresses along the two shear planes.

The shear strength of a Columb-Mohr material can be expressed In terms of its
cohesion, friction, and normal stress, as given in Eq. (5.2). The normal stress ,is
equal to the passive resistance of the material (Gregory and Tschekotarrioff, 1973)

given by:




i3]
el

H= Sall Height
D= Keei Depth

{c} Foilure by Sheor

Figure 5.27 Idealized first-year ridge cross section and failure mechanisms
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g = p tan?(45° . %) + 2C tan (45° % {5.29)

where p is the vertical "overburden® pressure, & is the material friction angle, and ¢ is
the cohesion. For the ridge sail, the vertical pressure at any point is equal to the
welght of the ice Y;h, where Yj is the weight per unit volume for ice and h is the depth
from the top ice surface. For the keel, the vertical pressure is due to the difference
between the buoyancy and the weight, and is equal to {Yw - Yi)d’ where Y, 1S the
weight of water per unit volume, and d is the height from the bottom surface of the

ice,

For the rubble-crushing mechanism in Figure 5.27(b}), Prodanovic (1981)
suggested defining the discontinuity surface by logarithmic spirals., For simplicity,
this shape is replaced here by the shape in Figure 5.28. The sail area of the idealized
ridge cross-section in Figure 5.27(a) is very small compared to the keel area (about
5.3% of total area). The major force contribution will, therefore, come from the keel,
and the sail is neglected in the analysis. The force on the structure can be calculated

from the equilibrium of the hatched zone in Figure 5.28. This leads to:

- o , : ) o . Q
F o 2<\3\72 + (N§+ NB} sin 457 4 (Tl TB} cos 457 ] (5.30)

The normal forces Ni’ Nz, and NB are calculated by integrating the normal stress
given by Eq. (5.29) over the corresponding area in each case. In evaluating these
integrals, different cases, depending on whether the structure and/or the discontinuity
surface have penetrated past the lowest point on the ridge keel. These cases are all
taken into consideration in the Caiculations. The tangential forces ?E* ’E‘? and ';“‘3 can

ve calculated by integrating the shear stresses as follows:
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Figure 5.28

Simpiified shape of rubble discontinuity surface
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T = T da
1{ (5.31)

where a denotes area, and A is the tota] area over which T is calculated. Substituting
Eq.(5.29) into Eq.(5.2), and using the result in (5.31) leads to:

T = cA + N tan ¢ (5.32)

This procedure can be used o calculate a force-penetration curve for the
process of ridge-structure interaction by using the appropriate contact width (see
Figure 5.28) for each value of the penetration. Polygonal structures are treated in the

same manner by using the actual contact width between the ridge and the structure,

For the shear failure depicted in Figure 5.27 {c), the force on the structure is

given by:
F = 2T (5.33)
where the shear force T on the failure plane is calculated as before, The maximum

force on the structure is obtained as the lowest of the maximum ridge crushing force

and the ridge shearing force.

3.5.2  Conical structures

The loose rubble constituting a first-year ridge is not expected to ride-up a
conical structure, and the envisaged failure mechanisms for the ridge are the same as

those for vertical structures, Therefore, the horizontaj force on the structure s
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calculated in the same manner as for vertical structures., It is noted that the
intersection surface between the ridge and the conical structure will be variable in
width, as shown in Figure 5.29, where R, and R, denote the radii of the structure at
the top and bottom of the intersection surface. For the purpose of this analysis, the
contact width corresponding to the average contact radius Ra is used, If friction
forces between the rubble and the structure are ignored, the vertical force FVS is

calculated from the horizontal force FHS using:

F = F . tan gy
Vo~ Hy (5.34)

where ¢ is the cone slope angle,

5.5.3 Exam ples

The results of the model used to calculate forces from first-year ridges on the
structure are illustrated in Figure 5,30. The figure shows the force penetration curves
for the interaction of a ridge which has a 2-m high sail with the two structures shown,
The rubble cohesion used is .035 MPa (Prodanovic, 1981), and the friction angle of the
rubble is 25°, It can be seen that the rubble-crushing force rises faster, and reaches a
higher value in the case of the circular structure than for the case of the square
structure., This is due to the high rate of increase of contact width with the
penetration for the circular structure. The drop of the force value in each case starts
once the discontinuity surface passes the thickest point on the ridge (see Figure 5.28).
It can also be seen that the shear failure force is less than the maximum rubble-
crushing force for both structures and thus, shear is the governing mechanism in these

two examples,




(b} Downwarg Breaking Cone

Figure 5.29 The intersection between a first-year ridge and a conical structure
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Figure 5.3¢ Sample result of first-year ridge forces on vertical structures
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DEVELOPMENT OF PROBABILISTIC LOAD MODELS

6.1 General

The probability density function of the extremal load for any load scenario
depends on the period of time during which the scenario is applicable, and the severity
of the ice conditions during loading. There are two distinct types of stochastic time
processes which apply to different ice loading scenarios, namely discrete processes and
continuous processes (see Chapter 3). The former is applicable to all loading scenarios
which relate to discrete ice features, such as multi-year floes, ice islands and first-
year ridges. On the other hand, continuous processes are appropriate for first-year
level ice which is constantly moving against the structure. The basic principles
relating the calculation of extremal distributions for each of the above-mentioned
processes was discussed in Chapter 3. The present chapter addresses the application
of this methodology to each specific ice load scenario and the development of the
required inputs. The basic probability distribution, which is calculated throughout this
analysis, is the cumulative probability distribution of the maximum annual load. This

distribution is used to derive an extremal load probabilistic description for any time
period and in any desired format (i.e. return periods, probability density or probability

of exceedance),

6.2 Season Length Model

This section deals with the derivation of the probability density function of the
iength of each season from the pdf's of the season boundaries as discussed in Section

2.2. As illustrated in Figure 6.1, the following equations can be written:

Ty = 365 - (T3 - T5) (6.1}
Ty = Tyy = Ty | (6.2)
Tyo= Typ - Ty (6.3)




where T, T., and ?3 are tne lengths of the winter, break-up, and summer seasons
respectively, and Tiz’ ’E‘z}, and TBE are the season boundary dates in days Irom the

beginning of the vear, as shown in Figure 6.1

It was concluded in Section 4.2.1 that the season boundary dates follow a normal
pdi. It can be shown that a guantity which is the difference between two aormally-
distribued random quantities is also normally distributed with a2 mean equal to the

difference between the means of the two original quantities, and a variance equal to

the sum of their variances. Tz, for example, is normally distributed with a mean
given by:
H = W - W
T, = Ty T, (6.4)
and a standard deviation g7 given by:
02 = g 2 +o 2
T2 T23 T2 (6.5)

Similar results are applicable to Ti and TB’ with the average value of T1 equal to

365 - {;f{n - “Ti?.}'

A normally-distributed parameter varies between - and «, In the case of season
lengths, some physical bounds apply. The length of any season, for example, cannot be
smaller than zero or greater than 365. Season lengths are also bounded by the
difference hetween the extreme values of the season boundary dates. For the breake-
up season, for example {?E%m - ?izmgxi < ?2 < {’?ggmaz - §52mi§}‘ These bounds
are applied to the pdf of each season tength by truncating the density function at the
Hmiting values, and adding a concentrated probability mass at each end of the function
equal to the truncated area. In the computer model, the maximum and minimum
season boundary values are taken at three standard deviations on either side of the

mean,

T,
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SEASONAL VARIATIONS

Jan |

Summer

{ Open Water )

T3

3
T =TTy
= Ts-Ts
3= T3 - Ths

Figure 6.1

Hlustration of the derivation of season lengths from season boundaries
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if the season lengths afrer applying this truncation are denoted T', the probability

distribution of T* is given by:

.
P .o min, ~ R

ProtTh =t 1) s J Nups op) dt s py

W

(6.7)

b (T = Nugs opd, fmin %P < iy
Ppa(Th =t ) = L - / Nlupy op) dt = py

max

where p denotes probability, and tmin and tmax are the minimum and maximum values
of t, and N(y, o is the normal density function for a random quantity, with mean

and standard deviation e

As discussed in Section 3.4, the average interaction rate for ice features is
calculated in terms of the average season length. This is the mean value of the

probability distribution defined by Eq.(6.7}, and is given by:

- t -
; 1 i Q‘E‘ 2’. 1 X #Tx
or (exp {,5(-«%%} } - exp {~—2-( maaT b
M e® YniaPt 27T -5, - 5,)
*ull - p wp ) oet p ,
T 1 z max 2 (6.8}

Equation (6.8) can be used with the appropriate parameters to calculate the
average length of each season. The application of this analysis to the season boundary
dates for Prudhoe Bay (default values as given in Chapte 4), gives average season
lengths of 257, 92, and 20 days for the winter, summer and break-up seasons,
respectively. These add up to 369 days within 1% of the total number of 363 days per

year. This confirms the validity of the approach and its underlying assumptions.
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6.3 Discrete Ice Features (Discrete Processes)

Interactions with al] discrete ice features (i.e. multi-year tioes, ice islands and
first-year ridges) in all Seasons are modelled as discrete processes. The derivation of
the extremal load distribution during a given period of time fy(y) from the average
rate of interactions ¥ and the probability distribution of the peak load during each
interacton fX{x), was dealt with in Section 3.7, In this section, the calculation of fx(x)

and the average rate of the process X will be discussed,

6.3.1 The probability density function of the load per event

The derivation of the pdf of the maximum load from the probabilistic
descriptions of the input parameters to a given ice-structure interaction model is 4
problem of functions of random quantities. Let X be a random quantity (load) defined

as:
¥ ..y i
2 m (6.9)

where ZI’ ZZ’ ooy Zm are also random quantities(ice parameters), In principle, the
probability density function of X can be calculated from the pdf's of Zi’ i=1,m, and
the function g. The application of this principle was illustrated in Section 6.2, where
the pdf of the season length was calculated in closed form from the pdf's of the season
boundaries. |In practice, closed-form solutions are available only for limited cases,

with special types of pdf's and special functional forms (g in Eq.(6.9)).

In the present analysis, g in Eq. (6.9) represents the ice-structure interaction

0 22, esy
complexity of fce-structure interaction models used, closed form solutions are not

model and Z Zm represent the input parameters, With the level of
available. The problem can be solved numerically using Monte Carlo simulation. The
basic principle behind this method is to simulate a number of combinations of the
parameters Zi’ ZZ’ rouy Zm from their respective probability distributions. Each
combination can be used to calculate a viaue of the parameter X until a sufficient

number of data points to define fx{x} is obtained. The number of simulations is
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determined by limiting the variation in the mean value of X due to an additional data
point to a user-defined tolerance. A smaller tolerance will lead to a larger number of
simuiated data points. It is noted that Monte Carlo simulation is resorted 1o here as a
numerical solution for a problem which cannot be solved in closed form . Due to the
computer costs involved, the use of Monte Cario simulation has been avoided wherever
possible. Closed-form solutions have been used in modelling the stochastic process of
the occurrence of interaction, calculating the average rate of the process, and
evaluating the extremal load pdf (Chapter 3). Monte Carlo simulation is only used for
calculating the pdf of the load for one interaction from the probabilistic descriptions

of the input parameters to the ice-structure interaction model.

The set of parameters required for each load scenario are listed in Table 2.2,
The probability distributions of these parameters can be defined by the user from a set
of distributions available in the model. Besides most of the standard mathematical
distributions, a data set which cannot be fitted to a mathematical model can be used
directly by defining the cumulative density function numerically. Any parameter or
set of parameters can be assigned deterministic values if desired, A sot of default
probability distributions (see Chapter 4) are offered to the user, but these should be

replaced by site specific data for a given problem.

The probability distributions for some of the parameters related to multi-year
floe and ice island collisions are not defined on the basis of data, but on the basis of
nature of the parameter. These parameters, for which the probability distributions are

built into the model, are as follows:

{1 The eccentricity of the collision.
(i1} The ice feature approach angle.
{iif) The orientation of a multi-vear ridge on a multi-year floe at the instant of

interaction between the ridge and the structure.

{iv} The thickness of first-year ice behind a multi-year floe during a winter

interaction.
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v}  The percentage of the width of a multi-year floe subject to first-year ice
pressure during an interaction in the break-up season. This is to account for the
fact that in the break-up season, the first-year ice will cover only part of the
opening between multi-year floes, and consequently only part of the multi-year
floe will be subjected to first-year ice pressure.

For all of the above parameters, there is no reason to believe that any value of
the parameter is more likely to occur than other values. These parameters are
therefore assigned uniform probability density functions of the form:

fz(z) = 3

4

max min (6.10)
where Zmax and me are the maximum and minjmum values of the parameter.

It is also interesting to note that the characteristics of the extremal distribution
are mostly dependent on the Characteristics of the tail of the original distribution,
especially for high rates of occurrence of the event. [t is, therefore, of great
importance to obtain enough data points on the tail of the probability distribution of
the force in one interaction event. This can he effeciently achieved by setting lower
bounds on some of the interaction parameters under which the parameter values are
not to be considered. This will result in a large number of data peints in the high force
range and a better definition of the extremal distribution. The mode} is structured in
such a manner as to aliow the user to define lower bound values for any number of

parametres,

&.3.2 The average rate of interaction

The principles and methodology used to caiculate the average rate of interaction
with discrete features was discussed in Section 3.3, Equation 3.6 is used to calculate
the average rate of interaction with ice islands in the summer and multi-year floes in

all seasons. First-year ridge average interaction rates are calculated using Eq. (3,10)
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for the winter season, where a full ice cover is present. For the break-up season,
first-year ice coverage varies between 3/10ths and 8/10ths (as defined in Section 2.7).
The average rate for the break-up season can, therefore, be calculated by multiplying
the results of £q.(3.10) by the average break-up ice concentration of 5.5/10ths.

If lower bounds are used, the interaction rate is adjusted to obtain the rate of
interactions with features which have parameter values larger than the defined lower
bounds. This is done by multiplying the rate of all interactions by the probability that
the interacting feature will have parameter values in the specified range. The average
rate of interactions with multi-year floes larger than 500 m in diameter, for example

(;500} can be obtained from:

s =3 T f.(d) d d
2500 = A [, o 6.11)

where fD(d) is the pdf of the diameter of colliding floes and } is the average rate of

interaction for all floes.

The submerged thickness of an ice island which interacts with the structure is
limited by the water depth. Since 90% of the island thickness is submerged, its total
thickness cannot exceed about 1.1 times the water depth. This upper bound truncation
is accounted for by adjusting the average rate of interaction in a similar manner to

that discussed earlier for parameter lower bounds.

6.4 Level Ice in the Winter Season {Continuous Process)

lce loads from a fuil first-year level ice cover can be modelled by a continucus
process, as shown in Figure 6.2. The variability in the ice force in this process results

from two sources:
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(i A svstematic variation: This is due to the monotonic Increase in ice thickness

with time during the winter season. The process is therefore non-stationary {i.e.
has a variable mean). The variation in the mean value of the ice thickness at any
point in time is very small, as has been discussed in Section 4.2.3.1. Moreover,
this variation is mostly due to season-to-season variations and not due to
fiuctuations within the same season. This is illustrated in Figure 6.3, where ice
growth curves for three years at Cape Perry are plotted. Each season displays
regular growth with very little variation around the mean value. It is concluded,

therefore, that only the systematic variation in ice thickness need be considered.

{ii) Random variations: Because the force on the structure is only dependent on the

ice thickness and the stress in ice (see Section 5.5), this variation can only be

attributed to fluctuations in the ice pressure.

The non-stationary random process discussed above is treated by discretizing it
into a number of stationary random processes applicable at time intervals of suitable
length, as shown in Figure 6.2. This amounts to modelling the ice thickness by the step
function shown by the dashed line in Figure 6.2. The cumulative probability
distribution of the final extremal load during the whole season can be calculated using:

Fyly) = 1 Py yg)
=1 titi

(6.12)
where Fyi lti(yi) are the cumnulative distribution functions of the extreme load during
each time interval, which are conditional on the ice thickness for that Interval.
Equatoin (6.12) implies that given the ice thickness, extrem load during each time
interval is independent of the extreme loads during other time intervals. The time

interval % is taken as one month in this study.
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The final exiremal iscad distribution FY{y} is more influenced by FYiﬁfi{yij
corresponding to higher values of t;- This effect is more pronounced as the number of
force peaks during each time interval increases. This is a reflection of the expected
trend that the maximum force will tend to occur when the ice thickness s high,
especially if the number of occurrences of & peak force during the corresponding time

interval is large,
The evaluation of {:Yi : {%{yi} is dependent on the ice-structure interaction model
used in the ice zone under consideration. The landfast and the active ice zones will be

discussed separately in the following sub-sections.

G451 The landfast ice zone

Cnly vertical-sided structures are considered in the landfast ice zone. The
maximum ice movement ratio in the landfast zone in the data set analyzed in the study
was about 10 m/hr. For a 100m wide structure, this corresponds o a nominal strain
rate of 3.6 x ii}"j. Average speeds are in the order of 0.4-0.5 m/hr, which would lead
to nominal strain rates well below the creep-crushing transition. Therefore, the
stresses in the ice at normal landfast movement rates are determined from a creep
model which is dependent on the velocity of the ice (see Sec. 3.4.1.3). In the creep
mode, the force is monotonically increasing with the velocity as can be seen from
Eq.(5.23), The peak forces will, therefore, occur at the peak speeds for a given ice
thickness, t. A sample time trace of the ice Mmovement rate in the landfast zone is
given in Figure 6.4 (Spedding, 1977). This is obtained from hourly interrogations of the
ice movement, which means that these speeds are averages over a one-hour interval,
This is appropriate for the Creep model, since the ice speed must be sustained for a
reasonable interval of time before the $teady stale maximum creep load is reached,
The load fluctuations can be expected to follow a similar patiern to the velocity
fluctuations in Figure 6.4, The probability density function of the load at a velocity
peak can be obtained by using the velocity peak density function in Eq.(5.25). The
latter is obtained by measuring velocity peaks from velocity data in the format given
in Figure 6.4, The final extremal distributain of the creep force during each month

can be obtained by modelling the number of peaks with 3 Poisson distribution. The
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rate of this distribution can be obtained as the product of the time interval during
which creep dominates and the rate of occurrence of velocity peaks, which can be

counted from the velocity trace.

The above-mentioned extremal load distribution is conditional on normal landfast
ice movement rates. During "break-off" (see Section 5.4.1.2), higher speeds occur and
Crushing is expected to dominate. The method for calculating the extremal force
distribution during such an event is the same as for the active ice zones, and this will
be explained in detail in Section 6.4.2. Based on the rate of occurrence of break-off
events and the average duration of each event, the average length of time during each
month for which ice crushing is dominant can be estimated. This time span can then
be used with the appropriate ice distribution {see Section 6.4.2}) to calculate the
monthly extremal force distribution during break-off events (i.e. crushing dominated
events). The overail monthly extremal FYi | ti(y;} can then be obtained by combining

the creep monthly extremal and the crushing monthly extremal using Eq. (3.46).

6.4.2 The active ice zone

In the active ice zones, the ice is constantly in motion. For vertical structures,
there is a cut-off speed which separates creep dominated movements and crushing
dominated movements (creep in the low range, and crushing in the high range). The
monthly extremal force distribution is calculated by combining two separate
components, one for creep and one for crushing, as discussed in Section 6.4. The time
period during which each process is dominant is calculated from the velocity density
tunction by apportioning each month according to the probability of the velocity being

in the appropriate range.

During crushing, fluctuations in ice pressure are due to variations in the ice
properties and response, as it crushes along the structure. The time variation of the
average ice pressure on the structure can be quantified on the basis of experimental
results.  This is a continuous stochastic process for which the pressure at any local

peax can be expressed as (see Figure 6.5}

& : (6.17)
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where % is the mean pressure <omponent, and . is 2 random pressure component.
The pdf of o, in a given time period can be assigned on the basis of a pressure time
trace such as the one shown Figure 6.5. This can be modelled by a double exponential
distribution {see Section 3.8} with parameters depending on the length of time during
which the maximum load is sought. In the model, the mean pressure 9., and the mean
and standard deviation for the extremal component of the peak pressure 0. are used in
the ice-structure interaction mode| of Eq.(5.21), to calculate the probability

distribution of the monthly peak load during crushing.

The creep case s treated in a similar manner to that described in Sectoin &.4.1,
The main difference is that average velocities in adjacent time intervals are used
instead of velocity peaks. The length of these adjacent intervals is equal to the length
of time over which velocities are averaged in the measurement used in defining the
velocity distribution. It is felt that hourly measurements are rmost appropriate, but 2%
hours are used as mode! default, since reliable hourly velocities were not available,

For conical structures, the same approach is used as for the crushing case
discussed above, with the ice flexural strength and the appropriate ice-structure

interaction mode! (Section 5.4.2).

6.5 Level Ice in the Break-Up Season (Interrupted Process)

The stochastic model for ice pressure in the break-up season is Hlustrated in
Figure 6.6. This is similar to the winter season with the following two differences:

(i} There are open-water patches within the ice cover, and the load is
therefore not applied throughout the season as shown in Figure 6.5, This
introduces a reduction to the time priod during which the load is applied.
The reduction factor is equal to the average ice concentration during the

season {5.5 tenths),

(ii} Due to the smali, average length of the break-up season (appmximateiy 3
weeks), the systematic change in ice thickness due to meiting is small.
Therefore, the season is modelied gs a stationary process with a constant

Tan.
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Interrupted Process for Level Ice in the Break-up Season

Figure 6.6.
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The procedure for Caiculating the cumulative probability distribution of the
extreme load F.,(v) is the same as for the crushing load in one month during the winter
season., The onixy modification required is to adjust the mean and standard deviation of
the monthiy extremal pressure {which are given as inputj, according to the actual

dverage season length using Egs. (3.48).

6.5 Sample Results

Results of an example run of BOREAS for a circular vertical structure 100 m in
diameter are given in Figures 6.7 to 6.14. In the figures, CDF denotes cumulative
density function whereas POE denotes the probability of exceedance, The structure
was assumed to be located in the shear zone of the Canadian Beaufort Ses at water
depth of 30 m. The results were produced using version [ of the program for a
tolerance of 5 x 10"3 on the mean force vajue as a criterion for determining the
number of simulations in each case. The default values were used for all parameters.
The curves could be made smoother by reducing the tolerance, but this was not done

here since these results are only for illustration, The following points are noted:

{1} In Figure 6.7, the extremal force cumuiative density function does not start at
Zzero.  This is because the rate of occurrence of multi-year floe collisions
during the break-up season is smaller than 1, and therefore there is a finjte
probability (0,21 in this case) of not having any collisions (i.e. zero force),

(ii) For leve!l ice in the break-up season (Figure 6.8), there is only one result

representing the season extrema.

(iii) The extremal force distribution for frst-year ridges in the winter season
{Figure 6.10) has very littie associated undertainty, and is approximately equal
to the maxirmum force simulated in one interaction. This is a reflection of a
very high rate of interactions with first-year ridges, which causes the
extremal force to be almost certainly equal to the maximumn possible load.




0

[NK]

SE

—
I

I

SHMONAS [B011I3A FRIOIID © Jog s1Nsal sydweg -4+g am3ig

3404
Q0E 052 002

B S e T e g e R e S

SIMIVLXI NosyIg - - —mm o

NOIL3YHIINT N0 e —

P

i

CERECTNE. NOSYIS/NOTLOVEIINT 3

V0 S3074 AW anSiving ain

4082



(PoNuIIUOD) aunionays TEO1IBA JeInoad © Jog synsay d1dureg -g-g 281y

[(NW] 30104

0se 002 057 ele); oG

\zilsr}rﬁ,.istl e ey T LV Rt TR e T e e

|

ﬁﬁ

| | /
|

& | /
|
|

184 -

—
ettt it T, Sty o = e

,mwzwmwxm;zmwamwgmuw;Jm>mm:stmmmx«mmm‘mmu;‘




185 -

A_uum.wﬁmwﬂOUU 2IM10Nn13s Fexiioa Jemnons e 40

INWT 3050 4

0GP

o0y 0s€ 00€

SINIHLXT NOSYES  em — e o

S3IWIHL X3 ATTHINOW [

stk

mwzmmHXMEZQWQMm\mmxmm»xm.»@

S1nsaa opdwreg -g-g 2In3ry

Hag 009 08T 00v  og Y

e e e R e A il T
e p—r r— T i

:%mmz;uuw;mm>w;.>mquau,

)
e




(P3nunUOD) 3INMDRNS fedNIoA TRINOAD ® sy synsas opdwes pyeg sund: o

ol 300y
Qm;wf ( o5E s
m . W_lfi? J0¢ 0y
] 4 ¥
) }
t
f
| SIMNIHIXT NOSYyg - — e
i
!
M NOTLOVHIINT 3Ng
m
I
_ |
S
; !
J
|
_
i
q
W
%
!
h
!




[Nw]

ose

S—

(PonunIUOd) 51MdNITS Jeory JoA TEINDID © 10} syynsax ajdureg *17°9 aan81g

AJH0 o
OGE 0Ge 002 061 ool

B [ s (s S L e LN R S S

S3IWIHIx3 NOSvy 335

NOTLOVHIINT 3nD

SINIHLXT NOSVIS/NOT LowiyT I 3N07S3075 an B3knne (]

0%

.

a




(PSNUIIU0D) 2NIDNIIS JEOT1IBA TRINDID © Joy synsar aidwes <z1-g 2un8rg

0gp 00p 05g 00K 52 ok 0571 007

ﬁ:#{a By S B U R e e B e e S Ui

188 -

(&)

9

H

Y o e

muywmwxm_mmwawmﬁmm«;mmm;g%zmmzmu:wummu AW 9007




{Psnuruod) 3aN1oNNS TEDNIBA JRNDID 10} s1sal apdweg “g1°9 aunB1y

. DOE

|
o -
) W
] |
w i
i
N
1
i
I

s




130 -

(PenuiILOD) 3an1ON13S [EDTI9A TERIIDID © 10§ symsaa sidwes ~p1-g 231 g

INW] 3000 4
L Gop 0Ge 00g oGz a0z OGT GOt 05

poos |
»ﬁ,z,.l_:t\ B L s (e ST, .!,.[?I!.m[f:J!Efa..,:\«..li.r.,iim;f T e RN St we M

|
i
|
P
|
i
|
m
!
i
|
!
|
i
|
i
I
I
|
i
[

f
!
i
i
i
‘
|
i
i
!
!

f

H
i

_gs;s;g;xz;g;sr:s;,;;{;f‘, e o e
HIINIM H04 03nIEH0s 59014 AW/I3T 73037 A4 aan

e Rt
dad



- 191 -

Examples of the extremal force probabilistic descriptions for different scenario

combinations are given in Figures 6.12 to 6.14,

of 75 m, a freeboard of 15 m, with a coefficient of friction of 0.15 with the ice are
given in Figures 6.15 and 6.16. Version 1 of BOREAS was also used for this example,
with the same tolerance as for the vertical structure discussed above, The program
default values were used. Only the cumulative density functions for winter multi-year
floes for different scenario combinations are given in Figures 6.15 and 6.16 for
illustration, Other scenarios and scenario combinations produce similar results to
those given for vertical structures, except that the force is represented by its

horizontal and vertical components in each case,
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7. CONCLUDING REMARKS

A comprehensive model for estimating year-round ice loads in the Beaufort Sea
has been developed. The structural geometries considered in the study are vertical-
sided, structures with circular or polygonal cross sections, as well as upward and
downward breaking cones. Ice load scenarios are defined on the basis of the ice
conditions in the Beaufort Sea. The developed models can, however, be used for other
geographic areas which experience one or more of the loading scenarios addressed in
the study. Statistical models have been developed for season boundaries and season
lengths, and for the environmental and mechanical ice parameters needed for the
calculation of ice loads. These are combined with appropriate ice structure
interaction models in order to calculate probabilistic descriptions of ice loads which
are later combined in an overall model of extremal analysis to calculate the
probability distribution of the maximum annual load resulting from any scenaric or

combination of scenarios.

The original intent was to use existing state-of-the-art ice structure interaction
models, and concentrate on the environmental and statistical aspects of the problem.
[t was found, however, that in order to account for some of the statistical aspects,
novel work in the area of ice structure interaction was needed. This included the
development of an integrated multi-year floe model for open and closed water
interactions, which accounts for the energy dissipation in the presence of the pack ice
forces. Much of the work needed for this model was related to the calculation of the
local forces for the different structural geometries at different penetration values.
Finite element work was also carried out as background for the application of the

reference stress method to the problem of ice creep in the landfast zone.

A computer package BOREAS was developed to carry out the analysis. The
package is divided into an input program, a main program, and an output program. The
input and output programs are fully interactive, and all three programs have back-up
and data retrieval facilities. The program is developed in a modular form to allow for
replacements and future modifications of certain parts of the model with minimum

efforr,
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The emphasis in the study is on model and computer program development. The
user should choose and input the appropriate statistical descriptions for the specific
location being considered., Default values are given in the model, but these should not

be construed as recommended values for the development of design loads.

In the course of the study, it became evident that ice mechanics and ice-
structure interaction are important areas which greatly affect the calculated loads.
Some aspects of ice mechanics such as the effect of global fracture and the behaviour
of ice during crushing appear to be important, and need to be adequately modelled.
The statistical and extremal aspects of the problem have been comprehensively
addressed, and appropriate models have been used. This results in a well-defined set
of input parameters, which are useful as a guide for the collection of information.
Some of the required parameters need better definition than is presently available in
the literature. These include ridge coverage, ridge geometric properties {e.g. length
and width). Also, some statistical data analysis of actual ice pressure histories would

be useful in defining the appropriate extremal pressure distributions.
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APPENDIX A

PROBABILITY OF ENCOUNTERING A DISCRETE FEATURE IN THE LANDFAST ZONE




Landfast ice Displacement

To investigate the probability of interaction between ice features embedded in

the landfast ice, and a structure, data from Spedding (1975) was analyzed,

From the data, a sample of which is provided in Tabje A.ly it was observed that
the net movements were very small {typically < {0 m). This fact, combined with the
randomness of the direction of motion (see Figure A.l), suggested that features
embedded in the ice would have & very low probability of interacting with a structure,
and even if such an interaction would take place, the penetrations would be negligible.

A sample calculation of the interaction probability, corresponding to the data in

Table A.l, is shown below. Note that Table A.l is only a portion of the data set used
to generate Figure A.l, and the interaction probability.

EXAMPLE: Water Depth = 20-30m
Total Movement - 49.5 m

Distance covered = 5.7 m

Py
(1]

Multi-year ice concentration = 0.5 1974-1975

5
10 1300W - 1370w)

Structure width = 109 M

Lt

Probability of interaction = 5,002
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Figure A.1



APPENDIX B

RANDOM MULTI-YEAR FLOE MODEL




The motivation for this analysis s to develop a realistic model to estimate the
probability of interaction between a structure and a multi-year ridge, and to examine
the characteristics of the interaction if it occurs. The important aspects which are

taken into account in the model are as follows:

() A multi-year ridge is a thickened part of a multi-year floe, and therefore
multi-year ridges should be modelled in this context.  This is an
important aspect, because the interaction will only occur if the structure
benetrates a sufficient distance into the floe to contact the ridge. This
will depend on the impact characteristics, such as the flge size, speed
eccentricty, etc.

(ii) The probability of encountering a multi-year ridge depends on the number
of multi-year ridges on the floe, and the average size of these features,

(iii) The orientation of the ridge during an interaction is a random quantity,
along the ridge.

(iv) The geometric Properties of a multi-year ridge (i.e. height, width, length)

are random.

. . Floe area X % area covered by ridges
No. of Ridges = Average ridge area (B8.1)

generated on the basis of the assumptions shown in Figure B.2, The location is defined
by the polar coordinates of the ridge centre (r, ), and the orientation by the ridge
angle from an arbitrary datum ( ). All three par@meters, r, and  are uniformly
distributed. The ridge he¥fght  and length  were Simulated from the




Ridges

_ Random No. of Ridges,
No Ridges Randomly Oriented,
Spaced.

Given Ridges:

Fioe of Random
Diameter D

- lmpoct With Structure , Giving :

Pr (Ridge Impoct )
Pr (impact With ice Between Ridges)

Figure B.1

fHustration of the random floe rmodde]




v uniformly distributed in Q —— Rf
£ uniformiy distributed in O~
a  uniformly distributed in O —r
w = [7h

RENDOM FLOE MOBEL

Figure B.2

Ridge geometric parameters and main probability distributions




appropriate distributions (see Sections %.2.3.13 and 4.2.3,14), and the ridge width was
estimated from its height based on the Kovacs ridge model (see Section 33200, Any

part of the ridge which lies outside the floe boundary was eliminated,

The probability of ridge encounter for a given penetration can be calculated as
the probability that the contact point on the ridge perimeter is such that the structure
would contact the ridge, This is illustrated in Figure B.3, where the hatched areas
represent the areas of ridge with which the structure can interact for the given
penetration. Angles 6; and 95 limit the points on the floe perimeter, which would
lead to ridge interaction. Note that 6, and g, enclose the ridge extreme points in the
penetrated zone, as well as an angle on each side corresponding to half the contact
width of the structure with the floe on the outside perimeter. Based on the
assumption that each point on the flce perimeter is an equaily likely point of contact,

the probability of ridge encounter can be expressed as:

Probability of ridge encounter = “--—j"—*-—«—
T (B.2)

For a given penetration and ridge coverage, the above procedure is repeated to
generate different configurations of the ridge positions and geometric properties, The
final probability of encountering a ridge is calculated as the average of the probability

values for ali configurations,

Results of this analysis are iliustrated in Figures B.¢ and B.5, for a circular
Structure with 60 m diameter, and a floe with 1600 m diameter, The following

observations were made:

{i) As expected, the probability of ridge encounter increases as the ridge
coverage and/or the penetration increase. This means that this probability
is dependent on the specific parameters of each interaction, and therefore,
multi-year ridges are best treated within the multi-year floe interaction

model,




6 +6,

Probabiiity of ridge encounter =

2

RARDOM FLOE MODEL .

Figure B.3

Probability of ridge encounter given the penetration
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{ii)

(i1d)

Most of the interactions wiil occur with ridge corners and ridge ends. This
indicates that a ridge-crushing model is more appropriate than one based
on ridge bending.

Typical penetration values for average multi-year floe sizes and velocities
are in the low fange of those considered in Figures B.4 and B.S. The
probability of encountering a ridge is therefore generally smail,



APPENDIX C

ORIGINAL DATA SETS



TABLE C.1

Frequency of start of break-up occurring on a given date
North Point, Canadian Beaufort Sea, 1963-1984

SECTION {km}

Date 20-40 60-30 80-100 100-120 | 120-140

April 30 0 [ 0 G 0

May 11-17 0 0 g g g
18-26 | i L 2
25-31 3 5 2 { I I

| | |

June 0107 | 3 2 | 3 3 Lo
08-14 | ! 3 o ! L2
15-21 5 7 7 6 6
22-28 5 i I 3 2 2

July 29-05 ; 3 I 2 J4 2
06-12 | 2 i 2 2 2
13-19 f | 2 3 2 2
2026 | I 0 0 0 0
27-02 | 0 0 | 0 ! !

|

August  03-09 0 5 g i i
10-18 s 0 é o s g
17.23 4 | 0 E 5 0
24-30 0 | G | 0 0




TABLE C.2

Frequency of end of break-up occurring on a given date
North Point, Canadian Beaufort Sea, 1963-198%

SECTION (km})
Date 2040 | e0-30 80-100 100-120 | 120140
| j
May  18.24 g § i ) o | g
25-31 0 I 2 I ! f i
June  01-07 2 3 I | T S
08-14 0 ! i | I
15221 2 4 2 .
22-28 4 | 1 ; 3 3 2
July  29-05 4 ! 5 50 g
06-12 3 3 3 | 2 2
[3-19 H 1 t g H ; 3
20-26 1 I ! 2 0
27-02 ! 1 I i 2 3
August  03-09 2 ! i t I
10-16 I g 0 i
17-23 0 0 0 0
24-30 0 0 ! 0
Sept.  31-06 0 ! o 0 |
07-13 o 0 o I 0
Final break-up ;
did not occur ! I i I 74
j f




TABLE C.3

Frequency of freeze-up occuring on a given date
North Point, Canadian Beaufort Sea, 1963-198%

SECTION {(km)
Date 20-40 60-80 80-100 100-120 | 120-140
Sept. 0713 0 0
14-20 0 0 0
21-27 0 0 |
Oct.  28-04 0 | 1 2 H
05-11 ! 5 i ! 1
12-18 0 0 0 0 0
19-25 0 0 ! I !
26-01 0 i ! t !
Nov.  02.08 i a 0 0 1
09-15 2 I 1 L i
16-22 0 i ! i I
23-29 2 3 3 3 3
Dec.  30-05 0 a 0 0 0
06-12 L 0 0 0
13-19 9 g v
|
After Oct. 01 I ° ! | ! !
After Oct, 19 13 13 | Il L0 9
After Nov. 04 ! ! | ! 1 I
|
,,,,,,,,,,,,,, S i

ettt st




TABLE C.4

Start of break-up
North of Prudhoe Bay, 1975-1984

SECTION (km}
Year 0-20 20-40 40-60 60-80
19735 Judy 11 Juiy 11 July 25 July 25
1976 July 16 July 23 duly 23 July 23
1977 July 22 Aug. 12 Aug. 12 Aug. 12
1978 July 06 July 27 Aug. 63 Aug. 1G
1975 July 19 July 26 Aug. 09 Aug. 23
1980 July 17 July 17 June 12 July 17
1581 July 16 July 16 July 16 July 30
1982 July 61 Aug. 12 June 17 June 17
1983 July 05 Aug. 11 July 55 July 05
1934 June 28 May 15 May 15 June 28




TABLE C.5

End of Break-Up
North of Prudhoe Bay, 1975-1984

Year SECTION (km)
L
0-20 20-40 40-60 60-80

1975 | July 11 July 11 * *

1976 | July 23 July 30 | Sept.24 Sept.24
|

1977 July 22 ‘ Aug. 26 Aug. 12 Aug. 12

1973 | July 20 Aug. 03 Sept.21 Sept.2]
?

1979 ; July 19 | July 26 Aug. 09 Aug. 23
I
| ;

1980 ! July 17 July 17 | 3uly 3 July 31
/

1981 5 July 16 July 16 July 16 July 30

1582 | July 15 Aug. 26 Aug. 26 Aug. 26
;

1983 | Aug. D4 | Aug. 25 * *
; |

1934 j July 08 July 29 Sept.l6 Sept.i6
|

M

¥ Final break-up did not occur




TABLE C.6

Freeze-Up North of Prudhoe Bay

1975-1984
Year SECTION (km)
L 0-20 f 20-40 40-60 60-80
? | I
i i i
1975 | Oct.17 f Oct.3] | Aug.29 Aug.29
|
1976 | >Oct.29 | >Oct, 29 >Oct.29 >0ct.29
| f
1977 f >Nov. 0k if >Nov.04 >Nov.04 f >Nov.G4
|
| | |
1978 I Oct.26 | Nov.0D2 Nov.g2 ; Nov.02
1979 . Nov.0$ | Dec.13 | Dec.|3 f{ Dec.13
i
| |
1980 | Nov.20 | Oct.30 | Oct.30 fl Oct.30
g ! ,
| |
1981 | Oct.29 | Nov.26 | Nov.19 - Now.19
f |
1982 | Oct.28 f Nov.11 Nov.11 Nov.1]
|
}
1983 b Oct.28 f Nov.Il Nov.l] Nov.il
| |
‘ ! §
1984 L Oct.28 | Nov.04 Nov.od Nov.04
|

; :




TABLE C.7

Summer Ice Floe Speed Data

Number of Data Poinis

[980 Data 1979 Data Combined Data

(cm/s)
0- 5 1,296 1,155 2,445
5 - 10 i,185 1,045 2,230
0 - 15 [0&1] 889 1,930
15 - 20 854 752 I,606
20 - 25 633 632 I,265
25 - 30 453 515 968
30 - 35 303 406 709
35 - 40 196 331 527
4G ~ 45 126 229 355
45 - 50 95 169 264
50 - 55 49 68 108
55 - 60 18 56 74
60 - 83 6 23 33
65 - 70 g 19 19
70 - 75 0 11 il
75 - 20 3 & &
TOTAL 6,244 6,304 i2,548




TABLE C.§

Multi-Year Floe Thickness Data

Thickness {m) Number of

Observations
0-1 0
1 -2 H
2-3 4
3.4 11
b5 12
3-6 i3
6 -7 )
/-8 2
8-9 i
9-15 2




TABLE C.9

Ice Concentration Data for the
Canadian Beaufort Sea (North Point)
Summer Season {July - October)

Section North of North Point
1
Concentration 0-20 20-40 | 40-60 60-30 | 80-100 | 100-120 | 120-1%0! 140-160
(Ratio)
0 154 147 142 132 136 128 123 112
0-0.5/10 8 7 8 9 8 10 11 11
0.5/10 - 1.5/10 4 9 9 I3 9 12 13 L4
L5710 - 2.5/10 5 4 5 7 3 1 5 7
2.5/10 - 3.5/10 2 4 4 3 4 4 S 7
3.5/10 - 4.5/10 3 3 5 7 9 6 2 4
4.5/10 - 5.5/10 I 1 - 2 3 3 2
5.5/10 - 6.5/10 - 1 i 1 5 5 8
6.5/10 - 7.5/16 - 1 1 I 2 2 2
7.5/10 - 8.5/10 i - I I 3 2 2
8.5/10 - 9.5/10 i 2 3 2 4 6
9.5/10 - 16/10 H




TABLE C.10

ice Concentration Data for
North of Prudhoe Bay
Summer Season (July - October}

SECTION (km) north of North Point

Concentration
(Ratio) 0-20 20-40 40-60 60-80

0 34 81 62 64
0.5/10-1.5/10 13 32 40 43
1.5/10-2.5/1¢0 12 25 23 i8
2.5/1G-3.5/10 5 & 9 3
3.5/10-4,5/10 0 3 3 3
4.5/10-5.5/10 0 3 i 2
5.5/10-6.5/10 0 4 6 4
6.5/10-7.5/10 0 { 4 3
7.5/10-8.5/10 s 2 1 7
8.5/10-9.5/10 9 4 8 i1
9.5/10-10/10 [ i i I




TABLE C.11

Ice Island Fragment Diameter Data

Diameteyr No. of
{m)} Observations

015 i
15-30 60
30-75 219

75~ 156G 99
150-225 i5

225300 4

TOTAL 398




TABLE C.12

Ice Island Diameter Data

LOCATION AREA EQUIVALENT
(km?) DIAMETER (km)

Marham Bay 45 7.57
East Ward Hunt 300 25,23
West Ward Hunt 330 20.50
Ayleo Fiord Edge 50 7.98
Ayleo Fiord Interim 35 6.58
Milne Fiord 35 6.68
(isolated by cracks)

Milne Fiod Interior 100 it.28
West Yelverton Bay a0 7.38
Alert Point 300 19.54
Cape Armstrong 20 5.05




TABLE C.13

Ice Island/Fragment Thickness Data

LOCATION AREA THICKNESS
(km?) {m)
Marham Bay 435 30
East Ward Hunt 500 45
West Ward Hunt 330 45
Ayleo Fiord Edge 50 45
Avleo Fiord Interim 35 b5
Milne Fiord 35 35-90
{isolated by cracks)
Milne Fiord Interior Hd 60
West Yelverton Bay 50 i5-30
Alert Point 360 45
Cape Armstrong 20 45




TABLE C.i4
Sumrmer Multi-Year Floe Diameter Data

Cape Simpson
Diameter {m) No. of Observations
100 ~ 450,58 3,084
430.5 - 801 222
201 - 1151.5 56
FE51.5- 13502 i}
1502 - 1852.5 14
1852.5 -~ 2203 3
2203 - 2553.5 i
2553.5 .2904 0]
2904 - 3254,5 G
s 3254.5 2
TOTAL 3,393
Pt. Barrow
Diameter {m} No. of Observations
180 - 300 3021
3060 - 500 438
500 - 700 143
7060 - 906 59
9040 - 1100 16
110G ~ 1300 21
1300 - 1500 i5
1300 - 1700 7
1700 - 1800 4
1994 - 2160 i
2100 - 2300 0
2300 - 2300 2
2500 - 2760 i
2760 -~ 2900 3
2900 - 3100 i
TOTAL 3,729




TABLE C.15

Fioe Diameter Data for the Months of August and September

H T 1
Diameter (ft.) I 0-250 g 250 - 500 | 500 -1000 | 1000 - 2500 2500 - 5000 Total

: H
: !
! ;

|
§

' ;
Number f 12205 | 3387 1609 657 206 18564
i




TABLE C.16

First-Year lce Thickness Data
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TABLE C.17

First Year Level Ice Speed Data

WATER DEPTH 0-20 ft

Speed Number of Observations
ft/hr : ;
Nov. | Dec. ; Jan. Feb. Mar. Apr. May

0.5- 1.9 43 63 29 82 33 33 10
1.0 - 1.5 7 8 10 18 g 4 0
1.5-2.0 0 4 3 7 - - 0
2.0-2.5 2 | - 1 - N 0
2.5-3.0 0 3 . 2 - - 0
3.5- 40 0 | - 0 _ ] :
4.0 - 4.5 0 I - ; - - .
5.5-4.0 ! 1 - - . . i
5.0 - 5.5 - 2 - - - . -
TOTAL 53 92 42 il 34 37 i




TABLE C.17 (continued)

WATER DEPTH 20 - 40 ft

Speed Number of Observations
ft/hr
Dec. ;; Jan. Feb. ; Mar. Apr. May
0.5- 1.0 23 | 3 43 g5 " 10
L0~ 1.5 3 1 i 9 14 5 0
1.5 - 2.0 3 0 2 4 i 0
2.0-2.5 2 0 jf 0 i 2 3 1
2.5-3.0 0 0 | ! - - 0
3.0 - 3.5 9 0 0 - - 1
3.5 4.0 ! 0 o | . - ;
40 - 4.5 0 0 | 0 - - -
4.5 - 5.0 0 0 ! - . )
5.0 - 5.5 1 ) 0 - ) i}
5.5 - 6.0 0 0 ) - n )
6.0 - 5.5 0 | o g - N .
i

6.5-7.0 P L0 . ] ]
TOTAL % s g 105 53 12




TABLE C.17 {continued}

WATER DEPTH 40 - 60 ft.

Speed ; Number of Observations
ft/hr
i Feb. Mar. Apr. May
3.5-1.0 36 59 351 163
[0~ 1.5 g 9 15 153 64
1.5« 2.0 5 2 3 43 44
2.0~ 2.5 § 0 2 5 12
25430 | g 1 3 )
3.6-3.5 0 4] - I
3.5-4.0 0 I} - 1
4.5 - 4.5 0 0 - 4
4.5 - 5.0 0 0 - -
5.0-5.5 o 0 - -
5.5 - 6.0 0 i - -
6.0~ 6.5 g & g - -
6.5 7.5 5 G # - -
7.0-7.5 i G 0 - -




WATER DEPTH 40 - 60 ft. (continued)

Speed , Number of Observations
ft/he 5 {
Feb. ;§ Mar. 5 Apr. | May
7.5 - 8.0 0 g 0 | - -
8.0 - 8.5 0 I - -
8.5-9.0 0 1 - -
9.0 - 9.5 0 a - -
3.5 - 10.0 0 G - -
10.5 - 16,5 G 1 - -
16.5-11.0 0 - - -
1.5-12.0 0 - - -
12,5 - 13.0 0 - - -
13.5 - 14,0 0 - - -
1.0 - 14,5 1 - - -
TOTAL 48 85 i 555 : 233




TABLE C.17 {continued)

WATER DEPTH >60 ft.

Speed Number of Observations
ft/hr

Feb. Mar. Apr. May
0.5-1.0 5 24 17 65
1.0~ 1.5 2 13 3 3
[.5-2.0 1 2 0 0
2.0 - 2.5 0 0 I 0
2.5 - 3.0 1 1 I 1
3.0-3.5 ] 0 1 0
3.5-4.0 1 0 0 0
4.0-4.5 G o 0 0
4.5- 5.0 0 0 0 0
5.0 -5.5 0 0 1 1
5.5-6.0 0 0 1 I
6.0-6.5 0 0 0 i
6.5-7.0 0 1 0 -
7.0-7.5 0 H 0 -




WATER DEPTH >60 fr. (continued)

Speed Number of Observations
ft/hr
Feb. Mar. Apr. May
7.5 - 8.0 1 0 0 -
8.0-8.,5 0 0 0 -
8.5-9.0 0 0 0 -
3.0-9.5 0 0 0 -
9.5~ 10.0 o 0 0 -
10.5-11.0 1 1 0 -
1.0~ 11.5 - 0 0 -
11.5-12.0 - 1 ! -
12.0 - 12.5 - 0 - J -
12.5-13.0 - 0 - l ]
13.0 - 3.5 - 0 - -
13.5- 14.0 - 0 - -
14,0 - 14,5 - 1 - -
14,5 . 15,0 - 2 - -
TOTAL 12 47 26 72




TABLE C.18

Frequency of Landfast Ice Speed Peaks

NUMBER OF PEAKS

MONTH TOTAL TOTAL AVERAGE PER | AVERAGE PER | WATER
HOURS OF OBS. HOUR MONTH DEPTH

Nov. 3,072 53 1.725 x 1072 12.422

Dec. 5,256 93 1.769 x 1072 12.737 o

Jan. 1,772 42 2.370 x 1072 17.065 to

Feb. 4,914 110 2.239 x 1072 16.117 20 ft.

Mar. 3,840 34 8.8542 x 10”3 6.375

Apr. 3,864 37 9.576 x 107> 6.894

May 3,192 1 3,446 x 1072 2.431

TOTAL 25,910 380 1.467 x 1072 10. 560

Dec. 2,256 34 1.507 x 1072 10.851

Jan. 936 10 1.068 x 1072 7.692 20

Feb. 1,272 62 4.874 x 1072 35.094 to

Mar. 1,776 105 5.912 x 1072 42.568 40 tt.

Apr. 2,112 53 2.510 x 1672 18.068

May 600 12 2.000 x 1072 14.400

TOTAL 8,952 | 276 3.083 x 1072 22.198




TABLE C.18 (continued)

NUMBER OF PEAKS

MONTH TOTAL TOTAL AVERAGE PER | AVERAGE PER | WATER
HOURS OF OBS. HOUR MONTH DEPTH

Feb. 480 48 Lox (o7 72.000

Mar. 1,440 85 5.903 x [0~2 42.500 40

Apr. 2,640 555 2.102 x 107} 151.36 to

May 1,392 233 1.674 x 1071 120. 52 60 ft.

TOTAL 5,952 921 1.547 x 1071 111.41

Feb. 312 12 3.846 x 1072 27.692

Mar. 552 uy 8.515 x 1072 61.304 60 ft.

Apr. 192 27 1.406 x 107! 101.25

May 72 72 1.000 720.00

TOTAL 1,128 158 1401 x 107} 100.85




TABLE C.18 (continued)

/ NUMBER OF PEAKS

MONTH TOTAL TOTAL AVERAGE PER | AVERAGE PER| WATER
HOURS OF OB, HOUR MONTH DEPTH

Nov. 3,072 53 1.725 x 1972 12.422
Dec. 7,512 [ 127 1.691 x 1072 , 12.173 ALL
Jan. 2,708 ) 52 1.920 x 1072 / 13.826

| 2 |
Feb. 6,973 f 237 3.325 x 10 ] 23.938
Mar. 5,748 271 w715 x 1972 33,96 DEPTHS
Apr. 8,808 672 7.629 x 1072 54,932
May 5,257 328 6.239 x 1072 44.923

TOTAL 40,083 1,735 4.329 x 102 31.165




First Year Ridge Height

Table C.19

ACTIVE ICE ZONE

LANDFAST ICE ZONE

Height NUMBER OF OBSERVATIONS Height Number of
(feet) (years 1980-1981) (feet) Observations
Shear Zone Pack Zone
2.5 - 3,5 61 242 2 -3 157
3.5 ~ 4.5 45 158 3 -4 104
4.5 - 5.5 22 74 4 . 5 51
5.5 - 6.5 11 49 5 -6 46
6.5 - 7.5 il 48 6 - 7 38
7.5 - 8.5 6 29 7 -8 36
8.5 - 9.5 5 24 8§ -9 20
9.5 - 10.5 7 7 2 - 10 11
10.5 « 11.5 3 4 16 - 11 12
1.5 -« 12.5 5 4 It - 12 6
12.5 - 13,5 0 2 12 - 13 12
[3.5 ~ 14.5 5 1 I3 - 14 9
18,5 « 15,5 2 1 4 - 15 5
I5.5 - 16.5 0 2 15 - 18 1
16.5 ~ 17.5 1 0 I6 - 17 2
17.5 - 18.5 G 1 17 - 18 1
[8.5 - 19,5 O 0 18 ~ 19 1
19.5 - 20,5 H | 0 9 - 20 D
TOTAL 185 646 TOTAL | 512




TABLE C.20
First Year Ridge Orientation (From True North)

% FREQUENCY IN ICE ZONE

ANGLE LANDFAST SHEAR PACK
0° - 45° 11.0 ()" 17.8 (53) 18.6 (93)
459 _ 900 30.0 (15) 30.6 (92) 31.0 (155)
90° - 135° 48.0 (24) 34.6 (104) 27.2 {136)
1359 . 180° 11.0 { 5) 17.0 (51) 23.2 (116)

TOTAL 100.0 (50) 100.0 (300) 100.0 (500)

* X
() are actual number of observations.



TABLE C.21

First Year Ridge Frequency Data

RIDGES NUMBER OF OBSERVATIONS
PER MILE
LANDFAST SHEAR PACK
0-3 0 6
3 -10 0 9
16 - 15 1 8 12
15 - 20 3 8 13
20 - 25 6 I 19
25 - 30 4 11 12
30 - 35 2 8 [2
35 - 4 3 7 10
40 - 45 1 3 8
45 -~ 50 0 2 3
30 -~ 55 0 0 L
35 - 60 0 0 1
TOTAL 20 65 108




TABLE C.23

Break-Up Speeds
Prudhoe g:;

NUMBER OF EVENTS (HOURLY MEASUREMENTS)

Speed
cm/s Station 1 Station 3 Station & TOTAL
0~ 0,833 10 9 7 26
0.833 -~ 1.667 5 6 & 19
1.667 - 2.50 5 10 3 18
2.50 ~ 3,333 3 4 4 1}
3.333 - 4,167 5 z 5 iz
4,167 - 6.250 2 9 l i2
6.250 - 8,333 2 5 3 io
8.333 - 12.50 4 3 7
12.50 - 16.67 I i 2
16.67 - 20.83 0 0 0
20.83 - 25.00 I 2 3
25,00 - 29,17 2z 2
Speed NUMBER OF EVENTS (HOURLY MEASUREMENTS)
cm/s Station 1 Station 3 Station 4 TOTAL
0-~1 19 39 12 30
-2 29 61 7 97
2-3 46 99 5 150
3.4 40 70 4] 151
4.5 23 68 13 104
5-7.5 41 113 29 183
7.5~ 10 17 58 21 96
10- 15 6 58 58 122
15-29 0 ié 30 46
20~ 25 0 22 25 47
2530 I 48 11 52
30-35 2 10 18
35~ 40 0 3 3
40 - 45 2 2 4
45 . 50 0 0
530 - 60 2 2




TABLE C.22

Winter Ice Speed Data
Canadian and U.S, Beaufort Sea

CANADIAN BEAUFORT U.S. BEAUFORT
|
Daily Drift | Combined
Speed Jan Feb Mar Total Mar April Total Total
i
0-.05 i3 20 6 39 18 24
06—, 1 12 4 i 17 1 ¥
Jd1-.15 2 1 3 0 5
d6-.20 5 i 1
21-.25 2 1 0
26-.30 0 0 0
.31-.35 f] 0 0
36-.40 0 2 0
AI-45 0 1 0
]
TOTAL 46 24 30 4 120




