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ABSTRACT

A thin layer element method is formuiated for Biot's equation
describing the dynamic behavior of fluid-filled elasto-porous medium,
Using the formulation, the dynamic response of a foundation deeply
embedded in the seafloor is analyzed. The ocean environment is
characterized by the fluid above and inside the seafloor sediments and
its effects on the dynamic response of the foundation are examined. It

‘is found that the ocean environment can considerably affect the
dynamic response of the sediment deposits and foundation.
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INTRODUCTION

Biot (1962) has made a framework in the formulation of
dynamic response of fluid-filled elasto-porous medium, This
formulation has been generally used for dynamic response analysis of
submerged soil and evaluated typically by either analytical solutions
obtained by solving the differential equations or the numerical finite
element method. Considerable difficulty exists in obtaining analytical
solutions for Biot's equation in general and thus the solutions have
been developed only for very simple conditions (e.g. Biot, 1956;
Jones, 1961; Deresiewics, 1960; Foda and Mei, 1982). Those

conditions are generally 0o simple compared with those commonly

encountered in the real situation. The finite elerment method has been
applied for the numerical evaluation of Biot's equation (e.g.
Ghaboussi and Wilson, 1973; Prevost, 1982; Simon et al., 1986;
Zienkiewicz et al,, 1977). Contrary to the former approach, this
approach can account for complex geometry and inhomogeneity
without increasing the degree of difficulty and amount of computation.
However, compared with the finite element schemne applied to a
single-phase medium, the computation effort increases substantially
due to the additional degrees of freedom associated with pore fluid.
Various people (e.g. Kausel and Roesset , 1975; Lysmer and Waas,
1972; and Tajimi and Shimomura, 1976) have presented a thin layer
element method, which combines the finite element scheme and
analytical solution and uses the Rayleigh wave modes in the
expression of the responses. This approach requires computation
effort far fess than the regular finite element approach and yet has a
capacity of accommodating complex conditions far more than the
approach with the analytical solution. It has been applied to the
dynamic response computation of a single-phase medium but does not
appear to have been applied o a fluid-saturated porous medium in

published literature yet. For the dynamic response analysis of a two-
phase mixture, this approach appears to be very attractive because a
large computation effort is generally required in such analysis by the
regular finite element method. This paper presents the thin layer
element formulation for a fluid-saturated porous medium and applies it
to the analysis of dynamic soil-foundation interaction in the ocean
environment, characterized by the fluid above and inside the seafloor
sediments.

FORMULATION

A s0il medium is assumed to be an elastic porous medium
saturated with pore fluid. The average displacement of the pore fluid
relative to the displacement of the solid skeleton is defined as

w=n{U-u) (1

- where n = porosity; w = (wy, w;)7 in which wij is relative

displacement of fluid in the j direction; u = (uy, u,)T in which u; is
displacements of solid skeleton in the j direction; U = (U, U,)? in
which Uj is the absolute displacement of the fluid in the j direction;
and x and z = Cartesian coordinates in horizontal and vertical

directions, respectively. The total normal stresses acting on 2 unit area
of mixture is

¢ = (1-n)0, + mnx = ¢ + mx _ (2)

where Gg = (Gsx, Osz, Txz)T in which Ogj is a normal stress in the j
direction acting on the solid skeleton over the unit area; ¢ = (G, Oy,
Tx;)7T in which Gj is a total normal stress in the j direction; o' = (oY),
oy, Tx) T in which gy is an effective normal stress in the j direction;
Txz = shear stress; 7 = pore fluid pressure; and m = (1,1,0)T.

The equilibrium condition of forces acting on the soil skeleton
in a unit soil volume is described as

(1-mL7o, + (1-n)p,b + nk W = (1-n)pi )
where W = gw/dt; i = 92u/0t%; b = (by,b,)T in which bj is body force

in the j direction per unit mass; pg = density of a unit volume of the
solid material in the skeleton; and
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The equilibrium condition of the forces acting on the pore fluid
domain in a unit volume of soil is given by

nVa - K'nw +npb = p W+ npii (5)

where pr = density of unit volume of pore fluid; and V = (9/9x,

3/9z)T, Combining Egs. 3 and S, the equilibrium condition of the
pore fluid and solid skeleton mixture is expressed as :

Lo + pb = pii + p i (6)

where p = density of unit volume of mixture = (1-n)ps + npyr. Since
linear elastic conditions are considered, body forces will be neglected
hereafter.

The fluid stored in a unit volume mixture is equal to the
summation of the compression of the solid grain by all round fluid
pressure, the comprcssion of the solid frame by the effective stresses,
and the compression of the fluid. Therefor, according to Simon et al.
(1984, the rate of the fluid stored is expressed as

Viw=-om’e + Q'n . 0

where £ = strains = (€4, €z, ¥xz)T; and « and Q are related with

material properties through

o-n

-1 1
e=1- and Q =—+
K, K, @

=7

o

where K = elastic volumetric modulus of solid; Kr = volumetric
modulus of fluid; and Ky = elastic volumetric modulus of solid

skeleton. Substituting 1t in Eq. 7 into Eq. 2 and using the stress-strain
relationship, ¢' = Dg, the total stresses, @, can be correlated with €

and w. With £ = Lu, this expression and pore fluid pressure given in
Eq. 7 can be writtert in a matrix form such that

{0} ) IfD + olQmm DL anVt‘ {u } )

oQm’L Qv |V

Using x and o defined in Eq. 9, Eqs. 5 and 6 can be rewritten
in the following matrix form after using the relationship £ = Lu

it fid+ xfn = {3 (10

where

PPy J [0 0 ]
M= C=
P Pgn o '

L¥(D + o2Qmm" L aQLTmVTJ

K=
| aQVm'L Qvv'

iy

It is noted that , when the layer is made of fluid only, Eq. 10 and all
other formulations can be rewritten withu =0,k =20, n=1and Q=

b

1/K¢. The undrained condition corresponds to w =0 and k =0 in the
above formulations. :

Consider a horizontally layered submerged soil. The
displacements of the medium in the wave field is expressed in the
form of (u(x,z,t), W(x,z,t) = (u(x), w(z))el®@t-hx) in which o =
circular frequency and h = wave number. Using a shape function in
the z direction and omitting the time factor, the displacements of the jth
layer in the wave field are approximately expressed by using the
displacements at the upper and lower ends of the jth layer as

{:rj:(’;zz))} =g i Z(z)‘[gvi} (12)

where eihx UjT = (uyi(x, 00T, ugi(x,H)T, uz’;gx,O)T, uzj(x,HpT) and
ethxw T = (wxj(x,0)T, wi(x,Hi) T, waj(x,0)T, wzj(x,H)T), in which
z=0) anA Hj indicate respectively the upper end and lower ends of the
jth layer; ; and Z{z) = matrix containing the shape function . When
linear variations of the displacemients are assumed along z, the shape
function matrix Z is

a(:)j 0

L(z) = (13

0 a(z)j

- where 0 = matrix containing zeros of size 2 rows and 4 columns; and

8@=1g

l-z/Hj Z/Hj

After substituting Eq. 12 into Eq. 10, application of Galarkin's
procedure to Eq. 10 results in

2 UJ
ilz"{l(j - m>Cj + M_j}l W eihx gy
=1 j
U,
i jZTK' Z3 o (€S = 0 (14)
j Wj -
s

=

where J = numbers of layers; V = volume of the layer j; S = surface

area of the layer j; and K' = [Kdz. Transforming the surface

integration in Eq. 14 into the volume integration and integrating over x
result in

LY . 2 aKl.i azT . Uj
_|—Elb[ 2| K- 10C; + oM, - 2| Lk 12 W dz=0 (15)

Performing integration with reSpéct to z in Eq. 15 result in the
characteristics equation in the discretized form such that

Z (hzaj + ihB, + YJ{:;;J} -0
or
(h2a+ihﬁ+7]{:1v} -0 - (16)

where
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21 1 41 1 - 18
“[1 21 "41 -1] °={-1 1] s

Wave numbers, h, and their associated mode shape vectors,

(&uT, w )T, can be determined by solving the characteristic equation
Eq. I6. Since the fluid pressure is an all around equal pressure, there
is 2 constraint between the freedoms associated with wy and w; and
thus the total degree of freedoms for J layers is 31 instead of 4J. This
results in 3§ non-zero conjugate pairs and J zero conjugate pairs in
eigenvalues computed from Eq, 16. In order to satisfy the wave
scattering conditions, only those with the minus sign in the imaginary
part are selected among the conjugate pairs. Then, the displacements
of the submerged layered soil along x is expressed at the nodal points
as

cHID RN '
{W(x)} =Ze %o, (19)

and thus the displacements within the jth layer as
u.(x,z) ‘
(feaned
wj(x.z) el

where {&y 1, dwT)sT = sth eigenvector in which &, and b = vectors
of size 23 ; dy;j and ¢ = vectors containing the values at the locations
corresponding the jth layer in ¢y and ¢, respectively; hg = sth
eigenvalue; and o = sth mode participation factor.

A vertical cut is considered at x=0 in a layered soil. The

pressures acting along the surface of the cut are oy, Txz and =, and
those distributed pressures at the jth layer can be replaced with nodal
forces acting at the top and bottom of the layer through

¥ 5602
P,_j = -I ZT{tij (O,Z)} dz (21)
Pr; 3 nj(O,z)

where Py, Pzj and Pyj are nodal force vectors of the jth layer and
each of dlem contams the forces at the top and bottom. After
substituting Eqs. 9, 20 and 13 into Eq. 21, the nodal forces acting on

the vertical cut of the jth layer for x>0 can be obtained as

1t s={

RO RN RS

where PjT = (ijT,szT); ¢ij = (¢wij»¢wij) and

H[ Aa Oa aQa J 2 1
=23} 0a Ga Oa ith =[ ]
Ei=%lata 0a Ga e

I[OGh (AO%)G)IJ aQb} I .1
.1 0b ith =[ ]
Fi=2lob ab Qb with b=(1 4]

23

Therefore those of the entire layered system at x=0 for the medium
extending -ooSx<eo are

{ J ——12Eih a{¢w_} +2F Za{%} 24)

Eq. 19 at x=0 can be rewritten as

U Ta
lv_" = {oc}
wz Tb
or
U
fo ) =00 g () <[t 05

where WT = (W, T W,T); and {a} = vector contain o at the sth
location. Similarly, Eq. 24 can be rewritten as

(2}t

Eliminating {a}, Eqs. 25 and 26 result in

Sl

where

Su S, -1
g g | =0inl (28)

When a vertical long structure is located along x—() and it is assumed
to be impervious at the soil-structure interface (i.g. Wx=0), Eq. 27
results in

P=S§, U ‘ (29)
Sy is the stiffness matrix of a fluid-saturated soil. The stiffness
matrix of the soil-foundation system can be obtained by
superimposing this matrix into the foundation stiffness matrix.

Using Eqgs. 9 and 20 together with Eq. 13, the stresses and
pore fluid pressure at the middle of the jth layer are

o.(x, 0.5H) 33 i , ¢ .

J . -thyx uy
{n}.(x, O.SHj)} o Z { wj}s+ 5 £ a‘{‘bwj}s
(30

where
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COMPUTED RESULTS AND REMARKS

A 10 m deep homogeneous horizontal sediment stratum is
assumed to lie under the ocean water. Water depths. 2m, 10m and
20m are considered. Physical properties of the sediments are Kg =
3.7 x 106 tf/m2, Kr = 2.08 x 105 tf/m2, v = 0.25, n (porosity) =
0.375, Y (unit weight) = 2.6 tf/m3, and D (material damping) = 2 %.
A massless vertical foundation is assumed to penetrate through the
sediments and its head is located at the mudline (Fig. 1). Thus the
motions of the water above the seafloor do not directly act on the
foundation. A harmonic excitation is applied in the horizontal
direction at the foundation head.

First, a single layer is used for each of the water and sediments
for simplicity, Only four wave numbers and their associated wave
modes cxist in this case. Fig. 2 shows the wave dispersion curves
computed from the characteristic equation, The real and imaginary
parts of the wave number are related to respectively the wave length
and the decay rate of the motion with x: as those values increase, the
wave length is shorter and the decay is faster. The curves B and C
for 2m depth are very similar to those for no water above the
sediments and curve A is split into the curves A and D when 2m

witer exists. A horizontal excitation of frequency wH/vg = 2 (where
H = total thichness of the sediments) is applied at the head of the
stiffnessless foundation. The complex displacement amplitudes
along the mudline, induced by the lateral foundation response, are
computed using the above computed wave numbers and mode shapes
and are shown in Fig. 3. As is seen, the difference in the water depth
affects the sediment response.

Refined analyses are performed by dividing the water and
sediments into 10 layers as shown in Fig. 4. Flexural stiffness, EI =
2x10% tf-m2, is considered for the foundation. The soil-foundation
stiffnesses are computed by dividing the applied force by the
displacement at the head. Fig. 5 shows the variations of foundation
stiffnesses with frequency for varicus water depths: the stiffnesses
are normalized by the static soil-foundation stiffness for dry
sediments, The real part decreases as frequency increases and
reaches to the minimum at the fundamental resonance of the system

(wH/vs=n/2 for no water above the sediments). As the water depth
increases the fundamental resonant frequency decreases in Fig. 5.
Even though no noticeable differences are observed under the static

conditions (=0}, the differences under dynamic conditions are
significant among the stiffnesses for three different water depths.

CONCLUSIONS

A semi-analytical method is developed for the dynamic
response analysis of a fluid-saturated porous medium. The method
uses the finite element discretization only along depth and analytical
form in the lateral direction. The method is found to be numerically
very efficient, particularly for two-phase mixture problems. The
water above the sediments couples with the sediments through the
pore fluid and affects the dynamic response of the sediments when
the dynamic disturbance is applied in the sediments. This in turn
affects the dynamic response of the foundation in the seafloor.
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