July 13, 2016







Submitted by ABS CONSULTING INC. 1525 Wilson Blvd., Suite 625, Arlington, VA 22209 Contract # E15PX00045, Deliverable 7

#### Abstract

This report updates the 2012 oil spill occurrence rate estimates applicable to offshore oil exploration and development activity in the U.S. Outer Continental Shelf (OCS) (Anderson, Mayes, and LaBelle, 2012). Since the Oil Pollution Act of 1990 (U.S. Public Law 101-380), oil spill occurrence rates like those calculated in this report have increased in importance to regulatory and industry parties involved with offshore oil and gas (O&G) activities.

The updates to the U.S. OCS Platform and Pipeline spill rates and to Worldwide and U.S. tanker and barge oil spill rates use the most recent available data since the prior report to calculate rates consistent with current trends. The rates are calculated as the ratio of the count of occurrences of spills  $\geq$ 1,000 barrels (159 m<sup>3</sup>, 159 kiloliters, 136 metric tonnes, 42,000 U.S. gallons) to the volume of crude oil handled. Additional rates are calculated for spills  $\geq$ 10,000 barrels (bbl) and  $\geq$ 100,000 bbl. The report compares spills  $\geq$ 1,000 bbl and  $\geq$ 10,000 bbl to the results calculated by Anderson *et al.* (2012). This comparison is summarized below:

- No additional large spills impacted the spill rates for OCS platforms. The volume of oil handled has increased, leading to spill rates for OCS platforms continuing to decrease for spills ≥1,000 bbl. The rate, calculated at 0.22 spills per billion barrels (Bbbl), adjusts for trend early in the spill record by excluding spills prior to 1974. The rate for spills ≥10,000 remained steady at 0.06 spills per Bbbl when examined over the same period.
- When comparing the most recent 15-years data (2001 through 2015 data) to the 1996 through 2010 rates in Anderson *et al.* (2012), spill rates remained at 0.25 spills per Bbbl for spills ≥1,000 bbl and 0.13 spills per Bbbl for spills ≥10,000 bbl. These rates include a spill from Hurricane Rita (2005) and the Macondo well spill in 2010.
- Spill rates for OCS pipelines decreased slightly from 0.94 to 0.89 spills per Bbbl for spills ≥1,000 bbl. Although the trend analysis for pipeline spills was inconclusive, spills prior to 1974 were excluded from this rate, in keeping with the assumptions used for calculating platform rates, and from 0.19 to 0.17 spills per Bbbl for spills ≥10,000 bbl. When examining the record over the last 15 years (2001 through 2015), the rates dropped from 0.88 to 0.38 for spills ≥1,000 bbl and from 0.18 to 0.07 spills per Bbbl for spills ≥10,000 bbl.
- All tanker spill rates continued the substantial declines noted in the last review (Anderson *et al.*, 2012). Most likely, tanker spills have declined due to major regulatory changes in the early 1990s that substantially eliminated the use of single-hull tankers by requiring double hulls or their equivalent.
- Spill volumes for spills from OCS platforms were also updated to include the average and median spill sizes for the period from 1974 through 2015 and the period from 2001 through 2015. To illustrate the impact of the 2010 Deepwater Horizon spill and various hurricanes on these estimates, the statistics are calculated for various subsets of the spill record.

# Table of Contents

| 1.   | Introduction1                                        |   |  |  |  |  |  |
|------|------------------------------------------------------|---|--|--|--|--|--|
| 1.1. | Report Overview                                      | L |  |  |  |  |  |
| 1.2. | Background                                           | L |  |  |  |  |  |
| 2.   | Data                                                 | 3 |  |  |  |  |  |
| 2.1. | Incident Data Sources                                |   |  |  |  |  |  |
| 2.2. | Data Conditioning                                    | ł |  |  |  |  |  |
| 2.3. | Spill Categories                                     | 5 |  |  |  |  |  |
| 2.4. | Exposure Data                                        | ) |  |  |  |  |  |
| 3.   | Methods and Assumptions10                            | ) |  |  |  |  |  |
| 3.1. | Exposure Variable Selection and Computation10        | ) |  |  |  |  |  |
| 3.2. | Spill Rates and Distribution                         | ) |  |  |  |  |  |
| 3.3. | Trend Analysis11                                     | L |  |  |  |  |  |
| 3.4. | Spill Rate Distribution11                            | L |  |  |  |  |  |
| 3.5. | Output Distributions and Confidence Intervals12      | 2 |  |  |  |  |  |
| 3.6. | Limitations12                                        | 2 |  |  |  |  |  |
| 4.   | Platform Spill Analysis12                            | 2 |  |  |  |  |  |
| 4.1. | Platform Spill Occurrences and Oil Handled13         | 3 |  |  |  |  |  |
| 4.2. | Platform Spill Risk Exposure and Causal Factors17    | 7 |  |  |  |  |  |
| 4.3. | Platform Trend Analysis25                            | 5 |  |  |  |  |  |
| 4.4. | Platform Spill Rates                                 | ) |  |  |  |  |  |
| 4.5. | Platform Spill Distributions                         | 2 |  |  |  |  |  |
| 5.   | Pipeline Spill Analysis                              | 5 |  |  |  |  |  |
| 5.1. | Pipeline Spill Occurrences and Oil Handled           | 5 |  |  |  |  |  |
| 5.2. | Pipeline Exposure Units and Causal Factors           | ) |  |  |  |  |  |
| 5.3. | Pipeline Trend Analysis45                            | 5 |  |  |  |  |  |
| 5.4. | 4. Pipeline Spill Rates                              |   |  |  |  |  |  |
| 5.5. | Pipeline Spill Distributions                         | 7 |  |  |  |  |  |
| 6.   | Tanker and Barge Spill Analysis50                    | ) |  |  |  |  |  |
| 6.1. | Tanker and Barge Spill Occurrences and Oil Handled51 | L |  |  |  |  |  |
| 6.2. | Tanker and Barge Exposure Units                      | ) |  |  |  |  |  |
| 6.3. | Tanker and Barge Trend Analysis60                    | ) |  |  |  |  |  |
| 6.4. | Tanker and Barge Spill Rates62                       | 2 |  |  |  |  |  |

| 6.5. | Tanker and Barge Spill Distributions   68 |  |  |  |  |  |
|------|-------------------------------------------|--|--|--|--|--|
| 7.   | esults Summary70                          |  |  |  |  |  |
| 7.1. | Spill Occurrence Rate Summaries70         |  |  |  |  |  |
| 7.2. | OCS Spill Size Empirical Distribution74   |  |  |  |  |  |
| 8.   | Conclusions77                             |  |  |  |  |  |
| 8.1. | Findings77                                |  |  |  |  |  |
| 8.2. | Recommendations                           |  |  |  |  |  |
| 9.   | References                                |  |  |  |  |  |
| A.   | Trend Analysis A-1                        |  |  |  |  |  |
| В.   | The Bootstrap MethodB-1                   |  |  |  |  |  |

# List of Tables

| Table 1. Analysis Datasets                                                                          | 3    |
|-----------------------------------------------------------------------------------------------------|------|
| Table 2. Spill Size Categories                                                                      | 6    |
| Table 3. Exposure Variables and Associated Data Sources by Entity Type                              | 9    |
| Table 4. Large (≥1,000 bbl) U.S. OCS Platform Spills, 1964 to 2015                                  | 13   |
| Table 5. Platform Spill Rate and Spill Volume Trends Based on Oil Produced, 1964 to 2015            | . 16 |
| Table 6. Platform Exposure Metrics                                                                  | . 17 |
| Table 7. Platform Spill Rate and Spill Volume Trends Based on Structure Years, 1964 to 2015         | . 18 |
| Table 8. Platform Oil Handled Spill Rate Comparison (Previous to Updated Rates)                     | 29   |
| Table 9. Platform Oil Handled Spill Rate Confidence Intervals (Full Record and 15-year Rate)        | . 30 |
| Table 10. Platform Structure Years Hurricane Spill Rate Comparison (Full Record and 15-year Rate)   | . 30 |
| Table 11. Platform Aggregated Spill Rates Confidence Intervals (Full Record and 15-year Rate)       | 31   |
| Table 12. Platform Structure Years Spill Rate Comparison (Full Record and 15-year Rate)             | 31   |
| Table 13. Comparison of Average and Median Platform Spills With and Without DWH and Hurricanes.     | 33   |
| Table 14. Platform Spill Size Empirical Distribution 2001-2015                                      | .33  |
| Table 15. Platform Spill Distribution by Spill Size Category, 1974-2015                             | . 34 |
| Table 16. Platform Spill Distribution by Spill Size Category, 2001-2015                             | . 35 |
| Table 17. Large (≥1,000 bbl) OCS Pipeline Spills, 1964-2015                                         | . 37 |
| Table 18. OCS Pipeline Spill Rate and Spill Volume Trends Based on Oil Produced, 1964-2015          | . 39 |
| Table 19. Pipeline Exposure Metrics                                                                 | . 39 |
| Table 20. OCS Pipeline Spill Rate and Spill Volume Trends Based on Segment Years, 1964-2015         | . 40 |
| Table 21. OCS Pipeline Spill Rate Estimates for Updated Spill Record                                | .46  |
| Table 22. OCS Pipeline Spill Rate Confidence Intervals for Updated Spill Record                     | . 47 |
| Table 23. OCS Pipeline Spill Rate Estimates for Updated Spill Record                                | . 47 |
| Table 24. OCS Pipeline Spill Counts and Average and Median Spill Sizes                              | .48  |
| Table 25. OCS Pipeline Spill Distribution Statistics by Spill Size Category, 2001-2015              | . 48 |
| Table 26. OCS Pipeline Spill Distribution by Spill Size Category, 1974-2015                         | .49  |
| Table 27. OCS Pipeline Spill Distribution by Spill Size Category, 2001-2015                         | . 50 |
| Table 28. Worldwide Tanker Spill Summary, 1974-2014                                                 |      |
| Table 29. Tanker Spills in U.S. Waters Summary, 1974-2013                                           | .54  |
| Table 30. Barge Spills in U.S. Waters (Including Inland Waters) Summary, 1974-2013                  | . 57 |
| Table 31. Tanker and Barge Exposure Metrics                                                         | . 59 |
| Table 32. Worldwide Tanker Unadjusted Spill Rates (Crude)                                           |      |
| Table 33. Tankers in U.S. Waters Unadjusted Spill Rates (Crude)                                     |      |
| Table 34. ANS Crude Tankers Unadjusted Spill Rates (Crude)                                          | . 65 |
| Table 35. Barges in U.S. Waters Unadjusted Spill Rates                                              | .66  |
| Table 36. Tanker and Barge Spill Rate Confidence Intervals Summary by Spill Location and Spill Size | . 67 |
| Table 37. Tanker and Barge Spill Counts and Average and Median Spill Sizes (Spills ≥1,000 bbl)      | . 68 |
| Table 38. Tanker and Barge Spill Counts and Average and Median Spill Sizes (Spills ≥10,000 bbl)     | . 69 |
| Table 39. Selected Date Ranges for Full Record and 15-year Rates                                    | . 70 |
| Table 40. Exposure Values for Full Record and 15-year Rates                                         |      |
| Table 41. Best-estimate Spill Rates                                                                 |      |
| Table 42. Combined Empirical Size Distribution of Platform and Pipeline Spills, 2001-2015           | . 76 |

# List of Figures

| Figure 1. OCS Oil Production vs. Large Platform Spills (≥1,000 bbl), 1964-2015                   | 15 |
|--------------------------------------------------------------------------------------------------|----|
| Figure 2. Platform Spill Causal Factor Summary                                                   | 19 |
| Figure 3. Platform Spill Causal Factor Summary by Spill Size Category                            | 20 |
| Figure 4. Platform Spill Loss of Well Control Summary                                            | 20 |
| Figure 5. Platform Spill Loss of Well Control Summary by Spill Size Category                     | 21 |
| Figure 6. Platform Spill Operating Mode Summary                                                  | 21 |
| Figure 7. Platform Spill Operating Mode Summary by Spill Size Category                           | 22 |
| Figure 8. Platform Spill Hurricane Summary                                                       |    |
| Figure 9. Platform Spills by Hurricane                                                           |    |
| Figure 10. Platform Spill Hurricane Summary by Spill Size Category                               | 23 |
| Figure 11. Platform Spill Causal Factor Summary – Excluding Hurricanes                           | 24 |
| Figure 12. Platform Spill Causal Factor by Operating Mode                                        |    |
| Figure 13. Platform Spill Loss of Well Control Causal Factor by Operating Mode                   | 25 |
| Figure 14. Platform Large Spill Trends by Production Intervals – Including Hurricane Spills      | 26 |
| Figure 15. Platform Major Spill Trends by Production Intervals – Excluding Hurricane Spills      | 27 |
| Figure 16. Platform Spill Trends by Year – 1971-2015                                             | 27 |
| Figure 17. Platform Spill Trend Line – 1974-2015                                                 |    |
| Figure 18. Platform Spill Trend Line Residual Plots                                              |    |
| Figure 19. DWH – A Statistical Dilemma                                                           | 32 |
| Figure 20. Platform Spill Distribution (Number and Volume) by Spill Size Category, 1974-2015     | 34 |
| Figure 21. Platform Spill Distribution (Number and Volume) by Spill Size Category, 2001-2015     |    |
| Figure 22. OCS Oil Production vs. OCS Pipeline Large Spills, 1964-2015                           |    |
| Figure 23. OCS Pipeline Large Spill Causal Factor Summary                                        |    |
| Figure 24. OCS Pipeline Spill Causal Factor Summary                                              | 42 |
| Figure 25. OCS Pipeline Spill Casual Factor Summary by Spill Size Category                       | 43 |
| Figure 26. OCS Pipeline Spill Hurricane and Operational Summary                                  |    |
| Figure 27. OCS Pipeline Spill Hurricane and Operational Summary by Spill Size Category           |    |
| Figure 28. OCS Pipeline Spill Causal Factors Summary – Excluding Hurricanes                      |    |
| Figure 29. OCS Pipeline Spills over 0.5 Bbbl Production Intervals                                |    |
| Figure 30. OCS Pipeline Spill Distribution (Number and Volume) by Spill Size Category, 1974-2015 |    |
| Figure 31. OCS Pipeline Spill Distribution (Number and Volume) by Spill Size Category, 2001-2015 | 50 |
| Figure 32. Crude Oil Movements vs. Worldwide Tanker Large Spills                                 | 53 |
| Figure 33. Crude Oil Movements and Import/Export Rate vs. Domestic Tanker Large Spills           | 55 |
| Figure 34. Crude Oil Movements vs. ANS Tanker Large Spills                                       |    |
| Figure 35. Movements vs. Domestic Barge Large Spills                                             |    |
| Figure 36. MARPOL and Non-MARPOL Tankers vs. Worldwide Tanker Spills                             | 60 |
| Figure 37. Worldwide and U.S. Waters Tanker Spill Trends, 1974-2014                              |    |
| Figure 38. Petroleum Barge Spill Trends, 1974-2014                                               |    |
| Figure 39. Comparison of Historical Spill Rate Estimates for Spills ≥1,000 bbl                   |    |
| Figure 40. Comparison of Historical Spill Rate Estimates for Spills ≥10,000 bbl                  | 73 |

# Acronyms

| ABSG   | ABS Group                                                                               |
|--------|-----------------------------------------------------------------------------------------|
| ANS    | Alaska North Slope                                                                      |
| bbl    | Barrel or barrels; Barrel (42 U.S. gallons, 0.159 kiloliters, 0.159 m <sup>3</sup> , or |
|        | 0.136 metric tonnes)                                                                    |
| Bbbl   | Billion barrels, 10 <sup>9</sup> bbl or 1,000,000,000 bbl                               |
| BOEMRE | Bureau of Ocean Energy Management, Regulation and Enforcement                           |
| BOEM   | Bureau of Ocean Energy Management                                                       |
| BP     | British Petroleum                                                                       |
| BSEE   | Bureau of Safety and Environmental Enforcement                                          |
| DOI    | Department of the Interior                                                              |
| DOT    | Department of Transportation                                                            |
| DWH    | Deepwater Horizon                                                                       |
| MISLE  | Marine Information for Safety and Law Enforcement                                       |
| MMbbl  | Millions of barrels                                                                     |
| MMS    | Minerals Management Service                                                             |
| MODU   | Mobile Offshore Drilling Unit                                                           |
| NEPA   | National Environmental Policy Act                                                       |
| NRC    | National Response Center                                                                |
| 0&G    | Oil and Gas                                                                             |
| OCS    | Outer Continental Shelf                                                                 |
| ONRR   | Office of Natural Resource Revenue                                                      |
| OSRA   | Oil Spill Risk Analysis                                                                 |
| PHMSA  | Pipeline and Hazardous Material Safety Administration                                   |
| TAPS   | Trans-Alaska Pipeline System                                                            |
| TIMS   | Technical Information Management System                                                 |
| USACE  | U.S. Army Corps of Engineers                                                            |
| USCG   | U.S. Coast Guard                                                                        |

This page intentionally left blank

# 1. Introduction

This report updates the 2012 oil spill occurrence rate estimates applicable to offshore oil exploration and development activity in the U.S. Outer Continental Shelf (OCS) (Anderson, Mayes, and LaBelle, 2012). It builds on an extensive history of statistical analysis of oil spill occurrences, including Smith, Slack, Wyant, and Lanfear (1982); Lanfear and Amstutz (1983); and Anderson and LaBelle (1990, 1994, and 2000). It documents the development of the comprehensive spill dataset used for analysis, the performance of the analyses themselves, and the interpretation of findings.

# 1.1. Report Overview

This report has the following structure:

- Section 1. Introduction
- Section 2. Data
- Section 3. Methods and Assumptions
- Section 4. Platform Spill Analysis
- Section 5. Pipeline Spill Analysis
- Section 6. Tanker and Barge Spill Analysis
- Section 7. Results Summary
- Section 8. Conclusions
- Section 9. References

The analysis sections (Sections 4 through 6) of this report are structured based on the entity type from which the spill occurred: platforms, pipelines, or tankers/barges. In prior versions of this report, the analyses were structured based on the type of analysis being performed (e.g., rate calculation, trend analysis).

Following Section 9, the report includes two appendices that provide further details on the analysis techniques:

- Appendix A. Trend Analysis
- Appendix B. The Bootstrap Method

# 1.2. Background

The Bureau of Safety and Environmental Enforcement (BSEE) of the U.S. Department of Interior (DOI) contracted ABS Group (ABSG) in September 2015 to perform an analysis and update the report in partnership with the Bureau of Ocean Energy Management (BOEM) as part of their collective mission to protect the environment offshore. The agencies were created on October 1, 2011, during the reorganization of the Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), which succeeded the Minerals Management Service (MMS).

The current organization divides authority between BOEM and BSEE. With regards to oil and gas (O&G) production and development along the OCS, BSEE develops regulations, issues permits, performs inspections, conducts incident investigations, and ensures that industry is prepared for an oil spill response. BOEM handles leasing, evaluates resource levels, administers exploration and development

plans, performs National Environmental Policy Act (NEPA) assessments, and conducts environmental studies. Additional information about BOEM's and BSEE's roles can be found on their websites<sup>1</sup>.

This report will provide insights and trends in offshore oil spills over time, including a preliminary causal factor analysis. This information will help BSEE track environmental performance offshore, and form a basis of information that may help BSEE develop measures to enhance environmental performance in the future, particularly for spill prevention.

This report will also contribute to BOEM's mission. BOEM maintains the Oil Spill Risk Analysis (OSRA) model, which was originally developed by the DOI in 1975 (Smith *et al.*, 1982; LaBelle and Anderson, 1985; Ji, Z.-G., W. Johnson, and Z. Li., 2011). This model uses oil spill occurrence, meteorological, oceanographic, and, where appropriate, sea ice information to estimate oil spill trajectories to identify spill risk and probability of oil contact with the shorelines and resources. In turn, the OSRA model results support several environmental reports and functions, including:

- BOEM OSRA reports
- NEPA environmental impact statements
- NEPA environmental assessments
- Endangered species; essential fish habitat; and Section 106, National Historic Preservation Act consultations

This report generally supports this effort with insights and trends in offshore spills. This information may help BSEE track environmental performance offshore and analyze trends to enhance oil spill prevention. It will underpin the OSRA model by providing the objective, data-driven spill occurrence rates. Moving forward, BOEM and BSEE will continue to maintain and develop this process, ensuring a stable, relevant foundation for this work.

<sup>&</sup>lt;sup>1</sup> <u>www.boem.gov</u>; <u>www.bsee.gov</u>

# 2. Data

The analyses presented in this report require data. This section describes the methods used to collect, aggregate, and validate these data. This discussion provides an indication of the quality of the data finally accepted for analysis. In addition, it documents the various data sources which were reviewed and compiled to construct the *U.S. DOI/BSEE OCS Spill Database*. All of the spill data and analysis presented in this report come from this database.

# 2.1. Incident Data Sources

BSEE requires oil spills to be reported to the National Response Center and, in the event of a spill of 1 barrel (bbl) or more, to notify the Regional Supervisor (30 CFR 254.46). However, OCS spills are also reported to other government agencies as specified by their own regulations. These specifically include the U.S. Coast Guard (USCG) and the Department of Transportation (DOT) Pipeline and Hazardous Material Safety Administration (PHMSA). Furthermore, tanker and barge spills worldwide and in U.S waters are not reported to BSEE. Table 1 identifies the datasets that were included in this analysis, their source, applicability to each entity type, and the timeframe covered by the dataset.

| Source<br>Agency  | Description                                                                                                      | Platforms             | Pipelines             | Tankers | Barges | Timeframe    |
|-------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------|--------|--------------|
| BSEE              | 2012 Report Spills: The data collected to perform                                                                |                       |                       |         |        |              |
|                   | the previous version of this analysis (Anderson <i>et al.</i> , 2012)                                            | <b>√</b>              | ~                     |         |        | 1964 to 2010 |
|                   | Pacific OCS Spills: Supplemental to 2012 Spill Report Data                                                       | ✓                     | ~                     |         |        | 1969 to 2010 |
|                   | Offshore Incidents: Event Data housed in<br>BSEE/BOEM Technical Information Management<br>System (TIMS) database | ~                     | ~                     |         |        | 2000 to 2015 |
|                   | Worldwide Tanker Spill Database <sup>2</sup> : Database of large tanker and barge spills worldwide               |                       |                       | ~       | ~      | 1942 to 2010 |
|                   | National Response Center (NRC) Data Stream                                                                       | <ul> <li>✓</li> </ul> | ✓                     | ✓       | ✓      | 1999 to 2015 |
| USCG              | Pollution Incidents from the Marine Information for Safety and Law Enforcement (MISLE) System                    | ~                     | ~                     | ~       | ~      | 2002 to 2015 |
|                   | NRC spill incidents (Supplemental to NRC Data Stream)                                                            | ~                     | ~                     | ~       | ~      | 2010 to 2016 |
| PHMSA             | Offshore Pipeline Spills                                                                                         |                       | <ul> <li>✓</li> </ul> |         |        | 1986 to 2015 |
| ABSG <sup>3</sup> | Worldwide Tanker Spills (Supplemental to Worldwide Tanker Spill Database)                                        |                       |                       | ~       |        | 2010 to 2015 |

#### Table 1. Analysis Datasets

<sup>&</sup>lt;sup>2</sup> BSEE collects these data—the data are not reported to BSEE.

<sup>&</sup>lt;sup>3</sup> These data were assembled by ABSG through detailed open-source research of tanker spills.

# 2.2. Data Conditioning

Prior to analysis, each of the datasets was assimilated into a single, comprehensive spill data table. This was accomplished in four sequential steps:

- 1. Prescreening
- 2. Formatting
- 3. Matching
- 4. Consolidating

#### 2.2.1. Prescreening

First, the data were screened in order to minimize irrelevant processing in later stages. This primarily involved aligning the collected data with the scope of the report. Incidents that did not involve spills, spills that were less than 1 bbl, spills of a nonpetroleum fluid, spills that occurred over land or state waters, or spills occurring from entity types outside the scope of the analysis were removed from the data.

Low data quality for some records made it difficult to determine if the spills, such as those occurring in state waters, were in or out of scope. Throughout each of the remaining data conditioning steps, additional spills were flagged as out of scope as the conditioned data made it clear whether or not a spill should be included.

#### 2.2.2. Formatting

After screening out records outside the scope of the analysis, each dataset was individually mapped into a common table format. The fields in this table capture all of the essential data for the analysis, describing the causes, context, and outcome of the incidents, including:

- Unique spill ID
- Date
- Latitude
- Longitude
- Entity type involved
- Spill volume
- Fluid
- Mode
- Operation
- Hurricane flag
- Incident description
- Causal factors
- Loss of well control flag

In general, this information was provided by each dataset, although in some instances it was necessary to infer these data from values included in the source data. For example, BSEE data often encode spill location information as the protraction area and block in which a spill occurred. These area/block combinations were mapped to latitude and longitude coordinates representing the average values for the block vertices. Source file data formats were standardized and spill volumes were converted to consistent units.

## 2.2.3. Spill Event Matching

The next step was to match records that referred to the same incident. This occurred in the data for a variety of reasons. Some of the source datasets contained multiple records for the same event. In the NRC data, this commonly occurs when updates to a spill event are reported. This issue also arises when separate datasets report on the same event. Data analysts manually performed this process because many duplicate records contain slightly different information, and it was important to maintain all key information. Matches were identified by rating the equality of the spill dates, volumes, locations, and fluids.

Potential matches were identified when these values were approximately equal. Spill event descriptions and other information were often used to confirm potential matches. As part of the data conditioning process, data analysts maintained a list of matches with data flags to identify which of the records should be used in the analysis (i.e., the most accurate record of the event), which were redundant, and which needed to be combined.

## 2.2.4. Consolidating Spills and Spill Categories

The final conditioning step was to combine all of the source tables into a single table, using the matching information to remove duplicates and combine the appropriate records. During this process, instances of potentially conflicting information were resolved.

For example, if one of a duplicate set of records indicated that it was a production platform spill and the other indicated that drilling fluid was spilled, it would be assumed that the incident actually involved drilling, rather than production. In general, this process reduced the number of combinations of spill features.

# 2.3. Spill Categories

Each spill was categorized considering a variety of variables. Each variable and its potential values are described in the following sections.

# 2.3.1. Entity Types

Spills from the following entity types are included in this analysis: platforms, pipelines, tankers, and barges. Platforms include all OCS facilities offshore for petroleum exploration, development, and production. This definition is very broad, encompassing all production platforms and types of drilling rigs<sup>4</sup>. Floating platforms, fixed platforms, caisson platforms, well protectors, drill ships, jack-up rigs, and semisubmersibles are all included. When pipelines are damaged due to toppling platforms, these incidents are also categorized as platform incidents. Although these types of facilities exist throughout the world, only facilities on the OCS are included in this analysis to ensure that the analysis results are particularly relevant to the activity under BOEM and BSEE jurisdiction.

Pipeline spills are spills associated with the transportation of oil via pipeline. This includes damage to risers connecting a platform to a subsea pipeline, but does not include damage to marine risers used in drilling. Once again, only pipelines in the OCS are included in this analysis.

<sup>&</sup>lt;sup>4</sup> BSEE data differentiate between rigs and platforms by using a different ID number schema to identify them. Generally, rigs move from place-to-place performing one-time operations, while platforms are associated with a lease and are long-term installations.

Tankers and barges are treated differently than platforms and pipelines. This is due in part to the absence of a readily accessible exposure metric for the OCS region specifically. Platform and pipelines are stationary, making it easy to identify whether they are in the OCS. Tankers and barges constantly transit in and out of the OCS. Alternatively, exposure for tanker spills in regions besides the OCS can be easier to work with. This analysis considers tanker spills worldwide and tanker spills involving crude transmitted by the Trans-Alaska Pipeline System (TAPS). Tankers in U.S. coastal and offshore waters are considered, despite difficulty in assigning an appropriate exposure variable. Finally, barges in coastal, offshore, and inland waters are considered.

#### 2.3.2. Spill Sizes

Several analyses presented in this report involve classifying spills by spill volume. Table 2 identifies the categories of spill sizes by introducing their upper and lower bounds (in bbl).

| Lower Bound          | Upper Bound          |
|----------------------|----------------------|
| (inclusive) (in bbl) | (exclusive) (in bbl) |
| 1                    | 5                    |
| 5                    | 10                   |
| 10                   | 20                   |
| 20                   | 50                   |
| 50                   | 100                  |
| 100                  | 500                  |
| 500                  | 1,000                |
| 1,000                | 10,000               |
| 10,000               | _                    |

#### Table 2. Spill Size Categories

Throughout this report, these size categories will be grouped into "large" and "small" spills. BOEM refers to spills of 1,000 bbl or more as "large" spills. This terminology will be maintained throughout this report. To avoid confusion, the words "smaller" and "larger" will only be used as nontechnical terms describing the relative size of spills.

Historically, only the rates of large spills have been included in BOEM's OSRA model estimation of spill rates since smaller spills generally dissipate quickly. Some analyses will focus on large spills for this reason. For BSEE, smaller spills of over 1 bbl are required to be reported, and spills over 50 bbl are reported with additional information on the sea state, meteorological conditions, and the size and appearance of the slick.

#### 2.3.3. Spill Fluids

In general, this report is concerned with spills of oil. However, for different entity types, this is interpreted differently based on the available data.

The first interpretation includes a broad array of petroleum products, including crude and condensate. Throughout the report, these spills are referred to as petroleum and include almost any product derived from naturally occurring crude or condensate oil. Fluids described as hydraulic fluid, other oil, drilling fluid, diesel, gasoline, fuel oil, jet fuel, kerosene, naphtha, motor oil, mineral oil, and lubricating oil could all be considered petroleum. However, some of these products are occasionally marked as "synthetic," "environmentally safe," "eco-friendly," or "food grade" and are excluded from the analysis. Furthermore, whenever possible, the quantities of drilling fluid were represented as the volume of base oil rather than the amount of drilling fluid itself.

The second interpretation includes only unrefined crude and condensate. The report refers to these as spills of crude oil.

For platforms, pipelines, and barges, the analysis uses petroleum spills. For tankers, only crude oil spills are used.

#### 2.3.4. Modes and Operations

Offshore O&G activities are varied. For platforms in particular, this report provides details related to the mode in which the platform was operating at the time of the incident.

In BSEE's incident data, platforms are typically classified in one of two modes: exploration or development/production. Exploration activity typically involves drilling exploration and delineation wells to prove new reserves. The operator may not choose to develop a well further if exploration activities do not identify a viable reserve. Development/production activities involve moving to full-scale production. These modes encompass multiple platform operations. This report groups these operations into the following categories:

- Completion/workover
- Construction
- Decommissioning/abandonment
- Drilling
- Production
- Pipeline
- Vessel

The pipeline and vessel categories are not operations, but indicate platform spills related to other entity types. For example, in the event that a platform topples, a pipeline can disconnect and spill its contents. Because this spill was initiated by a platform failure, it is associated with platforms, not pipelines. Similarly, BSEE's incident data includes several instances of platform service vessels spilling fluids while servicing platforms. These source data include these platform spills associated with vessel operations as platform spills. This convention was maintained for this analysis.

For pipelines, no operational categories were identified. While there are activities, such as pigging, associated with pipeline operations, analysis of these activities was not supported by the data.

Tanker spills are classified in two modes: at sea and in port. No other operation modes were identified in these data.

# 2.3.5. Causal Factors

Each spill record often provided sufficient data for identifying multiple causal factors. In the consolidation stage of data conditioning, each spill was tagged for each causal factor category identified as a contributor to the spill. As a result, some causal factor summaries are normalized in order to avoid

distorting the number of spills by counting each spill once for each of its causal factor tags. This method accurately reflects the impact that prevalence of the causal factors has on the aggregate spill count.

For platforms, many sources provided information distinguishing between the following causal factors:

- Human error
- Equipment failure
- Weather/natural causes
- External/other factors
- Unknown

The data for pipeline operations used some of the same causal factor categories. In addition, the analysis identified specific words in the incident description such as "corrosion," "anchor," and "trawl" and tagged the spill incidents accordingly for these specific causes:

- Equipment failure
- Weather/natural causes
- External/other factors
- Anchor/trawl/vessel
- Corrosion
- Unknown

"Unknown" signifies when a spill record does not include causal factor information.

This report does not include analysis of tanker or barge spill causal factors.

#### 2.3.6. Hurricanes

This report emphasizes the impact that hurricanes have had on platform and pipeline spill history. To better identify these spills, data analysts performed word searches in the spill records to identify spills that occurred during hurricanes. The search identified incidents featuring the words "hurricane" and "typhoon" and also specific hurricane names (e.g., Ivan, Katrina, Rita).

## 2.4. Exposure Data

The exposure data sources used in this report reflect the methodology of prior reports, but also include a number of sources for alternative exposure variables.

Table 3 summarizes the data sources for the exposure variables by entity type.

| Exposure<br>Type | Exposure Variable      | Data Source                      | Platforms    | Pipelines | Tankers      | Barges       |
|------------------|------------------------|----------------------------------|--------------|-----------|--------------|--------------|
| Oil              | OCS Production         | BSEE                             | $\checkmark$ | ✓         |              |              |
| Handled          | Volume                 |                                  |              |           |              |              |
|                  | Worldwide Crude        | BP                               |              |           | ~            |              |
|                  | Trade                  |                                  |              |           |              |              |
|                  | Petroleum Commerce     | U.S. Army Corps of Engineers     |              |           |              |              |
|                  | on U.S. Waterways      | (USACE) – Waterborne             |              |           | ✓            | $\checkmark$ |
|                  |                        | Commerce                         |              |           |              |              |
|                  | TAPS Throughput        | Alyeska Pipeline                 |              |           | $\checkmark$ |              |
| Entity           | Structure Years        | BSEE Data Center                 | $\checkmark$ |           |              |              |
| Count            | Pipeline Segment Years | BSEE Data Center                 |              | ✓         |              |              |
|                  | Tanker Years           | IHS Maritime's World Register of |              |           | ~            |              |
|                  |                        | Ships                            |              |           |              |              |

Table 3. Exposure Variables and Associated Data Sources by Entity Type

OCS crude and condensate production data were provided by BSEE and supplemented with data available on BSEE's website<sup>5</sup>. It is assumed that these production volumes are for production within the OCS only. Production of gas is excluded from this exposure variable since gas releases to the atmosphere, rather than spilling.

Worldwide crude trade by tanker is inferred from the BP Statistical Review of World Energy (BP, 2015). It is assumed that the total crude export volume represents a multiple of the volume of crude transported by tanker. The 2014 exposure variable values were taken from the 2015 report table entitled "Imports and Exports 2014."

The USACE Waterborne Commerce data are taken from Tables 2-1 and 2-3 of "Part 5 – National Summaries of Domestic and Foreign Waterborne Commerce." This report provides details about crude and other petroleum shipping flows within the U.S.

Historically, loadings of Alaska North Slope (ANS) crude into tankers at the terminal of the TAPS pipeline have been used as the exposure metric for spills of ANS crude. This data source is no longer publicly available. As a result, the total throughput of the TAPS pipeline has been used instead. The tanker loadings volume and TAPS throughput have been nearly equivalent (Figure 34, on page 56, plots these

<sup>&</sup>lt;sup>5</sup> Links for BSEE production data:

http://data.bsee.gov/homepg/pubinfo/repcat/product/pdf/Annual%20Production%202005%20-%20Present.pdf http://data.bsee.gov/homepg/data\_center/production/PacificFreeProd.asp

two exposure variables side-by-side) since the beginning of the pipeline's operations. Throughput data are available on Alyeska Pipeline's website.<sup>6</sup>

The structure years and pipeline segment years data are available from BSEE's website. The tanker years data are based on a summary of tanker commissioning and decommissioning dates from IHS Maritime's World Register of Ships.

Some of the exposure variables used in this report required computation of values based on the original data. These computations are explained in Section 3.1.

# 3. Methods and Assumptions

# 3.1. Exposure Variable Selection and Computation

Oil handled has long been used as an exposure variable for estimating spill rates. It is easily and intuitively defined, can be easily computed from historical production and commerce data, and can be estimated for future periods. Each of these factors makes it particularly applicable.

Alternative exposure variables were identified and evaluated for this analysis by considering three criteria:

- **Feasibility** describes the ability to compute historical exposure levels and estimate future exposure levels
- **Relevance** describes the exposure variable's statistical correlation or theoretical association with the threat of spills
- Comparability describes the presence of similar exposure variables across entity types

After considering a broad range of alternative exposure variables, the analysis team selected entity count as the best alternative exposure variable to be considered with the oil handled variable.

The source data most often included entity counts by storing the commissioning and decommissioning information for each entity in the database. To convert this to an annual count, the data were queried to identify, for each year, the number of unique entity IDs included in the data table where it was true that the commissioning data were prior to the given year and the decommissioning data were either blank or after the given year. This type of query calculation was used for platforms, pipelines, and tankers alike.

# 3.2. Spill Rates and Distribution

BOEM's oil spill analysis uses estimates of spill occurrence rates for different size classes of spills. This is the primary type of spill rate calculated in this report. It is defined as the expected number of spill occurrences per exposure unit. Historically, the exposure unit has been the volume of oil handled. However, spill rates using alternative exposure variables are calculated using the same methodology. In order to make it somewhat likely for a spill to occur in any given exposure unit, it is necessary for the exposure units to be very large. For example, platform spill rates using the oil handled exposure variable use 1 billion<sup>7</sup> barrels (Bbbl) of produced oil as the exposure unit, resulting in 21 exposure intervals since

<sup>&</sup>lt;sup>6</sup> Link for throughput data: <u>http://alyeska-pipe.com/TAPS/PipelineOperations/Throughput</u>

<sup>&</sup>lt;sup>7</sup> Billion is understood to be mean 10<sup>9</sup>, as is expected in the United States.

1964. Because of the large number of tanker and barge spills, spill rates for these entity types can be computed annually.

Prior reports have included two essential rate estimates for each spill source (Anderson and LaBelle, 2000; Anderson *et al.*, 2012). They presented a rate based on the full record of data, sometimes removing select portions of the data that were statistically shown to be unrepresentative of current spill frequencies. They also presented a 15-year rate based on a shorter and more recent data range. Improvement in the spill occurrence rate over time has caused these two rates to vary significantly. This effort follows the same rate estimation methodology, balancing relevance and statistical precision.

# 3.3. Trend Analysis

This study performed trend analysis to statistically verify that changes in spill occurrence rates are real and not the product of randomness. In addition, trend analysis is useful in identifying the most recent period of stability in the data in order to identify the period of data that should be used for calculation of a rate that reflects current expectations rather than average historical experience over the long term.

For large spills, trend analyses were performed using Kendall's test, a Runs-Up/Runs-Down test, and the Pearson's Rank Order Correlation test to identify whether unidirectional changes in spill rates are actually occurring or simply appear to be occurring because of random fluctuations. These tests were applied to the entire spill record, as well as to subsets of the record in order to determine what time periods of the historical record are relevant to current operations. Subsets were selected iterating both forward (e.g., starting at the beginning of the record set and moving forward) and backward (e.g., starting at the most recent time in the record set and moving backward) in time. When possible, the report identifies spill rates using periods of stable experience. Appendix A provides further details on the trend analysis methodology.

For smaller spills, trend analysis is performed simply by calculating a best-fit curve based on the historical data. Although this curve is not appropriate for spill rate forecasting, its slope does provide a rough approximation of the trend at that point on the curve.

#### 3.4. Spill Rate Distribution

A spill occurrence rate is the expected number of spills to occur within an exposure interval. The actual number of occurrences is assumed to follow a statistical distribution. Past spill reports (Anderson and LaBelle, 1990, 1994, 2000; Anderson *et al.*, 2012) have assumed that spill occurrences follow a Poisson distribution. Spill incidents can be thought of as a counting process where the number of spills that have occurred N(*t*) is a function of the amount of time that has elapsed, *t*. In the case of a spill rate, the amount of exposure accumulated over time can substitute for the amount of time elapsed.  $\lambda$  is the true spill rate. A counting process is a Poisson process if it meets the following criteria (Ross, 1985):

- 1. The probability that N(0) = 0 is 100%
- 2. The process must have independent increments (i.e., the number of spills observed in an interval must not be dependent on the number of spills observed in a prior interval).
- 3. The number of events in any interval of length t must be Poisson distributed with a mean of  $\lambda t$  (i.e., only the length of the interval determines the probable number of spills).

The Poisson rate criteria are assumed to have been met under certain conditions. If spills arising from a single hurricane are treated as a single spill, then the probability of simultaneous spills (occurring

without any oil being produced between them) is effectively reduced to zero. The statistical tests mentioned as tools for trend analysis are actually testing for dependence so that a time period for calculating spill occurrence rates can be appropriately identified to ensure that the number of spills in an interval is independent of the number of spills in preceding intervals. If data are selected from a period with minimal trend, then it can be assumed that the number of spills occurring in an interval is approximately a function only of the length of the interval. For a more detailed discussion and sample calculations demonstrating independent increments, see Appendix A.

The most significant assumption is that spills associated with the same hurricane are combined into a single event when calculating rates. If simultaneous hurricane spills are not combined into a single event, the second criterion is violated since the data would indicate dependence among some spills due to a common cause – hurricanes.

# 3.5. Output Distributions and Confidence Intervals

Poisson spill rates can be used to directly estimate spill rate confidence intervals using a normal approximation of the Poisson distribution if the number of observations used to generate the rates are relatively high (>20 exposure periods). When the number of observations is lower, as in the case of large platform and pipeline spills, this report applies the bootstrap method (see Appendix B). This method uses the values (such as the number of spills) observed over a set of observations (such as exposure intervals) to simulate other potential outcomes based on the original distribution of results for each observation. Fluctuation in estimates based on these simulated values are then used to establish confidence intervals under the assumption that any of the simulated outcomes is theoretically just as likely to occur as the actual observed outcome.

# 3.6. Limitations

The results in this report are based on aggregations of data collected from specific geographic regions related to specific activities. As such, they should be applied carefully. While the OCS includes waters surrounding Alaska and the west coast, the majority of offshore activity occurs in the Gulf of Mexico (GOM). Before these results are applied, it should be considered whether or not underlying, implicit assumptions of the data remain true within the specific application.

# 4. Platform Spill Analysis

Between 1964 and 2015, OCS operations have produced just under 20.7 Bbbl of oil. This activity has taken place on over 4,000 platforms<sup>8</sup> operating for a combined total of 151,000 operating years. Approximately 5.2 million barrels (MMbbl) of oil have been spilled during these operations. The Deepwater Horizon (DWH) tragedy alone accounts for the vast majority of this estimate. The Deepwater Horizon Oil Budget Calculator listed the spill volume as 4.9 MMbbl (2010). Other large spills (≥1,000 bbl) make up the majority of the remaining recorded spill volume.

<sup>&</sup>lt;sup>8</sup> Platform structures as defined in BSEE/BOEM facility data.

# 4.1. Platform Spill Occurrences and Oil Handled

This section reviews the historical spills that have most threatened the environment offshore. It focuses on the frequency of large spills in the OCS. Although there are many smaller spills, 17 recorded spills (Table 4) exceeded the large spill threshold and account for the vast majority of oil spilled during petroleum extraction activities. In general, these are crude oil spills. Exceptions include instances of fuel spilled due to failure of a storage tank (November 23, 1979) and losses of platforms due to severe weather (September 24, 2005). Condensate, a product of natural gas extraction, has also been spilled on multiple occasions (July 19, 1965; September 24, 2005).

Crude and condensate production volume is assumed to be indirectly related to the probability of fuel or condensate spill; therefore, no additional exposure variables are necessary. While reservoirs vary in the mix of crude and natural gas they contain, increased offshore extraction activity leads to increases in both O&G production volumes. Increased offshore activity also requires greater stores of fuel to power the process.

| Spill Date | Planning<br>Area <sup>1</sup><br>Block<br>Number | Water<br>Depth<br>(feet) | Miles<br>to<br>Shore | Volume<br>Spilled<br>(bbl) | Operator           | Spill Description:<br>Cause and Consequences                                                                                                                                             |
|------------|--------------------------------------------------|--------------------------|----------------------|----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/8/1964   | El 208                                           | 94                       | 48                   | 2,559                      | Continental<br>Oil | Freighter struck Platform A, fire,<br>platform and freighter damaged                                                                                                                     |
| 10/3/1964  | Hurricane                                        |                          |                      | 11,869                     | Event Total        | Five platforms destroyed during<br>Hurricane Hilda                                                                                                                                       |
|            | EI 208                                           | 94                       | 48                   | 5,180                      | Continental<br>Oil | Platforms A, C, and D destroyed, blowouts (several days)                                                                                                                                 |
|            | SS 149                                           | 55                       | 33                   | 5,100                      | Signal O&G         | Platform B destroyed, blowout (17 days)                                                                                                                                                  |
|            | SS 199                                           | 102                      | 44                   | 1,589                      | Tenneco Oil        | Platform A destroyed, lost storage tank                                                                                                                                                  |
| 7/19/1965  | SS 29                                            | 15                       | 7                    | 1,688²                     | Pan<br>American    | Well #7 drilling, blowout (8 days),<br>minimal damage                                                                                                                                    |
| 1/28/1969  | 6B 5165<br>Santa<br>Barbara<br>Channel,<br>CA    | 190                      | 6                    | 80,000                     | Union Oil          | Well A-21drilling, blowout (10<br>days), 50,000 bbl during blowout<br>phase, subsequent seepage 30,000<br>bbl (over decades), 4,000 birds<br>killed, considerable oil on beaches         |
| 3/16/1969  | SS 72                                            | 30                       | 6                    | 2,500                      | Mobil Oil          | Submersible rig Rimtide drilling in<br>heavy seas bumped by supply<br>vessel, rig shifted and sheared<br>wellhead, blowout (3 to 4 days)                                                 |
| 2/10/1970  | MP 41                                            | 39                       | 14                   | 65,000                     | Chevron Oil        | Platform C, fire of unknown origin,<br>blowout 12 wells (49 days), lost<br>platform, minor amounts of oil on<br>beaches                                                                  |
| 12/1/1970  | ST 26                                            | 60                       | 8                    | 53,000                     | Shell Oil          | Platform B, wireline work, gas<br>explosion, fire, blowout (138 days).<br>Four fatalities, 36 injuries, loss of<br>platform, loss of 2 drilling rigs,<br>minor amounts of oil on beaches |

#### Table 4. Large (≥1,000 bbl) U.S. OCS Platform Spills, 1964 to 2015

| Spill Date                                                                                                                      | Planning<br>Area <sup>1</sup><br>Block<br>Number        | Water<br>Depth<br>(feet) | Miles<br>to<br>Shore | Volume<br>Spilled<br>(bbl) | Operator             | Spill Description:<br>Cause and Consequences                                                                     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|----------------------|----------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| 1/9/1973                                                                                                                        | WD 79                                                   | 110                      | 17                   | 9,935                      | Signal O&G           | Platform A oil storage tank<br>structural failure                                                                |  |  |
| 1/26/1973                                                                                                                       | PL 23                                                   | 61                       | 15                   | 7,000                      | Chevron Oil          | Platform CA storage barge sank in<br>heavy seas                                                                  |  |  |
| 11/23/1979                                                                                                                      | MP 151                                                  | 280                      | 10                   | 1,500 <sup>3</sup>         | Texoma<br>Production | Mobile Offshore Drilling Unit<br>(MODU) Pacesetter III's diesel tank<br>holed, workboat contact in heavy<br>seas |  |  |
| 11/14/ 1980                                                                                                                     | HI 206                                                  | 60                       | 27                   | 1456                       | Texaco Oil           | Platform A storage tank overflow during Hurricane Jeanne evacuation                                              |  |  |
| 9/24/2005                                                                                                                       | Hurricane                                               |                          |                      | 5,066                      | Event Total          | One platform and two rigs<br>destroyed by Hurricane Rita                                                         |  |  |
|                                                                                                                                 | EI 314                                                  | 230                      | 78                   | 2,000 <sup>2</sup>         | Forest Oil           | Platform J destroyed, lost oil on board and in riser                                                             |  |  |
|                                                                                                                                 | SM 146                                                  | 238                      | 78                   | 1,494                      | Hunt<br>Petroleum    | Jack-up Rig Rowan Fort Worth swept away, never found                                                             |  |  |
|                                                                                                                                 | SS 250                                                  | 182                      | 69                   | 1,572 <sup>4</sup>         | Remington<br>O&G     | Jack-up Rig Rowan Odessa legs<br>collapsed                                                                       |  |  |
| 4/20/2010                                                                                                                       |                                                         |                          |                      |                            |                      |                                                                                                                  |  |  |
| <sup>1</sup> Planning Area                                                                                                      | a in GOM unle                                           | ess otherv               | vise note            | d. GOM Planr               | ning Areas: EI -     | Eugene Island, HI - High Island, MC -                                                                            |  |  |
|                                                                                                                                 | •                                                       |                          |                      |                            | •                    | South Marsh Island, ST - South                                                                                   |  |  |
| Timbalier, WC - West Cameron, WD - West Delta GOM Planning Area Maps http://www.boem.gov/GOM-<br>Official-Protraction-Diagrams/ |                                                         |                          |                      |                            |                      |                                                                                                                  |  |  |
| <sup>2</sup> Condensate                                                                                                         |                                                         |                          |                      |                            |                      |                                                                                                                  |  |  |
| <sup>3</sup> Diesel                                                                                                             |                                                         |                          |                      |                            |                      |                                                                                                                  |  |  |
| <sup>4</sup> Fuel and othe                                                                                                      | •                                                       | -                        |                      |                            |                      |                                                                                                                  |  |  |
| Source: U.S. D                                                                                                                  | Source: U.S. DOI/BSEE OCS Spill Database, December 2015 |                          |                      |                            |                      |                                                                                                                  |  |  |

No additional large spills have been identified since the report by Anderson *et al.* in 2012. One additional historical spill was considered for inclusion but was ruled out after significant deliberation. It began on September 15, 2004, in the wake of Hurricane Ivan. A platform owned by Taylor Energy toppled, damaging the wellhead. Since that time, the wellhead has been plugged and abandoned, but has continued to leak small volumes of oil. The source data include 469 records associated with light sheens near this wellhead. The total volume of these records exceeds 1,000 bbl, but the presence of duplicate records provided by multiple government agencies makes it difficult to calculate a true total spill volume. For this analysis, this spill is counted as a series of smaller spills (one per quarter year) to better reflect the environmental impact and spill response requirements for this spill. It is not considered a large spill.

Figure 1 illustrates the count of large spills versus the annual oil production volume. The years with the most spills are 1964 and 2005. Hurricanes toppled multiple platforms in both of those years. This figure depicts each hurricane-induced spill individually. Later analyses in this report treat these instances of multiple simultaneous hurricane spills as single spills in order to maintain the necessary statistical assumptions for trend analysis and rate calculation as described in Sections 4.3 and 4.3.1.

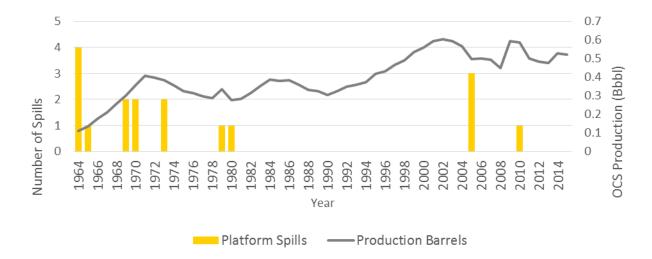



Figure 1. OCS Oil Production vs. Large Platform Spills (≥1,000 bbl), 1964-2015

Table 5 provides additional details on the magnitude of large spills and small spills. Prior to the DWH incident, the volume of oil spilled per Bbbl of production was relatively stable at between 1,000 and 4,000 bbl of oil spilled per Bbbl produced. Anderson *et al.* (2012) noted the observable improvement in the average spill size for large spills since 1975. DWH disrupted this trend of improvement.

|                        | bbl                             | bbl<br>Produced    | bbl Spilled by Spill Size |                |               |           | # of Spi       | ills by Spil  | l Size <sup>1</sup> |
|------------------------|---------------------------------|--------------------|---------------------------|----------------|---------------|-----------|----------------|---------------|---------------------|
| Years                  | Spilled<br>per Bbbl<br>Produced | per bbl<br>Spilled | Production<br>(Bbbl)      | 1 - 999<br>bbl | ≥1,000<br>bbl | Total     | 1 - 999<br>bbl | ≥1,000<br>bbl | Total               |
| 1964-1970 <sup>2</sup> | 142,035                         | 7,041              | 1.54                      | 2,760          | 216,616       | 219,376   | 11             | 9             | 20                  |
| 1971-1975              | 11,962                          | 83,601             | 1.87                      | 5,407          | 16,935        | 22,342    | 721            | 2             | 723                 |
| 1976-1985              | 3,750                           | 266,682            | 3.22                      | 9,121          | 2,956         | 12,077    | 671            | 2             | 673                 |
| 1986-1995              | 1,162                           | 860,805            | 3.53                      | 4,097          | 0             | 4,097     | 286            | 0             | 286                 |
| 1996-2005              | 3,478                           | 287,486            | 5.34                      | 13,508         | 5,066         | 18,574    | 401            | 3             | 404                 |
| 2006-2015              | 955,179                         | 1,047              | 5.14                      | 10,951         | 4,900,000     | 4,910,951 | 334            | 1             | 335                 |
| 2006-2015<br>w/o DWH   | 2,130                           | 469,478            | 5.14                      | 10,951         | 0             | 10,951    | 334            | 0             | 334                 |
| Total                  | 251,321                         | 3,979              | 20.6                      | 45,844         | 5,141,573     | 5,187,416 | 2,424          | 17            | 2,441               |
| Total w/o<br>DWH       | 13,925                          | 71,814             | 20.6                      | 45,844         | 241,573       | 287,416   | 2,424          | 16            | 2,440               |

Table 5. Platform Spill Rate and Spill Volume Trends Based on Oil Produced, 1964 to 2015

<sup>1</sup> In 2004, MMS changed spill reporting standards to included inventories on OCS structures that were destroyed, heavily damaged, or missing. These passive spills have impacted the number and volume of spills, though these spills were neither observed nor required response.

<sup>2</sup> Spills <50 bbl were not recorded during this period.

Sources: U.S. DOI/BSEE OCS Spill Database, December 2015 (Spills); U.S. DOI/ONRR OCS Production Data, December 2015 (Production)

# 4.2. Platform Spill Risk Exposure and Causal Factors

In the 2012 report, oil handled by offshore facilities is represented by the total crude and condensate production volume offshore. This exposure metric is readily available since operators report and pay royalties on the crude and condensate that they extract. Practically, this metric has an intuitive, cost-benefit interpretation. Combined with spill data, it answers the question "How many spill occurrences (cost) arise from a certain amount of production (benefit)?" This report continues the use of the oil handled exposure variable, but also considers alternatives. Table 6 summarizes the key alternative metrics related to platforms that were considered for analysis.

| Exposure Metric        | Feasibility | Relevance | Comments                                                                                                                                                                            |
|------------------------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oil Volume<br>Produced | High        | Medium    | Existing metric. Production volume data readily<br>available. Spill rate per production relevant for<br>understanding spills in terms of cost/benefit.                              |
| Structure Count        | High        | Medium    | Readily available data within BSEE databases.<br>Relevant to stationary platform spills, but not<br>necessarily spills associated with moveable facilities.                         |
| Complex Count          | High        | Medium    | Like structures, readily available data within BSEE<br>databases. Relevant to stationary platform spill risk,<br>but not necessarily spills associated with moveable<br>facilities. |
| Sum of Facility Age    | Medium      | Low       | Although this information can be determined from<br>the data, preliminary analysis did not reveal a<br>statistical relationship with spill experience.                              |
| Count of Wells         | Low         | Medium    | The analysis team did not locate sufficient data to estimate this metric.                                                                                                           |

Table 6. Platform Exposure Metrics

The most straightforward alternative to production for assessing offshore facilities' spill risk exposure is a count of structures. Using BSEE's facility data, the analysis team derived counts of structures and counts of structure complexes. In general, there are a large number of single-structure complexes, so these metrics are not significantly different. Table 7 presents the same results as Table 5 except with structure years as the exposure variable.

Normalizing spill rates by the number of facilities ensures that any remaining variation in spill rates over time are because of other factors such as changes in technology, operating environment, or mitigation measures.

|                        |                 |           | bbl Spilled by Spill Size |            |           | # of Spills by Spill Size <sup>1</sup> |        |       |
|------------------------|-----------------|-----------|---------------------------|------------|-----------|----------------------------------------|--------|-------|
|                        | bbl Spilled per | Structure | 1 - 999                   |            |           | 1 - 999                                | ≥1,000 |       |
| Years                  | Structure Year  | Years     | bbl                       | ≥1,000 bbl | Total     | bbl                                    | bbl    | Total |
| 1964-1970 <sup>2</sup> | 26.83           | 8,176     | 2,760                     | 216,616    | 219,376   | 11                                     | 9      | 20    |
| 1971-1975              | 2.41            | 9,288     | 5,407                     | 16,935     | 22,342    | 721                                    | 2      | 723   |
| 1976-1985              | 0.46            | 26,462    | 9,121                     | 2,956      | 12,077    | 671                                    | 2      | 673   |
| 1986-1995              | 0.11            | 37,059    | 4,097                     | 0          | 4,097     | 286                                    | 0      | 286   |
| 1996-2005              | 0.48            | 38,525    | 13,508                    | 5,066      | 18,574    | 401                                    | 3      | 404   |
| 2006-2015              | 156.57          | 31,365    | 10,951                    | 4,900,000  | 4,910,951 | 334                                    | 1      | 335   |
| 2006-2015<br>w/o DWH   | 0.35            | 31,365    | 10,951                    | 0          | 10,951    | 334                                    | 0      | 334   |
| Total                  | 34.38           | 150,875   | 45,844                    | 5,141,573  | 5,187,416 | 2,424                                  | 17     | 2,441 |
| Total w/o<br>DWH       | 1.90            | 150,875   | 45,844                    | 241,573    | 287,416   | 2,424                                  | 16     | 2,440 |

Table 7. Platform Spill Rate and Spill Volume Trends Based on Structure Years, 1964 to 2015

<sup>1</sup> In 2004, MMS changed spill reporting standards to included inventories on OCS structures that were destroyed, heavily damaged, or missing. These passive spills have impacted the number and volume of spills, though these spills were neither observed nor required response.

<sup>2</sup> Spills <50 bbl were not recorded during this period.

Source: U.S. DOI/BSEE OCS Spill Database, December 2015 (Spills); U.S. DOI/BSEE Data Center, December 2015 (https://www.data.bsee.gov/homepg/data\_center/platform/platform.asp) (Structure Years)

The primary advantage of a simple count-based exposure metric is that it is easy to interpret and implement, and intuitively, increasing the number of facilities should increase the likelihood of spill.

A potential downside of this exposure variable is that rigs are not included in the structure count. This is a weakness that is shared with the oil handled exposure variable since rigs seldom are involved in production. The fact that production levels and structure counts are correlated with rig activity offsets this potential weakness for the oil handled variable.

#### 4.2.1. Causal Factors

Inspection of the causal factors for platform spills throughout the spill record reveals insight into the decreasing spill rate. Figure 2 shows instances of equipment failure, human error, weather/natural causes, and other/external factors. As mentioned before, multiple causal factors can be assigned to a single spill event simply by counting each causal factor rather than each spill. To maintain the one-to-one relationship between causal factor values in Figure 2 and the number of spills recorded for each year, the figure normalizes the causal factor counts so that the aggregate count is equal to the spill count.

Two trends in the data feature most prominently. First, the hurricanes of the 2000s have a dramatic impact on the observed causal factors. Weather, natural causes, external factors, and other factors were not previously frequently recorded in the data. Second, the dominant driver of improved spill rates appears to be a reduction in equipment failures. While the number of human errors recorded is almost as high in the 2000s as in the 1970s and 1980s, the number of equipment failures has steadily decreased since 1975. This may suggest that technology improvements have played a significant role in the improving spill rate.

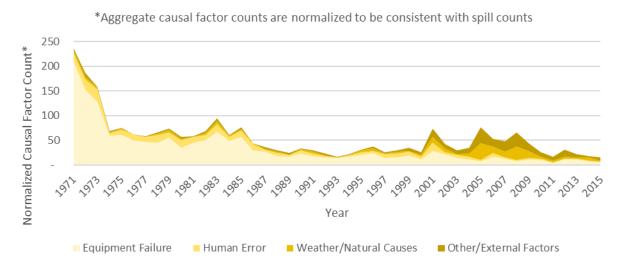



Figure 2. Platform Spill Causal Factor Summary

Figure 3 presents the causal factor data by spill size category. Just as human error instances are stable over time, they appear to contribute similarly to the frequency of spills of different sizes. On the other hand, instances of equipment failure dominate the smaller spill size categories, becoming less prevalent among the larger spill size categories, which are frequently caused by weather/natural and other/external causes. Equipment failures have also played a significant role in spills of  $\geq 10,000$  bbl.

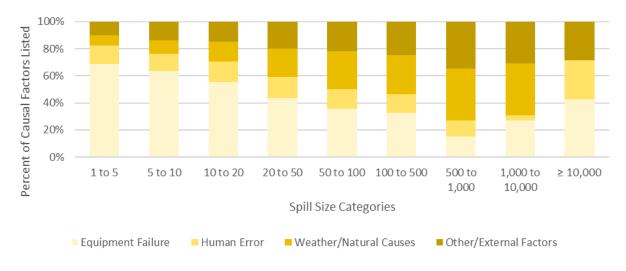



Figure 3. Platform Spill Causal Factor Summary by Spill Size Category

#### 4.2.2. Loss of Well Control Spills

Loss of well control (LOWC) resulting in a spill occurs relatively infrequently compared to spills of other types. Figure 4 depicts spills from LOWC as a rare, but consistent causal factor throughout the spill record.

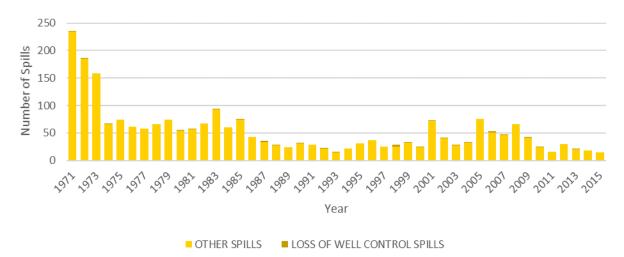
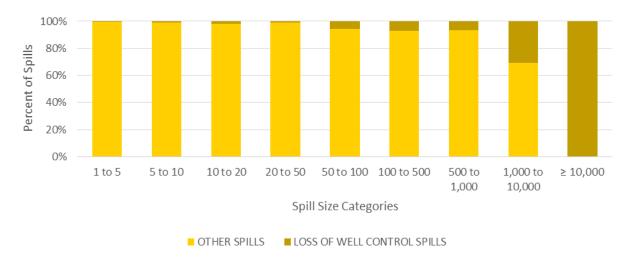




Figure 4. Platform Spill Loss of Well Control Summary

Figure 5 highlights the significance of LOWC events resulting in a spill. The likelihood of a spill being caused by an LOWC leading to a blowout increases with the size of the spill. All four platform spills  $\geq$ 10,000 bbl were flagged as LOWC and, with the exception of DWH, occurred prior to 1971.



#### Figure 5. Platform Spill Loss of Well Control Summary by Spill Size Category

#### 4.2.3. Platform Spills by Operating Mode

This spill record also provides insights into the changes in the operating modes that drive spill events. Just as the decrease in equipment failures has contributed to the overall frequency of spills, Figure 6 illustrates a dramatic decline in production spills since the 1970s and 1980s. In the 2000s, the operating mode during hurricane spills was often not indicated in the data, resulting in a swell in unknown operations during that time.

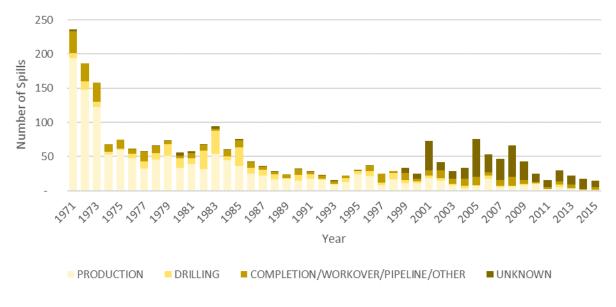



Figure 6. Platform Spill Operating Mode Summary

Production incidents dominate the smaller spill size categories, while "unknowns" contribute significantly to the occurrences of larger spills. Drilling, completion, workover, pipeline, and other modes have higher prevalence among the larger spill size categories. Figure 7 illustrates these trends.

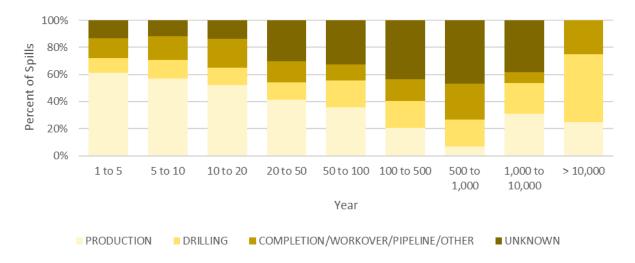



Figure 7. Platform Spill Operating Mode Summary by Spill Size Category

#### 4.2.4. Hurricanes

Each of the preceding causal factor analyses shows a noticeable increase in spill frequency in the 2000s. The weather/natural causal factor suggested that these were potentially hurricane-initiated spills. Figure 8 confirms this by indicating the spill events where a hurricane was a contributing factor. From this graph, it can be clearly seen that operational spills (excluding hurricanes) have continued along a stable trend, while hurricane-initiated spills were frequent during the 2000s. Hurricanes Cindy, Ike, Ivan, Katrina, Lili, and Rita all occurred during that decade.

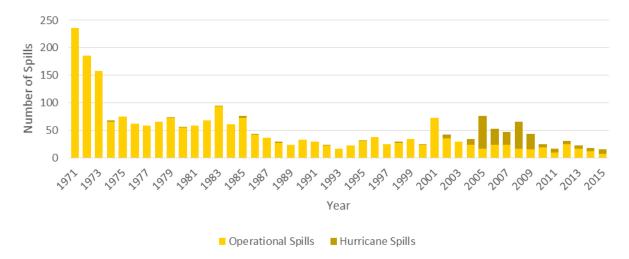



Figure 8. Platform Spill Hurricane Summary

Even one hurricane can have dramatic effects on the number of spills recorded on the OCS as shown in Figure 9. Ivan occurred in 2004, Rita and Katrina occurred in 2005, and Ike occurred in 2008. In the years following these disasters, operators continued to attribute minor losses to the damage done by these storms. In the case of Hurricane Ivan, the damaged Taylor energy platform has continued to leak small amounts of oil since 2004.

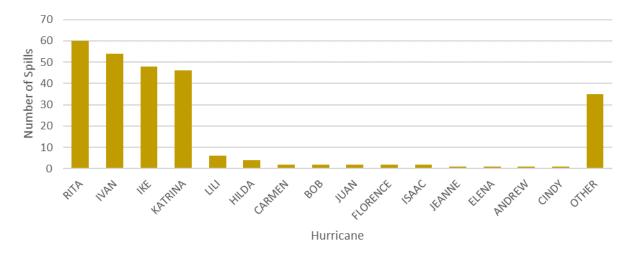



Figure 9. Platform Spills by Hurricane

Figure 10 indicates the prevalence of hurricanes in the larger spill size categories but not those greater than or equal to 10,000 bbl.

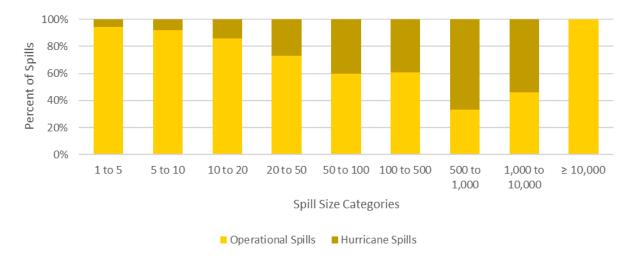
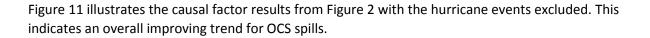




Figure 10. Platform Spill Hurricane Summary by Spill Size Category



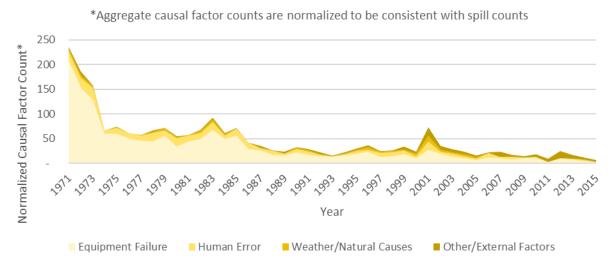



Figure 11. Platform Spill Causal Factor Summary – Excluding Hurricanes

#### 4.2.5. Causal Factors by Operating Mode

The underlying causal factors of spill events can vary depending on the mode in which the platform is operating. Figure 12 compares the contribution of the causal factor categories to spills by operating mode. Equipment failures drive the spill events for all modes with the exception of the Unknown category, which has significant contribution from external forces and weather/natural causes.

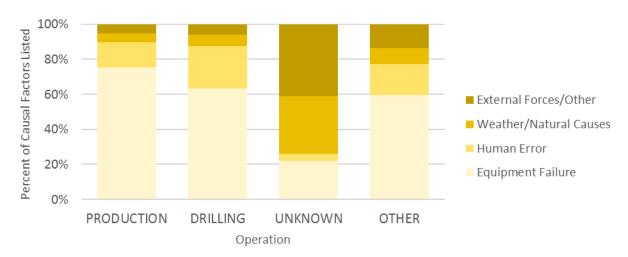
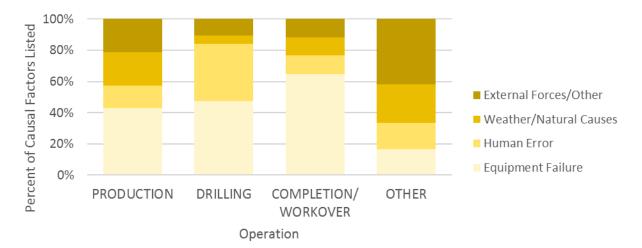



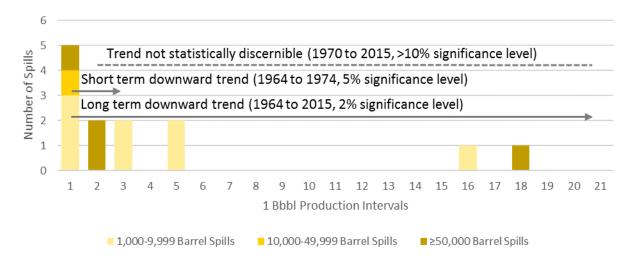

Figure 12. Platform Spill Causal Factor by Operating Mode

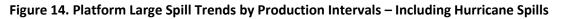
Figure 13 illustrates causal factor category contribution for LOWC events. Equipment failure and human error are dominant contributors across the modes.



#### Figure 13. Platform Spill Loss of Well Control Causal Factor by Operating Mode

## 4.3. Platform Trend Analysis

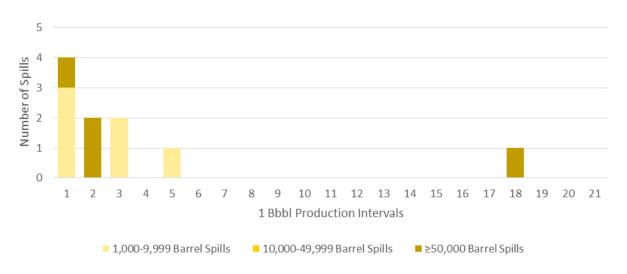

This analysis considers trends in overall spill frequency and trends in the frequency of large spills. Although the two may be related, it can be seen from the causal factor analysis that the underlying causes for large spills are often different from those of smaller spills. Therefore, their trends are considered separately.


#### 4.3.1. Trends in Large Spills

The analysis of trends in large spill occurrences reflects the methodology used in prior versions of this report. Kendall's test is used to identify date ranges in the data where correlation between the order in which the spills occurred and the volume of production occurring between each spill and the prior spill indicates changing levels of exposure between spills. For the purpose of this discussion, a trend is an increase or decrease in the ratio of spills to exposure over time. Appendix A includes sample calculations of the test statistics and explains their use. For the Kendall's test, the analysis maintains the method of combining simultaneous hurricane spills.

Figure 14 normalizes the spill experience by considering spills per Bbbl production interval rather than per year. Although the Kendall's test identified a long-term downward trend over the whole record of spills (1964 to 2015), it appears that this is primarily due to a short-term downward trend early in the record (1964 to 1974). This is confirmed by the fact that no trend is statistically discernable over the period from 1970 to 2015.

The significance levels provided in Figure 14 identify the likelihood that the observed trends are actually the result of randomness.<sup>9</sup> A smaller significance level indicates a high confidence that a trend exists. A significance level greater than 10% suggests that no strong trend exists.





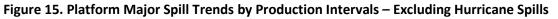
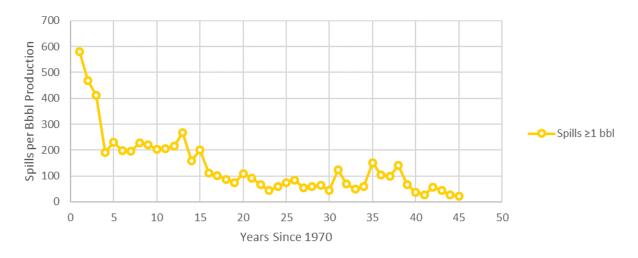


These trend findings were further confirmed by the runs-up, runs-down test and the Spearman rank correlation test. The runs-up, runs-down test had a test statistic of 8 runs, indicating that the independence of the spills could not be disproved. The Spearman rank correlation test produced a correlation of 0.626 for the entire time period. This value identified that the spills were not independent (at the 2% significance level). However, when using only the spills from 1970 to 2015, the assumption of independence could not be rejected.

Figure 15 considers the same trend, but excludes hurricanes from the analysis. This analysis is restricted by the absence of sufficient data following period 2 since the Kendall's test requires at least four observations and there are only four observations following period 2. However, the same downward trend as identified in Figure 14 is clearly visible.

<sup>&</sup>lt;sup>9</sup> Two-sided tests were used such that the null hypothesis was that no statistical trend exists while the alternative hypothesis was that either an increasing or decreasing trend exists.




2016 Update of Occurrence Rates for Offshore Oil Spills



#### 4.3.2. Trends in All Spills

Although small spills are less damaging to the environment than large spills, they offer insights into the overall changes in the frequency of platform spills. Figure 16 shows the count of spills ≥1 bbl normalized by production volume for each year since 1970. Prior to 1971, spills <50 bbl were not well reported, resulting in unusable data for that time range. It is important to note that these are not proper spill rates since they do not appropriately adjust for hurricane incidents.





The downward slope of the spill occurrence data is easily discernable. Most notably, the first three years of data indicate much higher spill occurrence levels than the rest of the data, similar to the findings for large spills.

Excluding the first three data as outliers, Figure 17 includes an exponential best-fit trend line providing a rough quantitative estimate that confirms the downward trend observed over the last 40 years. This trend line formula is not intended for projecting future spill incidence rates. It is beyond the scope of this report to perform the in-depth analysis required to construct a model that adequately addresses key time series forecasting requirements such as data independence, lack of autocorrelation, and the normality and homoscedasticity of residuals from the predicted values.

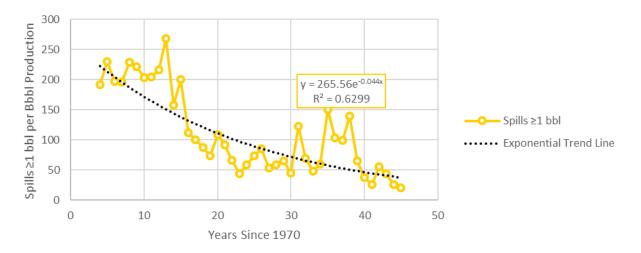





Figure 18 provides additional details about the fit of trend line. Although the residuals of this regression model appear to be somewhat normal, it is not clear whether they are homoscedastic. Furthermore, the data portrays clear temporal autocorrelation, violating a key requirement for accurate time series forecasting. In addition to the expected variation in a typical residual plot, the temporal autocorrelation of the residuals may arise from any number of sources, ranging from multiyear cycles in spill reporting standards to industry factors affecting the prevalent operating modes taking place in a given year.

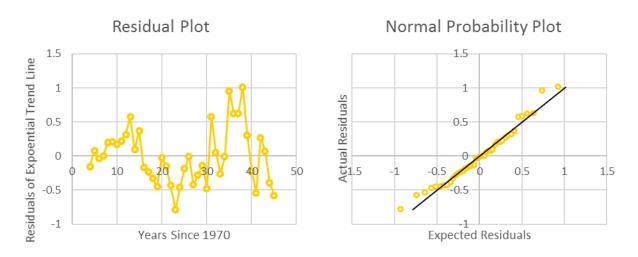



Figure 18. Platform Spill Trend Line Residual Plots

Based on the trend analysis of all spills and the analysis of large spills alone, there is a clear break in the pattern of spill occurrences between 1970 and 1974. In particular, the analysis of all spills reveals a compelling transition in 1974 to a relatively stable, long-term trend of slightly decreasing spill occurrence levels. Anderson et al. (2012) identified a similar trend period, including one additional spill that occurred in 1973 in the rate-setting period.

# 4.4. Platform Spill Rates

This report presents multiple rate estimates based on different assumptions and criteria. There are estimates developed based on the full spill record as well as 15-year estimates based only on recent history. As described in section 4.3, both statistical and qualitative methods suggest a period for calculating rates starting in 1974 regardless of the distinction hurricane-induced spill and operational spills and between small and large spills. Therefore, the full record rate for large spills includes spills and exposure occurring between January 1, 1971, and December 31, 2015, inclusive. The 15-year rate includes spills and exposure occurring between January 1, 2001, and December 31, 2015, inclusive.

This section also presents spill rates for various subsets of the data based on whether a spill was hurricane-related or not. For this purpose, the report calculates two base spill rates: one including hurricane spills and the other excluding hurricane spills.

# 4.4.1. Platform Base Spill Rates

Table 8 compares the full record and 15-year spill rates to the full record estimates from the previous report (Anderson *et al.*, 2012) for both the  $\geq$ 1,000 and  $\geq$ 10,000 spill size categories.

|                                                                                                                 | Previous R   | ate, 1973 | - 2010 <sup>1,2</sup> | Updated Rate, 1974 - 2015 |        |       | 2001 - 2015 |        |       |
|-----------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------------------|---------------------------|--------|-------|-------------|--------|-------|
|                                                                                                                 | Oil          |           |                       | Oil                       |        |       | Oil         |        |       |
| Spill Size and                                                                                                  | Handled      | # of      | Spill                 | Handled                   | # of   | Spill | Handled     | # of   | Spill |
| Source                                                                                                          | (Bbbl)       | Spills    | Rate                  | (Bbbl)                    | Spills | Rate  | (Bbbl)      | Spills | Rate  |
| Including Hurricane Spills                                                                                      |              |           |                       |                           |        |       |             |        |       |
| ≥1,000 bbl                                                                                                      | 15.8         | 5         | 0.32                  | 17.9                      | 4      | 0.22  | 8.0         | 2      | 0.25  |
| ≥10,000 bbl                                                                                                     | 15.8         | 1         | 0.06                  | 17.9                      | 1      | 0.06  | 8.0         | 1      | 0.13  |
| Excluding Hurri                                                                                                 | icane Spills |           |                       |                           |        |       |             |        |       |
| ≥1,000 bbl                                                                                                      |              |           |                       | 17.9                      | 2      | 0.11  | 8.0         | 1      | 0.13  |
| ≥10,000 bbl                                                                                                     |              |           |                       | 17.9                      | 1      | 0.06  | 8.0         | 1      | 0.13  |
| <sup>1</sup> Anderson <i>et al.</i> , 2012.                                                                     |              |           |                       |                           |        |       |             |        |       |
| <sup>2</sup> The previous report uses production intervals 4 through 18 (Figure 14) as the rate period. This is |              |           |                       |                           |        |       |             |        |       |
| approximately 1973 to 2010.                                                                                     |              |           |                       |                           |        |       |             |        |       |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015 (spills); U.S. DOI/ONRR OCS Production Data,            |              |           |                       |                           |        |       |             |        |       |

Table 8. Platform Oil Handled Spill Rate Comparison (Previous to Updated Rates)

December 2015 (Production)

Table 9 provides confidence intervals for the updated spill rates. These intervals use the bootstrap method to overcome the statistical challenge of a small number of data points. While a normal approximation to a confidence interval may erroneously provide a negative lower bound for small spill rates, the bootstrap method will not.

|                            | Full Record                | .974 - 2015 | 15-year Rate: 2001 - 2015 |                  |       |                  |  |  |  |
|----------------------------|----------------------------|-------------|---------------------------|------------------|-------|------------------|--|--|--|
| Spill Size                 | Lower Bound                | Spill       | Upper Bound               | Lower Bound      | Spill | Upper Bound      |  |  |  |
| and Source                 | (95% Confidence)           | Rate        | (95% Confidence)          | (95% Confidence) | Rate  | (95% Confidence) |  |  |  |
| Including Hurricane Spills |                            |             |                           |                  |       |                  |  |  |  |
| ≥1,000 bbl                 | 0.00                       | 0.22        | 0.56                      | 0.00             | 0.25  | 0.63             |  |  |  |
| ≥10,000 bbl                | 0.00                       | 0.06        | 0.17                      | 0.00             | 0.13  | 0.38             |  |  |  |
| Excluding Hur              | Excluding Hurricane Spills |             |                           |                  |       |                  |  |  |  |
| ≥1,000 bbl                 | 0.00                       | 0.11        | 0.28                      | 0.00             | 0.13  | 0.38             |  |  |  |
| ≥10,000 bbl                | 0.00                       | 0.06        | 0.17                      | 0.00             | 0.13  | 0.38             |  |  |  |

Table 9. Platform Oil Handled Spill Rate Confidence Intervals (Full Record and 15-year Rate)

# 4.4.2. Supplementary Hurricane Spill Rate

Table 10 estimates rates of hurricane spills per structure year. This assumes that hurricane spills are more plausibly linked to the number of facilities than to the volume of production since platforms are shut in during hurricanes to minimize damage. In addition, the table converts the rate to an equivalent rate per Bbbl using the current ratio<sup>10</sup> of 10,000s of structure years to Bbbl: 0.633. This conversion is trivial for the 15-year rate since the conversion factor is calculated during the same 15-year time period as for the 15-year rate per oil handled. However, it is included to demonstrate the difference between the traditional rate calculation method and one that calculates the hurricane spill rate on a structure year basis. No hurricane spills  $\geq$ 10,000 bbl were observed; therefore, rates were only calculated for hurricane spills  $\geq$ 1,000 bbl.

|                                                                                                             | Full                                                                                   | Record I       | Rate: 197     | 4 - 2015                             | 15-year Rate: 2001 to 2015      |                |               |                                      |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|---------------|--------------------------------------|---------------------------------|----------------|---------------|--------------------------------------|--|--|
| Spill Size<br>and Source                                                                                    | Structure<br>Years<br>(10,000s)                                                        | # of<br>Spills | Spill<br>Rate | Spill Rate<br>(Converted to<br>Bbbl) | Structure<br>Years<br>(10,000s) | # of<br>Spills | Spill<br>Rate | Spill Rate<br>(Converted to<br>Bbbl) |  |  |
| Including On                                                                                                | ly Hurricane                                                                           | Spills         |               |                                      |                                 |                |               |                                      |  |  |
| ≥1,000 bbl                                                                                                  | 13.7                                                                                   | 2              | 0.15          | 0.09                                 | 5.1                             | 1              | 0.20          | 0.13                                 |  |  |
| Sources: U.S. DOI/BSEE OCS Spill Database, December 2015 (spills); U.S. DOI/BSEE Data Center, December 2015 |                                                                                        |                |               |                                      |                                 |                |               |                                      |  |  |
| (https://www                                                                                                | (https://www.data.bsee.gov/homepg/data_center/platform/platform.asp) (Structure Years) |                |               |                                      |                                 |                |               |                                      |  |  |

<sup>&</sup>lt;sup>10</sup> Calculated using oil handled and structure year exposure data from 2001 to 2015.

Table 11 aggregates the hurricane spill rate with the no-hurricane spill rate and includes confidence intervals for the sum of the two rates. These intervals are calculated using a simultaneous bootstrap method for both rate distributions.

|                | Full Record Rate: 1974 - 2015 |       |                  | 15-year Rate: 2001 to 2015 |       |                          |  |
|----------------|-------------------------------|-------|------------------|----------------------------|-------|--------------------------|--|
| Spill Size and | Lower Bound                   | Spill | Upper Bound      | Volume                     | Spill | Spill Rate per<br>10,000 |  |
| Source         | (95% Confidence)              | Rate  | (95% Confidence) | Handled (Bbbl)             | Rate  | Structure Years          |  |
| ≥1,000 bbl     |                               |       |                  |                            |       |                          |  |
| Rate Excluding | 0.00                          | 0.11  | 0.28             | 0.00                       | 0.13  | 0.38                     |  |
| Hurricanes     |                               |       |                  |                            |       |                          |  |
| Hurricane Rate | 0.00                          | 0.09  | 0.23             | 0.00                       | 0.13  | 0.37                     |  |
| (per Bbbl)     |                               |       |                  |                            |       |                          |  |
| Aggregate      | 0.05                          | 0.20  | 0.48             | 0.00                       | 0.25  | 0.76                     |  |

 Table 11. Platform Aggregated Spill Rates Confidence Intervals (Full Record and 15-year Rate)

The key finding in Table 11 is that the aggregate spill rate (0.20 spills per Bbbl) calculated by analyzing hurricane spills on a structure year basis and operational spills on an oil handled basis is lower than the spill rate that is calculated using traditional methods (0.22 spills per Bbbl). This is because the split approach adjusts for the fact that the current platform count per oil handled is lower than in the past. Therefore, the current exposure to hurricane-related spills as measured by structure years is lower than the current exposure to hurricane-related spills as measured by structure years is lower than the current exposure to hurricane-related spills as measured by oil handled.

## 4.4.3. Platform Alternative Exposure Variable Rate

Table 12 provides base rate calculations using the structure years alternative exposure variable. These rates include all spills, regardless of association with a hurricane. The primary weakness of these rates arises when applying the rate to a single platform. If a deep water complex has one large structure supporting a dozen wells, it will have the same assumed spill rate as a small, single-well platform in shallow water. This is not true of the oil handled variable, which prescribes spill rates on the basis of the magnitude of production.

|                                                                                                         | Full Record Rate: 1974 - 2015 |             |          | 15-year Rate: 2001 - 2015     |           |       |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------|-------------|----------|-------------------------------|-----------|-------|--|--|--|
| Spill Size and                                                                                          |                               | Number      | Spill    |                               | Number    | Spill |  |  |  |
| Source                                                                                                  | Structure Years (10,000s)     | of Spills   | Rate     | Structure Years (10,000s)     | of Spills | Rate  |  |  |  |
| ≥1,000 bbl                                                                                              | 13.7                          | 4           | 0.29     | 5.1                           | 2         | 0.40  |  |  |  |
| ≥10,000 bbl                                                                                             | 13.7                          | 1           | 0.07     | 5.1                           | 1         | 0.20  |  |  |  |
| Sources: U.S. DOI/BSEE OCS Spill Database, December 2015) (Spills); U.S. DOI/BSEE Data Center, December |                               |             |          |                               |           |       |  |  |  |
| 2015 (https://w                                                                                         | /ww.data.bsee.gov/homepg/     | data_center | /platfor | m/platform.asp) (Structure Yo | ears)     |       |  |  |  |

Table 12. Platform Structure Years Spill Rate Comparison (Full Record and 15-year Rate)

# 4.5. Platform Spill Distributions

This report also considers the expected spill volume for spills in the various spill size categories. In recent years, the expected range of expected spill volumes has been shifted by the DWH incident. Any review of spill volume distributions must understand the magnitude of this spill and its significance to this work.

# 4.5.1. DWH

The DWH disaster presents a statistical dilemma when considering the distribution of potential spill sizes. On the one hand, it was a rare occurrence. On the other hand, all other OCS platform spills appear relatively insignificant in magnitude. In the remaining analysis, this spill is excluded, not because it is irrelevant, but because it obscures the estimates related to other, typical spills. Figure 19 depicts the volume of the DWH spill compared to all other recorded OCS platform spills of 1 bbl or more in the OCS since 1964.

It is beyond the scope of this report to analyze the implications of this event for today's oil spill risk analysis. However, there is research surrounding this important spill. Ji, Johnson, and Wikel (2014) have conducted statistical analysis of this and other rare events and their application to oil spill risk analysis.

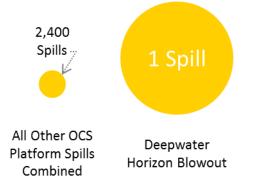


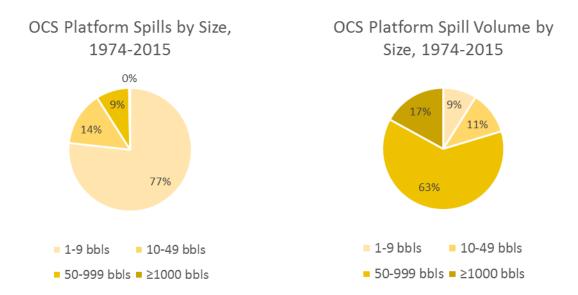

Figure 19. DWH – A Statistical Dilemma

# 4.5.2. Platform Spill Volume Estimates

Table 13 calculates expected spill volumes for large spills using both the average (mean) and median as estimates. The average spill size varies dramatically depending on whether the DWH spill is included. Whenever the DWH spill is included in the data, it dominates the estimate. Median spill estimates remove the impact of this outlier. Based on this estimate, hurricane spills can clearly be seen to be smaller than other operational spills ≥1,000 bbl.

|                                                         |                     | 1974 - 2015                    |                               | Last 15 years       |                                |                               |  |  |
|---------------------------------------------------------|---------------------|--------------------------------|-------------------------------|---------------------|--------------------------------|-------------------------------|--|--|
| Spill Source                                            | Number<br>of Spills | Average<br>Spill Size<br>(bbl) | Median<br>Spill Size<br>(bbl) | Number<br>of Spills | Average<br>Spill Size<br>(bbl) | Median<br>Spill Size<br>(bbl) |  |  |
| All Spills                                              | 4                   | 1,227,006                      | 3,283                         | 2                   | 2,452,533                      | 2,452,533                     |  |  |
| Excluding DWH                                           | 3                   | 2,674                          | 1,500                         | 1                   | 5,066                          | 5,066                         |  |  |
| Excluding<br>Hurricanes                                 | 2                   | 2,450,750                      | 2,450,750                     | 1                   | 4,900,000                      | 4,900,000                     |  |  |
| Excluding DWH and<br>Hurricanes                         | 1                   | 1,500                          | 1,500                         | 0                   | N/A                            | N/A                           |  |  |
| Hurricanes Only                                         | 2                   | 3,261                          | 3,261                         | 1                   | 5,066                          | 5,066                         |  |  |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015 |                     |                                |                               |                     |                                |                               |  |  |

Table 13. Comparison of Average and Median Platform Spills With and Without DWH and Hurricanes

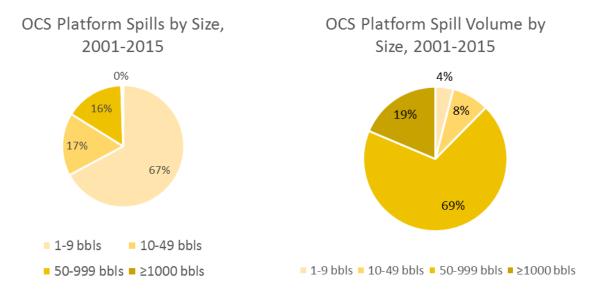

Table 14 provides additional information by spill size category. Expectedly, the average and mean for each category lies between the bounds of the categories, nearer to the lower bound. For OCS spills  $\geq$ 1 bbl, 57% are <5 bbl.

| Spill Size                                              | Number of Spills | bbl Spilled | Average Spill<br>Size (bbl) | Median Spill<br>Size (bbl) |  |  |  |
|---------------------------------------------------------|------------------|-------------|-----------------------------|----------------------------|--|--|--|
| ≥1 to <5 bbl                                            | 333              | 670.5       | 2.0                         |                            |  |  |  |
| ≥5 to <10 bbl                                           | 62               | 431.0       | 7.0                         | 2.5                        |  |  |  |
| ≥10 to <20 bbl                                          | 48               | 641.2       | 13.4                        | 2.5                        |  |  |  |
| ≥20 to <50 bbl                                          | 50               | 1,624.1     | 32.5                        |                            |  |  |  |
| ≥50 to <100 bbl                                         | 32               | 2,082       | 65.0                        |                            |  |  |  |
| ≥100 to <500 bbl                                        | 50               | 10,372      | 207.4                       | 127.4                      |  |  |  |
| ≥500 to <1,000 bbl                                      | 10               | 6,266       | 626.6                       |                            |  |  |  |
| ≥1,000 to <2,000 bbl                                    | 2                | 3,066       | 1,533                       |                            |  |  |  |
| ≥2,000 to <3,000 bbl                                    | 1                | 2,000       | 2,000                       | 1,572                      |  |  |  |
| ≥3,000 to <10,000 bbl                                   | —                | _           | —                           |                            |  |  |  |
| ≥10,000 bbl                                             | 1                | 4,900,000   | 4,900,000                   | 4,900,000                  |  |  |  |
| All Spills                                              | 589              | 4,927,151   | 8,365.3                     | 3.4                        |  |  |  |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015 |                  |             |                             |                            |  |  |  |

Table 14. Platform Spill Size Empirical Distribution 2001-2015

## 4.5.3. Changes in the Platform Spill Volume Distribution

This section examines and compares the portion of the number and volume of spills that are represented in the full record and 15-year rates. The DWH spill is excluded from these. Figure 20 compares the spill counts to the spill volumes of various spill size categories in the full record time period. While large spills are not even observable on the spill count diagram, they make up 40% of the spill volume diagram. The full record period includes a large range span of time in the 1970s and 1980s where small production spills dominated the spill record. Table 15 lists the numeric values for these charts.




#### Figure 20. Platform Spill Distribution (Number and Volume) by Spill Size Category, 1974-2015

|                                                         | Number    | bbl      | Average Spill |                 |                 |  |  |
|---------------------------------------------------------|-----------|----------|---------------|-----------------|-----------------|--|--|
| Spill Size Category                                     | of Spills | Spilled  | Size (bbl)    | % Spills ≥1 bbl | % Volume ≥1 bbl |  |  |
| 1-9 bbl                                                 | 1,412     | 4,213.6  | 3.0           | 76.7%           | 8.9%            |  |  |
| 10-49 bbl                                               | 262       | 5,393.6  | 20.6          | 14.2%           | 11.4%           |  |  |
| 50-999 bbl                                              | 161       | 29,566.0 | 183.6         | 8.8%            | 62.6%           |  |  |
| ≥1,000 bbl                                              | 5         | 8,021.7  | 1,604.3       | 0.3%            | 17.0%           |  |  |
| Total                                                   | 1,840     | 47,194.9 | 1,811.6       | 100.0%          | 100.0%          |  |  |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015 |           |          |               |                 |                 |  |  |

| Table 15. Platform 9 | pill Distribution b | y Spill Size Category, | 1974-2015 |
|----------------------|---------------------|------------------------|-----------|
|                      |                     |                        |           |

Figure 21 shows these charts for the 15-year spill rate period. During this time, there was a relative decrease in the number of spills <10 bbl. The 50-999 bbl category made up much of the difference, accounting for over half of the spilled fluid volume (removing DWH). This increase may be attributable to the increased number of minor hurricane-related spills during that time and the change in reporting of passive spills. Table 16 lists the numeric values for these charts.



#### Figure 21. Platform Spill Distribution (Number and Volume) by Spill Size Category, 2001-2015

| Spill Size                                              | Number    | bbl      | Average Spill |                 |                 |  |  |
|---------------------------------------------------------|-----------|----------|---------------|-----------------|-----------------|--|--|
| 2001-2015                                               | of Spills | Spilled  | Size (bbl)    | % Spills ≥1 bbl | % Volume ≥1 bbl |  |  |
| 1-9 bbl                                                 | 395       | 1,101.5  | 2.8           | 67.2%           | 4.1%            |  |  |
| 10-49 bbl                                               | 98        | 2,265.3  | 23.1          | 16.7%           | 8.3%            |  |  |
| 50-999 bbl                                              | 92        | 18,718.8 | 203.5         | 15.6%           | 68.9%           |  |  |
| ≥1000 bbl                                               | 3         | 5,065.7  | 1,688.6       | 0.5%            | 18.7%           |  |  |
| Total                                                   | 588       | 27,151.3 | 1,917.9       | 100.0%          | 100.0%          |  |  |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015 |           |          |               |                 |                 |  |  |

# 5. Pipeline Spill Analysis

From 1964 to 2015, the O&G industry produced over 20.6 Bbbl of crude oil in the U.S. OCS. In addition, Anderson *et al.* estimate that 95% of all crude oil produced in the OCS each year was transported by pipeline (p. 10, 2012). This section summarizes the pipeline spill incidents from the updated spill record; discusses potential exposure variables and causal factors; and presents analysis results of updated spill trends, spill rates, and spill distributions.

# 5.1. Pipeline Spill Occurrences and Oil Handled

Pipeline spills on the OCS may occur due to corrosion, equipment failure, severe weather, damage to the pipeline by external objects (e.g., anchors), or human error. With updated spill data for the years 2010 to 2015, the analysis team found that OCS pipeline spill rates for large spills have decreased, continuing

a trend noted in Anderson *et al.*, (2012). Between 2010 and 2015, production on the OCS increased by approximately 3.1 Bbbl of crude oil while no large spills occurred.

A total of 19 OCS pipeline large spills occurred from 1964 to 2015. Figure 22 illustrates that OCS production volume and the number of large spills from OCS pipelines may not have a strong correlation, as production rates per year have tended to increase, while the number of large spills per year has fluctuated. No large spills occurred between 2010 and 2015; however, 16 spills with volumes ≤1,000 bbl did occur, with a total spill volume of about 1,078 bbl.



Figure 22. OCS Oil Production vs. OCS Pipeline Large Spills, 1964-2015

The analysis team examined these 16 spills with volumes  $\leq$ 1,000 bbl, and all had spill volumes between 1 and 400 bbl, with an average spill volume of 46.16 bbl and a median spill volume of 9.25 bbl.

Of the 16 spills, 3 were attributed to Hurricane Ivan, which occurred in the GOM region in 2004. These spills may have been recorded for the years 2010 to 2015 as they were not discovered or corrected until then. It is feasible that Hurricane Ivan damaged the pipelines in 2004, but oil leaked continuously until the pipelines were repaired several years later. The total volume spilled represents an aggregate of all oil spilled over that period of time. This could also be a data quality issue, in which the spills were inaccurately attributed to Hurricane Ivan. Spills caused by Hurricane Ivan accounted for only 13.6 bbl, or 1.26%, of the 1,078 bbl spilled from 2010 to 2015. If these data are inaccurate, the analysis team believes that their effect on the findings of this section will be minimal.

Table 17 provides greater detail on the large spills from OCS pipelines from 1964 to 2015. The majority of these spills were caused by vessels or hurricanes. Spills that involved a platform toppling and disconnecting from a pipeline were typically labeled as platform spills, not pipeline spills; therefore, the analysis team did not focus on that type of spill incident. Corrosion and equipment failure caused 2 of the 19 spills, while hurricanes caused 4, and vessel-induced damages caused the remaining 13.

| Spill Date | Planning<br>Area <sup>1</sup><br>Block<br>Number | Water<br>Depth<br>(feet) | Miles<br>to<br>Shore | Volume<br>Spilled<br>(bbl) | Operator              | Pipeline Segment<br>(Pipeline Authority²)<br>Cause/Consequences of Spill                                                                                         |
|------------|--------------------------------------------------|--------------------------|----------------------|----------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/15/1967 | WD 73                                            | 168                      | 22                   | 160,638                    | Humble Pipe<br>Line   | 12" oil pipeline Seg #7791 (DOT),<br>anchor kinked, corrosion, leak                                                                                              |
| 3/12/1968  | ST 131                                           | 160                      | 28                   | 6,000                      | Gulf Oil              | 18" oil pipeline Seg #3573 (DOT),<br>barge anchor damage                                                                                                         |
| 2/11/1969  | MP 299                                           | 210                      | 17                   | 7,532                      | Chevron Oil           | 4" crude/gas pipeline Seg #3469<br>(DOT), anchor damage                                                                                                          |
| 5/12/1973  | WD 73                                            | 168                      | 22                   | 5,000                      | Exxon Pipeline        | 16" gas and oil pipeline Seg #807<br>(DOT), internal corrosion, leak                                                                                             |
| 4/17/1974  | EI 317                                           | 240                      | 75                   | 19,833                     | Pennzoil              | 14" oil Bonita pipeline Seg #1128<br>(DOI), anchor damage                                                                                                        |
| 9/11/1974  | MP 73                                            | 141                      | 9                    | 3,500                      | Shell Oil             | 8" oil pipeline Seg #36 (DOI),<br>Hurricane Carmen broke tie-in to<br>12" pipeline, minor contacts to<br>shoreline, brief cleanup response in<br>Chandeleur Area |
| 12/18/1976 | EI 297                                           | 210                      | 17                   | 4,000                      | Placid Oil            | 10" oil pipeline Seg #1184 (DOI),<br>trawl damage to tie-in to 14"<br>pipeline                                                                                   |
| 12/11/1981 | SP 60                                            | 190                      | 4                    | 5,100                      | Atlantic<br>Richfield | 8" oil pipeline Seg #4715 (DOT),<br>workboat anchor damage                                                                                                       |
| 2/7/1988   | GA A002                                          | 75                       | 34                   | 15,576                     | Amoco<br>Pipeline     | 14" oil pipeline Seg #4879 (DOT),<br>damage from illegally anchored<br>vessel                                                                                    |
| 1/24/1990  | SS 281                                           | 197                      | 60                   | 14,423 <sup>3</sup>        | Shell Offshore        | 4" condensate pipeline Seg #8324<br>(DOI), anchor damage to subsea tie-<br>in                                                                                    |
| 5/6/1990   | EI 314                                           | 230                      | 78                   | 4,569                      | Exxon                 | 8" oil pipeline Seg #4030 (DOI), trawl<br>damage                                                                                                                 |
| 8/31/1992  | PL 8                                             | 30                       | 6                    | 2,000                      | Техасо                | 20" oil pipeline Seg #4006 (DOT),<br>Hurricane Andrew, loose rig<br>Treasure 75 anchor damage, minor<br>contacts to shoreline, brief cleanup<br>response         |
| 11/16/1994 | SS 281                                           | 197                      | 60                   | 4,533 <sup>3</sup>         | Shell Offshore        | 4" condensate pipeline Seg #8324<br>(DOI), trawl damage to subsea tie-in                                                                                         |

| Table 17. | l arge (> | 1.000 bbl) | OCS Pi | neline S | nills 1   | 964-2015 |
|-----------|-----------|------------|--------|----------|-----------|----------|
|           | Laige (2  | 1,000 DDI  | OCJ FI | penne J  | , LIII, L |          |

| Spill Date                                                                                                    | Planning<br>Area <sup>1</sup><br>Block<br>Number        | Water<br>Depth<br>(feet) | Miles<br>to<br>Shore | Volume<br>Spilled<br>(bbl) | Operator            | Pipeline Segment<br>(Pipeline Authority²)<br>Cause/Consequences of Spill |  |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|----------------------|----------------------------|---------------------|--------------------------------------------------------------------------|--|--|--|
| 1/26/1998                                                                                                     | EC 334                                                  | 264                      | 105                  | 1,211 <sup>3</sup>         | Pennzoil E & P      | 16" gas and condensate pipeline Seg                                      |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | #11007 (DOT), anchor damage to                                           |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | tie-in to 30" pipeline, anchor                                           |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | dragged by vessel in man overboard response                              |  |  |  |
| 9/29/1998                                                                                                     | SP 38                                                   | 108                      | 6                    | 8,212                      | Chevron Pipe        | 10" gas and oil pipeline Seg #5625                                       |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            | Line                | (DOT), Hurricane Georges, mudslide                                       |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | damage, small amount of oil                                              |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | contacted shoreline                                                      |  |  |  |
| 7/23/1999                                                                                                     | SS 241                                                  | 133                      | 50                   | 3,200                      | Seashell            | 12" oil pipeline Seg #6462 and Seg                                       |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            | Pipeline            | #6463 (DOT), "Luke David" jack-up                                        |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | rig barge crushed pipeline when sat                                      |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | down on it                                                               |  |  |  |
| 1/21/2000                                                                                                     | SS 332                                                  | 435                      | 75                   | 2,240                      | Equilon             | 24" oil pipeline Seg #10903 (DOT),                                       |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            | Pipeline            | anchor damage from MODU under                                            |  |  |  |
| 0/15/2004                                                                                                     |                                                         | 470                      | 10                   | 4 720                      |                     | tow                                                                      |  |  |  |
| 9/15/2004                                                                                                     | MC 20                                                   | 479                      | 19                   | 1,720                      | Taylor Energy       | Passive spill - 6" oil pipeline Seg                                      |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | #7296 (DOI), Hurricane Ivan,                                             |  |  |  |
| 9/13/2008                                                                                                     | HI A264                                                 | 150                      | 73                   | 1,316                      | HI Offshore         | mudslide damage<br>Passive spill - 42" gas/condensate                    |  |  |  |
| 9/15/2008                                                                                                     | HI A204                                                 | 150                      | /5                   | 1,510                      | System              | pipeline Seg #7364 (DOT), Hurricane                                      |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            | System              | lke, anchor damage parted pipeline                                       |  |  |  |
| 7/25/2009                                                                                                     | SS 142                                                  | 60                       | 30                   | 1,500                      | Shell Pipe Line     | 20" oil pipeline Seg #4006 (DOT),                                        |  |  |  |
| 772372005                                                                                                     | 55 142                                                  |                          | 50                   | 1,500                      | Shell Tipe Line     | micro-fractures from chronic                                             |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | contacts at pipeline crossing caused                                     |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | failure (separators between                                              |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | pipelines missing)                                                       |  |  |  |
| NOTES: Crud                                                                                                   | e oil release u                                         | unless othe              | erwise no            | ,<br>ted; no spi           | ll contacts to land | unless otherwise noted. OCS -                                            |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            | J.S. Federal Gover  |                                                                          |  |  |  |
|                                                                                                               |                                                         |                          |                      |                            |                     | East Cameron, El Eugene Island, GA                                       |  |  |  |
| Galveston, HI High Island, MC Mississippi Canyon, MP Main Pass, PL South Pelto, SS Ship Shoal, SP South Pass, |                                                         |                          |                      |                            |                     |                                                                          |  |  |  |
| ST South Timbalier, WD West Delta. GOM Planning Area Maps <u>http://www.boem.gov/GOMR-GIS-Data-and-</u>       |                                                         |                          |                      |                            |                     |                                                                          |  |  |  |
| <u>Maps/</u>                                                                                                  |                                                         |                          |                      |                            |                     |                                                                          |  |  |  |
| <sup>2</sup> Pipeline Au                                                                                      | •                                                       | BSEE/BOE                 | M; DOT,              | PHMSA                      |                     |                                                                          |  |  |  |
| <sup>3</sup> Condensate                                                                                       | 2                                                       |                          |                      |                            |                     |                                                                          |  |  |  |
| Source: U.S. I                                                                                                | Source: U.S. DOI/BSEE OCS Spill Database, December 2015 |                          |                      |                            |                     |                                                                          |  |  |  |

Source: U.S. DOI/BSEE OCS Spill Database, December 2015

Table 18 shows spill rates over 5-year to 10-year periods from the start of the OCS pipeline spill record. From 1964 to 1970, spill data were only available for spills ≥50 bbl. By 1971, comprehensive data for spills ≥1 barrel were incorporated into the spill record. The analysis team studied spill rates for intervals for 1964 to 1970 and 1971 to 1975 to reflect these points in the spill record. After 1975, all spill rate intervals are for 10-year periods until 2015.

The second column in Table 18 (bbl spilled per Bbbl produced) shows a downward trend across the three intervals from 1964 to 1985, followed by an increase from 1986 to 1995. The last two intervals from 1996 to 2015 show another downward trend, with the final interval from 2006 to 2015 reaching

the lowest spill rate of 1,108 bbl spilled per Bbbl produced. Over the entire OCS pipeline spill record, an average of 13,894 bbl of oil have been spilled for every Bbbl of oil produced. The volume of bbl spilled across the time intervals displayed a similar trend.

|             | bbl                                                                                                                           |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of Spills by Spill                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bbl Spilled | Produced                                                                                                                      | Produc-                                                                                                                                                                                                                                                                                            | bbl S                                                                                                                                                                                                                                                                                                                                                                                                        | oilled by Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ill Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Size                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| per Bbbl    | per bbl                                                                                                                       | tion                                                                                                                                                                                                                                                                                               | 1-999                                                                                                                                                                                                                                                                                                                                                                                                        | ≥1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-999                                                                                                                                                                                                                                                                                                    | ≥1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Produced    | Spilled                                                                                                                       | (Bbbl)                                                                                                                                                                                                                                                                                             | bbl                                                                                                                                                                                                                                                                                                                                                                                                          | bbl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bbl                                                                                                                                                                                                                                                                                                      | bbl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 113,246     | 8,830                                                                                                                         | 1.54                                                                                                                                                                                                                                                                                               | 741                                                                                                                                                                                                                                                                                                                                                                                                          | 174,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 174,911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15,682      | 63,766                                                                                                                        | 1.87                                                                                                                                                                                                                                                                                               | 958                                                                                                                                                                                                                                                                                                                                                                                                          | 28,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29,291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3,894       | 256,780                                                                                                                       | 3.22                                                                                                                                                                                                                                                                                               | 3,443                                                                                                                                                                                                                                                                                                                                                                                                        | 9,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12,543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 144                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12,232      | 81,752                                                                                                                        | 3.53                                                                                                                                                                                                                                                                                               | 2,036                                                                                                                                                                                                                                                                                                                                                                                                        | 41,101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43,137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4,227       | 236,549                                                                                                                       | 5.34                                                                                                                                                                                                                                                                                               | 5,990                                                                                                                                                                                                                                                                                                                                                                                                        | 16,583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22,573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 937         | 1,067,233                                                                                                                     | 5.14                                                                                                                                                                                                                                                                                               | 2,002                                                                                                                                                                                                                                                                                                                                                                                                        | 2,816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13,918      | 71,850                                                                                                                        | 20.6                                                                                                                                                                                                                                                                                               | 15,170                                                                                                                                                                                                                                                                                                                                                                                                       | 272,103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 287,273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 494                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | per Bbbl           Produced           113,246           15,682           3,894           12,232           4,227           937 | bbl Spilled         Produced           per Bbbl         per bbl           Produced         Spilled           113,246         8,830           15,682         63,766           3,894         256,780           12,232         81,752           4,227         236,549           937         1,067,233 | bbl Spilled<br>per Bbbl         Produced<br>per bbl         Producel<br>tion           Produced         Spilled         (Bbbl)           113,246         8,830         1.54           15,682         63,766         1.87           3,894         256,780         3.22           12,232         81,752         3.53           4,227         236,549         5.34           937         1,067,233         5.14 | bbl Spilled<br>per Bbbl         Produced<br>per bbl         Produce<br>tion         1-999           Produced         Spilled         (Bbbl)         bbl           113,246         8,830         1.54         741           15,682         63,766         1.87         958           3,894         256,780         3.22         3,443           12,232         81,752         3.53         2,036           4,227         236,549         5.34         5,990           937         1,067,233         5.14         2,002 | bbl Spilled<br>per Bbbl         Produced<br>per bbl         Produc-<br>tion         bbl Spilled bbl         21,000           Produced         Spilled         (Bbbl)         bbl         bbl           113,246         8,830         1.54         744         174,170           15,682         63,766         1.87         958         28,333           3,894         256,780         3.22         3,443         9,100           12,232         81,752         3.53         2,036         41,101           4,227         236,549         5.34         5,990         16,583           937         1,067,233         5.14         2,002         2,816 | bbl Spilled<br>per BbblProduced<br>per bblProduc $bbl S = 1,000$ ≥1,000ProducedSpilled(Bbbl)bblbblTotal113,2468,8301.54741174,170174,91115,68263,7661.8795828,33329,2913,894256,7803.223,4439,10012,54312,23281,7523.532,03641,10143,1374,227236,5495.345,99016,58322,5739371,067,2335.142,0022,8164,818 | bbl Spilled         Produced         Produce         bbl Spilled         Produce         1-999         ≥1,000         1-999         1-999           Produced         Spilled         (Bbl)         bbl         bbl         Total         1999           113,246         8,830         1.54         741         174,170         174,911         112           15,682         63,766         1.87         958         28,333         29,291         94           12,232         81,752         3.53         2,036         41,101         43,137         75           4,227         236,549         5.34         5,990         16,583         22,573         119           937         1,067,233         5.14         2,002         2,816         4,818         5 | bbl Spilled<br>per Bbbl         Produced<br>per bbl         Produce<br>tion         1-999         ≥1,000         1-999         ≥1,000           Produced         Spilled         (Bbbl)         bbl         bbl         Total         bbl         bbl           113,246         8,830         1.54         741         174,170         174,911         112         3.343           15,682         63,766         1.87         958         28,333         29,291         94         3.343           3,894         256,780         3.22         3,443         9,100         12,543         144         2.2           12,232         81,752         3.53         2,036         41,101         43,137         7.5         5.5           4,227         236,549         5.34         5,990         16,583         22,573         119         5.5           937         1,067,233         5.14         2,002         2,816         4,818         500         2.2 |

Table 18. OCS Pipeline Spill Rate and Spill Volume Trends Based on Oil Produced, 1964-2015

<sup>1</sup> Spill data for 1964 to 1970 are for spills ≥50 bbl. Spill data for spills ≥1 bbl begin in 1970 but are more robust starting in 1971.

Sources: U.S. DOI/BSEE OCS Spill Database, December 2015 (Spills); U.S. DOI/ONRR OCS Production Data, December 2015 (Production)

# 5.2. Pipeline Exposure Units and Causal Factors

This section presents analyses of alternative exposure variables and causal factors. Table 19 introduces and describes potential alternative exposure variables for assessing pipeline spill frequencies.

 Table 19. Pipeline Exposure Metrics

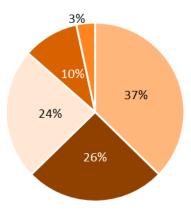
| Exposure Metric | Feasibility | Relevance | Comments                                                   |  |
|-----------------|-------------|-----------|------------------------------------------------------------|--|
| Oil Volume      | High Medium |           | Existing metric. Estimated from BSEE production data.      |  |
| Produced        |             |           | Does not exclude production sent to shore via tanker.      |  |
| Pipeline        |             |           | Estimated from BSEE pipeline data. Comparable              |  |
| Segment-years   | High        | High      | interpretation to other count metrics such as platform or  |  |
| Segment-years   |             |           | rig counts.                                                |  |
| Pipeline Foot-  | High        | High      | Estimated from BSEE pipeline data. Intuitive physical risk |  |
| years           | High        | High      | interpretation.                                            |  |
| Oil Volume      | Low         | Medium    | The analysis team did not locate sufficient data to        |  |
| Transported     | LOW         | wedium    | estimate this metric.                                      |  |

The pipelines segment years variable can be interpreted similarly to the platform's structure years variable. They both are physical objects associated with OCS O&G activity that can be counted: platforms for production and pipelines for transport. Table 20 lists spill rates for all spill sizes over 1 bbl using pipeline segment year as its exposure variable. The bbl per segment-year column indicates a dramatic decrease in the volume spill rate. However, the number of segment-years also grows substantially during this time, suggesting a noncausal confounding effect as many unused pipelines deflate the estimate of rates.

|                                                                                                                                 | bbl Spilled per       | Segment      | bbl Sj    | oilled by Sp   | ill Size    | Number of Spills by<br>Spill Size |            |       |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|-----------|----------------|-------------|-----------------------------------|------------|-------|
|                                                                                                                                 | Segment Years         | Years        | 1-999     | ≥1,000         |             | 1-999                             | ≥1,000     |       |
| Years                                                                                                                           | (10,000s)             | (10,000s)    | bbl       | bbl            | Total       | bbl                               | bbl        | Total |
| 1964-1970 <sup>1</sup>                                                                                                          | 734,612               | 0.24         | 741       | 174,170        | 174,911     | 12                                | 3          | 15    |
| 1971-1975                                                                                                                       | 47,504                | 0.62         | 958       | 28,333         | 29,291      | 94                                | 3          | 97    |
| 1976-1985                                                                                                                       | 4,293                 | 2.92         | 3,443     | 9,100          | 12,543      | 144                               | 2          | 146   |
| 1986-1995                                                                                                                       | 7,556                 | 5.71         | 2,036     | 41,101         | 43,137      | 75                                | 5          | 80    |
| 1996-2005                                                                                                                       | 2,793                 | 8.08         | 5,990     | 16,583         | 22,573      | 119                               | 5          | 124   |
| 2006-2015                                                                                                                       | 573                   | 8.41         | 2,002     | 2,816          | 4,818       | 50                                | 2          | 52    |
| Total <sup>2</sup>                                                                                                              | 11,057                | 26.0         | 15,170    | 272,103        | 287,273     | 494                               | 20         | 514   |
| <sup>1</sup> Spill data for 1964 to 1970 are for spills ≥50 bbl. Spill data for spills ≥1 bbl begin in 1970 but are more robust |                       |              |           |                |             |                                   |            |       |
| starting in 1971.                                                                                                               |                       |              |           |                |             |                                   |            |       |
| Sources: U.S. L                                                                                                                 | OOI/BSEE OCS Spill Da | tabase, Dece | mber 2015 | (Spills); U.S. | DOI/BSEE Do | ata Center                        | , December | 2015  |

| Table 20. OCS Pipeline Spill Rate and Spi | ill Volume Trends Based | on Segment Vears 1961-2015     |
|-------------------------------------------|-------------------------|--------------------------------|
| Table 20. OCS Pipeline Spill Rate and Spi | iii volume menus based  | 1 011 Segment rears, 1904-2015 |

(https://www.data.bsee.gov/homepg/data\_center/pipeline/pipeline.asp) (Pipeline Years)


## 5.2.1. Causal Factors

Pipeline spills can be attributed to causal factors such as corrosion, equipment failure, severe weather, or human error. The analysis team developed five categories to summarize causal factors of OCS pipeline spills:

- **Equipment Failure.** Spills caused by mechanical or structural failure of equipment used to control or contain oil in a pipeline
- External Forces. Spills caused by non-natural forces, such as human errors or failures in attached platform equipment
- **Corrosion**. Spills caused by parts of the pipeline corroding to the extent that they fail to contain oil
- Weather/Natural Causes. Spills caused by severe weather, such as hurricanes, or other natural phenomenon such as mud slides
- Vessel/Anchor/Trawl Damage. Spills caused by any part of a vessel or its equipment striking a pipeline and damaging equipment or systems responsible for controlling or containing oil in the pipeline

There may be some overlap between the defined categories. For example, a piece of equipment corroding over time may cause it to fail and spill oil from the pipeline. Such incident descriptions in the data would most likely include both the key words "corrosion" and "equipment failure." For larger spills (≥1,000 bbl), the analysis team reviewed each spill description and categorized the spill appropriately. There are spills without incident descriptions or that were labeled as unknown. These were excluded from the causal factor analysis.

The analysis team examined large spills in detail. Figure 23 illustrates the percentage of the total OCS pipeline spill volume for large spills by incident type. External forces caused 37% of large spills, the highest proportion of the causal factors. Equipment failure and vessel-induced damages caused the next highest proportions of spills, with each factor responsible for around one-quarter of large spills. Weather, natural causes, and corrosion cumulatively caused less than 15% of large spills.



External Forces Vessel/Anchor/Trawl Equipment Failure Weather/Natural Causes Corrosion

#### Figure 23. OCS Pipeline Large Spill Causal Factor Summary

Figure 24 details the changing pattern of causal factors over time for all spills  $\geq 1$  bbl. To maintain the one-to-one relationship between causal factor values in Figure 24 and the number of spills recorded for each year, the figure normalizes the counts so that the aggregate causal factor counts are equal to the spill counts each year. The analysis also found that for all spills  $\geq 1$  bbl, equipment failures tended to cause the most spills early in the record while weather and external force causes became more prevalent late in the record.

Figure 24 also shows that the number of spills caused by weather or natural phenomenon increases substantially around the years 2004, 2005, and 2008. The 2004 and 2005 spikes can be attributed to GOM hurricanes: Ivan (2004), Katrina (2005), and Rita (2005). The spikes for spills caused by external forces for these same years may correlate to the occurrences of the hurricanes. Operators may have accidently spilled oil while attempting to prepare a pipeline for severe weather, or platform equipment may have failed and affected the pipeline as a result of the severe weather.

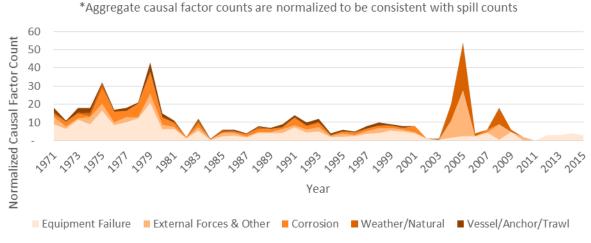
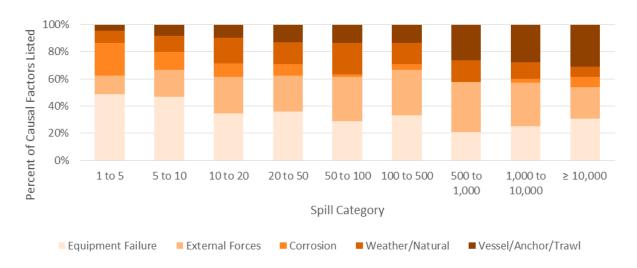




Figure 24. OCS Pipeline Spill Causal Factor Summary

Figure 25 illustrates the percentage of spills attributed to each casual factor across different spill size categories. No discernable trends for equipment failures, external forces, corrosion, or weather and natural phenomenon can be seen as spill volumes increase. The percentages of spills for each of these factors tend to change as spill volume increases. Alternatively, the percentage of spills caused by vessel-induced damage tends to increase as spill volume increases.



2016 Update of Occurrence Rates for Offshore Oil Spills

Figure 25. OCS Pipeline Spill Casual Factor Summary by Spill Size Category

#### 5.2.2. Hurricanes

The analysis team studied the impact that hurricanes had on spill frequency and spill volume. Hurricanes caused 3 of the 19 large spills that occurred from 1964 to 2015. Figure 26 depicts the number of spills >1 barrel that have occurred from 1971 to 2015, with the spills categorized as either operational or hurricane. Confirming the findings in Figure 24, pipeline spills caused by hurricanes increased in frequency for the years 2004, 2005, and 2008. While the number of spills caused by hurricanes each year appears random, the number of operational spills per year appears to follow a downward trend. The majority of spills in the last 15 years were caused by hurricanes.

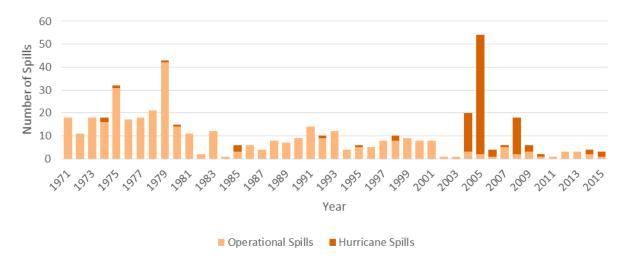
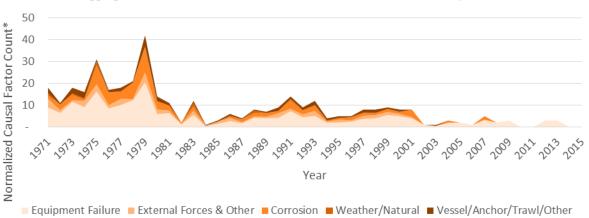
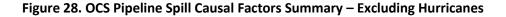



Figure 26. OCS Pipeline Spill Hurricane and Operational Summary


Figure 27 shows the percentage of spills caused by operational or hurricane incidents for different spill size categories. Based on spill size, no clear trend appears to exist for the percentages of spills caused by hurricanes. Hurricanes tend to cause a greater percentage of spills in larger spill size categories than smaller ones; however, the fluctuations across all spill size categories indicate that a strong relationship does not exist.




Figure 27. OCS Pipeline Spill Hurricane and Operational Summary by Spill Size Category

The analysis team excluded the pipeline spills caused by hurricanes to examine trends in the other causal factors. Hurricane damage to pipelines can be difficult to predict and control for. Studying causal factors that can be regulated, such as equipment failures, may provide new insights in pipeline spill trends.

Figure 28 illustrates that equipment failures caused a majority of spills over the years. From 1971 until 2002, equipment failures and corrosion were responsible for almost all spill incidents. From 2002 to 2015, equipment failures were responsible for most of the spill incidents. The overall number of spill incidents per year trended downward after an increase in 1979.



\*Aggregate causal factor counts are normalized to be consistent with spill counts



#### 5.3. Pipeline Trend Analysis

The section will identify periods of time over the entire pipeline spill record in which significant trends in spill rates can be detected. An accurate trend analysis can illustrate how spill rates have changed over time and can inform how they may continue to behave. Figure 29 illustrates OCS pipeline spill occurrences for every 0.5 Bbbl of OCS oil production. The 2012 spill rates report noted that roughly 95% of all oil produced on the OCS each year was transported via pipeline (Anderson, Mayes and LaBelle). Therefore, studying the number of spills that occur over fixed production volumes may better inform increases or decreases in pipeline spill rates.

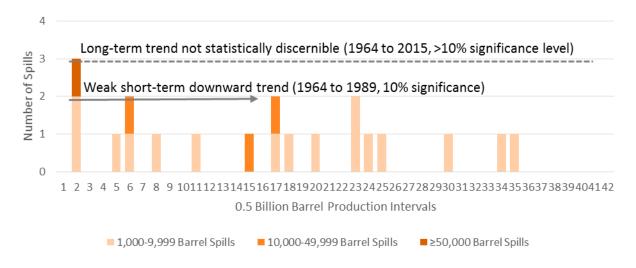



Figure 29. OCS Pipeline Spills over 0.5 Bbbl Production Intervals

Figure 29 shows that the number of spills per 0.5 Bbbl of oil produced has exhibited very little trend since 1964. Applying Kendall's test iteratively across many different intervals did not identify any major trends. Over the whole period, no statistical trend was discernible. The interval with the strongest trend identified using Kendall's test was from 1964 to 1989. Although this might imply that the remaining

period, from 1990 to 2015, is the best period to use for calculating rates, the general conclusion of this analysis was that the pipeline data exhibited no compelling trends.

This conclusion was also supported by the results of the runs-up, runs-down test and the Spearman Rank correlation tests, which confirmed that the spills appeared to be independent. The test statistic for the runs-up, runs-down test was 11 runs among 20 observations. The Spearman rank correlation was 0.269. Both of this statistics suggested that the spills were independent events.

# 5.4. Pipeline Spill Rates

This section includes calculated rates based on the oil handled exposure variable as well as an alternative exposure variable (pipeline segment years).

## 5.4.1. Pipeline Base Spill Rates

The analysis team studied previous pipeline spills rates from the 2012 report, which included data from 1990 to 2010, and updated the production volumes, spill occurrences, and spill rates with data through 2015. Over the past five years, the spill rate has decreased since 2.5 Bbbl of additional oil were handled without any large spill occurrences.

Table 21 summarizes the pipeline spill rates from the previous report, the current report, and the last 15 years. Anderson *et al.* (2012) estimated the spill rate to be 0.94 large spills per Bbbl, while the updated spill rate estimates 0.89 spills  $\geq$ 1,000 bbl per Bbbl produced. For pipeline spills  $\geq$ 10,000 bbl, the spill rate decreased between the previous rate and the updated rate, with no such spills occurring between 2010 and 2015. Over the last 15 years, from 2001 to 2015, the spill rate for spills  $\geq$ 1,000 bbl was estimated at 0.38 spills per Bbbl produced.

|                                                                                                                                              | Previous Rat     | e: 1990    | - <b>2010</b> <sup>1,2</sup> | 0 <sup>1,2</sup> Updated Rate: 1974-201 |             |             | 15-year Rate: 2001-2015 |           |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|------------------------------|-----------------------------------------|-------------|-------------|-------------------------|-----------|-------------------|
|                                                                                                                                              | Volume           |            |                              | Volume                                  |             |             | Volume                  |           |                   |
| Spill Size and                                                                                                                               | Handled          | # of       | Spill                        | Handled                                 | # of        | Spill       | Handled                 | # of      | Spill             |
| Source                                                                                                                                       | (Bbbl)           | Spills     | Rate                         | (Bbbl)                                  | Spills      | Rate        | (Bbbl)                  | Spills    | Rate              |
| Including Hurri                                                                                                                              | icanes           |            |                              |                                         |             |             |                         |           |                   |
| ≥1,000 bbl                                                                                                                                   | 9.6              | 9          | 0.94                         | 17.9                                    | 16          | 0.89        | 8.00                    | 3         | 0.38              |
| ≥10,000 bbl                                                                                                                                  | 9.6              | 0          | 0.19                         | 17.9                                    | 3           | 0.17        | 8.00                    | 0         | 0.07 <sup>3</sup> |
| Excluding Hurr                                                                                                                               | icanes           |            |                              |                                         |             |             |                         |           |                   |
| ≥1,000 bbl                                                                                                                                   |                  |            |                              | 17.9                                    | 10          | 0.56        | 8.0                     | 0         |                   |
| ≥10,000 bbl                                                                                                                                  |                  |            |                              | 17.9                                    | 3           | 0.17        | 8.0                     | 0         |                   |
| <sup>1</sup> Anderson <i>et d</i>                                                                                                            | al. (2012)       |            |                              |                                         |             |             |                         |           |                   |
| <sup>2</sup> The previous re                                                                                                                 | eport uses produ | uction int | ervals 18                    | through 37 (F                           | igure 29    | ) as the ra | ite period. Th          | is is     |                   |
| approximately 1                                                                                                                              | 991 to 2010.     |            |                              |                                         |             |             |                         |           |                   |
| <sup>3</sup> Assume that the same ratio of spills $\geq$ 10,000 bbl to spills $\geq$ 1,000 bbl applies to this period as to the full record. |                  |            |                              |                                         |             |             |                         |           |                   |
| Sources: U.S. DO                                                                                                                             | I/BSEE OCS Spill | l Databas  | ie, Deceml                   | ber 2015 (Spil                          | ls); U.S. E | OI/ONRR     | OCS Producti            | ion Data, |                   |
| December 2015                                                                                                                                | (Production)     |            |                              |                                         |             |             |                         |           |                   |

Table 21. OCS Pipeline Spill Rate Estimates for Updated Spill Record

Without records attributed to hurricanes, the spill rate for large spills drops from 0.84 to 0.58 spills per Bbbl produced. The rate of spills  $\geq$ 10,000 bbl was not affected by excluding hurricane-caused spills, as no such incidents occurred in the spill record.

Table 22 lists confidence intervals for these rates. The intervals are calculated using the bootstrap method due to the small number of spills.

|                              | Full Record Rate: 1974-2015 |               |                     | 15-year Rate: 2001-2015 |                   |             |  |  |
|------------------------------|-----------------------------|---------------|---------------------|-------------------------|-------------------|-------------|--|--|
|                              | Lower                       |               | Upper               | Lower                   |                   | Upper       |  |  |
| Spill Size and               | Bound (95%                  | Spill         | Bound (95%          | Bound (95%              | Spill             | Bound (95%  |  |  |
| Source                       | Confidence)                 | Rate          | Confidence)         | Confidence)             | Rate              | Confidence) |  |  |
| Including Hurricanes         |                             |               |                     |                         |                   |             |  |  |
| ≥1,000 bbl                   | 0.50                        | 0.89          | 1.28                | 0.00                    | 0.38              | 0.88        |  |  |
| ≥10,000 bbl                  | 0.00                        | 0.17          | 0.34                |                         | 0.07 <sup>1</sup> |             |  |  |
| <b>Excluding Hurri</b>       | canes                       |               |                     |                         |                   |             |  |  |
| ≥1,000 bbl                   | 0.28                        | 0.56          | 0.89                |                         |                   |             |  |  |
| ≥10,000 bbl                  | 0.00                        | 0.17          | 0.34                |                         |                   |             |  |  |
| <sup>1</sup> Data do not sup | port confidence i           | nterval calcu | ation for spills ≥1 | 0,000 bbl.              |                   |             |  |  |

Table 22. OCS Pipeline Spill Rate Confidence Intervals for Updated Spill Record

## 5.4.2. Pipeline Alternative Exposure Variable Rate

Table 23 provides updated rate calculations using the segment years alternative exposure variable, comparing the updated rate with the 15-year. The rates are shown for  $\geq$ 1,000 bbl and  $\geq$ 10,000 bbl, including and excluding hurricane spills.

|                 | Updated Rate: 1974                                                                                         | 4-2015     | 15-year Rate: 2001-2015 |                            |        |       |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------|------------|-------------------------|----------------------------|--------|-------|--|--|
| Spill Size      |                                                                                                            | # of       | Spill                   |                            | # of   | Spill |  |  |
| and Source      | Segment-years (10,000s)                                                                                    | Spills     | Rate                    | Segment-years (10,000s)    | Spills | Rate  |  |  |
| Including Hur   | ricanes                                                                                                    |            |                         |                            |        |       |  |  |
| ≥1,000 bbl      | 25.4                                                                                                       | 16         | 0.63                    | 12.7                       | 3      | 0.24  |  |  |
| ≥10,000 bbl     | 25.4                                                                                                       | 3          | 0.12                    | 12.7                       | 0      |       |  |  |
| Excluding Hur   | ricanes                                                                                                    |            |                         |                            |        |       |  |  |
| ≥1,000 bbl      | 25.4                                                                                                       | 10         | 0.39                    | 12.7                       | 0      |       |  |  |
| ≥10,000 bbl     | 25.4                                                                                                       | 3          | 0.12                    | 12.7                       | 0      |       |  |  |
| Source: U.S. DC | Source: U.S. DOI/BSEE OCS Spill Database, December 2015 (Spills); U.S. DOI/BSEE Data Center, December 2015 |            |                         |                            |        |       |  |  |
| (https://www.a  | lata.bsee.gov/homepg/data_cer                                                                              | nter/pipel | ine/pipel               | line.asp) (Pipeline Years) |        |       |  |  |

Table 23. OCS Pipeline Spill Rate Estimates for Updated Spill Record

# 5.5. Pipeline Spill Distributions

The analysis team mapped pipeline spills into spill size categories to study the distribution of a sufficient number of spills with relatively uniform spill volumes. For example, small spills with many occurrences in the spill record could be grouped together in a spill size category with a range of 1 to 10 bbl. For larger spills with fewer occurrences in the spill record, the analysis team had to widen the range of spill volumes for the spill size category, such as spills within a range of 50 to 1,000 bbl. This ensured that a sufficient number of spills were grouped into these categories for a statistically reliable analysis.

#### 5.5.1. Pipeline Spill Volume Estimates

The spill rates calculated in section 5.4 are based on 16 spills occurring since 1974. Table 24 describes the magnitude of these spills, providing the average and median spill sizes. Pipeline spills in recent history have been smaller on average.

|                             |                                          | Entire Reco      | ord          | Last 15 Years |               |              |  |  |
|-----------------------------|------------------------------------------|------------------|--------------|---------------|---------------|--------------|--|--|
| Call Course                 | # of                                     | Average Spill    | Median Spill | # of          | Average Spill | Median Spill |  |  |
| Spill Source                | Spills                                   | Size (bbl)       | Size (bbl)   | Spills        | Size (bbl)    | Size (bbl)   |  |  |
| All Spills                  | 16                                       | 5,808            | 3,750        | 3             | 1,512         | 1,500        |  |  |
| <b>Excluding Hurricanes</b> | 10                                       | 7,469            | 4,551        | 0             | N/A           | N/A          |  |  |
| Hurricanes Only             | rricanes Only 6 3,041 1,860 3 1,512 1,50 |                  |              |               |               |              |  |  |
| Source: U.S. DOI/BSEE OC    | CS Spill Da                              | itabase, Decembe | r            |               | ·             |              |  |  |

#### Table 24. OCS Pipeline Spill Counts and Average and Median Spill Sizes

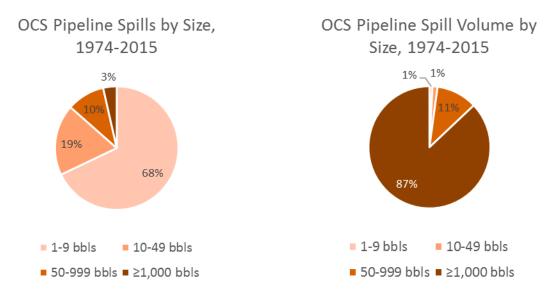
Table 25 provides estimates of the average and median spills over the last 15 years for each spill size category. The pipeline spill distribution is slightly less skewed toward small spills. While about 65% of platform spills are between 1 and 5 bbl, only 53% of pipeline spills fall within this range. Expected spill amounts within each spill size category are similar.

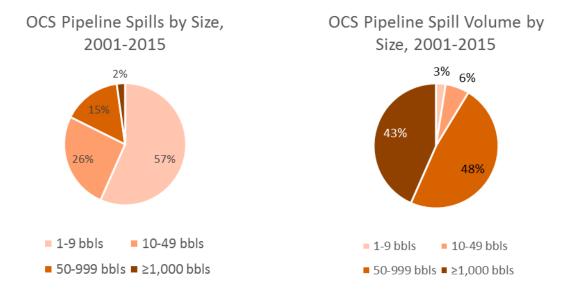
|                           | # of                                               |             |                          |                         |  |  |  |  |
|---------------------------|----------------------------------------------------|-------------|--------------------------|-------------------------|--|--|--|--|
| Spill Size                | Spills                                             | bbl Spilled | Average Spill Size (bbl) | Median Spill Size (bbl) |  |  |  |  |
| ≥1 to <5 bbl              | 59                                                 | 137.2       | 2.33                     |                         |  |  |  |  |
| ≥5 to <10 bbl             | 18                                                 | 121.1       | 6.73                     | 1.2                     |  |  |  |  |
| ≥10 to <20 bbl            | 22                                                 | 284.8       | 12.95                    | 4.3                     |  |  |  |  |
| ≥20 to <50 bbl            | 13                                                 | 365.4       | 28.11                    |                         |  |  |  |  |
| ≥50 to <100 bbl           | 8                                                  | 565         | 70.66                    |                         |  |  |  |  |
| ≥100 to <500 bbl          | 10                                                 | 1,952       | 195.24                   | 108                     |  |  |  |  |
| ≥500 to <1,000 bbl        | 3                                                  | 2,493       | 831.00                   |                         |  |  |  |  |
| ≥1,000 to <2,000 bbl      | 3                                                  | 4,536       | 1,512.00                 |                         |  |  |  |  |
| ≥2,000 to <3,000 bbl      | -                                                  | -           |                          | 1,500                   |  |  |  |  |
| ≥3,000 to <10,000 bbl     | -                                                  | -           | ,                        |                         |  |  |  |  |
| ≥10,000 bbl               | -                                                  | -           | ,                        | None                    |  |  |  |  |
| All Spills                | 136                                                | 10,455      | 76.88                    | 5.0                     |  |  |  |  |
| Source: U.S. DOI/BSEE OC. | Source: U.S. DOI/BSEE OCS Spill Database, December |             |                          |                         |  |  |  |  |

#### Table 25. OCS Pipeline Spill Distribution Statistics by Spill Size Category, 2001-2015

## 5.5.2. Changes in the Pipeline Spill Volume Distribution

This section compares the distribution of spills observed in the full record versus the 15-year rate. Figure 30 compares the spill counts to the spill volumes of various spill size categories in the full record time period. The total spilled volume during the full record time period is dominated by large spills. Of the 107,000 bbl spilled from 1974 to 2015, roughly 86.5% came from the 16 spills that were ≥1,000 bbl in size. Conversely, only about 1% of that total volume came from the 305 spills between 1 and 9 bbl in size. Table 26 lists the numerical values presented in these charts.





Figure 30. OCS Pipeline Spill Distribution (Number and Volume) by Spill Size Category, 1974-2015

| Spill Size       |                                                         |             | Average Spill |                  |                 |  |  |  |  |  |
|------------------|---------------------------------------------------------|-------------|---------------|------------------|-----------------|--|--|--|--|--|
| 1971-2015        | # of Spills                                             | bbl Spilled | Size (bbl)    | % Spills >=1 bbl | %Volume >=1 bbl |  |  |  |  |  |
| 1-9 bbl          | 307                                                     | 835.4       | 2.7           | 67.9%            | 0.8%            |  |  |  |  |  |
| 10-49 bbl        | 84                                                      | 1,455.9     | 17.3          | 18.6%            | 1.4%            |  |  |  |  |  |
| 50-999 bbl       | 45                                                      | 11,534.2    | 256.3         | 10.0%            | 10.8%           |  |  |  |  |  |
| ≥1000 bbl        | 16                                                      | 92,933.0    | 5,808.3       | 3.5%             | 87.0%           |  |  |  |  |  |
| Total            | 452                                                     | 106,758.5   | 6,084.7       | 100.0%           | 100.0%          |  |  |  |  |  |
| Source: U.S. DOI | Source: U.S. DOI/BSEE OCS Spill Database. December 2015 |             |               |                  |                 |  |  |  |  |  |

| Table 26. OCS P | ipeline Spill | Distribution | by Spill Size | Category, 1974-2 | 2015 |
|-----------------|---------------|--------------|---------------|------------------|------|
|                 |               |              |               |                  |      |

Source: U.S. DOI/BSEE OCS Spill Database, December 2015

Comparing Figure 31 for the 15-year rate to the full record rate, the number of large spill occurrences and the total volume dropped significantly as a percent of total. When compared to the 1974 to 2015 distribution, the 50-999 category makes up a much larger percentage of the spilled volume. This primarily is due to the absence of large spills in recent history and may signify the impact of improved technology on modern pipelines. Table 27 lists the numerical values for the charts.



#### Figure 31. OCS Pipeline Spill Distribution (Number and Volume) by Spill Size Category, 2001-2015

| Table 27. Ocs Tipeline Spin Distribution by Spin Size Category, 2001-2015 |                                                         |             |               |                 |                |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------|-------------|---------------|-----------------|----------------|--|--|--|--|--|
| Spill Size                                                                |                                                         |             | Average Spill |                 |                |  |  |  |  |  |
| 2001-2015                                                                 | # of Spills                                             | bbl Spilled | Size (bbl)    | % Spills ≥1 bbl | %Volume ≥1 bbl |  |  |  |  |  |
| 1-9 bbl                                                                   | 77                                                      | 258.3       | 3.4           | 56.6%           | 2.5%           |  |  |  |  |  |
| 10-49 bbl                                                                 | 35                                                      | 650.2       | 18.6          | 25.7%           | 6.2%           |  |  |  |  |  |
| 50-999 bbl                                                                | 21                                                      | 5,010.7     | 238.6         | 15.4%           | 47.9%          |  |  |  |  |  |
| ≥1000 bbl                                                                 | 3                                                       | 4,536.0     | 1,512.0       | 2.2%            | 43.4%          |  |  |  |  |  |
| Total                                                                     | 136                                                     | 10,455.2    | 1,772.5       | 100.0%          | 100.0%         |  |  |  |  |  |
| Source: U.S. DOI                                                          | Source: U.S. DOI/BSEE OCS Spill Database. December 2015 |             |               |                 |                |  |  |  |  |  |

Table 27. OCS Pipeline Spill Distribution by Spill Size Category, 2001-2015

Source: U.S. DOI/BSEE OCS Spill Database, December 2015

# 6. Tanker and Barge Spill Analysis

The portion of offshore production that is not shipped to shore via pipeline is transported via tanker or barge. This is a small portion of total crude traffic and is difficult to isolate for the purpose of developing spill rates. Instead this report considers several different tanker and barge populations worldwide and their spill records. Worldwide tanker and barge oil handled levels are far higher than those on the OCS. From 1974 to 2014, tankers worldwide handled almost 360 Bbbl of crude oil. In the U.S. alone, tankers transported about 70 Bbbl in that same timeframe. Petroleum barges transported about 11 Bbbl of crude oil in the U.S. from 1974 to 2014. This section examines spills, identifies trends, and develops spill rates for tankers and barges.

# 6.1. Tanker and Barge Spill Occurrences and Oil Handled

This section reviews the spill data for worldwide tankers, tankers operating in U.S. waters, ANS tankers, and barges operating in U.S. waters.

### 6.1.1. Worldwide Tanker Spills

Oil spills from tankers or barges may be caused by groundings, collisions, or other incidents in which the hull of the vessel is damaged and leaks oil. They may also be caused when oil is improperly handled as it is loaded or unloaded. The analysis team collected international exposure data and tanker spill data from 2009 to 2014 and limited the scope to include crude oil only. The analysis team then analyzed the worldwide tanker spill record to eliminate duplicate entries and ensure data quality. During this process, the analysis team discovered a small number of duplicate spills. For example, spills that occurred when two vessels collided could be logged in the spill record twice – one record for each vessel involved. To maintain an assumed Poisson distribution, these spills are considered as a single spill.

Table 28 summarizes worldwide tanker spills from 1974 to 2014 based on spill size category and spill location spill: in port or at sea. A total of 301 large spills occurred from 1974 to 2014, although the number of spills per year has decreased in the last 15 years. For the updated spill record from 2009 to 2014, four additional spills were identified and the annual volume of oil handled remained relatively consistent (between 13.7 and 14.2 Bbbl per year). The mode and size of the three newly identified 2014 spills could not be determined in the source data. As such they are assumed to be between 1,000 and 10,000 bbl. The new average spill rate over the entire record was 0.679 spills per Bbbl handled.

Across all spill size categories, spills tended to occur more frequently at sea than in port, except for spills between 1,000 and 9,999 bbl in volume. Overall, 163 of those occurred at sea, and 138 occurred in port. For spills with a volume between 10,000 and 99,999 bbl, a total of 93 spills occurred. About 67% occurred at sea, while about 33% occurred in port. Spills ≥100,000 bbl in volume followed a similar pattern. Of the 60 total spills ≥100,000 bbl, 67% occurred at sea and 33% occurred in port. For spills between 1,000 and 9,999 bbl in volume, the pattern was almost reversed. Only 61 of the 145 spills, or 41% of the total, occurred at sea, and the remaining 87 spills, or 59% of the total, occurred in port.

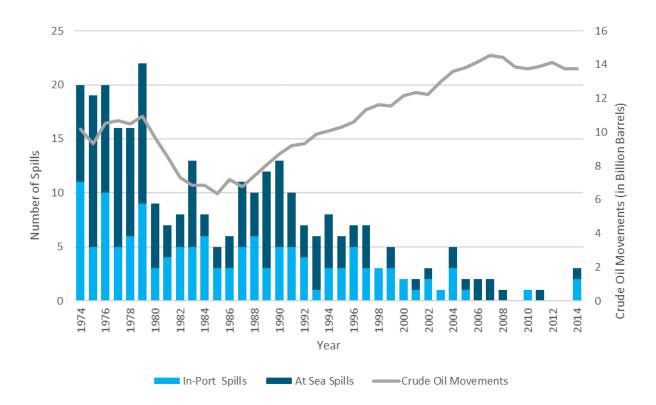

|      |        |                 | Spills In Port    |              |                 | Spills At Sea     |              | Crude Oil         | Spills      |
|------|--------|-----------------|-------------------|--------------|-----------------|-------------------|--------------|-------------------|-------------|
| Year | Spills | 1K-9.99K<br>bbl | 10K-99.99K<br>bbl | ≥100K<br>bbl | 1K-9.99K<br>bbl | 10K-99.99K<br>bbl | ≥100K<br>bbl | Handled<br>(Bbbl) | per<br>Bbbl |
| 1974 | 20     | 8               | 2                 | 1            | 5               | 2                 | 2            | 10.165            | 1.968       |
| 1975 | 19     | 1               | 1                 | 3            | 7               | 4                 | 3            | 9.330             | 2.036       |
| 1976 | 20     | 6               | 3                 | 1            | 2               | 2                 | 6            | 10.510            | 1.903       |
| 1977 | 16     | 2               | 2                 | 1            | 3               | 3                 | 5            | 10.692            | 1.496       |
| 1978 | 16     | 3               | 1                 | 2            | 3               | 4                 | 3            | 10.480            | 1.527       |
| 1979 | 22     | 4               | 2                 | 3            | 4               | 5                 | 4            | 10.956            | 2.008       |
| 1980 | 10     | 1               | 1                 | 1            | 3               | 2                 | 2            | 9.657             | 1.036       |
| 1981 | 7      | 3               | 1                 | 0            | 3               | 0                 | 0            | 8.535             | 0.820       |
| 1982 | 8      | 3               | 1                 | 1            | 3               | 0                 | 0            | 7.318             | 1.093       |
| 1983 | 13     | 4               | 1                 | 0            | 1               | 4                 | 3            | 6.860             | 1.895       |
| 1984 | 8      | 3               | 3                 | 0            | 1               | 1                 | 0            | 6.845             | 1.169       |
| 1985 | 5      | 1               | 2                 | 0            | 0               | 1                 | 1            | 6.353             | 0.787       |
| 1986 | 6      | 3               | 0                 | 0            | 0               | 3                 | 0            | 7.191             | 0.834       |
| 1987 | 11     | 4               | 1                 | 0            | 3               | 3                 | 0            | 6.762             | 1.627       |

 Table 28. Worldwide Tanker Spill Summary, 1974-2014

|       |        |          | Spills In Port |       |          | Spills At Sea | Crude Oil | Spills  |       |
|-------|--------|----------|----------------|-------|----------|---------------|-----------|---------|-------|
|       |        | 1K-9.99K | 10K-99.99K     | ≥100K | 1K-9.99K | 10K-99.99K    | ≥100K     | Handled | per   |
| Year  | Spills | bbl      | bbl            | bbl   | bbl      | bbl           | bbl       | (Bbbl)  | Bbbl  |
| 1988  | 10     | 3        | 3              | 0     | 2        | 1             | 1         | 7.412   | 1.349 |
| 1989  | 12     | 2        | 1              | 0     | 1        | 5             | 3         | 8.041   | 1.492 |
| 1990  | 13     | 5        | 0              | 0     | 2        | 5             | 1         | 8.707   | 1.493 |
| 1991  | 10     | 3        | 0              | 2     | 2        | 1             | 2         | 9.183   | 1.089 |
| 1992  | 7      | 2        | 1              | 1     | 2        | 1             | 0         | 9.301   | 0.753 |
| 1993  | 6      | 0        | 1              | 0     | 2        | 1             | 2         | 9.873   | 0.608 |
| 1994  | 8      | 1        | 1              | 1     | 1        | 2             | 2         | 10.083  | 0.793 |
| 1995  | 6      | 3        | 0              | 0     | 2        | 1             | 0         | 10.287  | 0.583 |
| 1996  | 7      | 4        | 0              | 1     | 2        | 0             | 0         | 10.618  | 0.659 |
| 1997  | 7      | 2        | 0              | 1     | 2        | 2             | 0         | 11.316  | 0.619 |
| 1998  | 3      | 3        | 0              | 0     | 0        | 0             | 0         | 11.617  | 0.258 |
| 1999  | 6      | 4        | 0              | 0     | 1        | 1             | 0         | 11.567  | 0.519 |
| 2000  | 2      | 0        | 2              | 0     | 0        | 0             | 0         | 12.173  | 0.164 |
| 2001  | 2      | 1        | 0              | 0     | 1        | 0             | 0         | 12.344  | 0.162 |
| 2002  | 3      | 2        | 0              | 0     | 1        | 0             | 0         | 12.217  | 0.246 |
| 2003  | 1      | 0        | 0              | 1     | 0        | 0             | 0         | 12.974  | 0.077 |
| 2004  | 5      | 3        | 0              | 0     | 1        | 1             | 0         | 13.596  | 0.368 |
| 2005  | 2      | 1        | 0              | 0     | 0        | 1             | 0         | 13.819  | 0.145 |
| 2006  | 2      | 0        | 0              | 0     | 0        | 2             | 0         | 14.166  | 0.141 |
| 2007  | 2      | 0        | 0              | 0     | 0        | 2             | 0         | 14.540  | 0.138 |
| 2008  | 1      | 0        | 0              | 0     | 0        | 1             | 0         | 14.439  | 0.069 |
| 2009  | 0      | 0        | 0              | 0     | 0        | 0             | 0         | 13.872  |       |
| 2010  | 1      | 0        | 1              | 0     | 0        | 0             | 0         | 13.750  | 0.073 |
| 2011  | 1      | 0        | 0              | 0     | 0        | 1             | 0         | 13.888  | 0.072 |
| 2012  | 0      | 0        | 0              | 0     | 0        | 0             | 0         | 14.127  |       |
| 2013  | 0      | 0        | 0              | 0     | 0        | 0             | 0         | 13.768  |       |
| 2014  | 3      | 2        | 0              | 0     | 1        | 0             | 0         | 13.754  | 0.218 |
| Total | 301    | 87       | 31             | 20    | 61       | 62            | 40        | 443.086 | 0.679 |

2009) (Oil Handled)

Even though worldwide crude oil movements have tended to increase since the 1980s, the number of large spills from tankers has tended to decrease since the early 1990s (see Figure 32). The analysis found that although crude oil movements increased over time, the number of recorded spills has decreased.



2016 Update of Occurrence Rates for Offshore Oil Spills

#### Figure 32. Crude Oil Movements vs. Worldwide Tanker Large Spills

The analysis team found the percentage of spills that occurred at sea or in port each year tended to fluctuate over the entire spill record. Although the total number of spills each year has tended to decrease, the percentage of spills per year based on tanker mode did not appear to change consistently. Overall, more spills have occurred at sea than in port for the entire spill record.

#### 6.1.2. U.S. Waters Tanker Spills

The analysis team next studied the subset of worldwide crude oil spills occurring in U.S. waters. Exposure volumes were estimated based on domestic crude oil transport volumes and crude oil import and export rates, which accounted for foreign tanker transport volumes. The analysis team had only sufficient data to estimate domestic exposure volumes and spill rates through 2013.

Table 29 summarizes domestic tanker spills from the years 1974 to 2013. Import and export volumes were computed by summing the volumes of crude oil imported to and exported from the U.S. The adjusted transport volumes for crude oil were computed by summing the domestic transport volume and 50% of the import and export volume each year. The rationale for this adjustment is that import and export movements spend less than half of their voyage within U.S. waters while domestic movements spend the entire voyage within U.S. waters (Anderson and LaBelle, 2000; Anderson *et al.*, 2012). The analysis team used the adjusted transport volume to calculate the annual spill rates.

The adjusted transport volumes tended to decrease in the last 15 years, with the most rapid rates of decline occurring in the last 5 years. Both the import and export volumes and the domestic transport volumes tended to decrease from 1999 to 2013. From 2008 to 2013, the adjusted transport volume declined by an average of 0.1026 Bbbl per year.

|       |        |       | Spills in Por | t     |       | Spills at Sea | 3     | Imports   |                   |                   |        |
|-------|--------|-------|---------------|-------|-------|---------------|-------|-----------|-------------------|-------------------|--------|
|       |        | 1K-   | 10K-          |       | 1K-   | 10K-          |       | and       | Domestic          | Adjusted          | Spills |
|       | All    | 9.99K | 99.99K        | ≥100K | 9.99K | 99.99K        | ≥100K | Exports   | Transport         | Transport         | Per    |
| Year  | Spills | bbl   | bbl           | bbl   | bbl   | bbl           | bbl   | Bbbl      | Bbbl <sup>1</sup> | Bbbl <sup>2</sup> | Bbb    |
| 1974  | 5      | 3     | 1             | 0     | 1     | 0             | 0     | 1.437     | 0.221             | 0.940             | 5.322  |
| 1975  | 3      | 1     | 0             | 1     | 1     | 0             | 0     | 1.702     | 0.173             | 1.024             | 2.930  |
| 1976  | 2      | 2     | 0             | 0     | 0     | 0             | 0     | 2.245     | 0.149             | 1.272             | 1.573  |
| 1977  | 2      | 1     | 1             | 0     | 0     | 0             | 0     | 2.686     | 0.204             | 1.547             | 1.293  |
| 1978  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.576     | 0.594             | 1.882             | 0.000  |
| 1979  | 5      | 3     | 1             | 0     | 0     | 0             | 1     | 2.521     | 0.639             | 1.900             | 2.632  |
| 1980  | 2      | 0     | 1             | 0     | 1     | 0             | 0     | 2.035     | 0.842             | 1.860             | 1.076  |
| 1981  | 2      | 1     | 1             | 0     | 0     | 0             | 0     | 1.737     | 0.875             | 1.744             | 1.147  |
| 1982  | 1      | 0     | 1             | 0     | 0     | 0             | 0     | 1.501     | 0.937             | 1.688             | 0.593  |
| 1983  | 1      | 1     | 0             | 0     | 0     | 0             | 0     | 1.208     | 0.990             | 1.594             | 0.627  |
| 1984  | 1      | 0     | 0             | 0     | 0     | 1             | 0     | 1.142     | 0.922             | 1.493             | 0.670  |
| 1985  | 2      | 1     | 1             | 0     | 0     | 0             | 0     | 1.084     | 1.002             | 1.544             | 1.295  |
| 1986  | 3      | 3     | 0             | 0     | 0     | 0             | 0     | 1.441     | 0.994             | 1.715             | 1.750  |
| 1987  | 2      | 0     | 0             | 0     | 1     | 1             | 0     | 1.582     | 1.061             | 1.852             | 1.080  |
| 1988  | 2      | 1     | 1             | 0     | 0     | 0             | 0     | 1.680     | 1.004             | 1.844             | 1.085  |
| 1989  | 2      | 1     | 0             | 0     | 0     | 0             | 1     | 1.988     | 0.879             | 1.873             | 1.068  |
| 1990  | 3      | 1     | 0             | 0     | 0     | 2             | 0     | 2.058     | 0.816             | 1.845             | 1.626  |
| 1991  | 2      | 2     | 0             | 0     | 0     | 0             | 0     | 1.949     | 0.817             | 1.792             | 1.116  |
| 1992  | 1      | 1     | 0             | 0     | 0     | 0             | 0     | 2.145     | 0.760             | 1.833             | 0.546  |
| 1993  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.382     | 0.663             | 1.854             |        |
| 1994  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.576     | 0.649             | 1.937             |        |
| 1995  | 1      | 1     | 0             | 0     | 0     | 0             | 0     | 2.470     | 0.595             | 1.830             | 0.546  |
| 1996  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.684     | 0.558             | 1.900             |        |
| 1997  | 1      | 1     | 0             | 0     | 0     | 0             | 0     | 2.879     | 0.513             | 1.953             | 0.512  |
| 1998  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.903     | 0.424             | 1.876             |        |
| 1999  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.963     | 0.344             | 1.826             |        |
| 2000  | 1      | 0     | 1             | 0     | 0     | 0             | 0     | 3.489     | 0.317             | 2.062             | 0.485  |
| 2001  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.242     | 0.348             | 1.969             |        |
| 2002  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.195     | 0.341             | 1.939             |        |
| 2003  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.438     | 0.339             | 2.058             |        |
| 2004  | 1      | 1     | 0             | 0     | 0     | 0             | 0     | 3.536     | 0.319             | 2.087             | 0.479  |
| 2005  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.480     | 0.298             | 2.038             |        |
| 2006  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.489     | 0.245             | 1.990             |        |
| 2007  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.472     | 0.254             | 1.990             |        |
| 2008  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.278     | 0.242             | 1.881             |        |
| 2009  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 3.000     | 0.234             | 1.734             |        |
| 2010  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.980     | 0.221             | 1.711             |        |
| 2011  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.747     | 0.205             | 1.579             |        |
| 2012  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.404     | 0.231             | 1.433             |        |
| 2013  | 0      | 0     | 0             | 0     | 0     | 0             | 0     | 2.105     | 0.315             | 1.368             |        |
| Total | 45     | 25    | 9             | 1     | 4     | 4             | 2     | 97.429    | 21.534            | 70.249            | 0.641  |
|       | 1      | 1     | ial domesti   |       |       |               |       | ransport) |                   |                   |        |

Table 29. Tanker Spills in U.S. Waters Summary, 1974-2013

Commerce of the United States, Part 5, National Summaries, 1975-2009 (Oil Handled)

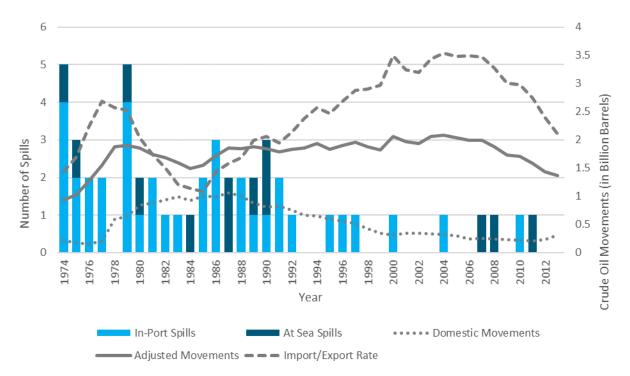
From 1974 to 2014, 45 large crude oil tanker spills occurred in the U.S. The findings for domestic tanker spills did not conform to the worldwide pattern of spills occurring more often at sea than in port. Thirty-five of the 45 total domestic spills occurred in port while only 10 occurred at sea.

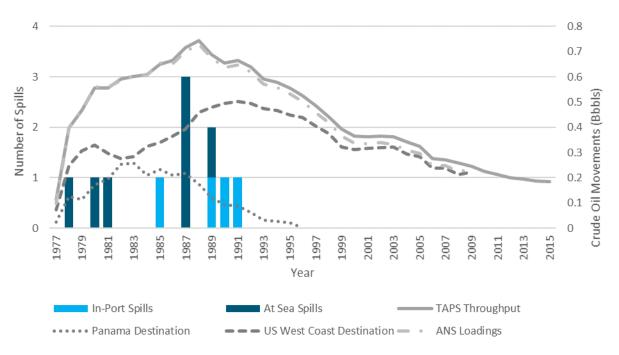
These observations may be due to the methods the analysis team used to filter the international tanker spill record for domestic spill data. The analysis team defined domestic tanker spills as those occurring within U.S. federal jurisdiction, specifically on the U.S. OCS and in coastal U.S. waters. The U.S. OCS extends roughly 200 nautical miles from the coast, and the analysis team controlled for domestic tanker spills based on this projection. Compared to the entire international tanker spill record, the domestic spill record encompassed a smaller area in which at sea spills would occur versus the area in which in port spills would occur. It may have been more likely for a spill in port to occur than a spill at sea given these geographical constraints.

Figure 33 illustrates the number of tanker spills in U.S waters that occurred each year, along with crude oil import and export rates, domestic movements, and adjusted movements. The analysis team found that the number of large spills per year may follow one of these possible trends:

- Spill counts tended to decrease in spite of an increasing number of adjusted crude oil movements around the mid-1980s, which then decreased in the mid-2000s.
- Spill counts decreased along with decreasing domestic crude oil movements during the mid-1980s.

The high spill counts in the 1970s do not correlate with high domestic movements during that same period, suggesting that the downward spill trend is a rate improvement and not caused by changes in exposure.





Figure 33. Crude Oil Movements and Import/Export Rate vs. Domestic Tanker Large Spills

Although the analysis team computed the domestic tanker spill rates using the adjusted crude oil movements, the observed number of spills appeared to follow trends in the domestic crude oil movements in Figure 33. Specific information on the oil spilled in each incident, such as whether the oil was foreign or domestic, was not available in the data. Categorizing spills based on the origin of the oil (foreign or domestic) could provide more insight on the trends in spill rates.

## 6.1.3. ANS Tanker Spills

ANS oil being shipped from Valdez, Alaska, is a highly traceable selection of tankers with a well understood spill record and oil handled volumes. Historical spill incidents are relatively few in number and include the Exxon Valdez spill, three spills by the tanker Stuyvesant, and seven others. No spills of ANS crude were identified since the 1991 spill by the Exxon San Francisco.

Figure 34 presents these 11 spills along with the oil handled exposure variables. TAPS pipeline throughput is used under the assumption that the vast majority of the TAPS pipeline oil is loaded on tankers at Valdez. Since 2009, it is assumed that almost all volume of ANS crude has been shipped to a U.S. west coast destination.





## 6.1.4. U.S. Waters Barge Spills

Petroleum barges transported over 70 Bbbl of petroleum in U.S. coastal and inland waters from 1974 to 2013, 11 Bbbl of which was crude oil. The volume of oil spilled by barges tended to be less than the volume of oil spilled by tankers, as oil tankers generally transport significantly larger volumes of oil per vessel than barges. Over the entire spill record, 183 oil spills from barges occurred in U.S. waters, with 28 of those spills involving crude oil.

Table 30 summarizes the number of petroleum and crude oil spills from barges in U.S. waters from 1974 to 2013. It shows that the volume of petroleum transported by barge remained fairly constant in U.S

waters from 1974 to 2013. The annual volume transported ranged between 1.54 and 1.85 Bbbl and did not tend to increase or decrease over time. The volume of crude oil transported by barge appeared to follow a similar pattern from 1974 to 2011, with no significant periods of increase or decrease over time. In the years 2012 to 2013, however, the volume of crude oil transported grew more rapidly than in previous years. In 2012, the volume increased by 39% over the previous year and grew by another 27% in 2013.

While transport volumes remained fairly constant, spill rates for both petroleum and crude oil barge spills decreased rapidly after 1990. Of the 183 total spills recorded from 1974 to 2013, only 35 occurred between the years 1991 and 2013. The first 17 years of the 40-year spill record, from 1974 to 1990, accounted for almost 81% of the total number of barge spills, while the latter 23 years, from 1991 to 2013, accounted for just over 19% of the spills.

|      |        | All P        | etroleum S     | pills (Inc | luding Crude               | e Oil)        | Crude Oil Spills Only |              |                |      |                            |               |
|------|--------|--------------|----------------|------------|----------------------------|---------------|-----------------------|--------------|----------------|------|----------------------------|---------------|
|      | All    | 1К-<br>9.99К | 10К-<br>24.99К | ≥25K       | Trans-<br>ported<br>Volume | Spills<br>Per | All                   | 1К-<br>9.99К | 10К-<br>24.99К | ≥25K | Trans-<br>ported<br>Volume | Spills<br>Per |
| Year | Spills | bbl          | bbl            | bbl        | Bbbl                       | Bbbl          | Spills                | bbl          | bbl            | bbl  | Bbbl                       | Bbbl          |
| 1974 | 13     | 10           | 0              | 3          | 1.616                      | 8.045         | 5                     | 4            | 0              | 1    | 0.321                      | 15.576        |
| 1975 | 10     | 8            | 2              | 0          | 1.607                      | 6.223         | 4                     | 3            | 1              | 0    | 0.331                      | 12.085        |
| 1976 | 9      | 9            | 0              | 0          | 1.746                      | 5.155         | 3                     | 3            | 0              | 0    | 0.339                      | 8.850         |
| 1977 | 12     | 11           | 1              | 0          | 1.785                      | 6.723         | 0                     | 0            | 0              | 0    | 0.327                      | 0.000         |
| 1978 | 13     | 11           | 2              | 0          | 1.850                      | 7.027         | 2                     | 2            | 0              | 0    | 0.359                      | 5.571         |
| 1979 | 10     | 10           | 0              | 0          | 1.707                      | 5.858         | 1                     | 1            | 0              | 0    | 0.319                      | 3.135         |
| 1980 | 10     | 10           | 0              | 0          | 1.716                      | 5.828         | 2                     | 2            | 0              | 0    | 0.270                      | 7.407         |
| 1981 | 5      | 3            | 0              | 2          | 1.675                      | 2.985         | 0                     | 0            | 0              | 0    | 0.219                      | 0.000         |
| 1982 | 4      | 3            | 0              | 1          | 1.569                      | 2.549         | 0                     | 0            | 0              | 0    | 0.227                      | 0.000         |
| 1983 | 5      | 1            | 3              | 1          | 1.537                      | 3.253         | 1                     | 0            | 1              | 0    | 0.251                      | 3.984         |
| 1984 | 8      | 5            | 2              | 1          | 1.640                      | 4.878         | 1                     | 0            | 1              | 0    | 0.275                      | 3.636         |
| 1985 | 9      | 7            | 2              | 0          | 1.580                      | 5.696         | 2                     | 2            | 0              | 0    | 0.300                      | 6.667         |
| 1986 | 6      | 5            | 1              | 0          | 1.642                      | 3.654         | 1                     | 1            | 0              | 0    | 0.296                      | 3.378         |
| 1987 | 4      | 4            | 0              | 0          | 1.666                      | 2.401         | 0                     | 0            | 0              | 0    | 0.270                      | 0.000         |
| 1988 | 9      | 8            | 0              | 1          | 1.738                      | 5.178         | 1                     | 1            | 0              | 0    | 0.305                      | 3.279         |
| 1989 | 7      | 7            | 0              | 0          | 1.715                      | 4.082         | 0                     | 0            | 0              | 0    | 0.283                      | 0.000         |
| 1990 | 12     | 10           | 2              | 0          | 1.744                      | 6.881         | 2                     | 2            | 0              | 0    | 0.311                      | 6.431         |
| 1991 | 3      | 3            | 0              | 0          | 1.649                      | 1.819         | 0                     | 0            | 0              | 0    | 0.282                      | 0.000         |
| 1992 | 1      | 1            | 0              | 0          | 1.601                      | 0.625         | 0                     | 0            | 0              | 0    | 0.279                      | 0.000         |
| 1993 | 2      | 2            | 0              | 0          | 1.638                      | 1.221         | 0                     | 0            | 0              | 0    | 0.284                      | 0.000         |
| 1994 | 0      | 0            | 0              | 0          | 1.637                      | 0.000         | 0                     | 0            | 0              | 0    | 0.269                      | 0.000         |
| 1995 | 2      | 1            | 1              | 0          | 1.600                      | 1.250         | 0                     | 0            | 0              | 0    | 0.257                      | 0.000         |
| 1996 | 4      | 3            | 1              | 0          | 1.613                      | 2.480         | 0                     | 0            | 0              | 0    | 0.262                      | 0.000         |
| 1997 | 2      | 2            | 0              | 0          | 1.734                      | 1.153         | 0                     | 0            | 0              | 0    | 0.262                      | 0.000         |
| 1998 | 1      | 1            | 0              | 0          | 1.702                      | 0.588         | 1                     | 1            | 0              | 0    | 0.215                      | 4.651         |
| 1999 | 2      | 2            | 0              | 0          | 1.649                      | 1.213         | 0                     | 0            | 0              | 0    | 0.202                      | 0.000         |
| 2000 | 2      | 2            | 0              | 0          | 1.670                      | 1.198         | 0                     | 0            | 0              | 0    | 0.195                      | 0.000         |

Table 30. Barge Spills in U.S. Waters (Including Inland Waters) Summary, 1974-2013

#### 2016 Update of Occurrence Rates for Offshore Oil Spills

| Source: U.S. DOI/BSEE OCS Spill Database, December 2015 (Spills); U.S. Army Corps of Engineers, Waterborne |     |     |    |    |        |       |    |    |   |   |        |       |
|------------------------------------------------------------------------------------------------------------|-----|-----|----|----|--------|-------|----|----|---|---|--------|-------|
| Total                                                                                                      | 178 | 149 | 18 | 11 | 66.706 | 2.668 | 28 | 24 | 3 | 1 | 10.365 | 2.701 |
| 2013                                                                                                       | 1   | 1   | 0  | 0  | 1.816  | 0.551 | 0  | 0  | 0 | 0 | 0.451  | 0.000 |
| 2012                                                                                                       | 2   | 1   | 1  | 0  | 1.678  | 1.192 | 1  | 1  | 0 | 0 | 0.326  | 3.067 |
| 2011                                                                                                       | 0   | 0   | 0  | 0  | 1.542  | 0.000 | 0  | 0  | 0 | 0 | 0.198  | 0.000 |
| 2010                                                                                                       | 0   | 0   | 0  | 0  | 1.575  | 0.000 | 0  | 0  | 0 | 0 | 0.171  | 0.000 |
| 2009                                                                                                       | 0   | 0   | 0  | 0  | 1.570  | 0.000 | 0  | 0  | 0 | 0 | 0.164  | 0.000 |
| 2008                                                                                                       | 1   | 1   | 0  | 0  | 1.636  | 0.611 | 0  | 0  | 0 | 0 | 0.169  | 0.000 |
| 2007                                                                                                       | 0   | 0   | 0  | 0  | 1.795  | 0.000 | 0  | 0  | 0 | 0 | 0.187  | 0.000 |
| 2006                                                                                                       | 2   | 2   | 0  | 0  | 1.753  | 1.141 | 0  | 0  | 0 | 0 | 0.191  | 0.000 |
| 2005                                                                                                       | 2   | 1   | 0  | 1  | 1.709  | 1.170 | 1  | 1  | 0 | 0 | 0.205  | 4.878 |
| 2004                                                                                                       | 2   | 2   | 0  | 0  | 1.688  | 1.185 | 0  | 0  | 0 | 0 | 0.210  | 0.000 |
| 2003                                                                                                       | 1   | 0   | 0  | 1  | 1.634  | 0.612 | 0  | 0  | 0 | 0 | 0.209  | 0.000 |
| 2002                                                                                                       | 0   | 0   | 0  | 0  | 1.600  | 0.000 | 0  | 0  | 0 | 0 | 0.191  | 0.000 |
| 2001                                                                                                       | 2   | 2   | 0  | 0  | 1.684  | 1.188 | 0  | 0  | 0 | 0 | 0.183  | 0.000 |

Commerce of the United States, Part 5, National Summaries, 1975-2009 (Oil Handled)

Figure 35 illustrates the data summarized in Table 30, in addition to the total product movements, which were computed as the total petroleum movements minus the crude oil movements. The analysis team found that few barge spills in U.S. waters involved crude oil. Over the entire spill record, the number crude oil spills tended to decrease, while crude oil movements remained fairly constant until around 2012 and 2013. The number of product spills tended to fluctuate from 1974 to 1990, then decreased rapidly after 1990, while product movements remained fairly constant. As a result of the steep drop off in spills after 1990, the analysis team identified the period from 1991 to 2013 as a potential date range to conduct a trend analysis.

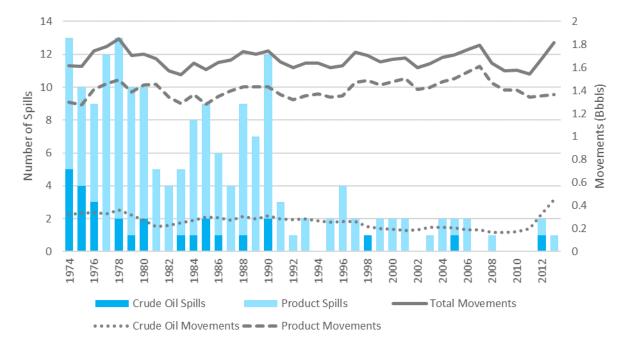



Figure 35. Movements vs. Domestic Barge Large Spills

# 6.2. Tanker and Barge Exposure Units

The analysis for this report included review of many potential alternative exposure variables for tankers and barges. Unlike offshore facilities and pipelines, tankers and barges are not geographically bound to a given region. This makes it difficult to assign exposure to a specific region. Worldwide spill rates bypass this issue by not regarding any regional boundaries, but are also less relevant for evaluating activity in U.S. waters.

**Table** 31 lists a selection of potential alternative exposure variables.

| Exposure Metric                   | Feasibility | Relevance | Comments                                                                                      |
|-----------------------------------|-------------|-----------|-----------------------------------------------------------------------------------------------|
| Worldwide Crude<br>Imports        | High        | Medium    | Existing metric. Applies to worldwide tanker spills.                                          |
| ANS Loadings                      | Medium      | Medium    | Existing metric. Applies to ANS tanker spills.                                                |
| U.S. Crude Commerce               | High        | Medium    | Existing metric. Applies to U.S. waters tanker spills and interior barge spills.              |
| Number of Tankers                 | Medium      | Medium    | Estimated from IHS Maritime and Trade data.<br>Relevant only to worldwide tanker spill rates. |
| Tanker Transit Miles              | Low         | High      | The analysis team did not locate sufficient data to estimate this metric.                     |
| Average Daily Count<br>of Tankers | Low         | High      | The analysis team did not locate sufficient data to estimate this metric.                     |
| Average Daily Volume<br>of Oil    | Low         | High      | The analysis team did not locate sufficient data to estimate this metric.                     |

| Table 31. Tanker and Barge | Exposure Metrics |
|----------------------------|------------------|
|----------------------------|------------------|

The only feasible alternative exposure variable that was defined was tanker years. These data were available from IHS Maritime and Trade on a worldwide basis. The most interesting feature of these exposure data is the split between tankers meeting the 1992 MARPOL double hull requirement<sup>11</sup> and other tankers.

<sup>&</sup>lt;sup>11</sup> MARPOL is an international convention about maritime pollution.

http://www.imo.org/en/About/conventions/listofconventions/pages/international-convention-for-the-prevention-of-pollution-from-ships-(marpol).aspx

Figure 36 plots this exposure data against the number of large spills. Unlike platforms and pipelines, for which the improved spill trend is not easily attributable to the exposure variables considered, tanker spills are easily attributable to the number of non-MARPOL compliant tankers.

Since single-hull tankers are being phased out worldwide, the number of non-MARPOL tankers is a poor exposure variable for projection purposes. Representative spill rates for the new MARPOL double hull tankers may not be calculable until more years of data are collected.

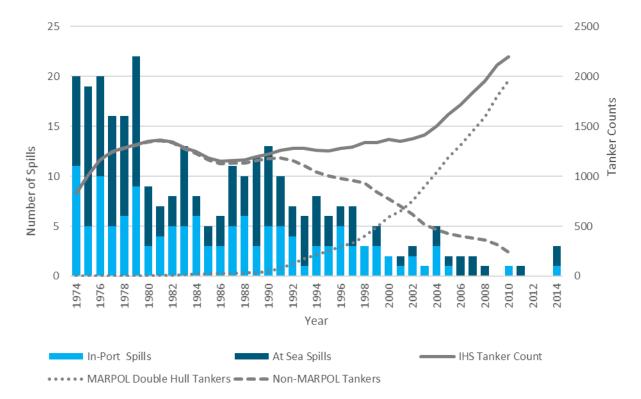



Figure 36. MARPOL and Non-MARPOL Tankers vs. Worldwide Tanker Spills

## 6.3. Tanker and Barge Trend Analysis

Large tanker and barge spills occur relatively frequently compared to platform and OCS pipeline spills. Practically, this enables the calculation of annual spill rates (normalized by the exposure level) for trend analysis instead of constructing oil handled intervals, as done for platforms and pipelines. Figure 37 plots the annual spill rates for worldwide tankers and tankers in U.S. waters. Recent portions of the data were tested for trend to identify stable periods for spill rate estimation. Although the spill rate for tankers worldwide has greatly decreased, it still maintains a statistically significant downward trend for any reasonable segment of the data.

For tanker spills in U.S. waters, the period from 1992 to 2013 appears to be nearly trendless. Linear regression of year onto the annual spill rate over this period produces a coefficient of -0.0018, suggesting that the slope of the trend is sufficiently close to zero to allow for a reasonable spill rate calculation over this period. As in the case of the platform small and large spill trend analysis, these regression findings are not suitable for forecasting purposes.

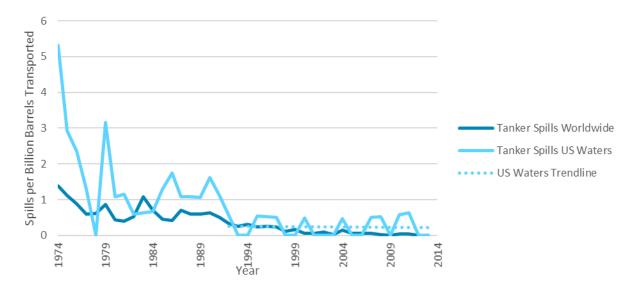




Figure 37. Worldwide and U.S. Waters Tanker Spill Trends, 1974-2014

Figure 38 considers a similar period for all barge spills of petroleum (including crude). The trend line for the period from 1992 to 2013 has a slope of -0.0364. Although this slope is higher than for U.S. Waters tankers, it is still relatively low when compared to the slope that would be calculated if spills prior to 1992 were included in the regression.



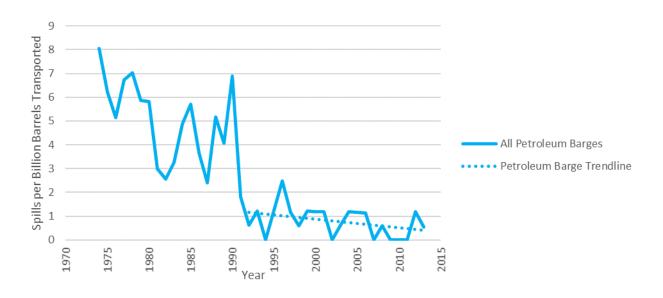



Figure 38. Petroleum Barge Spill Trends, 1974-2014

The absence of any recent spills by ANS tankers makes trend analysis of these spills impossible.

## 6.4. Tanker and Barge Spill Rates

This section develops a wide variety of rates for each of the major tanker and barge populations split by operating mode: at sea and in port, spill size categories, and spill fluid. As in the prior sections, this section reports rates based on the full record and for a recent 15-year period. The trend analysis identified the period from 1992 to present as a relevant spill rate setting period for tankers and barges in U.S. waters. Although this is a period of 23 years, this data range is used for calculating the recent spill rates, and is still referred to as the 15-year rate, in keeping with Anderson *et al.* (2012).

## 6.4.1. Worldwide Tanker Spill Rates

The frequency of worldwide tanker spills has declined dramatically (see Table 32). There is no ideal period for rate setting due to the continued downward trend in spill rates. For other tanker types, the period from 1992 to 2013 appeared to be relatively trendless. The updated tanker rates will use this period as well. Aside from the observed gradual decrease in spill rates since 1992, the date marks the initial MARPOL regulations for single hull tanker phase out.<sup>12</sup>

|                                                                                                       | Previous Rate 1974-2008 <sup>1</sup> |            |                   | Updated Ra      | Updated Rate 1974-2014 |                   |                 | e 1992-2 | 2014              |
|-------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------------------|-----------------|------------------------|-------------------|-----------------|----------|-------------------|
| Spill Size                                                                                            | Volume                               |            |                   | Volume          |                        |                   | Volume          |          |                   |
| and                                                                                                   | Transported                          | # of       | Spill             | Transported     | # of                   | Spill             | Transported     | # of     | Spill             |
| Location                                                                                              | (Bbbl)                               | Spills     | Rate <sup>2</sup> | (Bbbl)          | Spills                 | Rate <sup>2</sup> | (Bbbl)          | Spills   | Rate <sup>2</sup> |
| ≥1,000 bbl                                                                                            |                                      |            |                   |                 |                        |                   |                 |          |                   |
| All Spills                                                                                            | 359.9                                | 303        | 0.84              | 443.1           | 301                    | 0.68              | 288.1           | 75       | 0.26              |
| In Port                                                                                               |                                      | 137        | 0.38              |                 | 138                    | 0.31              |                 | 39       | 0.14              |
| At Sea                                                                                                |                                      | 166        | 0.46              |                 | 163                    | 0.37              |                 | 36       | 0.12              |
| ≥10,000 bb                                                                                            | bl                                   |            |                   |                 |                        |                   |                 |          |                   |
| All Spills                                                                                            | 359.9                                | 151        | 0.42              | 443.1           | 153                    | 0.35              | 288.1           | 31       | 0.11              |
| In Port                                                                                               |                                      | 50         | 0.14              |                 | 51                     | 0.12              |                 | 11       | 0.04              |
| At Sea                                                                                                |                                      | 101        | 0.28              |                 | 102                    | 0.23              |                 | 20       | 0.07              |
| ≥100,000 b                                                                                            | bl                                   |            |                   |                 |                        |                   |                 |          |                   |
| All Spills                                                                                            | 359.9                                | 62         | 0.17              | 443.1           | 60                     | 0.14              | 288.1           | 9        | 0.03              |
| In Port                                                                                               |                                      | 20         | 0.05              |                 | 20                     | 0.05              |                 | 5        | 0.02              |
| At Sea                                                                                                |                                      | 42         | 0.12              |                 | 40                     | 0.09              |                 | 4        | 0.01              |
| <sup>1</sup> Anderson and LaBelle (2012)                                                              |                                      |            |                   |                 |                        |                   |                 |          |                   |
| <sup>2</sup> Spill rate = number of spills ≥1,000 bbl (or 10,000 bbl or 100,000 bbl) per Bbbl handled |                                      |            |                   |                 |                        |                   |                 |          |                   |
| Sources: U.S<br>2009) (Oil H                                                                          | 5. DOI/BSEE OCS 5<br>andled)         | Spill Data | base, De          | cember 2015 (Sp | ills); BP S            | tatistical        | Review of World | Energy ( | 1975-             |

The slight decrease in the number of spills in the full record since the prior report is due to increased screening of duplicates and the absence of recent large spills.

<sup>&</sup>lt;sup>12</sup>http://www.imo.org/en/OurWork/Environment/PollutionPrevention/OilPollution/Pages/constructionrequireme nts.aspx

### 6.4.2. U.S. Waters Tanker Spill Rates

Tanker Spills in U.S. Waters uses 1992 to 2013 as its 15-year rate period (see Table 33). The trend analysis identified this data range as relatively trendless. A range broader than 15 years will only make the estimate more robust if there is no observable trend during the period.

|                                                                                                             | Previous Rat        | te 1974-2  | 2008 <sup>1</sup> | Updated Ra          | Updated Rate 1974-2013 |                   |                     | Last 15-year Rate 1992-2013 |                   |  |
|-------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------------|---------------------|------------------------|-------------------|---------------------|-----------------------------|-------------------|--|
| Spill Size                                                                                                  | Volume              |            |                   | Volume              |                        |                   | Volume              |                             |                   |  |
| and                                                                                                         | Transported         | # of       | Spill             | Transported         | # of                   | Spill             | Transported         | # of                        | Spill             |  |
| Location                                                                                                    | (Bbbl) <sup>3</sup> | Spills     | Rate <sup>2</sup> | (Bbbl) <sup>3</sup> | Spills                 | Rate <sup>2</sup> | (Bbbl) <sup>3</sup> | Spills                      | Rate <sup>2</sup> |  |
| ≥1,000 bbl                                                                                                  |                     |            |                   |                     |                        |                   |                     |                             |                   |  |
| All Spills                                                                                                  | 62.4                | 53         | 0.85              | 70.3                | 45                     | 0.64              | 40.8                | 5                           | 0.12              |  |
| In Port                                                                                                     |                     | 37         | 0.59              |                     | 35                     | 0.50              |                     | 5                           | 0.12              |  |
| At Sea                                                                                                      |                     | 16         | 0.26              |                     | 10                     | 0.14              |                     | 0                           | 0.03 <sup>3</sup> |  |
| ≥10,000 bb                                                                                                  | bl                  |            |                   |                     |                        |                   |                     |                             |                   |  |
| All Spills                                                                                                  | 62.4                | 20         | 0.32              | 70.3                | 16                     | 0.23              | 40.8                | 1                           | 0.02              |  |
| In Port                                                                                                     |                     | 10         | 0.16              |                     | 10                     | 0.14              |                     | 1                           | 0.02              |  |
| At Sea                                                                                                      |                     | 10         | 0.16              |                     | 6                      | 0.09              |                     | 0                           | 0.01 <sup>3</sup> |  |
| <sup>1</sup> Anderson and LaBelle (2000)                                                                    |                     |            |                   |                     |                        |                   |                     |                             |                   |  |
| <sup>2</sup> Spill rate = number spills ≥1,000 bbl (or 10,000 bbl or 100,000 bbl) in size per Bbbl handled  |                     |            |                   |                     |                        |                   |                     |                             |                   |  |
| <sup>3</sup> Assume th                                                                                      | hat the same rati   | o of at se | ea to all s       | pills applies to th | is period              | as to the         | full record.        |                             |                   |  |
| Sources: U.S. DOI/BSEE OCS Spill Database, December 2015 (Spills); U.S. Army Corps of Engineers, Waterborne |                     |            |                   |                     |                        |                   |                     |                             |                   |  |

The updated rates are lower than previously estimated for two reasons. First, the new period of data has a low spill rate when compared to the prior full record. Additionally, the data underwent minor changes as the analysis process meticulously removed duplicate events, screened spills by fluid type, and geospatially reviewed the occurrences within U.S. waters. Even with these refinements, the full record rate is still highly conservative when compared to recent experience.

*Commerce of the United States, Part 5, National Summaries, 1975-2009 (Oil Handled)* 

### 6.4.3. ANS Crude Tanker Spill Rates

Spill rates for tankers transporting ANS crude are particularly difficult given the limited number of historical spills and the absence of a spill in the record since 1991. Table 34 includes full record rates. Fifteen-year rates are not calculated, given the lack of data.

| Spill                                        | Previous Rate 1977-2008 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                            |                |                            | revious Rate 1977-2008 <sup>2</sup> Updated Rate 1977-2015 |                |                            | Last 15-<br>2001                | year Rat<br>-2015⁴ | e                          |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|------------------------------------------------------------|----------------|----------------------------|---------------------------------|--------------------|----------------------------|--|--|
| Source:<br>U.S. Flag<br>Ships <sup>1</sup>   | Volume<br>Transported<br>(Bbbl)                                                                                                                                                                                                                                                                                                                                                                                                 | # of<br>Spills | Spill<br>Rate <sup>3</sup> | Volume<br>Transported<br>(Bbbl)                            | # of<br>Spills | Spill<br>Rate <sup>3</sup> | Volume<br>Transported<br>(Bbbl) | # of<br>Spills     | Spill<br>Rate <sup>3</sup> |  |  |
| ≥1,000 bbl                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                            | 1                                                          |                |                            |                                 |                    |                            |  |  |
| All Spills                                   | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                            | 11             | 0.72                       | 17.3                                                       | 11             | 0.64                       | 4.0                             | 0                  |                            |  |  |
| In Port                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4              | 0.26                       |                                                            | 4              | 0.23                       |                                 | 0                  |                            |  |  |
| At Sea                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7              | 0.46                       |                                                            | 7              | 0.41                       |                                 | 0                  |                            |  |  |
| ≥10,000 bb                                   | ≥10,000 bbl <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                        |                |                            |                                                            |                |                            |                                 |                    |                            |  |  |
| All Spills                                   | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                            | 3              | 0.20                       | 17.3                                                       | 3              | 0.17                       | 4.0                             | 0                  |                            |  |  |
| In Port                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0              |                            |                                                            | 0              |                            |                                 | 0                  |                            |  |  |
| At Sea                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3              | 0.20                       |                                                            | 3              | 0.17                       |                                 | 0                  |                            |  |  |
| ports, such a<br>the GOM, b<br>citizens, cre | <sup>1</sup> The Jones Act, part of the Merchant Marine Act of 1920, requires that goods transported by water between U.S. ports, such as North Slope Crude Oil from Valdez, Alaska, to U.S. coastal ports in Alaska, Hawaii, California, and the GOM, be carried by U.S. Flag Ships. U.S. Flag Ships must be constructed (or rebuilt) in the U.S., owned by U.S. citizens, crewed by U.S. citizens, and registered in the U.S. |                |                            |                                                            |                |                            |                                 |                    |                            |  |  |
| <sup>2</sup> Anderson and LaBelle (2000)     |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                            |                                                            |                |                            |                                 |                    |                            |  |  |
|                                              | <sup>3</sup> Spill rate = number of spills ≥1,000 bbl (or ≥10,000 bbl or ≥100,000 bbl) in size per Bbbl handled<br><sup>4</sup> Zero spills ≥1,000 bbl for ANS crude oil tankers in last 15 years (2001-2015).                                                                                                                                                                                                                  |                |                            |                                                            |                |                            |                                 |                    |                            |  |  |
| Source: U.S.                                 | DOI/BSEE OCS S                                                                                                                                                                                                                                                                                                                                                                                                                  | oill Datab     | ase, Dec                   | ember 2015 (Spil                                           | ls); Alyes     | ka Pipeliı                 | ne Service Compa                | ny, 2016           |                            |  |  |

#### Table 34. ANS Crude Tankers Unadjusted Spill Rates (Crude)

(<u>http://www.alyeska-pipe.com/TAPS/PipelineOperations/Throughput</u>) (Oil Handled)

The updated rates have decreased as the volume of oil handled has increased. No new spill events were identified.

### 6.4.4. Barges in U.S. Waters Spill Rates

Barge Spills in U.S. Waters uses 1992 to 2013 as its 15-year rate period (see Table 35). The trend analysis identified this data range as relatively trendless. A range broader than 15 years will make the estimate more robust if there is no observable trend during the period.

|                                                                                                                                           | Previous I          | Rate 197   | <b>4-2008</b> <sup>1</sup> | Updated F    | Updated Rate 1974-2013 |                   |         | Last 15-year Rate 1992-2013 |                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|----------------------------|--------------|------------------------|-------------------|---------|-----------------------------|-------------------|--|--|
|                                                                                                                                           | Volume              |            |                            | Volume       |                        |                   | Volume  |                             |                   |  |  |
| Spill                                                                                                                                     | Handled             | # of       | Spill                      | Handled      | # of                   | Spill             | Handled | # of                        | Spill             |  |  |
| Source                                                                                                                                    | (Bbbl) <sup>3</sup> | Spills     | Rate <sup>2</sup>          | (Bbbl)       | Spills                 | Rate <sup>2</sup> | (Bbbl)  | Spills                      | Rate <sup>2</sup> |  |  |
| ≥1,000 bbl                                                                                                                                |                     | ·          |                            |              |                        |                   |         |                             |                   |  |  |
| All                                                                                                                                       | 58.53               | 197        | 3.37                       | 66.7         | 178                    | 2.67              | 36.5    | 29                          | 0.79              |  |  |
| Petroleum                                                                                                                                 |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| Products                                                                                                                                  |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| Crude Oil                                                                                                                                 | 9.06                | 28         | 3.09                       | 10.4         | 28                     | 2.70              | 5.1     | 3                           | 0.59              |  |  |
| Only                                                                                                                                      |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| ≥10,000 bbl                                                                                                                               |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| All                                                                                                                                       | 58.53               | 33         | 0.56                       | 66.7         | 29                     | 0.43              | 36.5    | 5                           | 0.14              |  |  |
| Petroleum                                                                                                                                 |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| Products                                                                                                                                  |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| Crude Oil                                                                                                                                 | 9.06                | 5          | 0.55                       | 10.4         | 4                      | 0.39              | 5.1     | 0                           | 0.08 <sup>3</sup> |  |  |
| Only                                                                                                                                      |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| <sup>1</sup> Anderson a                                                                                                                   | nd LaBelle (20      | 000)       |                            |              |                        |                   |         |                             |                   |  |  |
| <sup>2</sup> Spill rate = number of spills ≥1,000 bbl (or ≥10,000 bbl) in size per Bbbl handled                                           |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| <sup>3</sup> Assume that the ratio of the $\geq$ 10,000 bbl rate to the $\geq$ 1,000 bbl rate is the same for the 15-year rate as for the |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| updated rate                                                                                                                              |                     |            |                            |              |                        |                   |         |                             |                   |  |  |
| Source: U.S. D                                                                                                                            | -                   |            | -                          | •            |                        | ,                 |         | rs, Waterb                  | orne              |  |  |
| Commerce of                                                                                                                               | the United Sta      | ates, Part | 5, Nationa                 | l Summaries, | 1975-200               | 9 (Oil Har        | ndled)  |                             |                   |  |  |

Table 36 lists confidence intervals for these rates. Because no exposure period analysis was performed for tankers, the bootstrap could not be applied by treating exposure periods as separate statistical observations. Consequently, the confidence intervals below are calculated using the normal approximation to the Poisson distributed rate. In a few instances, the approximation led to the lower bound of the interval being negative. In these cases, a value of 0 replaced the calculated lower bound. The symbol "--.--" indicates that the confidence interval could not be computed.

|                                                                                                                                                     |                                      |       | All Spills |       |       | In Port    |       |       | At Sea     |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|------------|-------|-------|------------|-------|-------|------------|-------|--|
|                                                                                                                                                     | Spill Size                           | Lower | Selected   | Upper | Lower | Selected   | Upper | Lower | Selected   | Upper |  |
| Entities                                                                                                                                            | (Lower Bound)                        | Bound | Spill Rate | Bound | Bound | Spill Rate | Bound | Bound | Spill Rate | Bound |  |
| Crude Oil Spills                                                                                                                                    |                                      |       |            |       |       |            |       |       |            |       |  |
| Worldwide                                                                                                                                           | 1,000                                |       | 0.26       |       |       | 0.14       |       |       | 0.12       |       |  |
| Tankers                                                                                                                                             | 10,000                               |       | 0.11       |       |       | 0.04       |       |       | 0.07       |       |  |
| (1992-2010) <sup>1</sup>                                                                                                                            | 100,000                              |       | 0.03       |       |       | 0.02       |       |       | 0.01       |       |  |
| Tankers in U.S.                                                                                                                                     | 1,000                                | 0.02  | 0.12       | 0.23  | 0.02  | 0.12       | 0.23  |       | 0.03       |       |  |
| Waters                                                                                                                                              | 10,000                               | 0.00  | 0.02       | 0.07  | 0.00  | 0.02       | 0.07  |       | 0.01       |       |  |
| (1992-2013)                                                                                                                                         |                                      |       |            |       |       |            |       |       |            |       |  |
| ANS Tankers                                                                                                                                         | 1,000                                | 0.26  | 0.64       | 1.01  | 0.00  | 0.23       | 0.46  | 0.11  | 0.41       | 0.71  |  |
| (1977-2015)                                                                                                                                         | 10,000                               | 0.00  | 0.17       | 0.37  |       | 0.00       |       | 0.00  | 0.17       | 0.37  |  |
| Barges in U.S.                                                                                                                                      | 1,000                                | 0.00  | 0.59       | 1.26  |       | N/A        |       |       | N/A        |       |  |
| Waters                                                                                                                                              | 10,000                               | 0.00  | 0.08       | 0.34  |       | N/A        |       |       | N/A        |       |  |
| (1992-2013)                                                                                                                                         |                                      |       |            |       |       |            |       |       |            |       |  |
| Petroleum Spills                                                                                                                                    |                                      |       |            |       |       |            |       |       |            |       |  |
| Barges in U.S.                                                                                                                                      | 1,000                                | 0.51  | 0.79       | 1.08  |       | N/A        |       |       | N/A        |       |  |
| Waters                                                                                                                                              | 10,000                               | 0.02  | 0.14       | 0.26  |       | N/A        |       |       | N/A        |       |  |
| (1992-2013)                                                                                                                                         |                                      |       |            |       |       |            |       |       |            |       |  |
| <sup>1</sup> Because of the downward trend in worldwide tanker spill rates, these rates include spills from a period of higher spill rates than are |                                      |       |            |       |       |            |       |       |            |       |  |
| currently being experienced. Therefore, the rates are highly conservative. Confidence intervals cannot be reasonably calculated for                 |                                      |       |            |       |       |            |       |       |            |       |  |
| <u> </u>                                                                                                                                            | significantly biased rate estimates. |       |            |       |       |            |       |       |            |       |  |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015                                                                                             |                                      |       |            |       |       |            |       |       |            |       |  |

Table 36. Tanker and Barge Spill Rate Confidence Intervals Summary by Spill Location and Spill Size

## 6.5. Tanker and Barge Spill Distributions

On average, tankers and barges have larger spills than platforms and pipelines. Table 37 provides the average and median spill sizes for each of the tanker and barge groups that were analyzed in this report. These spill distributions correspond with the spill rates calculated in Section 6.4.

|                       |           | Entire Reco      | ord          | Last 15 Years |               |              |  |  |  |
|-----------------------|-----------|------------------|--------------|---------------|---------------|--------------|--|--|--|
|                       | # of      | Average Spill    | Median Spill | # of          | Average Spill | Median Spill |  |  |  |
| Spill Source          | Spills    | Size (bbl)       | Size (bbl)   | Spills        | Size (bbl)    | Size (bbl)   |  |  |  |
| Tankers               |           |                  |              |               |               |              |  |  |  |
| Worldwide, Total      | 301       | 96,654           | 11,114       | 75            | 50,313        | 8,184        |  |  |  |
| (1974-2014)           |           |                  |              |               |               |              |  |  |  |
| In Port               | 138       | 68,103           | 6,305        | 39            | 52,984        | 5,600        |  |  |  |
| At Sea                | 163       | 120,624          | 19,530       | 36            | 47,489        | 11,900       |  |  |  |
| Tankers in U.S.       |           |                  |              |               |               |              |  |  |  |
| Waters, Total         | 45        | 28,246           | 6,300        | 5             | 5,050         | 2,400        |  |  |  |
| (1974-2013)           |           |                  |              |               |               |              |  |  |  |
| In Port               | 35        | 15,617           | 5,690        | 5             | 5,050         | 2,400        |  |  |  |
| At Sea                | 10        | 72,445           | 16,024       | 0             | ,             |              |  |  |  |
| Tankers Alaska        |           |                  |              |               |               |              |  |  |  |
| North Slope Crude,    | 11        | 29,495           | 4,950        | 0             |               |              |  |  |  |
| Total (1977-2016)     |           |                  |              |               |               |              |  |  |  |
| In Port               | 4         | 4,712            | 3,845        | 0             |               |              |  |  |  |
| At Sea                | 7         | 43,657           | 4,950        | 0             |               |              |  |  |  |
| Barges in U.S.        |           |                  |              |               |               |              |  |  |  |
| Waters Including      |           |                  |              |               |               |              |  |  |  |
| Inland Waters         |           |                  |              |               |               |              |  |  |  |
| (1974-2013)           |           |                  |              |               |               |              |  |  |  |
| Petroleum Spills      | 178       | 6,655            | 2,954        | 29            | 8,468         | 3,000        |  |  |  |
| Crude Oil Only        | 28        | 6,653            | 3,709        | 3             | 2,889         | 3,000        |  |  |  |
| Source: U.S. DOI/BSEE | OCS Spill | Database, Deceml | ber 2015     |               |               |              |  |  |  |

Table 37. Tanker and Barge Spill Counts and Average and Median Spill Sizes (Spills ≥1,000 bbl)

Table 38 summarizes the subset of these spills which exceeded 10,000 bbl in volume.

|                       |           | Entire Reco      | ord          |        | Last 15 Ye    | ars          |
|-----------------------|-----------|------------------|--------------|--------|---------------|--------------|
|                       | # of      | Average Spill    | Median Spill | # of   | Average Spill | Median Spill |
| Spill Source          | Spills    | Size (bbl)       | Size (bbl)   | Spills | Size (bbl)    | Size (bbl)   |
| Tankers               |           |                  |              |        |               |              |
| Worldwide, Total      | 153       | 184,408          | 50,833       | 31     | 111,530       | 37,740       |
| (1974-2014)           |           |                  |              |        |               |              |
| In Port               | 51        | 175,387          | 49,020       | 11     | 169,155       | 91,000       |
| At Sea                | 102       | 188,919          | 53,887       | 20     | 79,837        | 34,167       |
| Tankers in U.S.       |           |                  |              |        |               |              |
| Waters, Total         | 16        | 72,520           | 22,905       | 1      | 12,800        | 12,800       |
| (1974-2013)           |           |                  |              |        |               |              |
| In Port               | 10        | 45,232           | 21,000       | 1      | 12,800        | 12,800       |
| At Sea                | 6         | 118,000          | 79,651       | 0      |               |              |
| Tankers Alaska        |           |                  |              |        |               |              |
| North Slope Crude,    | 3         | 97,062           | 15,000       | 0      |               |              |
| Total (1977-2016)     |           |                  |              |        |               |              |
| In Port               | 0         |                  |              | 0      |               |              |
| At Sea                | 3         | 97,062           | 15,000       | 0      |               |              |
| Barges in U.S.        |           |                  |              |        |               |              |
| Waters Including      |           |                  |              |        |               |              |
| Inland Waters         |           |                  |              |        |               |              |
| (1974-2013)           |           |                  |              |        |               |              |
| Petroleum Spills      | 29        | 25,073           | 20,000       | 5      | 34,920        | 20,000       |
| Crude Oil Only        | 4         | 24,180           | 20,326       | 0      |               |              |
| Source: U.S. DOI/BSEE | OCS Spill | Database, Deceml | ber 2015     |        |               |              |

Table 38. Tanker and Barge Spill Counts and Average and Median Spill Sizes (Spills ≥10,000 bbl)

# 7. Results Summary

This section compares quantitative results from each of the analysis sections of the report.

## 7.1. Spill Occurrence Rate Summaries

For each entity type, two spill rates were developed. The full record rate includes data over a long period of time and is a less volatile estimate. In prior reports, there also is a 15-year rate that is calculated using a short, recent time period. Table 39 lists the time frames used for the development of both rates for each entity type. For the tanker and barge rates, the analysis used a longer exposure period than 15 years for calculating the "15-year" rate. This was deemed appropriate in order to improve the accuracy of the estimates since there did not appear to be a significant change in the level of spill occurrences over the longer period. For reference, Table 40 lists the oil handled volumes and the sources for these data, as used in the calculation of the spill rates.

### Table 39. Selected Date Ranges for Full Record and 15-year Rates

|                        | Date Rang           | e of Record  | Data Availability for                       |
|------------------------|---------------------|--------------|---------------------------------------------|
| Spill Source           | Full Record 15-year |              | Spill Occurrence Rate Calculations          |
|                        |                     |              | Strong trend prior to 1971 makes the        |
| OCS Platform Spills    | 1974 to 2015        | 2001 to 2015 | period of data from 1964 to 1970            |
|                        |                     |              | irrelevant for rate calculations.           |
| OCS Pipeline Spills    | 1974 to 2015        | 2001 to 2015 | No major trends identified that would limit |
| OCS Pipeline Spills    | 1974 10 2015        | 2001 10 2015 | the applicable data.                        |
| Worldwide Tankers      | 1974 to 2014        | 1992 to 2014 | Exposure data stops at 2014.                |
| Tankars in U.S. Watars | 1974 to 2013        | 1992 to 2013 | Exposure data stops at 2013. Strong         |
| Tankers in U.S. Waters | 1974 (0 2013        | 1992 (0 2013 | downward shift in rates, starting in 1992.  |
| ANC Tenkore            | 1077 + 2015         | NI / A       | TAPS began operations in 1977. No large     |
| ANS Tankers            | 1977 to 2015        | N/A          | ANS Crude spills since 1991.                |
| Devrees in LLC Materia | 1074 += 2012        | 1002 += 2012 | Moderate shift in rates, starting in 1992.  |
| Barges in U.S. Waters  | 1974 to 2013        | 1992 to 2013 | Exposure data stops at 2013.                |

#### Table 40. Exposure Values for Full Record and 15-year Rates

|                                  | Oil Handled Volume (Bbbl) |         |                                      |
|----------------------------------|---------------------------|---------|--------------------------------------|
| Spill Source                     | Full Record               | 15-year | Data Source                          |
| OCS Platform Spills              | 17.9                      | 8.0     | BSEE Production Data                 |
| OCS Pipeline Spills              | 17.9                      | 8.0     | BSEE Production Data                 |
| Worldwide Tankers                | 443.1                     | 288.1   | BP World Energy Review               |
| Tankers in U.S. Waters           | 70.3                      | 40.8    | USACE Waterborne Commerce Statistics |
| ANS Tankers                      | 17.3                      | 4.0     | Alyeska Pipeline Throughput Data     |
| Barges in U.S. Waters            | 66.7                      | 36.5    | USACE Waterborne Commerce Statistics |
| (Petroleum)                      | 00.7                      | 50.5    |                                      |
| Barges in U.S. Waters<br>(Crude) | 10.4                      | 5.1     | USACE Waterborne Commerce Statistics |

Table 41 identifies a selection of the optimal rate for current spill modeling purposes and provides an explanation for this selection.

|                        | Selected Rate |                                                          |
|------------------------|---------------|----------------------------------------------------------|
| Spill Source           | Period        | Explanation                                              |
| OCS Platform Spills    | Full Record   | 15-year rate does not include a credible amount of data. |
| OCS Pipeline Spills    | Full Record   | 15-year rate does not include a credible amount of data. |
| Worldwide Tankers      | 15-year Rate  | Single hull rates are irrelevant.                        |
| Tankers in U.S. Waters | 15-year Rate  | Significant shift in rates, starting in 1992.            |
| ANS Tankers            | Full Record   | No large spills since 1991.                              |
| Barges in U.S. Waters  | 15-year Rate  | Significant shift in rates, starting in 1992.            |

Table 41. Best-estimate Spill Rates

Figure 39 and Figure 40 summarize the full record rate and the 15-year rate for large spills and spills ≥10,000 bbl, and compares them to spill rates recorded by the five previous versions of this report. While the analysis team performed several additional analyses to isolate the impact of hurricanes for OCS platform spills and consider alternative exposure variables, the rates shown in these figures are calculated using all spills on a per-Bbbl basis, making them comparable to previous spill rates.

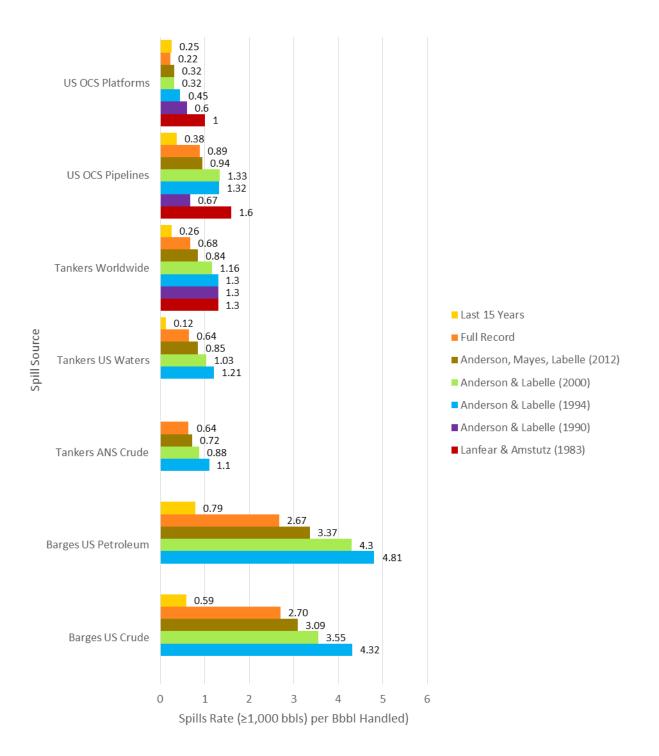



Figure 39. Comparison of Historical Spill Rate Estimates for Spills ≥1,000 bbl

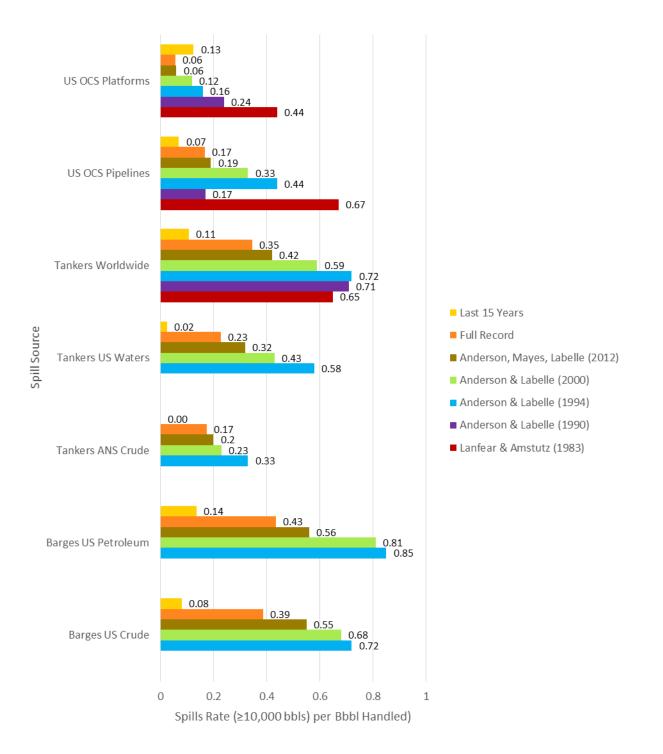



Figure 40. Comparison of Historical Spill Rate Estimates for Spills ≥10,000 bbl

## 7.1.1. U.S. OCS Platforms

The spill occurrence rates for large spills from OCS platforms are slightly lower than historical rates. This is solely due to the increase in the exposure period to account for spill risk since 2010. The spills used in the calculation of the rate are identical to those included by Anderson *et al.* (2012).

## 7.1.2. U.S. OCS Pipelines

The full record rate for pipelines is on par with the results presented by Anderson *et al.* (2012). The 15year rate, however, is greatly impacted by the small number of large pipeline spills and is less than half of the full record rate.

## 7.1.3. Tankers Worldwide

Overall, worldwide tanker rates are comparable to prior analyses. Although there was no new spill data available, the slight decrease in the rates is attributable to the change in the date range used for the rate. The full record rate is a conservative spill rate, given the significant difference between it and the 15-year rate.

## 7.1.4. Tankers in U.S. Waters

Although this report used new spill data for tankers in U.S. waters, no new large spills were identified for the period from 2010 to 2015. The inclusion of additional exposure for recent history resulted in a reduction of the spill rates.

## 7.1.5. Tankers Carrying ANS Crude

No new spills were identified for tankers carrying ANS crude. The 15-year rate is no longer reasonable to calculate, so it is not listed. The decrease in the spill rate is attributable to an increase in the amount of exposure applied in the rate calculation.

## 7.1.6. Barges Carrying Petroleum in U.S. Waters

The number of large barge spills continues to decline, as in prior reports. Although the data collection methods employed were able to identify more barge spills than have historically been included in the analysis, large barge spills continue to decline in frequency. This should be expected given the very low 15-year rate listed in Anderson *et al.* (2012).

## 7.1.7. Barges Carrying Crude in U.S. Waters

The same declining spill rates are evident for crude barges as well. The number of large barge spills continues to decline, as in prior reports. Although the data collection methods employed were able to identify more barge spills than have historically been included in the analysis, large barge spills continue to decline in frequency. This should be expected given the very low 15-year rate listed in Anderson *et al.* (2012).

## 7.2. OCS Spill Size Empirical Distribution

Table 42 summarizes platform and pipeline spill sizes over the last 15 years. Overall, the number of platform spills increased from 510 to 564, while the number of pipeline spills decreased from 207 to

141. This drop in pipeline spills is consistent with the year-to-year spill charts presented earlier. Notably, the number of large pipeline spills has also decreased. The combined spill occurrence rate also decreased in each category.

| Spill Size                                                                        | Number of Spills |           |       | bbl Spilled Spill Rate <sup>2</sup> |           |           |          | Average Spill Size Barrels |       |           | Median Spill Size Barrels |           |           |           |           |
|-----------------------------------------------------------------------------------|------------------|-----------|-------|-------------------------------------|-----------|-----------|----------|----------------------------|-------|-----------|---------------------------|-----------|-----------|-----------|-----------|
| (bbl)                                                                             | Platforms        | Pipelines | Total | Platforms                           | Pipelines | Total     | Platform | Pipeline                   | Total | Platforms | Pipelines                 | Total     | Platforms | Pipelines | Total     |
| ≥1 to <5                                                                          | 333              | 59        | 392   | 670.5                               | 137.2     | 807.7     |          |                            | 50.0  | 2.0       | 2.33                      | 2.1       |           |           |           |
| ≥5 to <10                                                                         | 62               | 18        | 80    | 431.0                               | 121.1     | 552.1     | 49.4     | 9.6                        | 59.0  | 7.0       | 6.73                      | 6.9       |           |           | • •       |
| ≥10 to <20                                                                        | 48               | 22        | 70    | 641.2                               | 284.8     | 926.0     | 12.2     |                            | 46.6  | 13.4      | 12.9                      | 13.2      | 2.5       | 4.3       | 2.8       |
| ≥20 to <50                                                                        | 50               | 13        | 63    | 1,624.1                             | 365.4     | 1,989.5   | 12.3     | 4.4                        | 16.6  | 32.5      | 28.1                      | 31.6      |           |           |           |
| ≥50 to <100                                                                       | 32               | 8         | 40    | 2,082                               | 565.3     | 2,647     |          |                            |       | 65.0      | 70.7                      | 66.2      |           |           |           |
| ≥100 to <500                                                                      | 50               | 10        | 60    | 10,372                              | 1,952.4   | 12,324    | 10.3     | 2.3                        | 12.5  | 207.4     | 195.2                     | 205.4     | 127       | 108       | 125       |
| ≥500 to <1,000                                                                    | 10               | 3         | 13    | 6,266                               | 2,493.0   | 8,759     | 1.3      | 0.4                        | 1.6   | 626.6     | 831.0                     | 673.7     |           |           |           |
| ≥1,000 to <2,000 <sup>1</sup>                                                     | 2                | 3         | 5     | 3,066                               | 4,536.0   | 7,602     |          |                            |       | 1,533     | 1,512                     | 1,520     |           |           |           |
| ≥2,000 to <3,000                                                                  | 1                | -         | 1     | 2,000                               | -         | 2,000     | 0.4      | 0.4                        | 0.8   | 2,000     |                           | 2,000     | 1,572     | 1,500     | 1,536     |
| ≥3,000 to <10,000 <sup>1</sup>                                                    | -                | -         | -     | -                                   | -         | -         |          |                            |       |           |                           |           |           |           |           |
| ≥10,000                                                                           | 1                | -         | 1     | 4,900,000                           | -         | 4,900,000 | 0.1      | -                          | 0.1   | 4,900,000 |                           | 4,900,000 | 4,900,000 | None      | 4,900,000 |
| All Spills                                                                        | 589              | 136       | 725   | 4,927,151                           | 10,455    | 4,937,607 | 73.6     | 17.0                       | 90.7  | 8,365     | 77                        | 6,810     | 3.4       | 6.0       | 4.0       |
| <sup>1</sup> The three spills from Hurricane Rita in 2005 are counted separately. |                  |           |       |                                     |           |           |          |                            |       |           |                           |           |           |           |           |
| <sup>2</sup> Spill rates based on 8 Bbbl production.                              |                  |           |       |                                     |           |           |          |                            |       |           |                           |           |           |           |           |
| Source: U.S. DOI/BSEE OCS Spill Database, December 2015                           |                  |           |       |                                     |           |           |          |                            |       |           |                           |           |           |           |           |

 Table 42. Combined Empirical Size Distribution of Platform and Pipeline Spills, 2001-2015

# 8. Conclusions

For all entity types, platforms, pipelines, tankers and barges, the long-term trend of improving spill rates continued. In many instances, there were a low number of new large spills in the data, despite systematic and detailed review of the available data sources. The following sections explore these improvement trends in detail.

More than prior reports, this report sought to differentiate between spills caused by hurricanes and those resulting from operational causes. While hurricanes have historically been a point of concern as it relates to understanding trends and utilizing the Poisson distribution to describe spills, this report presents spill rate estimates for entities with and without including hurricane spills. The major hurricanes of the 2000s had a significant impact on OCS platform and pipeline spill occurrence levels and provided the impetus for this distinction.

This report frequently includes confidence intervals to help the reader understand the level of uncertainty in each estimate. In many cases, the estimates are highly uncertain, especially when the data period is relatively short.

## 8.1. Findings

### 8.1.1. OCS Platform Spill Conclusions

The platform spill record has been improving. The trend analysis on large spills, excluding hurricane spills, did not reveal any disruption of this improvement. Furthermore, analysis of the minor spill size categories showed a matching trend, with spill rates gradually reducing over the past several decades. At worst, after conducting the Kendall's test, the analysis identified no change in large spill frequency over the years 1971 to 2015. Most of the data analysis was confined to that timeframe.

Causal factor analysis reveals some of the underlying reasons for the improvement. Equipment failures caused the greatest number of platform spills from 1971 to 2015, but the number of spills attributed to equipment failures has been steadily decreasing since 1975. Over the same time, spills associated with production operations have dramatically declined. The data clearly suggests that the intersection of equipment failure and production operations was a major source of spills in the past, but that improved significantly in later years.

DWH presented the analysis team with a dilemma when computing platform spill rates and studying the platform spill distribution. Although it is an outlier in the spill record, DWH represented a worst-case scenario for platform oil spills that could provide valuable insight on the potential impacts of other similar disasters. However, its sheer magnitude skewed any estimates the analysis team made for more typical platform spills. In order to develop more realistic estimates for operational spills, the analysis team decided to exclude DWH from several summary statistics. Excluding DWH, the analysis found that platform spill rates decreased, continuing a trend noted in the 2012 report (Anderson *et al.*). DWH was the only major spill in the data since 2010 and the only spill  $\geq 10,000$  bbl in over 30 years.

LOWC events are an interesting subset of large spills from platforms. While they were analyzed separately from the other causal factors, the data clearly indicated that larger spills are increasingly likely to be associated with a LOWC. Each of the  $\geq$ 10,000 bbl spills in the record are due to LOWC.

This spill record also provides insights into the changes in the operating modes that drive spill events. Just as the decrease in equipment failures has contributed to the overall frequency of spills, Figure 6 illustrates a major decline in production spills since the 1970s and 1980s. In the 2000s, the operating mode during hurricanes was often not indicated in the data, resulting in a swell in unknown operations during that time.

### 8.1.2. OCS Pipeline Spill Conclusions

The analysis team found that the number of large pipeline spills tended to decrease from 1971 to 2015. Vessel-induced damages, such as an anchor striking a pipeline, tended to be the main causal factor for these spills. For spills including minor spills, equipment failures caused the majority of spills from 1971 to 2015. The results from Kendall's test on large spills indicated that over the entire spill record, no discernable trend existed. The analysis did find that for the first part of the record, from 1964 to 1989, there appeared to be a downward trend in pipeline spill rates, but it did not last. Furthermore, although the pipeline trend analysis was inconclusive, this may be because the trend analysis is based on patterns in spill occurrences. Since there have not been any large OCS pipeline spills in recent history, the trend analysis process does not recognize the potential decrease in the spill occurrence rate since the last spill in 2009.

The analysis also studied the impact that hurricanes had on pipeline spill frequency and spill volume. Hurricanes caused 4 of the 20 large spills that occurred from 1974 to 2015. Over the entire record, the number of pipeline spills fluctuates, with spills caused by hurricanes peaking for the years 2004, 2005, and 2008. Moreover, the majority of spills in the last 15 years were caused by hurricanes. The analysis team excluded pipeline spills caused by hurricanes for some analyses to examine trends in other causal factors, finding that all other spills per year followed a downward trend.

### 8.1.3. Tanker and Barge Conclusions

The number of spills worldwide and in U.S. waters for tankers and barges dramatically decreased after 1990 and has continued to gradually drop, even though crude oil movements have increased since the 1980s. The key finding related to tankers and barges is the correlation of improved spill rates with the phasing out of single-hull tankers and barges.

Worldwide tanker spills also tended to occur more often at sea than in port. The analysis team did not find any trends in the percentages of spills at each location by year. Over the entire record the percentage of spills that occurred at sea or in port each year tended to fluctuate. Spills involving ANS crude oil also tended to occur more often at sea than in port. Alternatively, tanker spills in U.S. waters tended to occur in port much more frequently than at sea. This trend reversal may be due to the geographical constraints the analysis team placed on tanker spills in U.S. waters. Compared to the worldwide tanker spill record, the spill record in U.S. waters encompassed a smaller area in which at sea spills would occur.

A low number of new large spills were observed in the data since 2010. While this might suggest that the data are insufficient, it is interesting to note that there were large increases in the amounts of data available for some incidents of smaller size. The data processing stages carefully processed the most recent data, and additional supplementary sources were identified and analyzed to validate the small number of large spills. This was true for platforms and pipelines as well as for crude tankers and petroleum barges in U.S. waters.

## 8.2. Recommendations

Overall, the methodology used in this report is consistent with prior reports. This methodology is straightforward and conservative. The use of a relatively large date range for rate setting makes the rates more stable against fluctuations in emergent data. As a product of the key findings above, and difficulties encountered during the construction of these estimates, this analysis recommends the consideration of the following improvements for future versions of this report:

- 1. Consider conducting measurement and modeling of the correlation between the frequency of small and large spills. If correlation exists, it could help smooth the rates for less frequent, large spills.
- Consider simulation techniques to estimate the likelihood of future worst-case scenario events. Current rates for spills ≥10,000 bbl have relatively little recent data upon which to be based, but the distribution of spill sizes, along with an understanding of current spill occurrence rates, could be used to simulate outcomes that are possible, but have never occurred.
- 3. Consider the cost of maintaining the international tanker spill database and determine whether rates for the U.S. waters are sufficient.
- 4. Consider whether ANS tanker spills analysis is still a sufficiently large exposure source for analysis.
- 5. Consider using international data for estimating rare spill frequencies and understanding their causal factors. Although less relevant to the OCS, the current data are insufficient at the highest spill size categories for developing robust estimates.

# 9. References

Alyeska Pipeline Service Company. (2016). *Throughput* [Dataset]. Retrieved from <u>http://www.alyeska-pipe.com/TAPS/PipelineOperations/Throughput</u>

- Anderson, C.M. and LaBelle, R.P. (1990). Estimated occurrence rates for analysis of accidental oil spills on the U.S. Outer Continental Shelf. *Oil & Chem. Pollut.* 6, 21-35. Retrieved from <u>http://www.boemre.gov/eppd/sciences/osmp/pdfs/AndersonAndLaBelle/Anderso</u> <u>nAndLaBelle1990.pdf</u>
- Anderson, C.M. and LaBelle, R.P. (1994). Comparative Occurrence Rates for Offshore Oil Spills. *Spill Science & Technology Bulletin*, Vol.1 No. 2, 131-141. Retrieved from <u>http://www.boemre.gov/eppd/sciences/osmp/pdfs/AndersonAndLaBelle/Anderso</u> <u>n LaBelle1944.pdf</u>
- Anderson, C.M. and LaBelle, R.P. (2000). Update of Comparative Occurrence Rates for Offshore Oil Spills. *Spill Science & Technology Bulletin*, Vol.6 No. 5/6, 303-321. Retrieved from <u>http://www.boemre.gov/eppd/sciences/osmp/pdfs/AndersonAndLaBelle/Anderso</u> <u>nAndLaBelle2000.pdf</u>
- Anderson, C.M. Mayes, M., and LaBelle, R.P. (2012). Update of Occurrence Rates for Offshore Oil Spills.
   Bureau of Ocean Energy Management OCS Report 2012-069. Herndon, VA: Bureau of Ocean
   Energy Management. Retrieved from

http://www.boem.gov/uploadedFiles/BOEM/Environmental\_Stewardship/Environmental\_Asse ssment/Oil\_Spill\_Modeling/AndersonMayesLabelle2012.pdf

- BP. (1975-2015). *BP Statistical Review of World Energy (1975-2015, annual reports)*. London: Whitehouse Associates. Retrieved from <u>http://www.bp.com/statisticalreview</u>
- Efron, B. (1979). Bootstrap methods: Another look at jackknife. *Annals of Statistics* 7, 1-26. Retrieved from http://www.stat.cmu.edu/~fienberg/Statistics36-756/Efron1979.pdf
- Federal Interagency Solutions Group. (2010). Oil budget calculator: Deepwater horizon technical documentation. Retrieved from <u>http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc\_Full\_HQ-Print\_111110.pdf</u>
- Ji, Z-G., W. Johnson and G. Wikel. (2014). Statistics of Extremes in Oil Spill Risk Analysis. *Environmental Science and Technology*. Published Online: August 9, 2014 DOI: 10.1021/es501515j.
- Ji, Z.-G., W. Johnson, and Li, Z. (2011). Oil Spill Risk Analysis Model and Its Application to the Deepwater Horizon Oil Spill Using Historical Current and Wind Data, in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. *Geophysical Monograph Series*, doi:10.1029/2011GM001117, pp. 227-236.
- Kanji, G.K. (2006). *100 Statistical Tests* (3<sup>rd</sup> ed.). London, UK: SAGE Publications. Retrieved from <u>https://www.researchgate.net/file.PostFileLoader.html?id=54928025d4c1180c708b478f&asset</u> <u>Key=AS%3A273654322008065%401442255683016</u>
- LaBelle, R.P. and Anderson, C.M. (1985). The Application of Oceanography to Oil-Spill Modeling for the Outer Continental Shelf Oil and Gas Leasing Program, *Marine Technology Society Journal*, Vol. 19, No. 2, 19-26. <u>http://www.boemre.gov/eppd/sciences/osmp/pdfs/AndersonLabelle1985.pdf</u>
- Lanfear, K.J. and Amstutz, D.E. 1983. A Reexamination of Occurrence Rates for Accidental Oil Spills on the U.S. Outer Continental Shelf, 1983 Oil Spill Conference, American Petroleum Institute, Washington, DC
- Ross, S.M. (1985). Introduction to Probability Models. Academic Press, Orlando, FL.
- Smith, R.A., Slack, J.R., Wyant, T. and Lanfear, K. J. (1982). The Oil Spill Risk Analysis Model of the U.S. Geological Survey. USGS Professional Paper 1227, U.S. Geological Survey, Reston, VA. Retrieved from <u>http://www.boemre.gov/eppd/PDF/smithetal.pdf</u>
- Table of Critical Values: Pearson Correlation [Dataset]. Retrieved from

   <a href="http://www.statisticssolutions.com/table-of-critical-values-pearson-correlation/">http://www.statisticssolutions.com/table-of-critical-values-pearson-correlation/</a>
- U.S. Army, Corps of Engineers (USACE). (2014). *Waterborne Commerce of the United States* [1974 to 2014, annual report]. U.S. Department of the Army Corps of Engineers, Waterborne Commerce Statistics Center, New Orleans, LA. Retrieved from <a href="http://www.navigationdatacenter.us/wcsc/wcsc.htm">http://www.navigationdatacenter.us/wcsc/wcsc.htm</a>

- U.S. Department of Commerce (DOC). (2000). Annual Summaries of Alaskan North Slope Crude Oil Loadings (1977-1998). U.S. Department of Commerce, Maritime Administration, Office of Policy and Plans, Washington, DC.
- Zar, J. H. (2005). Spearman Rank Correlation. *Encyclopedia of Biostatistics*. <u>http://onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a15150/abstract</u>

# A. Trend Analysis

As in previous versions of this report, three different correlation analyses were used to identify trends in rare, large spill occurrences. All three tests involve the null hypothesis that a string or group of numbers is randomly generated. Under this assumption, the tests provide a means of comparing a calculated statistic to the expected distribution in order to determine whether the statistic reaches the critical value at which the null hypothesis can be rejected. If the statistic reaches a critical value, then the initial assumption of data randomness can be rejected—implying a trend.

Tests in which the desired result is the opposite of the null hypothesis are considered strong tests – the data must significantly conflict with the null hypothesis in order to conclude the alternative hypothesis. In this report, the null hypothesis is often the desired outcome since this implies the independence of the observations and the applicability of the Poisson distribution for spill estimates.

Each of the processes described below assumes the context in which these tests were applied in this report.

### Kendall's Rank Correlation Test

Process:

- 1. List the relevant incidents in order of occurrence (top to bottom).
- Calculate the amount of exposure between each incident and the incident preceding it. (For the first incident, calculate the exposure since the start of the study, or the beginning of the exposure data.)
- 3. Transpose the exposure amounts to create a matrix with the original list on the left axis and the transposed list along to top axis.
- 4. For the lower left half (triangle) of the matrix, indicate with a "T" if the exposure amount along the left axis is larger than the exposure amount along the top axis. Indicate with an "I" if it is smaller. Do not fill in the central diagonal.
- 5. Count the number of "T"s and subtract the number of "I"s. This is the test statistic.

To illustrate:

| Table A1. Kendall's Rank Correlation Test Example |
|---------------------------------------------------|
|---------------------------------------------------|

|            | Exposure   | Transposed Exposure Quantities |     |     |     |     |  |
|------------|------------|--------------------------------|-----|-----|-----|-----|--|
| Incident # | Quantities | 0.3                            | 0.1 | 0.2 | 0.4 | 0.5 |  |
| 1          | 0.3        |                                |     |     |     |     |  |
| 2          | 0.1        | I                              |     |     |     |     |  |
| 3          | 0.2        | I                              | Т   |     |     |     |  |
| 4          | 0.4        | Т                              | Т   | Т   |     |     |  |
| 5          | 0.5        | Т                              | Т   | Т   | Т   |     |  |

There are eight "T"s and two "I"s. There are five observations and the test statistic is 6. Further details on this test are available in Test 59, and the critical values table is Table 27 in:

https://www.researchgate.net/file.PostFileLoader.html?id=54928025d4c1180c708b478f&assetKey=AS% 3A273654322008065%401442255683016

#### 2016 Update of Occurrence Rates for Offshore Oil Spills Appendix A

The tests become weaker when there are equivalent exposure levels such as when events can occur simultaneously. It is hard to order. For this reason, the trend analyses performed for this report either removed hurricane spills or combined simultaneous hurricane spills in order to eliminate this issue.

The trend analysis presented in Anderson, Mayes, Labelle (2012) tracks the volume of crude produced between large spills. Three simultaneous spills would have resulted in two production volumes of 0 bbl, since production stops during hurricanes. This is confusing for performing the interpretation of the trend analysis statistics employed.

### Runs-up, Runs-down Test

Process:

- 1. List incidents in order of occurrence.
- Calculate the amount of exposure between each incident and the incident preceding it. (For the first incident, calculate the exposure since the start of the study, or the beginning of the exposure data, if relevant.)
- 3. Starting with the second incident, mark whether its associated exposure period is larger or smaller than the prior exposure period. Mark increases with a "+" and decreases with a "-".
- 4. Complete this for the set of incidents and count the number of "runs" of "+"s and "-"s.

The number of incidents and the number of runs are the necessary components for looking up the critical values and determining whether the runs indicate that the incident sequence is random or not. Table A2 provides an example.

| Incident Number | Preceding Exposure Amount | Marker |
|-----------------|---------------------------|--------|
| 1               | 0.1                       |        |
| 2               | 0.34                      | +      |
| 3               | 0.75                      | +      |
| 4               | 1.1                       | +      |
| 5               | 0.5                       | -      |
| 6               | 0.6                       | +      |
| 7               | 0.5                       | -      |

### Table A2. Runs Up, Runs Down Example

A "run" is a string of incidents where the marker does not change signs. In this example, there are seven incidents and four runs.

Further details on this test are available in Test 67, and the critical values table is Table 30 in:

https://www.researchgate.net/file.PostFileLoader.html?id=54928025d4c1180c708b478f&assetKey=AS% 3A273654322008065%401442255683016

### 2016 Update of Occurrence Rates for Offshore Oil Spills Appendix A

#### Spearman Rank Correlation Test

This is equivalent to the Hotelling and Pabst's test, but uses an easier test statistic (the Pearson's correlation coefficient).

Process:

- 1. List incidents in order of occurrence and assign an ordinal rank.
- Calculate the amount of exposure between each incident and the incident preceding it. (For the first incident, calculate the exposure since the start of the study, or the beginning of the exposure data, if relevant.)
- 3. Then, assign a rank to each of the exposure amounts, from least to greatest.
- 4. Compute the Pearson's Correlation Coefficient for the Incident Ordinal Rank.
- 5. Using that statistic, the number of observations, and this table, identify the significance level of the statistic.

The number of incidents and the number of runs are the necessary components for looking up the critical values and determining whether the runs indicate that the incident sequence is random or not.

Table A3 provides a Spearman rank correlation test example.

| Incident Ordinal Rank | Preceding Exposure Amount | Exposure Rank |
|-----------------------|---------------------------|---------------|
| 1                     | 0.1                       | 1             |
| 2                     | 0.3                       | 2             |
| 3                     | 0.8                       | 6             |
| 4                     | 1.1                       | 7             |
| 5                     | 0.7                       | 5             |
| 6                     | 0.6                       | 4             |
| 7                     | 0.5                       | 3             |

#### Table A3. Spearman Rank Correlation Test Example

To reiterate: with each of these tests, the original assumption (null hypothesis) is that the data are random. In the case of setting rates, this kind of randomness is good in that in implies the appropriateness of using the Poisson distribution and suggests that no significant trends are present.

For further details on this technique:

http://onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a15150/abstract

Critical values table is available at:

http://www.statisticssolutions.com/table-of-critical-values-pearson-correlation/

# B. The Bootstrap Method

The bootstrap method (Efron, 1979) is a statistical method for estimating a sampling distribution for a set of observations, especially when the underlying distribution of those observations is unknown. Consider this simplified example using familiar terms in this paper. Table B1 presents three exposure intervals for which the number of spill incidents is known.

| Table B1. Exposure Interval Example |
|-------------------------------------|
|-------------------------------------|

| Exposure Interval | Number of Spills |
|-------------------|------------------|
| 1                 | 0                |
| 2                 | 1                |
| 3                 | 2                |

Given this information, the best estimate spill rate is:

 $\frac{(0+1+2) \text{ incidents}}{3 \text{ units of exposure}} = 1 \text{ spill per exposure unit}$ 

Given this information, it would be possible to calculate the sample variance of the results and to construct a confidence interval using a standard bell curve distribution. However, because the sample size is so small and the sample variance somewhat large, the 95% confidence interval may well extend below zero and underestimate the lower bound.

The bootstrap method uses a simulation to identify the sampling distribution. To do this, a large number of 3-exposure unit trials are conducted, randomly selecting one of the spill counts from the distribution above. In this case, the distribution is that 0, 1, and 2 can each be picked with equal probability. Table B2 presents example results for the first several simulations.

|                     | Obs | ervati | on # |               |
|---------------------|-----|--------|------|---------------|
| <b>Trial Number</b> | 1   | 2      | 3    | Rate Estimate |
| 1                   | 0   | 1      | 0    | 0.33          |
| 2                   | 2   | 0      | 0    | 0.67          |
| 3                   | 1   | 1      | 0    | 0.67          |
| 4                   | 1   | 2      | 2    | 1.67          |
| 5                   | 1   | 1      | 0    | 0.67          |
| 6                   | 0   | 2      | 1    | 1.00          |
| 7                   | 2   | 2      | 1    | 1.67          |

 Table B2. Example Simulation Results

Finally, to calculate the upper and lower confidence interval bounds, simply take the appropriate percentiles of the randomly generated rate estimates:

For a two-sided 95% confidence interval, take the 0.025<sup>th</sup> and 0.975<sup>th</sup> percentiles.

For a 90% confidence interval, take the 0.05<sup>th</sup> and 0.95<sup>th</sup> percentiles.

This simulation technique requires many iterations for the percentiles to be able to converge to a stable confidence interval. The analyses in this report used 1,000 simulated trials and randomly generated observations for up to 20 exposure intervals.