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1. Introduction 
 

 
 
1.1 Purpose of This Guide 
This Guide is intended to assist in the development of probabilistic risk assessment (PRA) of offshore 
drilling facilities, in order to support decision-making by Bureau of Safety and Environmental Enforcement 
(BSEE) and by the industry.  This Guide is not a policy document, nor does it establish regulatory 
requirements; it discusses particular modeling techniques that have been found to be useful in a range of 
applications to decision-making about complex and high-hazard facilities.  In order to motivate the 
approach taken in the remainder of this Guide, this section discusses what kinds of analysis support what 
kinds of decisions.  

The point of departure for development of this guide is the NASA PRA Procedures Guide [1-1], which was 
itself derived from earlier PRA procedural guidance; but the present development has been informed by 
numerous other developments from within NASA, as well as work done for the Department of Energy and 
the Nuclear Regulatory Commission. 
 
1.2 Risk and Risk Management 
Partly because of the broad variety of contexts in which the concepts are applied, different definitions of 
risk continue to appear in the literature.  Most of them are generally consistent with the idea that “risk is 
uncertainty about the future, viewed through the lens of a value structure (i.e., focusing on outcomes that 
would be considered “adverse”).”  

In the context of making decisions about complex, high-hazard systems, “risk” is usefully conceived as a 
set of triplets: failure scenarios, likelihoods of those scenarios, and their actual consequences [1-2].  There 
are good reasons to focus on these elements rather than focusing on simpler, higher-level quantities such 
as “expected consequences.”  Risk management involves prevention of (reduction of the frequency of) 
adverse scenarios (scenarios having undesirable consequences), and promotion of favorable scenarios 
(scenarios with favorable, or at least benign, outcomes).  This requires understanding the elements of 
adverse scenarios so that they can be prevented, and understanding the elements of successful scenarios 
so that they can be promoted.  

Even if the decision problem is simply to decide whether a facility is deemed “adequately safe,” the level 
of assurance (the decision-maker’s confidence) derivable from understanding scenarios far exceeds the 
level of assurance derivable from an abstract summary of expected consequences. 

1.3 Scope of This Guide 
Figure 1-1 (after [1-3]) illustrates a general process for safety analysis.  The leftmost portion of the figure 
begins the process with recognition of the decision being supported, and an assessment of what technical 
results are needed to support that decision.  The central portion of the figure notionally suggests a range 
of techniques for safety analysis, going from “qualitative” techniques (thought processes such as a Hazard 
and Operability Study (HAZOP), which identify accident potential) to “quantitative” techniques (modeling 
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processes that generate and quantify scenarios, frequencies, and consequences).  

 

 
Figure 1- 1. Process for Safety Analysis 

Different situations will call for a different mix of techniques.  It is not always clear a priori what 
techniques are appropriate in a given situation; correspondingly, in the rightmost portion of the figure, the 
current state of knowledge (after analysis done to date) is assessed to determine whether there is a need 
to loop back and do more analysis (or get more information) in order to support the current decision.    

Broadly speaking, “quantitative” techniques such as fault tree analysis are techniques that lead to (a) an 
explicit scenario set, (b) quantification of the likelihoods of those scenarios, and (c) analysis of the 
consequences of those scenarios (in short, analysis of the “triplets” discussed above).  Calling the other 
techniques “qualitative” does not mean that they are applied absolutely without regard to probability; in 
fact, it is extremely difficult to absolutely decouple safety thinking from probability.  Rather, the term 
“qualitative” is shorthand for “thought processes that help us to identify accident potential, without 
explicitly generating and quantifying a comprehensive scenario set.”   

This Guide is focused on the “quantitative” end of the above-described analysis spectrum, using selected 
“qualitative” techniques as a front end to the quantitative analysis, in order to help us think appropriately 
about what we need to analyze in more detail. 

 
 

Preliminary 
Risk & TPM

Results

Identify
Analyze

Identify

Analyze

Risk Analysis 
Techniques

Sp
ec

tru
m

 o
f 

Av
ai

la
bl

e 
Te

ch
ni

qu
es

Decision 
Alternatives 
For Analysis

Iteration

Cost-
Beneficial 
to Reduce 

Uncertainty?

Deliberation and 
Ranking / Selection of 
Preferred Alternative 

(See Figure 9)

Yes

Yes

No

No

Is the 
Ranking / 

Comparison 
Robust?

Qualitative 
Techniques

Quantitative 
Techniques

Scoping & 
Determination of 
Methods To Be 

Used

Examples of Decisions 

• Architecture A vs. Architecture B vs. Architecture C
• Technology A vs. Technology B
• Intervene in Process Based on Performance, vs. Do Not Intervene 
• Comparison of Reliability or Performance Allocations
• Prioritization
• Contingency Plan A vs. Contingency Plan B

Additional Uncertainty Reduction If Necessary Per Stakeholders

Risk & TPM
 Results



DRAFT 

1-3 
  January 5, 2017  

1.4  Probabilistic Risk Assessment 
 

1.4.1 What Are We Going to Get Out of a PRA, and How Would We Use It? 

Based on modeling scenarios, frequencies, and consequences, PRA quantifies “risk metrics.”  The term 
“risk metric” refers to probabilistic performance measures that might appear in a decision model: such 
things as the frequency or probability of adverse consequences of a specific magnitude, or perhaps 
expected consequences.  Figures of merit such as “system failure probability” can be used as risk metrics, 
but the phrase “risk metric” ordinarily suggests a higher-level, more consequence-oriented figure of merit, 
such as “spills of a certain magnitude.”  

In order to support resource allocation from a risk point of view (for a licensee or regulator), it is necessary 
to evaluate a comprehensive set of scenarios.  The set of scenarios may need to include events that are 
more severe than those considered during design, and more success paths than were explicitly factored 
into the design.  Additionally, system performance must be evaluated realistically.  In order to support 
resource allocation decisions, the point is not usually to establish a bound on system capability or 
reliability, but rather to quantify capability and reliability (to characterize them realistically).  In other 
words, risk-informed resource allocation requires identification and realistic quantification of all risk-
significant scenarios, where “risk-significant” depends on the context of the evaluation.  

In all but the simplest cases, decision support requires that uncertainty be addressed.  Because risk 
analysis frequently needs to address severe outcomes of complex scenarios, and because these scenarios 
are too infrequent for us to be able to calibrate our models from experience, uncertainties may be highly 
significant.  These uncertainties need to be reflected in the decision model, not only because they may 
influence the decision, but also because it is important to understand which of the uncertainties that 
strongly affect the decision outcome are potentially reducible through testing or research.  

PRA is needed (and the effort is justified) when decisions need to be made that involve high stakes in a 
complex situation, as in a high-hazard mission with critical functions being performed by complex systems.  
Intelligent resource allocation depends on a good risk model; even programmatic research decisions need 
to be informed by a state-of-knowledge risk model.  (Allocating resources to research programs needs to 
be informed by insight into which uncertainties’ resolution offers the greatest payback.)  Developing a 
comprehensive scenario set to provide decision makers with the best informed picture of threats and 
mitigation opportunities is a special challenge, and systematic methods are needed for development and 
quantification of such a model.  Those methods are the subject of this guide. 

1.4.2 Use of PRA in the Formulation of a Risk-Informed Safety Case (RISC)  

The above discussion has been carried out with emphasis on the role of PRA in assessing system adequacy, 
especially with regard to selection of design features.  This sort of application began even before “safety 
goals” were widely discussed.  Increasingly, risk managers need to argue that system designs satisfy 
explicit risk thresholds; nowadays, even if there is no absolute regulatory or policy requirement, the 
promulgation of safety goals and thresholds creates an expectation that goals and thresholds will be 
addressed in the course of safety-related decision-making.  This creates an issue for PRA, because in 
general, it is impossible to “prove” that the level of risk associated with a complex, real-world system is 
below a given decision threshold.  

Partly because PRA results cannot be “proven,” a “Risk-Informed Safety Case” (RISC) [1-4] is desirable.  The 
RISC marshals evidence (tests, analysis, operating experience) and commitments to adhere to specific 
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manufacturing and operating practices in order to assure that PRA assumptions, including the 
performance and reliability parameters credited in the PRA, are fulfilled.  Among the commitments 
needed to justify confidence in the safety of the system is a commitment to analyze operating experience 
on an ongoing basis, including “near misses,” in order to improve operations, improve the risk models, and 
build additional confidence in the models’ completeness.  This is not the same as “proving” that the PRA 
results are correct, but it is the best proxy for safety that can be obtained.  

These matters are discussed further in the following sections of this Guide.  The present discussion is 
simply to motivate the emphases placed in Section 2’s treatments of the risk analysis techniques. 
 
1.4.3 Characterization of Safety Margin  

For purposes of making safety decisions (whether we need to modify our design or operating practices, 
whether our system risk is Lowest Level Practicable (LLP), whether we have reasonable assurance of 
adequate protection), it is useful to analyze system performance in terms of “margin,” and moreover to do 
this in a “risk-informed” way.  What attributes does a model need, in order to support a risk-informed 
assessment of “margin?”  What do we mean by “risk-informed?”  

1.4.4 Background on “Risk-Informed” 

The phrase “risk-informed” originated in US Nuclear Regulatory Commission (NRC) practice.  The NRC Web 
Site [5] offers the following definitions related to “Risk-Informed:” 
 

• Risk-Informed Decision-Making:  An approach to regulatory decision-making, in which 
insights from probabilistic risk assessment are considered with other engineering insights.  

• Risk-Informed Regulation:  An approach to regulation taken by the NRC, which incorporates 
an assessment of safety significance or relative risk.  This approach ensures that the 
regulatory burden imposed by an individual regulation or process is appropriate to its 
importance in protecting the health and safety of the public and the environment.  For 
additional details, see Risk Assessment in Regulation and the Fact Sheet on Nuclear Reactor 
Risk. 

One important consideration is whether a comprehensive scenario set is modelled with a view to 
quantitative analysis of decision alternatives, as opposed to pass-fail compliance with prescriptive 
requirements derived from surrogates formulated by engineering judgment (such as large-break Loss of 
Coolant Accident (LOCA), an early focus of Atomic Energy Commission thinking about the regulation of 
light-water reactors in the US).  If you are not modeling a scenario set in a way that supports saying what’s 
important and what isn’t, you’re not being risk-informed.  
 
The phrase “risk-informed” is now widely used to describe a certain thought process.  It appears to have 
originated with NRC Chairman Jackson in the early or mid-1990s.  During the 1980s and early 90s, many, 
many papers were being written on the subject of “risk-based” regulation (emphasis added).  The context 
of those papers was deciding whether regulatory burden could legitimately be reduced (or, in principle, 
whether it needed to be tightened up), based on risk model results.  Often, risk model results suggest that 
burden can be reduced; but then, as now, there was a lot of opposition to reducing burden significantly, 
based on PRA as the primary justification.  For the traditionalists, “risk-based” was a non-starter.  Enter 
Chairman Jackson: our decision-making will not be risk-based, but it will be risk-informed, meaning that we 
will use risk information as one of several inputs to a decision process, other inputs being things like 
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“defense in depth” and “safety margins,” and addressing a broad range of issues of diverse kinds, and not 
just compliance with regulations. 

The concept of “margin” has evolved in recent years. Originally, the general idea was that a system’s 
capacity to withstand expected loads should be designed with some leeway, recognizing that things may 
be a bit worse than anticipated, and this excess capacity could be specified either in terms of a point value 
of extra capacity, or a point value of a safety factor. Recent years [1-6, 1-7] have seen increased 
appreciation of the usefulness of viewing margin probabilistically, as summarized in a fairly recent doctoral 
thesis [1-7]:  
 

• Safety margin is the difference between a characteristic value of the capacity and a 
characteristic value of the load. 

• While [this measure] provides a first approximation of functional reliability, ranking 
different systems on safety margins alone can lead to erroneous results. The knowledge of 
the distance from failure in terms of safety margins is not sufficient to evaluate the risk of a 
system; the breadth of the uncertain distribution [emphasis added] is the other important 
part of the assessment. 

The “breadth of the uncertain distribution” is suggested notionally in the figure below: 
 

 
Figure 1- 2. Breadth of Uncertain Distribution 

This figure shows an uncertain applied load (such as a pressure) together with the uncertain “capacity” of 
a component to survive that load (in this case, the pressure-retaining capability). What matters in the risk 
analysis is whether the pressure will exceed the actual pressure-retaining capability, and the point of the 
figure is that if both of these are uncertain, a naïve idea of “margin” such as the distance between the two 
modes is inadequate. We need to understand the probability that load exceeds capacity. 

Even this load-capacity idea is oversimplified for some purposes, because it is stated above as if the two 
can be evaluated independently. In some cases, they cannot. Consider a notional example in which high 
pressure and low pressure-retaining capability are related due to high temperature; in such a case, a 
calculation based on the simple figure above would underestimate failure probability. In such a case, we 
must resort to a more simulation-based approach to risk analysis; this is discussed in Section 2. 

 
Safety margin characterization is “risk-informed” if it is based on the following: 
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• An issue space is formulated, implicitly defining a class of scenarios to be analyzed 
probabilistically and the figures of merit1 to be evaluated probabilistically, “margin” then 
to be analyzed in terms of those figures of merit in those scenarios. 

o Aleatory2 variables are identified and assigned appropriate distributions. 
o The state of knowledge within that issue space is delineated in terms of state-of-

knowledge probability distributions on uncertain variables, or perhaps probability 
bounds analysis.3 

• The scenario set is analyzed in sufficient detail (with sufficient coverage of the issue space) 
to 

o Characterize margin in the relevant figures of merit, including the comparison of 
absolute margin with variability and uncertainty; 

o Understand the significance of variability and uncertainty separately; 
o Understand the probability of “failure” (the probabilistic weight of scenarios 

having zero or negative margin) at least semi quantitatively; 
o Understand the main drivers (particular conditions under which margin is high or 

low), pointing to  
 Failure modes or initial conditions, control of which would increase 

margin, 
 Information that needs to be obtained in order to reduce uncertainty. 

This definition does not address whether the analysis is good or poor: only whether it is structured to 
culminate in a probabilistic characterization of “margin” in a given issue space. 
 
1.4.5 Summary 

The essence of “risk-informed” is to create a basis for resource allocation (by licensee and by regulator) 
that does the best job we know how to do, consistent with our state of knowledge and institutional 
constraints (such as limitations on the kinds of analysis we can afford). In order to be risk-informed, the 
analysis must be geared to supporting conclusions about which scenarios are more important than others, 
and how much more important, and how beneficial (or how justifiable) it would be to add preventive or 
mitigative measures beyond what’s already there. Modeling to support risk-informed decision-making will 

                                                           
1 Typically, these will be performance metrics in terms of which system success and system failure 
can be defined. 
2 “Aleatory” uncertainty refers to the variability in outcomes from one trial to the next: the 
outcome of a roll of honest dice is uncertain, and this uncertainty is aleatory. The term “aleatory” 
is contrasted with “epistemic,” which refers to limitations of our state of knowledge. If we are not 
sure what fraction of the time a given coin will yield “heads,” this is a kind of uncertainty that we 
could, in principle, reduce by carrying out experiments; this kind of uncertainty is “epistemic.” 
These concepts are discussed in Section 2.2. 
3 “Probability bounds analysis” [1-8] is the name given to an approach to propagating uncertainty 
that works with intervals (upper and lower bounds) on the values of the uncertain variables, 
rather than sampling from explicit probability density functions of those variables.  
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tend to have the following attributes: 

• It will comprehensively analyze representative scenarios within the slice of event space that 
is probabilistically significant for the decision.  

• It will make little or no use of bounding (worst-case) arguments, and will instead strive for 
“realism” embedded within an honest treatment of uncertainty. 

• It will comprehensively analyze the variability (the aleatory uncertainty) in scenario 
outcomes.  

• It will methodically analyze the implications for the decision of the limitations of the 
current state of knowledge. 

This, in a nutshell, is what we can get out of PRA, and how we use it. The methods and tools discussed in 
this guide are aimed at accomplishing these things. 
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2.  Risk Analysis Techniques 

 
 
2.1 Qualitative Risk Assessment Techniques 

As noted in Section 1, the term “qualitative risk assessment techniques” is here taken to mean “thought 
processes that help us to identify accident potential, without explicitly generating and quantifying a 
comprehensive scenario set.”  The terms “quantitative” and “qualitative” are not perfect descriptors of the 
distinction that we are trying to make; refraining from using numbers in fault-tree analysis does not 
eliminate its capability to generate, and even notionally rank, a comprehensive scenario set (based on the 
order of the minimal cut sets.  By “qualitative,” we mean techniques such as HAZOP, which entail a great 
deal of thought, but do not typically involve explicit construction of a risk-model representation of a 
facility. 

There are multiple reasons to consider qualitative techniques: 
 

• Sometimes, qualitative techniques are adequate, by themselves, to support the current decision 
(for example, “design evaluation” can be a category of decision). 

• In practice, quantitative techniques need to start out with the insights provided by the qualitative 
methods: for example, identification and grouping of initiating events, and the development of 
event tree structure, need to be informed by insights from techniques such as HAZOP. 

For the latter reason, discussion of some qualitative techniques is provided in Section 2.2.  The present 
section mentions a few qualitative techniques and suggests how to decide when they are sufficient.  
However, it is not the purpose of this section to provide detailed procedural guidance on those techniques 
as stand-alone applications.  First, such a discussion would be beyond the scope of this guide; second, 
abundant material of that kind already exists elsewhere.   

Accordingly, the following subsections will mention selected tools with a view to showing how they address 
the above two considerations (when they suffice for decision-making, and how they fit into quantitative 
modeling).   

2.1.1. Comparison of Selected Qualitative Risk Assessment Techniques  

2.1.1.1. Hazard and Operability (HAZOP) Analysis 

HAZOPs are performed in a group setting where a facilitator leads a technically diverse group of experts 
through an exercise to identify hazards related to equipment or operations of a given system in a given 
operating mode.  The design intent in each operating mode needs to have been specified in sufficient detail 
to support a sensible discussion of system behavior:  in particular, nominal values need to have been 
specified for all important system parameters.  The HAZOP discussion is then cued to analyze the system 
considering “deviations” of key parameters in one node at a time, based on applying “guide words” (e.g., 
“high,” “low”) to each parameter (e.g., “flow”) characterizing each node (e.g. high flow in node 32, low flow 
in node 32, etc.).  For each such deviation, the group brainstorms possible causes and possible 
consequences of each cause, and then may consider other factors relevant to the decision context, 
including possible recommendations for design changes.  This discussion implicitly addresses classes of 
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scenarios, identifying them in terms of physical behaviors, many of which could be caused by any of several 
different component states (good or failed), and some of which could arise even if no components are 
nominally “failed.”  A notional example of part of a HAZOP table is shown below. 

Table 2-1.  Example of Hazard and Operability Analysis 

HAZOP of Drilling Rig’s Mud System 

Node Deviation Cause Consequence Mitigation Risk Ranking 

1 Low mud weight Improper materials 

 

Potential 
underbalance 
condition leading 
to well kick 

Proper vendor 
selection for 
materials 

Inspection of 
materials 
before use 

Verification of 
analysis 

Training 

Likelihood - 3 

Medium - 3 

 …   

 Incorrect mud 
weight analysis 

   

 Human error    

2 High mud weight ….  …. …. 

…. … ….. …. …. …. 
 

2.1.1.2. Failure Modes and Effects Analysis (FMEA) 

FMEA is a component based technique that breaks down a system into mechanical and electrical 
components and postulates how each component can fail and the effect the failure has locally and on the 
overall system.  The result is in tabular form and documents each component, the ways it can fail, and the 
effects on the system.  Analyses also typically include how the failure can be detected and mitigations in 
place to prevent or lessen negative effects.  An FMEA may be extended to become a Failure Modes, Effects, 
and Criticality Analysis (FMECA) by adding in an evaluation of the likelihood and consequences.  An example 
of part of an FMEA is shown in Table 2-2.
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Table 2-2.  Example of Failure Modes and Effects Analysis 

Component  Effects   

System Component Identifier Failure 
Mode 

Local 
Effect 

Next 
Level 
Effect 

System 
Level 
Effect 

Detection 
Method Mitigation 

BOP Pipe Ram Upper 
Pipe Ram 

Fails to 
close 

Pipe ram 
will not 
close  

If a well 
kick 
occurs, 
the 
annulus 
will not 
be sealed 
off 

If a well 
kick 
occurs, 
formation 
fluid will 
rise past 
the BOP 
and 
potentially 
reach the 
drill floor 

If a well 
kick 
occurs 
return 
mud flow 
will be 
high and 
pressure 
will not 
rise in the 
BOP 

Redundant 
pipe rams 
and the 
blind shear 
ram 

BOP Pipe Ram Upper 
Pipe Ram 

Fails to 
seal 
against 
drill 
pipe 

…. …. …. …. …. 

…. …. …. ….      

  
2.1.2 Other Decision Aids  

2.1.2.1 Bowtie Diagrams 

Bowtie analysis results in a graphical representation of a class of scenarios that helps decision-makers 
reason appropriately.   

• The middle of the bowtie represents a hazardous condition that results when control of a facility is 
lost (for example, an explosion in a particular location).   

• The left hand side develops causes that can lead to the hazardous condition and the controls in 
place to prevent its occurrence.   

• The controls (including physical barriers) are placed between the cause and hazard showing the 
failures that must occur for the hazard to occur.   

• The right-hand side portrays scenarios ensuing from the occurrence of the hazardous condition, 
culminating in consequences on the far right.  The scenarios on the right are specified in terms of 
the functions (including physical barriers) that limit or mitigate the consequences potentially 
resulting from the hazard.   

• Each complete left-to-right path through a bowtie is a representation of a hazardous scenario to be 
considered.  An example of part of a bowtie is shown in Figure 2-1.
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Figure 2- 1. Example of Bowtie Analysis Diagram 

2.1.2.2 Risk Matrices 

A “risk matrix” is commonly used to communicate perspective on the significance of particular “risks” 
(scenarios, or classes of scenarios having something in common).  Notionally, the matrix elements 
correspond to discrete categories of “frequency” and “consequence” as illustrated below; individual 
scenarios are assigned a likelihood and consequence level and placed on the picture, as illustrated by the 
numbered circular symbols.  Symbol #1 refers to a “risk” having both low consequences and low likelihood.  
Its placement in the “green” region is a way of saying that it is no real threat; either the threat is inherently 
minimal, or a previously identified real threat has been successfully controlled by prevention or mitigation.  
Symbol #3 refers to a risk having high likelihood and high consequences, and its placement in the “red” 
region is a way of saying that this one needs attention; it may be a showstopper.  Symbol #2 refers to a risk 
that is in between.   

 
Figure 2-2. Typical Qualitative Risk Matrix 
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2.1.3 Strengths and Weaknesses of Qualitative Risk Assessment Techniques 

The qualitative risk assessment techniques described above, as well as others not mentioned here, provide 
a systematic approach to evaluating risk, albeit with different focuses for each method.  HAZOP, FMEA, and 
other methods in this general category promote completeness, which is perhaps the single most critical 
issue affecting the performance and application of risk modeling.  FMEA promotes completeness by 
considering (in principle) “all” failure modes for “all” components; HAZOP does this by considering (in 
principle) “all” physical deviations in “all” nodes.  If design intent is properly specified, then anything that 
would be considered an accident must represent a deviation from design intent; so, by considering “all” 
deviations, HAZOP creates at least an opportunity for the group to identify any accident potential that is 
reasonably foreseeable in the context of any given deviation.  Moreover, if a similar system has some 
operating history, we may have a sense of the likelihood of the deviations identified, and we may have at 
least some perspective on their consequences.   

However, neither FMEA nor HAZOP is particularly well suited to identification or ranking of scenarios that 
involve multiple failures, or combinations of failure events with off-normal initial conditions.  This is not a 
fault of the thought processes involved; rather, it is because for a system of even moderate complexity, it is 
impractical for humans to evaluate multiple-failure scenarios without constructing an explicit scenario 
model and processing that model by computer.  Except for very simple systems, it is difficult to determine 
manually whether a system is single-failure-proof.  In principle, FMEA tries to capture the cascading 
implications of each postulated single failure, but in practice, it is difficult to propagate such implications 
through the system without some sort of computer aid. 

Moreover, it turns out that on-the-fly assessments of probability are unreliable, and it is correspondingly 
difficult to estimate the likelihood of even moderately complex scenarios.  The first large-scale quantitative 
risk analysis, the Reactor Safety Study, indicated that risk from light water reactors was dominated not by 
the sort of postulated pipe rupture event that had dominated safety thought for generations, but rather by 
events initiated by much more mundane, almost every day, deviations that are less severe but still 
challenge safety functions, and need to be dealt with appropriately.  The high relative frequency of those 
challenges means that the reliability of the mitigating systems must be correspondingly high.   

2.1.4 When Should PRA Be Considered? 

This Guide is not a policy document, nor is it meant to prescribe to facility operators precisely when they 
need PRA.  The present subsection is meant to help management decide what sort of analysis result they 
need, based on what kind of decision is being made, and what sorts of risks may be in play. 

PRA is essentially a high-end risk analysis for supporting certain kinds of decisions.  Quite generally, the 
choice of techniques in a given decision analysis needs to be made in light of the stakes associated with the 
decision, the complexity involved in analyzing the possible outcomes, the uncertainties, the diversity of 
stakeholders involved, and perhaps other considerations.  By “stakes,” we mean the magnitude of the 
consequences of accidents:  fatalities or health effects, adverse environmental effects, significant expense, 
perhaps other adverse effects on the operating corporation.  But high stakes alone may not justify the 
formulation of a detailed risk model.  Selection of a particular course of action may need to be based on 
strong evidence of low accident likelihood, but if we can get that evidence without a risk model, then we 
don’t need the model. 
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As an example:  if operation of a facility could result in severe safety or environmental consequences and 
involves new technology or new environments, quantitative risk assessment such as PRA should be 
considered, because that situation involves high stakes, uncertainty, and (potentially) complexity.  
Generalizing from that example, questions such as the following can be used to help determine when a PRA 
should be considered: 

• Is the facility design complex? 
• Could the consequence of failure of the facility or operation result in higher human or 

environmental consequences than similar facilities or operations? 
• Does the location of the facility or operation magnify the potential consequences of failure? For 

example, is the location in an area that is fragile, or contains a vulnerable population?  
• Have the potential recovery or mitigation measures for the proposed facility or operation been 

proven in similar environmental situations? 
• Has the facility or equipment been used in the proposed type of operation before?   

o How much experience has been gained?   
o What are the outcomes of the use? 

• Is the proposed facility or operation in a new or extremely challenging environment? 
• Are there any new hazards associated with the facility or operation when compared to facilities or 

operations performing similar jobs? 
• If the facility or operation is being applied in a similar environment with similar consequences to 

existing facilities or operations, are there any new aspects such as material, equipment layouts, 
types of equipment, or positioning systems that are untested? 

More generally:  going back to Figure 1-1 of Section 1:  in a situation with high stakes, complexity, 
uncertainty, and so on, it is unlikely that a qualitative model result will pass the “robustness” test in the 
decision diamond on the right of the figure.  Correspondingly, the analysts will be directed to loop back 
through the figure, and choose tools that furnish the results needed to get past the “robustness” test. 

2.2 Quantitative Scenario Modeling:  Probabilistic Risk Assessment 

When the decision has been made that the qualitative techniques do not offer the assurance necessary to 
make a decision, quantitative techniques (i.e. Probabilistic Risk Assessment) should be considered.  The 
PRA ultimately presents a set of scenarios, frequencies, and associated consequences, developed in such a 
way as to inform decisions regarding the allocation of resources to accident prevention or mitigation.  The 
implication of the analysis could be a change in design or operational practice, or could be a finding that the 
design is acceptable as is.  Decision support in general requires quantification of uncertainty, and this is 
understood to be part of modeling and quantification. 

For simplicity, the discussion below will be carried out as if the process of PRA model development were a 
once-through process.  But this is not the case.  In general, a significant amount of iteration will occur.  The 
process of development is steered by whether the model is adequate for purposes of the decision being 
supported.  Examples of consistency checks include:  
 

• Have we included events that are probabilistically significant relative to the current bottom line (or 
to other events that we have decided to include)?  

• Have we parsed events sufficiently to be able to quantify them accurately?  
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• Are events parsed down to a level at which we can reasonably treat them as if they were 
independent?  

2.2.1 Elements of a PRA 

This subsection discusses the elements of a PRA logic model.  Major elements of the logic are introduced 
and briefly described; each is then illustrated with respect to simplified examples.  The examples 
emphasize the logic-based (event tree/fault tree) modeling approach; however, some of the concepts 
described in this section are also applicable to other modeling approaches such as simulation as discussed 
in Section 2.3. 

A scenario contains an Initiating Event (IE) and, usually, one or more pivotal events leading to an end state.  
As modeled in most PRAs, an IE is a perturbation that requires some kind of response from the crew or one 
or more systems.  Note that for an IE to occur, there may need to be associated enabling event(s) that exist 
(e.g., for a fire IE to occur, there would need to be combustible material present).  The pivotal events in a 
scenario include successes or failures of responses to the IE, or possibly the occurrence or non-occurrence 
of external conditions or key phenomena.  Then, the scenario end state(s) are defined according to the 
decisions being supported by the analysis, in terms of the kind and severity of consequences, ranging from 
completely successful outcomes to losses of various kinds. 

The first major step in logic model development is to determine the boundaries of the analysis.  First, based 
on the goals of the analysis and decisions to be made, what end state(s) are of interest?  Examples include: 
 

• Loss of life or injury to personnel;  
• Damage to the environment; 
• Damage to, or loss of, equipment or property (including facilities and public properties); and 
• Unexpected or collateral damage. 

Determination of which end states will be analyzed will in turn determine the IEs and critical functions that 
must be included in the analysis.   

In addition to the end state(s), the boundaries of the analysis, in many cases, would define what a 
successful end state would be.  For instance, if the end state of interest was an uncontrolled release of 
hydrocarbons to the environment during exploration drilling, the success state may be defined in different 
ways depending on the goals of the analysis.  If the goal is to evaluate a the likelihood of an accident, the 
success end state may be defined as successful control of the well by the Blow Out Preventer (BOP).  If the 
goal is to evaluate the likelihood of a release as a function of the magnitude of release, considerations 
beyond the BOP must be taken into account such as ROV intervention, well capping, etc. and success 
becomes killing the well rather than successful isolation of the well by the BOP alone. 

The next step involves determining what perturbations to the process, or IEs, present a challenge that could 
lead to the end state(s) of interest.  There may be many IEs, some of which may be grouped together 
because the response is the same or very similar (e.g. a well kick due to surge while tripping in and a well 
kick due to an unexpected overpressure zone), or the IEs may have different responses (e.g. a well kick due 
to an unexpected overpressure zone and an inadvertent LMRP disconnect).  Determination of the IEs will 
further determine the critical functions necessary to achieve a successful end state through development of 
event sequence diagrams (ESDs) that detail the response to the initiating event.  Identification of IEs and 
ESDs / critical functions are discussed in more detail in Sections 2.2.2 and 2.2.3 respectively. 
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Step 3 is building the event tree(s) that develop specific accident sequences leading to the end state(s) of 
interest and is used, in conjunction with fault trees to quantify the frequency of each end state.  One event 
tree is developed for each IE or group of IEs.  The graphical event tree starts with the IE which is followed by 
a number of pivotal events determined through the accident progression / critical function assessment in 
Step 2.  Each of the pivotal events have a potential success or failure path (although in some cases more 
than a binary state is possible), and are usually ordered as a time sequence of the response to the IE.  A 
detailed discussion of how event trees are built and function is found in Section 2.2.4. 

Pivotal event development is Step 4.  This involves development of fault trees for each of the pivotal events 
in the event trees.  The fault trees are models that start with a “Top Event” that is a failure or condition, and 
develop ways in which that event can happen, expressed in terms of “basic events.”  There can be many 
basic events (the lowest level in the fault tree) and very many combinations of basic events that can cause 
the Top Event.  The top event model may comprise systems, human actions, environmental conditions, etc. 
The basic event level is where the probabilistic data are used for quantification.  Fault tree development 
and quantification is discussed in Section 2.2.5. 

With the development of the event trees and supporting fault trees, the logic model is completed.  
Quantification requires the development of data to populate the logic model and is discussed in Section 
2.2.6. 

2.2.2 Initiating Event Development 

One of the first modeling issues that must be resolved in performing a PRA is the identification of accident 
scenarios that are related to the analysis goals.  This modeling of "what can go wrong?" follows the 
systematic identification of accident initial causes, called initiating events, grouping of individual causes into 
like categories, and subsequent quantification of their likelihood.  Initiating events may lead directly to 
undesirable outcomes or more typically require additional failures, equipment and/or human, prior to 
reaching a negative consequence. 

The identification of initiators can come from a variety of techniques, including those discussed in Section 
2.1 (e.g. HAZOPs, HAZIDs, etc.).  Precursor events may also suggest the types and frequencies of applicable 
upsets.   PRA analysts traditionally deduce initiating events through the development of a Master Logic 
Diagrams (MLD).   

The MLD is a deductive method analogous to a fault tree.  The top event of an MLD is a type of challenge to 
facility safety.  The top levels are defined by functional events and/or external events (e.g. environment), 
and successive levels of the MLD are developed until the effect of the failure or event is the same as the 
block it feeds in to.  The goal is not only to support identification of a comprehensive set of IEs, but also to 
group them according to the challenges that they pose (the responses that are required as a result of their 
occurrences).  IEs that are completely equivalent in the challenges that they pose, including their effects on 
subsequent pivotal events, are equivalent in the risk model.   

A  useful starting point for identification of IEs in a MLD is a specification of “normal” operation in terms of 
(a) the nominal values of a suitably chosen set of physical variables and (b) the envelope in this variable 
space outside of which an IE would be deemed to have occurred.  An example of this could be the mud 
return flow.  There is an expected value for the mud return flow, and a deviation (increase) by a certain 
amount would not be “normal” and indicates a well kick may have occurred.  A comprehensive set of 
process deviations can then be identified, and causes for each of these can be addressed in a systematic 
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way. 

Figure 2-3 shows an example of a MLD that might be used to identify initiating events (not exhaustive) 
related to upsets resulting in an uncontrolled release of hydrocarbons during normal drilling operations.   

For this example, the end state of an uncontrolled hydrocarbon release during normal drilling operations is 
the top block.  The next level down would be functions that either normally are barriers that prevent the 
end state from occurring like mud control, or functions that could induce a perturbation that could lead to 
the end state such as tripping in/out.  In addition, a category related to environmental conditions is included 
since they may be somewhat unpredictable and induce conditions leading to the end state.  Environment in this 
case is generalized and is broken down into geological conditions and weather/sea conditions.  The level of the 
MLD in blue represents IEs that are challenges to the end state.   

 
Figure 2-3. Notional Master Logic Diagram Related to Candidate Initiating Events 

 

Once an exhaustive list of IEs has been identified, the frequency of the IEs may be quantified.  Note that IEs 
are developed as frequencies because they are on a per time or per mission basis.  Some IEs may be 
singular events, such as the frequency of a tropical storm in a particular geographical area and of a specific 
magnitude that could result in station-keeping challenges.  Historical data are available and might be 
applicable to quantification of the frequency of this IE.  Other IEs may be more complex and require further 
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development before quantification can occur.  IEs like Inadvertent Disconnect of the LMRP may require a 
fault tree to establish the causes or enabling events, which may then be quantified in the fault tree to 
estimate the IE frequency.  Occasionally, some IEs may be conditional.  For instance, severe environmental 
conditions resulting in a drift-off condition may be seasonal and geographically dependent.  A severe 
environment may be more likely in some months, e.g. June-September, in the Gulf of Mexico due to the 
potential formation of tropical cyclones.  In this case, a temporary exploration operation may consider the 
time that is planned for the well, or in the case of a production platform, different initiators with different 
seasonal frequencies may be used to account for the IE dependencies. 

Quantification of an IE frequency is often done using a Bayesian approach, where operational data are 
evaluated to determine the initiator frequency, including the uncertainty on the frequency (this approach is 
described in Sections 2.2.5.10 and 2.2.6).   
 
2.2.3 Event Sequence Diagrams 

Once an exhaustive set of IEs has been established, accident progression, with the elements shown in 
Figure 2-4, can be modeled using an Event Sequence Diagram (ESD) and/or its derivative, an event tree.  
Both are used in PRAs to provide organized displays of sequences of system failures or successes, and 
human errors or successes that can lead to specific end states.  A traditional accident progression analysis 
begins with an ESD, refines it, and then transforms it into an event tree format.  An ESD starts with the 
premise that some IE has occurred and then maps out what could occur in the future if particular systems 
(or humans) fail or succeed in responding appropriately to the IE.  The ESD shows event sequences (or 
pathways) leading to different end states.  ESDs are a very useful step in developing logic models: ESDs 
permit the complex relationships among IEs and subsequent responses to be displayed more readily and 
understandably than do event-tree models.   

 

  
Figure 2-4. The Elements of an Accident Scenario 
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In principle, one ESD is developed for each IE; however, responses to nominally different IEs in terms of 
system controls or mitigations may be very similar, or even the same.  In such a case, a single ESD may be 
used to represent the accident progression for a set of IEs.  The objective is to illustrate all distinct paths 
from the IE to the end states.   

An important attribute of an ESD is its ability to describe and document assumptions used in event trees.  
An ESD can be very detailed, depicting all sequences considered by the PRA analyst.  When simplifying 
assumptions are used to facilitate event tree construction or quantification, the ESD may furnish a basis for 
demonstrating why such assumptions are conservative, or probabilistically justified. 

Figure 2-5 depicts a simple ESD and its symbols.  The Figure 2-5 ESD begins with an IE that perturbs the 
function being modeled from a stable state.  The initial response to this perturbation is provided by System 
A, and if System A compensates for the IE, a successful end state results. 

If System A should fail, Systems B and C together can compensate for the IE.  According to Figure 2-5, a 
successful end state ensues if Systems B and C start and operate satisfactorily. 

Failure of System B to start or operate results in End State 1.  If System B is successful and System C fails to 
start or operate properly, successful crew intervention can still provide some mitigation for the accident 
and will result in a different end state (End State 2).  If the crew efforts are unsuccessful, End State 1 
results. 

 

 
Figure 2- 5. Notional Event Sequence Diagram 

Figure 2-6 is a more complex (but still relatively simple) ESD developed to evaluate accident sequences related 
to a well kick from drilling into an unexpected overpressure zone that results in an environmental release.  Five 
different end state designations are used, Well Shut In and 4 different Environmental Release end states.  The 
Well Shut In end state represents paths that result in no or insignificant environmental release and the condition 
of the well is stable (i.e. no hydrocarbon flow) and controlled.  The Environmental Release end states represent 
paths where mitigating events have failed to prevent the accident from progressing resulting in a release to the 
environment.  A different end state designation is used for each path depending on the mitigation used for 
gaining control of the well (e.g. ROV intervention, Well Capping, etc.).  Even for a given path, the magnitude of 
the release can vary; for example, the magnitude of the release would depend on the flow rate of the well and 
the time it is flowing to the environment.  If a relief well is needed to stop the flow, it will lead to a much larger 
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release than if an ROV can intervene and stop the flow early on in the accident.   
 
Figure 2-7 illustrates the process of ESD development.  Since an ESD is success oriented, the process begins 
(Step 1) by identifying the anticipated response to the IE, in this case a well kick due to an unexpected 
overpressure zone, out to a successful outcome.  For this example, the anticipated response is to first 
properly detect the kick before it reaches the BOP.  If that occurs, then mitigating actions can take place to 
shut in the well.  The first responses are shown as comments, stopping the rotation of the drill pipe and 
positioning the drill string.   The mud pumps are then stopped to increase the time before the kick reaches 
the BOP.  These first two actions are listed as comments because they affect other steps and will be 
accounted for in them.  The next pivotal event is closing the annular preventer and opening the choke line.  
This isolates the well except for the path up the drill string if the drill string or another tubular is present in 
the BOP.   With the annular successfully working the next question would be if the path through the drill 
string is isolated.  The success of this event is conditional on whether the drill string has a float valve present 
or an IBOP is necessary.  These conditions may be represented in a fault tree tied to the event as discussed 
in Section 2.2.5.8.  The well is monitored for flow/pressure and if isolation is successful and no flow is 
present, the well is controlled, and a well kill program may be initiated.  The well kill process starting with 
using the pipe rams and opening the annular preventer is not shown here to keep the diagram simple. 

The next step (Step 2 in Figure 2-7) in developing the ESD is to consider what happens when failures occur.  
On the first block after the IE, if the kick is not detected prior to formation fluid reaching the BOP no other 
barriers exist to prevent the fluid already past the BOP from reaching the rig.  A comment was placed in 
the ESD to show that the diverter may be used, but the diverter is for personnel safety and not for 
preventing environmental release.  The purpose of the ESD is to estimate environmental release, which 
the diverter does not mitigate, so it is commented for later use if personnel safety is also analyzed.  Put 
differently: the comment is there as a reminder, in case we need it later.   

Once it is determined that that the rig will be impacted, the mitigating actions are assumed to start with 
an emergency disconnect from the well.  This action sets in motions mitigation by operating the casing 
shear ram and then the blind shear ram.  Successful operation of the blind shear ram is all that would be 
required to seal the well, as the casing shear ram is assumed to not provide an effective sealing surface.  
The casing shear ram is operated first however, in case there is any tubular present (e.g. casing) in the BOP 
that would prevent closure of the blind shear ram.  In developing the sequence of events, it was noted 
that the casing shear may not be effective for all tubulars, and if some specific types of tubulars such as 
drill collar or tool joints are present, the casing shear will not be able to perform its function.  A block was 
added to model this possibility, since, if nonshearable pipe were present, the actions of the casing and 
blind shear rams would be guaranteed to fail, and therefore would not need to be questioned.  Success of 
the casing shear ram block is noted as being conditional that shearable tubular is in the BOP.  If the BOP is 
free of any tubulars, as previously mentioned, all that is needed for successful well isolation is the blind 
shear ram.  If the blind shear ram works, the end state is that the well is controlled, but a limited release 
has occurred. 

The second failure path is in response to a failure of the annular.  In this case, the next step would be to 
close the pipe rams.  If the drill string is present in the BOP, the pipe rams will close around the pipe and 
seal the annulus.  There are a minimum of 2 pipe rams available; however, there may be more, and only 
one has to be successful to shut down flow from the well through the annulus.  If the pipe rams fail to 
shut in the well around the drill pipe due to a system failure or possibly a tubular that is outside of the 
design of the pipe ram (e.g. drill collar), formation fluid will travel up the annulus and an emergency 
disconnect is assumed to be the response.  If the pipe rams are successful, then the drill string path is 



DRAFT 

2-13 
  January 5, 2017  

questioned to determine whether that path is isolated or not. 

The last pivotal event in the top line is the pivotal event for the isolation of the drill string.  In this case, a 
float valve may or may not be present in the string, and an Internal BOP (IBOP) may or may not be in place 
on the rig floor.  If either/both of those are present and fail, or there is no equipment to prevent a release 
through the drill string, formation fluid can reach the rig.  In this case, the flow will be significantly less 
than it would be if the annulus were open to flow, so an emergency disconnect is not questioned, but the 
BOP shear rams are. 
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Figure 2- 6. Event Sequence Diagram for a Well Kick from an Unexpected Overpressure Zone 
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Step 3 in Figure 2-7 further develops the ESD out to an environmental release through the accident 
management stage.  For simplicity, the events considered are undeveloped and only shown as a single 
block each.  If an unshearable tubular is present or the shear rams are unsuccessful (down path) then a 
release will occur.  The next possibility for mitigation would be attempting to manipulate the BOP with an 
ROV.  If this is successful a release will have occurred, but the magnitude will be somewhat limited due to 
the relatively short response time.  Failure of the ROV (because of environment, BOP condition, ROV 
failure, etc.) will lead to the next available option which would be well capping.  The development 
continues until all paths lead to a stable state or a release which can vary in magnitude with the last 
option available being a relief well. 

The example ESD developed in Figure 2-7 analyzes end states corresponding to environmental release 
given that a well kick from an unexpected overpressure zone has occurred.  A well kick may have different 
causes such as those shown in Figure 2-3.  The ESD can provide a common response in terms of events for 
similar initiators; however, the probabilities in the ESD may be conditional based on what the initiator is.  
For instance, if the trip is caused by the swab/surge effect, is the probability of a nonshearable tubular in 
the BOP the same as it is for drilling into an unexpected overpressure zone?  When quantifying using 
event trees, these conditions must be accounted for, if we are to accurately estimate the probability of 
the consequences of interest. 

There also may be other initiating events that could lead to an environmental release that may have 
different event sequences.  For instance, an inadvertent LMRP disconnect would not have the detection, 
annular, or drill string blocks on the top row in Figure 2-7 since the loss of communication with the BOP 
after the LMRP disconnect negates any actions by the driller.  This may therefore require an ESD to be 
developed specifically to address those scenarios. 
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Figure 2-0-1:  Event Sequence Diagram Development Steps 

 

Figure 2- 7. Event Sequence Diagram Development Steps 
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2.2.4 Event Trees 
Once the accident progression paths are understood, the next step is to build event trees for scenario 
quantification.  An Event Tree is a graphic that displays scenarios potentially resulting from a specific IE (or 
a group of functionally similar IEs.  Event trees are derivable from ESDs, but event trees are one step 
closer than ESDs to generation and quantification of scenarios.  An event tree distills the pivotal event 
scenario definitions from the ESD and presents this information in a tree structure that is used to help 
classify scenarios according to their consequences and perform a quantification of the scenarios.  The 
headings of the event tree are the IE which is the starting point, the pivotal events showing success or 
failure of mitigating/ aggravating events, and lastly the end state to bin the consequence of each scenario.  
Each individual path through the event tree is a sequence.  The event tree pivotal events are linked to fault trees, 
and the pivotal event name should match the corresponding fault tree top event description.  This is because fault 
trees are tied to the pivotal events and are based on potential failures for that event.  An example event tree 
based on the ESD in Figure 2-5 is shown below. 

The simple example in Figure 2-8 shows 5 sequences on the right hand side of the event tree with 3 
different end states:  

 
SUCCESS; 
ENDSTATE-1; and 
ENDSTATE-2. 

 
Figure 2- 8. Example Event Tree 

Each sequence resulting in the end state represents a combination of the IE and success and or failures 
of the pivotal events.  For instance, consider sequence 3 in Figure 2-9 below. 
 

 
Figure 2- 9. Example Event Tree Sequence 
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Sequence 3 starts with the IE and results in ENDSTATE-2.  The resulting sequence is a combination of 
successes and failures of the pivotal events along the path, yielding the expression: 

INIT-EV * SYSTEM-A * \SYSTEM-B * SYSTEM-C * \CREW 

In the above expression, INIT-EV represents the frequency of the IE, SYSTEM-A and SYSTEM-C represent the 
probabilities of failure of systems A and C respectively, as indicated by the downward step at each of those 
pivotal events in the event tree.  \SYSTEM-B and \CREW represent NOT failure of SYSTEM-B and NOT failure 
of CREW (i.e. success), indicated by the upward step in the event tree.   

Quantification will be discussed in more detail later.  However, for purposes of illustration, the frequency of 
this event sequence can be quantified assuming IE and pivotal event values of: 

INIT-EV = 0.10 events per unit time, 
SYSTEM-A = 0.02 (failure probability of A given INIT-EV), 
SYSTEM-B = 0.03 (failure probability of B given INIT-EV and failure of A), 
SYSTEM-C= 0.03 (failure probability of C, given INIT-EV, failure of A, and success of B), 
CREW= 0.05 (failure probability of CREW, given INIT-RV, failure of A, success of B, failure of C).   

 

This yields the following as the frequency of occurrence of END-STATE-2 (in events per unit time):  
 

0.1* 0.02 * (1-0.03) * 0.03 * (1-0.05) = 5.53E-5 
 

From Figure 2-10, it can be seen that not all pivotal events are questioned in every sequence.  Sequence 5 
in Figure 2-9 does not question SYSTEM-C or CREW, because once SYSTEM-A and SYSTEM-B have failed, 
SYSTEM-C and CREW can no longer affect the end state.  Dependences like this are typically accounted for 
when the event tree is developed, so that the resulting sequences are the minimal sets of pivotal events 
that must occur for that end state to occur.  The expression for sequence 5 then becomes: 
 

INIT-EV * SYSTEM-A * SYSTEM-B. 
 

Substituting the values from above yields: 
 

0.1 * 0.02 * 0.03 = 6.0E-5  
 

 
Figure 2-10. Example Event Tree Sequence where not all Pivotal Events are Questioned 
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When the pivotal events are replaced with fault trees, as discussed in Section 2.2.5, it becomes possible to 
express the event sequences in more detail, namely, in terms of basic events (e.g., component failures) 
rather than pivotal event names (failures of systems or entire functions).  Depending on the size of the fault 
tree, each event tree sequence can result in many “cut sets” or unique contributors that can cause system 
failure, since pivotal events such as SYSTEM-A may have many different ways to fail: pump failures, valve 
failures, leaks, etc. 

2.2.4.1  Event Tree Development 

Developing an event tree usually begins with the ESD.  From the ESD in Figure 2-5, 4 pivotal events were 
shown: 

System A Operates, 
System B Operates, 
System C Operates, and 
Crew Intervention 

 

The event tree in Figure 2-11 is the start at mapping out the ESD paths from the ESD from the IE to the end 
states.  Event tree development generally follows the time sequence of events from the ESD.  In Figure 2.5, 
the initial response after the IE is the System A status, so it logically is the second event in the event tree 
(converted to failure).  System B Fails to Operate is questioned if System A fails in the ESD, and if System B 
is successful, System C Fails to Operate is questioned.  System B is listed after System A on the event tree 
because the status of System A must be known before System B is questioned.  Similarly, System C is listed 
after System B because the status of System B must be known.  Lastly, Crew Intervention is only questioned 
if System C is failed, so it must be listed after System C.   

 
Figure 2-11. Step 1 in Building Example Event Tree 

 
With the top line of the event tree laid out, the next step is to develop the branches for the pivotal events.  
From the ESD, System A operation directly follows the IE, so it must have a success and failure path as 
shown in the event tree.  If System A is successful in the ESD, then the end state is success.  The translation 
to the event tree in Figure 2.9 shows that none of the other pivotal events after System A Operates needs 
to have a downward branch for failure since they do not impact the scenario.  The end state of the first 
sequence is labeled SUCCESS as in the ESD as shown in Figure 2-11.   

Once System A has failed (down path on the event tree), the status of System B is questioned and therefore 
needs success and failure paths.  The failure path of System B leads directly to a negative consequence 
labeled as ENDSTATE-1 (sequence #4 listed to the left of the End State column) since no other mitigation 
options are available with both System A and System B failing.  If System B is successful, then the status of 
System C is questioned, with its success (up path) leading to a SUCCESS end state, as shown in Figure 2-12 
in sequence 2. 

INIT-EV

Initiating Event Occurs

SYSTEM-A

System A Fails to 
Operate

SYSTEM-B

System B Fails to 
Operate

SYSTEM-C

System C fails to 
Operate

CREW

Crew Intervention Fails # End State
(Phase - )

1 SUCCESS

2
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Figure 2-12. Step 2 in Building Example Event Tree 

The last step in building the example event tree is to fill out the scenarios if System C fails after System A 
fails and System B is successful.  The Crew Intervention event lessens the impact of the consequence per 
the ESD, and therefore the success path of the Crew Intervention event leads to a second, lesser, negative 
consequence labeled as ENDSTATE-2 in Figure 2.8.  The failure of Crew Intervention leads to the same end 
state and if Systems A and B or A and C had failed, ENDSTATE-1.  The final event tree is shown in Figure 2-8. 

The resulting sequences of events for each of the end state in the example (Figure 2.8) are: 
SUCCESS: 
Sequence 1: Initiating Event Occurs * /System A Fails to Operate  
Sequence 2: Initiating Event Occurs * /Systems B fails to operate and / System C fails to operate  
 

ENDSTATE-1: 
Sequence 4: Initiating Event Occurs * System A fails to operate * /System B fails to operate * 
System C fails to operate * Crew intervention fails 
Sequence 5: Initiating Event Occurs * System A fails to operate * System B fails to operate 
 

ENDSTATE-2: 
Sequence 3: Initiating Event Occurs * System A fails * /System B fails to operate * System C fails to 
operate * /Crew intervention fails 

 
The objective is to develop a tractable model for the important paths leading from the IE to the end states.  
Generally, risk quantification is achieved by developing fault tree models for the pivotal events in an event 
tree.  This linking between an event tree and fault trees permits a Boolean equation to be derived for each 
event sequence.  Event sequence quantification occurs when reliability data are used to numerically 
evaluate the corresponding Boolean equation. 

 

INIT-EV

Initiating Event Occurs

SYSTEM-A

System A Fails to 
Operate

SYSTEM-B

System B Fails to 
Operate

SYSTEM-C

System C fails to 
Operate

CREW

Crew Intervention Fails # End State
(Phase - )

1 SUCCESS

2 SUCCESS

3

4 ENDSTATE-1
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DRILLINGKICK

Well Kick While Drilling

KICKDETECT

Kick not properly 
detected prior to 

reaching BOP
ANNULAR

Annular preventer fails to 
close prior to the k ick 

reaching the BOP or pressure 
beyond design of annular

PIPERAM

Driller fails to close pipe 
rams successfully

IBOPFLTVLV

Drill string float valve / 
IBOP fails to prevent 
flow through string

EMERGDISCONN

Rig fails to perform 
Emergency Disconnect

CASINGSHEAR2

Casing shear ram does 
not successfully operate

BLINDSHEAR

Blind shear ram does 
not successfully close

# End State
(Phase - )

1 WELLSHUTIN

2 WELLSHUTIN

3 WELLINTERVENTION

4 WELLSHUTIN

5 WELLINTERVENTION

6 WELLSHUTIN

7 WELLSHUTIN

8 WELLINTERVENTION

9 WELLSHUTIN

10 WELLINTERVENTION

11 WELLSHUTIN

12 WELLINTERVENTION

13 WELLSHUTIN

14 WELLINTERVENTION

15 WELLINTERVENTION

16 LIMITEDRELEASE

17 WELLINTERVENTION

18 LIMITEDRELEASE

19 WELLINTERVENTION

20 WELLINTERVENTION

Figure 2-0-2:  Event Tree Structure for Well Kick from an Unexpected Overpressure Zone Figure 2-13. Event Tree Structure for Well Kick from an Unexpected Overpressure Zone 
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2.2.4.2  Event Tree Transfers 

Figure 2-13 is a more complicated event tree corresponding to the Figure 2-6 ESD to estimate the 
risk of an environmental release in response to an unexpected overpressure zone.  In this example, 
there are many different scenarios modeled.  Going back to the original identification of initiating events 
and development of ESDs in Sections 2.2.2 and 2.2.3, it was noted that some IEs may have the same 
sequence of events and can use the same ESD/event tree, albeit perhaps with different conditional 
probabilities possibly assigned to the pivotal events.  Other IEs may have completely different scenarios 
that are modeled, or may be partially the same.  For initiators with common sequences of events, the 
common sequences may be best developed in a standalone event tree and used as an event tree 
transfer.   Listed on the right side of Figure 2-13 under the end states is a transfer condition 
WELLINTERVENTION shown as the symbol in Figure 2-14. 

 

Figure 2-14. Event Tree Transfer 

The WELLINTERVENTION end state is a transfer to a second event tree.  A transfer is used generally in 
the case when there may be common elements to multiple IEs or when an event tree gets very large 
and has distinct and different sequential processes.  The event tree in Figure 2-6 is based on a well kick 
for an unexpected overpressure zone.  Other IEs, such as an inadvertent LMRP disconnect, may have 
different initial responses (no driller intervention if communication with the BOP is lost), but the 
responses of ROV intervention, well capping, and relief well may be the same from the ESD in Figure 2-
6.  In the case of Figure 2-6, it was decided to use a standalone event tree for the ROV through relief 
well part of the ESD, in order to manage the size of the event tree and because other IEs may have that 
part in common.  Accordingly, the WELLINTERVENTION event tree is shown in Figure 2-15. 
 
The first event, LARGERELEASE is simply the entry point from the previous event tree, and does not 
show up in event sequences.  The sequences of events from the previous event tree will continue in 
the WELLINTERVENTION event tree to the end state where the sequences will contain all IE and pivotal 
event information from the initial event tree and the transfer event tree. 
 
 

 
Figure 2-15. WELLINTERVENTION Event Tree 
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In Figure 2-13, the end states are WELLSHUTIN which would represent SUCCESS on the simple example 
where formation fluid has stopped flowing, the well is controlled, and a well kill program may be put in 
place.  This end state is shown in Sequences 1, 2, 4, 6, 7, 9, 11, and 13 in Figure 2-13.   The Sequences 
16 and 18 end states are shown as LIMITEDRELEASE and are the scenarios where some formation fluid 
has risen above the BOP and will reach the environment, but the blind shear ram has sealed the well to 
prevent further release.  The remaining sequences have their end state listed on the 
WELLINTERVENTION event tree.  Each end state in WELLINTERVENTION is different because the 
failures are time dependent in that an ROV intervention may happen earlier than well capping while 
the relief well is much longer term.  Therefore, the duration of the releases will vary based on the type 
of successful intervention, and these are separated into distinct end states as shown in Figure 2-15.  
Ultimately, if no other well intervention techniques are successful, a relief well will be needed.  This is 
separated into 2 paths, with the success path being the initial attempt at the relief well kills the well. 

The end states discussed do separate out, to some degree, the magnitude of release as a measure of 
consequences.  It may be desired to provide more deterministic estimates showing probabilistically the 
magnitude of release expected (i.e. barrels of oil released as a function of probability.  This can be done 
through the use of simulation as described in Section 2.3. 

2.2.4.3  Multibranch Event Trees 

The pivotal events in the previous described examples are all binary in that they only have paths 
related to success or failure of the event.  In some cases there may be multiple states or 
conditions that an event may be in, each with a different probability.  Related to the ESD in Figure 
2-6, there are different types of tubulars that may be present in the BOP when the shear rams 
are called on to work depending on which operation is being performed (e.g. drilling, running 
casing, etc.).  Since the casing shear and blind shear have different shearing capability, and there 
are some tubulars that are nonshearable, the type of tubular present in the BOP at the time of 
shearing is important to model for model accuracy.  This may be done in the fault trees linked to 
the event tree (discussed in Section 2.2.5), but fault trees addressing multiple possible 
configurations or conditions can be complicated.  Another way to address multiple conditions is 
in event tree structure using a multi branch node in the event tree as shown in Figure 2-16. 

In Figure 2-16, the ESD in Figure 2-7 has been broken up into three operational conditions, no 
tubular in the BOP, drill pipe in the BOP, and casing in the BOP, and the first node in the event 
tree has three branches with each representing one of the conditions.  Each branch of the event 
tree for this event can be assigned a probability of that event being true, and together they 
would add up to 1.0 since one of the conditions has to be true if the branches cover all possible 
conditions.  Using this approach logically changes the downstream paths if the event tree is fully 
developed.  For instance, if there is no tubular in the BOP (top branch of first node) when a shut 
in is required (top branch), then the status of the casing shear ram does not need to be 
questioned since it is not needed as it is assumed the blind shear ram provides the sealing 
function for the well.   
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Figure 2- 16. Multibranch Node in an Event Tree 

2.2.5 Fault Tree Modeling 

In many problems of practical interest, we cannot estimate pivotal event frequencies actuarially, 
even if they occurred independently, because they do not occur often enough to permit useful 
statistical analysis; and in general, pivotal events are not independent, so even if we could 
quantify their frequencies (or probabilities) actuarially, we could not straightforwardly combine 
those results to obtain a sequence frequency.  Therefore, we need to model such events 
synthetically:4 that is, we need to express functional failures in terms of system failures, system 
failures in terms of component failures, and component failures in terms of their causes, all 
modeled in sufficient detail that we can begin to quantify the lowest-level elements of the model, 
and then work our way back up to a synthetic estimate of pivotal event probability (or 
conditional frequency), conditional on its role in each scenario of interest, and finally quantify the 
top event frequencies themselves.  For PRAs, this is typically done using fault trees.  More 
information, beyond what is in this guide, can be found in [2-1]. 

2.2.5.1 System Success Criteria 

Prior to development of the pivotal event fault trees, success criteria are needed to define 
satisfactory performance in terms of the function included in the event tree.  System success 

                                                           
4 The term “synthetic” is used here to refer to modeling a complex event in terms of its contributors.  For example, we 
“synthesize” an estimate of the probability of a complex event by combining estimates of the probabilities of its 
contributors.  “Synthetic” is contrasted with “actuarial;” when we estimate a frequency actuarially, we use data on the 
occurrence of the actual event.  For example, we would not normally synthesize an estimate of flood frequency at a 
specific location solely by trying to model the spectrum of rainstorms; we would also look at the historical record of 
flood frequency and severity.  Of course, even if there have been a statistically significant number of storms, we are 
not certain that future conditions will match the historical record.   
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criteria impose operating requirements on the systems needed to successfully perform a 
particular function, and the duration that function is needed determines the system operating 
time.  Once the success criteria for a function has been established, top event fault tree logic is 
established from the Boolean complement of the success criteria (e.g., at least 1 of 2 pipe rams 
must fail to close and seal around the drill pipe when demanded).  Success criteria should be 
clearly defined.  All assumptions and supporting information used to define the success criteria 
should be listed in the documentation (i.e., what is considered to constitute system success needs 
to be explicitly stated).  Some examples of success criteria are: 
 

• The blind shear ram must close and shut in the well on demand. 
• At least 1 of 2 pipe rams must fail to close and seal around the drill pipe when 

demanded. 
• At least 4 of 6 thrusters must operate to maintain station keeping under calm 

(specified) environmental conditions. 
• At least 5 of 6 thrusters must operate to maintain station keeping under moderate 

(specified) environmental conditions. 
• At least 6 of 6 thrusters must operate to maintain station keeping under extreme 

(specified) environmental conditions. 
 

The last three examples show that success criteria may be dependent on external factors and 
may need to be discretely modeled.  In addition, again referring to the last three examples, the 
conditions may require specific thrusters to be available, e.g. the 4 out of 6 case may require 2 
forward and 2 aft thrusters. 
 
2.2.5.2 Modeling Pivotal Events 

Pivotal events must be modeled in sufficient detail to support valid quantification of scenarios.  As 
a practical matter, the model must reach a level of detail at which data are available to support 
quantification of the model’s parameters.  Additionally, much of the time, pivotal events are not 
independent of each other, or of the IEs; the modeling of pivotal events must be carried out in 
such a way that these dependencies are captured properly.  For example, pivotal events 
corresponding to system failure may have some important underlying causes in common (e.g. 
support systems).  If the purposes of the PRA are to be served—if such underlying causes are to 
be identified and addressed—it is imperative to capture such dependencies in the scenario model.  
If pivotal events were known to be independent of each other, so that their probabilities could be 
combined multiplicatively, there would be less reason to analyze them in detail.  Because pivotal 
events often share shared dependencies, their modeling in some detail is important. 

Complex pivotal events can frequently be modeled using fault trees.  A fault tree is a picture of a 
set of logical relationships between more complex (more aggregated) events such as system-level 
failures, and more basic (less aggregated) events such as component-level failures.  Fault tree 
modeling is applicable not only to modeling of hardware failures, but also other complex event 
types as well, including descriptions of the circumstances surrounding software response and 
crew actions.   

The mapping of scenarios into logic representations leans heavily on engineering analysis: 
physical simulation of system behavior in specified conditions, determination of time available 
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for crew actions, determination of the severity of the consequences associated with scenarios.  
Behind every logic model is another body of modeling whose results are distilled into the logical 
relationships pictured in the scenario model.  Assignment of system states into “success” or 
“failure” depends on such modeling, as does classification of scenarios into consequence 
categories.   

Functionally, a fault tree is a deductive logic model where a top event, usually a system failure, is 
postulated, and reverse paths are developed to gradually link this top event with all subsystems, 
components, software errors, or human actions (in order of decreasing generality) that can 
contribute to the top event, down to those whose basic probability of failure (or success) is 
known and can be directly used for quantification.  Graphically, a fault tree at its simplest consists 
of blocks (e.g., rectangles or circles) containing descriptions of failure modes and binary logic 
gates (e.g., union or intersection) that logically link basic failures through intermediate level 
failures to the top event.  Figure 2-17 depicts a very simple fault tree structure.   

  

 
Figure 2- 17. Typical Fault Tree Structure and Symbols 

 
Fault trees are constructed to define all significant failure combinations, called cutsets that lead 
to the top event.  The result of a Boolean reduction of the fault tree results in combinations of 
failures that are the minimum set(s) required to result in the top event and are called minimal cut 
sets.   

Ultimately, fault trees are graphical representations of Boolean expressions representing the 
minimal cut sets.  For the fault tree in Figure 2-17, there are 3 minimal cut sets: 
 

MUD-PMP-FTR-001; 
MUD-PMP-FTS-001; and 
SYSTEM-A-PUMP-PWR. 

The corresponding Boolean equation for the fault tree is: 
SYSTEM-A = MUD-PMP-FTR-001 ∪ MUD-PMP-FTS-001 ∪ SYSTEM-A-PUMP-PWR  
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More detail on minimal cut sets and the Boolean reduction that are the results of the fault tree 
are shown in Section 3. 
 
2.2.5.3 Fault Tree Considerations 

Developing a fault tree requires several considerations including: 
• Identifying the objective and scope of the analysis; 
• Determination of the level of detail; and 
• Setting ground rules and naming conventions. 

 

The objective and scope of the fault tree, in the context of a PRA analysis, is normally defined 
when the event sequences are being developed by constructing the ESDs/event trees.  The 
critical systems/events required to respond to an initiating event are assessed by the processes in 
previous Sections, and incorporated as pivotal events in the event tree(s).  These pivotal events 
become top events for the fault trees and should be worded in specific language as to highlight 
the failure mode of the event being analyzed based on the success criteria.   

Simply labeling the top event as “Event A Fails” is generally inadequate as Event A may have 
different failure modes, and the objective of the analysis may only require specific ones be 
modeled.  If extraneous failures are included in the analysis that do not contribute to the analysis 
objective, the results of the analysis will be erroneous.  For instance, the Emergency Disconnect 
on a MODU has several functions including separation of the LMRP from the BOP and triggering 
the autoshear function on the BOP.  The separation from the well is performed in an emergency 
situation for personnel safety to allow the MODU to move clear of the well.  The intent of the 
autoshear function is to seal the well and prevent a hydrocarbon release.  From the ESD 
developed in Figure 2-6, the objective of the analysis is to estimate the probability of a 
hydrocarbon release, so when developing the top event, only the contributors to failure of the 
autoshear function of the Emergency Disconnect needs to be included and the top event should 
be worded with that failure mode. 

Defining the scope of the analysis includes understanding the initial configuration/operation of 
the system being analyzed.  The initial state of the system will describe which components are 
active, which are in a standby state, and external conditions (e.g. if failure of the BOP blind shear 
ram is being analyzed, it is important to identify what operation is being performed, like running 
casing).  The initial state of the components will determine the applicable failure modes for those 
components.  A pump that is active may fail to operate while a pump in standby may fail to start 
or fail to operate.  In cases where a component is in standby, the analysis may need to account 
for human error if manual activation is required for the system to start. 

The level of detail on the causes resulting in the top event for a PRA analysis should be based on 
the level at which data is available, the objective of the analysis, and the interdependencies 
between systems and operations.  Data analysis is discussed in Section 2.6 in detail, but generally 
data can be found at the major component level (e.g. pumps, valves, electrical busses, etc.) from 
a variety of sources.  Going beyond the level that data is available will result in an unquantifiable 
fault tree.  The objectives of the analysis must also be considered in determining the resolution of 
the fault tree.  For a fault tree analysis on a BOP, the analysis could be performed at the 
yellow/blue pod level, or the analysis desires more detail down to the hydraulic component level 
to account for cross connect ability, for instance, that level may be modeled.  Interdependencies 
such as cross connect capability may be a reason by itself to drive the analysis to the component 
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level of detail. 

The last consideration is setting up modeling ground rules in order to ensure consistency across 
the PRA.  Establishing a naming convention for fault tree gates and particularly for basic events is 
necessary to be able to easily read cut sets and results from the analysis.  Cut set Naming 
schemes for the basic events may include: 
 

• The operation being performed (e.g. drilling) 
• The system the component belongs to (BOP) 
• The subsystem the component belongs to (e.g. Yellow pod) 
• The component (e.g. shuttle valve) 
• The failure mode (e.g. Fails to transfer) 
• A unique identifier for the valve (usually from a drawing, e.g. SV01) 

 
There is usually a character limit to the size of the basic event name, so abbreviations must be 
used for the above items such as BOP for blow out preventer, YPO for yellow pod, etc. As a 
minimum, the system, component, failure mode, and a unique identifier should be used when 
the naming scheme is developed.  The overall naming scheme typically has a form like: 

XXX-YYY-ZZZ-DDDDD 

Where XXX corresponds to the system, YYY is the component, etc.  The abbreviations for each are 
developed before modeling begins with the exception of the unique identifiers.  The failure 
modes for active components should correspond to active failures and not a failed condition.  For 
example, for a valve that is initially open and fails when commanded to close, the best way to 
express the failure mode is “fails to close” rather than “fails closed.”  In the “fails closed” case it is 
not clear what the initial condition of the valve is, was the valve open and did not close when 
commanded, or was the valve initially closed and failed that way when commanded to open?  
Using the active word “to” in “fails to close” implies the valve is initially open.   

A well thought out naming scheme for basic events is essential to avoid duplication of names for 
different events in different fault trees, particularly if multiple analysts are involved.  If 
duplication does exist, the results produced for those events could be erroneous.  Examples of 
typical naming conventions for failure modes and components is provided in Appendix A. 

There can be some special events that are adapted to the naming scheme used for components 
or they may have their own separate scheme.  For example, environmental conditions do not 
have a system or unique identifier associated with them and may therefore have a separate 
naming scheme developed for just those types of events. 

Gate naming schemes may be more freeform since gates are not shown in the results.  A 
consistent naming scheme for gates is advisable however to ensure that each gate is named 
uniquely and avoid having gates with different logic and the same name in different fault trees. 

 

2.2.5.4 Fault Tree Symbols 

Starting with the top event, the fault tree is developed by deductively determining the cause of 
the previous fault, continually approaching finer resolution until the limit of resolution is 
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reached.  In this fashion the fault tree is developed from the system end point backward to the 
failure source.  The limit of resolution is reached when fault tree development below a gate 
consists only of basic events (i.e., faults that consist of component failures, faults that are not to 
be further developed, phenomenological events, support system faults that are developed in 
separate fault trees, software errors, or human actions).  The logic of the fault tree is 
represented by symbols used for fault tree gates and basic events.  The most common types of 
gates are shown in Figure 2-18 with a description of the logic for each.  Appendix B gives a 
detailed explanation of how each gate is used and quantified.  Other gate types such as “NOR” 
or “INHIBIT” exist but are rarely used. 

 
Figure 2-18. Commonly Used Fault Tree Gates 

 
 

The most common basic event types are shown in Figure 2-19 with a description of what they represent. 
 

 
Figure 2-19. Commonly Used Basic Event Types 

House events are often used in fault tree analysis as switches to turn logic on and off or represent 
a condition.  If used as a switch, their probability is usually quantified as unity or zero, they require 
no reliability data input.  House events are a l s o  frequently used to simulate conditional 
dependencies. 
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2.2.5.5 Simple Fault Tree Example 

Using the steps described above, and going back to the example event tree provided in Figure 
2-13, a simplified example of fault tree construction is developed for the “ANNULAR” event (2nd 
event after the initiator in Figure 2-13) which represents the failure of the annular preventer to 
block the annulus through the BOP.  A simplified drawing of a BOP is shown in Figure 2-20. 

The top event of the fault tree, as stated in the 
event tree, is “Annular preventer fails to close 
prior to the kick reaching the BOP or pressure is 
beyond the design of the annular.”  The wording 
of the top event implies the initial condition is 
that the annular preventer is open and for success 
of this event, the annular preventer must close 
and prevent flow past the BOP.  The simplified 
example diagram in Figure 2-20 shows that both 
the blue and yellow pods, used for control, are 
connected to the annular preventer.  Either one is 
adequate to close the annular preventer and, in 
this simplified example, it is assumed that a 
crosstie exists.  To switch pods, a manual action 
by the Driller is required. 

To develop the next level down in the fault tree, the design and operation is reviewed.  In this 
example, one of the pods must provide hydraulic fluid to the preventer, the preventer itself must 
close, and the pressure must stay below the design pressure of the annular.   

The failure of the annular preventer (BOP-CYL-FTC-AP01) is a singular event so is included under 
an “OR” gate as shown in Figure 2-21.  For the purposes of this example, the basic event related 
to the pressure of the annular has been left as an undeveloped event and is also included under 
the OR gate (ANNULAROVERPRESSURE).  The failure of the pods includes multiple events and 
combinations of events that must fail to satisfy the top event.  Therefore, an intermediate “AND” 
gate is needed to develop this event (BOTHPODSFAIL) further.  The left input (YELLOWPODFAILS) 
to the AND gate is an intermediate gate for the operating yellow pod, while the blue pod 
(BLUEPODFAILS) is the standby pod and addressed on the right hand side of the AND gate.  For 
convenience, the portions of the blue and yellow pods (gate names – BLUEPODCOMMON, 
YELLOWPODCOMMON), have been made transfer events to allow these portions of the fault tree 
to be used with the blind shear, pipe, and casing shear rams.  The transfer for each is also shown 
in Figure 2-21.  For each pod, an OR gate is used with the inputs broken down into the pods 
themselves and the hydraulic paths from the pods.  From Figure 2-18, the yellow path is aligned 
to the annular and the shuttle valves are in position to permit flow, so the only applicable failure 
mode considered is external valve leakage.  Since the flow passes through both valves, both are 
included (BOP-SHV-LKG-SV01, BOP-SHV-LKG-SV02).   

The blue pod side needs to be treated differently because it is in a standby state.  Because the 
pods are manually selected, a basic event for the Driller failing to select the blue pod after the 
yellow pod fails is added (BOP-HUM-ERR-XTIEPODS).  On the hydraulic path intermediate event, a 
basic event for the crosstie shuttle valve failing to transfer to the correct position is added (BOP-

Figure 2- 20. Simple BOP Schematic 
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SHV-FTT-SV01).  From Figure 2-21, it should be noted that several events are included on both 
the yellow and blue pods, including the 2 shuttle valve external leakages and the common cause 
failure of both the yellow and blue pods.  In a fault tree, events or gates may be used in multiple 
areas and when the fault tree is solved, the cut sets produced will be reduced and will not 
contain any duplicates. 

The result of solving the ANNULAR fault tree in Figure 2-21 is shown in Table 2-3.  Using the logic 
of the fault tree, the inputs are reduced to the “minimal cut sets” that result in the top event.  
The minimal cut sets are those failures or combinations of failures that if any of the basic events 
were not true, the top event would not be true.  In Table 2-3, the first 5 cut sets are all single 
basic events that would result in the top event, while cut sets 6, 7, and 8 are double failures.  
When the basic events are assigned values, a ranked listing is produced. 

Table 2-3.  ANNULAR Fault Tree Minimal Cut Sets 

# Cut Set Description 
1 BOP-SHV-LKG-SV01 Crosstie shuttle valve external leakage 
2 BOP-SHV-LKG-SV02 ROV shuttle valve external leakage 
3 BOP-CYL-FTC-AP01 Annular preventer fails to seal 
4 BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
5 ANNULAROVERPRESS Well pressure over the design limit of annular 
6 BOP-POD-FTR-BLUE Blue pod (standby) fails to run 

 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
7 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 

 BOP-SHV-FTT-SV01 Crosstie shuttle valve fails to transfer to blue pod 
8 BOP-HUM-ERR-XTIEPODS Driller fails to select blue pod after yellow pod failure 

 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
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Figure 2- 21. Basic Fault Tree 
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2.2.5.6 Modeling Support Systems 

Often a function being modeled will have dependencies on other systems.  From the simple 
example in Figure 2-17, the lower right hand basic event is related to electric power that 
energizes the pump.  The electric power system is a separate system and may provide support for 
many systems.  Since a fault tree is typically detailed down to the component level where data 
exists, the fault tree in Figure 2-17 would normally have the electric power feeding the pump 
detailed down to the boundary of the analysis, which on an offshore rig would be the diesel 
generator(s) (and maybe the fuel and air intake systems) as shown in the simplified fault tree in 
Figure 2-22. 

 
Figure 2-22. Simple Fault Tree with Support System Modeled 

 

From Figure 22, the electric power support is shown to be composed of the diesel generator, 
power bus, and the circuit breaker that feeds mud pump 1.  In Figure 2-22, the diesel generator 
and electric power bus likely would feed multiple items, and should be separated so they can be 
modeled only once and then used where necessary.  Figure 2-23 shows the proper way to model 
this situation.  The common parts of the electric power system have been separated under a 
separate OR gate and generically labeled as power from diesel generator1.  If these components 
are needed in another fault tree the OR gate can be made a transfer event as shown in Figure 2-
24, and that transfer event can be used wherever needed. 

SUPPORTSYSTEM1

Mud System Fails to Operate

SUPPORTSYSTEM12

Mud Pump 1 Does Not Start

1.0000E+00MUD-PMP-FTS-001

Mud Pump 1 Fails to Start

SUPPORTSYSTEM122

No Electric Power to Mud 
Pump 1

1.0000E+00EPD-DGN-FTR-001

Diesel Generator 1 Fails to Run

1.0000E+00EPD-BUS-SHT-001

Electric Power Bus 1 Fails due 
to Short Circuit

1.0000E+00EPD-CBR-XFO-001

System A Pump Circuit Breaker 
Transfers Open

1.0000E+00MUD-PMP-FTR-001

Mud Pump 1 Fails to Run
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Figure 2-23. Support System (Diesel Generator 1 and the power bus) Modeled 

so it can be used in Multiple Fault Trees 

 

 
Figure 2- 24. Power from Diesel Generator 1 Modeled as a Transfer that will be 

used in Multiple Fault Trees 

 

SUPPORTSYSTEM2

Mud System Fails to Operate

SUPPORTSYSTEM22

Mud Pump 1 Does Not Start

SUPPORTSYSTEM222

No Electric Power to Mud 
Pump 1

1.0000E+00EPD-CBR-XFO-001

System A Pump Circuit Breaker 
Transfers Open

SUPPORTSYSTEM2223

Electric Power Support from 
Diesel Generator 1 Fails to 

Provide Power

1.0000E+00EPD-DGN-FTR-001

Diesel Generator 1 Fails to Run

1.0000E+00EPD-BUS-SHT-001

Electric Power Bus 1 Fails due 
to Short Circuit

1.0000E+00MUD-PMP-FTS-001

Mud Pump 1 Fails to Start

1.0000E+00MUD-PMP-FTR-001

Mud Pump 1 Fails to Run

SUPPORTSYSTEM2

Mud System Fails to Operate

SUPPORTSYSTEM22

Mud Pump 1 Does Not Start

SUPPORTSYSTEM222

No Electric Power to Mud 
Pump 1

1.0000E+00EPD-CBR-XFO-001

System A Pump Circuit Breaker 
Transfers Open

ExtSUPPORTSYSTEM2223

Electric Power Support from 
Diesel Generator 1 Fails to 

Provide Power

1.0000E+00MUD-PMP-FTS-001

Mud Pump 1 Fails to Start

1.0000E+00MUD-PMP-FTR-001

Mud Pump 1 Fails to Run
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2.2.5.6.1 Dependency Matrices 

Because system dependencies may get complex, PRA analysts may map the system relationships 
out prior to starting a fault tree to ensure all dependencies are properly accounted for.  A 
method for doing that has typically been developing a system dependency matrix.  Figure 2-25 
shows a simple block diagram of typical systems on a drill ship.  The support systems (electric 
power, cooling, etc.) are those that do not directly contribute to the accomplishment of a 
primary task such as drilling, and frontline systems are those that are used to accomplish a 
primary task such as drilling (mud, drawworks, etc.) 

 
Figure 2- 25. Simplified System Block Diagram 

 
Knowing the relationships in Figure 2-25, a dependency matrix may be constructed as shown in 
Figure 2-26.  Using the dependency matrix assists the PRA analyst in ensuring the correct support 
system dependencies are modeled.  The added notes should detail any special situations such as 
crossties. 

When modeling the support systems, occasionally there are “loops” in the systems.  For instance, 
from Figure 2-26, the seawater system supports the fresh water system, which in turn supports 
the diesel generator.  The diesel generator, however, powers the sea water system and the fresh 
water system.  From a modeling perspective, support systems should be modeled in the fault tree 
the way they support the frontline system being modeled.  For a fault tree of the drawworks, the 
first support system put in, based on this example, would be electric power, the supporting busses 
and the diesel generator.  The fresh water system would be next as a support to the diesel 
generator, and finally the sea water system supporting the fresh water system.    In this case, the 
diesel generator, the electric bus (1-1) are already in the model, so there is no need to create a 
“loop” in the fault tree.  The one missing element would be electric power bus 1-2 which powers 
the fresh water system, but not the drawworks.  The specific electric bus (1-2) would have to be 
included separately with the fresh water system for this example.  

Sea Water 
System 1 

Sea Water 
System 2 

Fresh 
Water 

System 1 

Fresh 
Water 

System 2 

Diesel 
Generator 
System 1 

Diesel 
Generator 
System 2 

Electric 
Power Bus 

2-2 

Electric 
Power Bus 

2-1 

Electric 
Power Bus 

1-2 

Electric 
Power Bus 

1-1 

Seawater 1 

Seawater 2 

Drawworks 

Freshwater 1 

Pipe racker 

Drawworks 

Freshwater 2 

Pipe racker 

Support Frontline 
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 Sea 

Water 
System 
1 

Sea 
Water 
System 2 

Fresh 
Water 
System 1 

Fresh 
Water 
System 2 

Diesel 
Generator 
System 1 

Diesel 
Generator 
System 2 

Electric 
Power 
Bus 1-1 

Electric 
Power 
Bus 1-1 

Electric 
Power 
Bus 2-1 

Electric 
Power 
Bus 2-2 

Drawworks Pipe 
Racker 

……. 

Sea Water 
System 1   A A          
Sea Water 
System 2   A A          
Fresh Water 
System 1     X         
Fresh Water 
System 2      X        
Diesel Generator 
System 1       X X      
Diesel Generator 
System 2         X X    
Electric Power 
Bus 1-1 X          B   
Electric Power 
Bus 1-2   X         C  
Electric Power 
Bus 2-1  X         B   
Electric Power 
Bus 2-2    X        C  
……..              

Figure 2- 26. Example Dependency Matrix 

Notes: 
A – Seawater Systems 1 and 2 are normally separated can be crosstied so either System 1 or 2 can be used to cool one or both freshwater systems. 

B – The Drawworks can be used from either electric power bus 1-1 or 2-1. 

C – The Pipe Racker can be used from either electric power bus 1-2 or 2-2. 
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2.2.5.7  Modeling Common Cause 

For complex systems with redundancy, common cause failure of like components can be a major 
risk contributor.  The specifics on how common cause is evaluated and quantified is shown in 
Appendix D.  This section discusses the options on how it should be represented in the fault tree 
model as basic events.   

Going back to Figure 2-21, the basic fault tree example of the annular preventer, common cause 
was modeled for the blue/yellow pods designated by the basic event name ending in CCF.    In 
this example, the basic event BOP-POD-YLBL-CCF is included under the intermediate gates for 
both the yellow pod and the blue pod.  Since the yellow and blue pods are under an AND gate, 
and both are require to fail for the top event to be true, this one basic event satisfies that 
condition.  The result after solving the fault tree is shown in Table 2-3, where the fourth cut set is 
a single common cause event.  Repeating a common cause basic event wherever the effect is 
appropriate, in this case with the yellow and blue pods, is the best method of modeling common 
cause because it maintains the relationship of the basic event to the intermediate events.  When 
fault tree transfers are needed, this can be important to ensure accuracy in the model.  For 
systems that have three or more redundant components /system s (e.g. dynamic positioning 
thrusters), this will lead to multiple common cause events under each thruster as shown in Figure 
2-27 (shown as stacked basic events for simplicity).  In Figure 2-27, the DPS thruster 1 has been 
filled out with all common cause terms and the appropriate ones involving thruster 1 have also 
been included for the other three thrusters. 

For highly redundant systems, PRA analysts sometimes include only a global common cause term, 
one that accounts for all components failing.  This is done for simplicity and can be a good 
approximation as the global common cause terms are often the dominant contributor for 
common cause failure.  If this approximation is considered appropriate, the single basic event can 
be included under each system as previously described, or as a single basic event at the same 
fault tree level as the AND or N of M gate modeling the redundancy. 
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Figure 2- 27. Common Cause Modeling for a 3 of 4 System 

 

 
2.2.5.8  Modeling Conditionality 

The house event, shown in Figure 2-19, is used to show whether a particular condition that 
affects the analysis is present or not.  This is often used as a switch by the analyst to turn a 
condition on (set the event probability to 1.0) or off (set the event probability to 0.0) and see 
what the affect is on the results.  In other cases there may be a condition that exists a fraction of 
the time, and the logic that satisfies the top event changes depending on whether the condition 
is present or not.  A case like this was assumed for the IBOPFLTVLV event in Figure 2-13.  This top 
event considers the failure to isolate the path up the drill string, and it was assumed that a float 
valve may or may not be present when the kick occurs.  The simplified fault tree for this event is 
shown in Figure 2-28.
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Figure 2- 28. Modeling Conditionality in a Fault Tree 

 

As can be seen in Figure 2-28, there is an intermediate event (OR gate) for the float valve that 
models the two conditions that may exist, the float valve is in place or it is not.  For the condition 
that it is not in place, the resulting cut set is that the IBOP fails and for the fraction of time that 
there is no float valve in place, the top event will be true.  For the time when the float valve is in 
place, an AND gate is used because the top event being true also requires the float valve to fail.  
The two cut sets are shown in Table 2-4. 

Table 2-4.  Cut Sets for Figure 2-28 Fault Tree 

Cut set Basic Event Name  Basic Event Description 

1 
BOP-CKV-FTC-IBOP1 IBOP Fails To Close 

BOP-CKV-NIP-FVLV1 Float Valve is Not In Place 

2 

BOP-CKV-FTC-FVLV1 Float valve Fails To Close 

BOP-CKV-FTC-IBOP1  IBOP Fails To Close 

BOP-CKV-INP-FVLV1 Float Valve is In Place 

 
When modeling these type of conditions, the analyst needs to ensure that the dependence is 
maintained.  In this example, the condition of the float valve being present or not is the only two 
possibilities, so the probabilities must add up to 1.0 when combined. 

2.2.5.9 Modeling Maintenance 

To Be Added 

 

IBOPFLTVLV

Drill string float valve / IBOP 
fails to prevent flow through 

string

FLTVLVFAILS

Float Valve either not in place 
or Fails

FLTVLVFAILS01

Float valve is in place and fails

5.0000E-01BOP-CKV-INP-FVLV1

Float Valve is In Place

5.4500E-06BOP-CKV-FTC-FVLV1

Float valve Fails To Close

5.0000E-01BOP-CKV-NIP-FVLV1

Float Valve is Not In Place

5.4500E-06BOP-CKV-FTC-IBOP1

IBOP Fails To Close
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2.2.5.10 Modeling Initiating Events 

To Be Added 

2.2.5.11 Linking Fault Trees and Event Trees 

Once the event trees and their associated fault trees have been developed and linked as shown 
in Figure 2-29, the qualitative part of the PRA model is completed.  Fault trees and event trees 
are said to be "linked" when the fault trees for pivotal events and the event trees containing 
those pivotal events are tied together properly in the software being used to evaluate the 
accident sequence cut sets.  The scenarios are formed from the basic events and fault tree logic 
combined with the event tree sequences and end states.  The model can now be evaluated 
qualitatively to review individual scenarios.  Using the event tree model previously developed in 
Section 2.2.4 in Figure 2-13, simplified fault trees such as the one in Figure 2-21 for the annular 
preventer were developed.  Table 2-4 shows a sample of the output from the model in terms of 
cut sets.   

Each cut set has the initiating event, DRILLINGKICK, followed by other basic events whose 
combined occurrence leads to the end state.  Typically all the events shown are failure basic 
events, however, as shown in some of the cut sets (e.g. 1,3), success events are shown there, 
/ROV, /CAPSTACK.  Success events are usually ignored because the values of failure are so small.   
With the very small failure values, the success approximates 1.0 so does not affect the results.  In 
the cases of the cut sets in Table 2-4 with the success terms, failure events like ROV and 
CAPSTACK are assumed to be much larger, and therefore success terms must be accounted for to 
provide accurate results. 
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Figure 2- 29. Fault Tree Linked to Event Tree 

Tracing a single cut set through the event tree shows how linking the fault trees through the 
event tree accounts for support system dependencies that may be common through different 
top events.  Cut set 1 from Table 2-5 is a relatively simple combination of events, the initiator – 
DRILLINGKICK, a common cause failure of both the blue and yellow pods - BOP-POD-YLBL-CCF, 
and success of the ROV - /ROV.  The end state is listed as LARGERELEASEROV, and the sequence 
number is 14-1, which in this case is related to sequence 14 on the initiating event tree (from 
Figure 2-13) and the 1 is the sequence from the transfer tree (from Figure 2-15).  The path is 
traced out in Figure 2-30. 

When cut set 1 (Sequence 14-1) is traced through the event tree, the path shows that the annular 
preventer, the pipe rams, the casing shear ram, and the blind shear ram have all failed (they are 
all on the down paths).    The basic event representing common cause failure of both the blue 
and yellow pods - BOP-POD-YLBL-CCF, is found in each of the fault trees for the failed events, and 
therefore has caused all of those BOP functions to fail.  The proper modeling of dependencies like 
this allow large integrated models of complex systems to sort through the integrated system and 
reduce the failures to the minimal combinations of interest. 

ANNULAR

Annular preventer fails to close prior to 
the k ick reaching the BOP or pressure 

beyond design of annular

BOTHPODSFAIL

Yellow (operating) and Blue 
(standby) pods fail to close 

annular

YELLOWPODFAILS

Yellow pod fails to provide 
hydraulic fluid to annular 

preventer

YLWHYDANNPATH

Hydraulic path for yellow pod 
to annular preventer fails

1.1800E-05BOP-SHV-LKG-SV01

Crosstie shuttle valve external 
leakage

1.1800E-05BOP-SHV-LKG-SV02

Annular ROV shuttle valve 
external leakage

ExtYELLOWPODCOMMON

Yellow pod fails to run

BLUEPODFAILS

Blue pod fails to provide hydraulic fluid 
to annular preventer or not selected 

after yellow pod failure

BLUHYDANNPATH

Hydraulic path for blue pod to 
annular preventer fails

1.6800E-05BOP-SHV-FTT-SV01

Crosstie shuttle valve fails to 
transfer to blue pod

1.1800E-05BOP-SHV-LKG-SV01

Crosstie shuttle valve external 
leakage

1.1800E-05BOP-SHV-LKG-SV02

Annular ROV shuttle valve 
external leakage

ExtBLUEPODCOMMON

Blue pod fails to run or Driller 
fails to switch

4.1800E-03BOP-CYL-FTC-AP01

Annular preventer fails to seal

5.0000E-04ANNULAROVERPRESS

Well pressure over the design 
limit of annular
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Table 2-5.  Sample Cut Sets from Linked Fault Tree/Event Tree Model 

 
# 

 
Cut set 

 
Description 

1 

DRILLING : 14-1 End State LARGERELEASEROV 
DRILLINGKICK Well Kick While Drilling 
BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 

/ROV ROV intervention unsuccessful 

2 

DRILLING : 16  End State LIMITEDRELEASE 
DRILLINGKICK Well Kick While Drilling 

DRL-HUM-ERR-001 Kick not properly detected 

3 

DRILLING : 14-2  End State LARGERELEASECAP 
DRILLINGKICK Well Kick While Drilling 

BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
/CAPSTACK Well Capping unsuccessful 
ROV-FTR-001 ROV intervention unsuccessful 

4 

DRILLING : 14-3  End State LARGERELEASERELIEF 
DRILLINGKICK Well Kick While Drilling 
BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 

CAP-LKG-001  Well capping unsuccessful 
/RELIEFWELL Relief Well unsuccessful 
ROV-FTR-001 ROV intervention unsuccessful 

5 

DRILLING : 14-1  End State LARGERELEASEROV 
DRILLINGKICK Well Kick While Drilling 
BOP-POD-FTR-BLUE Blue pod (standby) fails to run 

BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
/ROV ROV intervention unsuccessful 

6 

DRILLING : 14-2  End State LARGERELEASECAP 

DRILLINGKICK Well Kick While Drilling 
BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 

/CAPSTACK Well Capping unsuccessful 
ROV-FTR-001 ROV intervention unsuccessful 

7 

DRILLING : 14-4  End State LARGERELEASERELIEF2 

DRILLINGKICK Well Kick While Drilling 
BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
CAP-LKG-001 Well capping unsuccessful 

REL-WELL-LKG-001 Relief well not successful on first attempt 
ROV-FTR-001 ROV intervention unsuccessful 

8 

DRILLING : 14-3  End State LARGERELEASERELIEF 

DRILLINGKICK Well Kick While Drilling 
BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 

CAP-LKG-001 Well capping unsuccessful 
/RELIEFWELL Relief Well unsuccessful 
ROV-FTR-001 ROV intervention unsuccessful 
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9 

DRILLING : 19-1  End State LARGERELEASEROV 
DRILLINGKICK Well Kick While Drilling 

BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
DRL-HUM-ERR-001 Kick not properly detected 
/ROV ROV intervention unsuccessful 

10 

DRILLING : 15-1  End State LARGERELEASEROV 
DRILLINGKICK Well Kick While Drilling 
BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 

EDI-HUM-ERR-001 emergency disconnect fails 
/ROV ROV intervention unsuccessful 
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Figure 2- 30. Sequence 14-1 for Cut Set 1 

The Boolean reduction of cut sets prevents other combinations of events from being produced.  
For instance, if the annular preventer fails due to the common cause failure of the yellow and 
blue pods, it will not appear in the results coupled with a failure of the blind shear ram to close or 
one of the shuttle valve failures.  This is because the common cause failure of the pods has 
already guaranteed the failure of the blind shear ram, and the failure of the ram or shuttle valve 
is inconsequential if the common cause failure has occurred. 

The final step in building the PRA model is populating the fault trees with data.  The next several 
sections discuss the various methods needed to establish the most credible data for 
quantification. 

2.2.6 Quantification / Allocation 

For purposes of this section, we assume that implementation of the processes described above 
has developed a scenario set (a collection of “scenarios” leading to some consequence); we need 
to model their frequencies (or their conditional probabilities) and perhaps their consequences, 
and to carry out these activities with appropriate regard for uncertainty.  Those tasks are the 
subjects of the present section. 
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In order to claim a low level of risk, it is necessary either to be able to argue some kind of 
inherent safety (the situation is safe because of physical laws), or to develop a lot of evidence 
and argument regarding the performance of our engineered systems.  In the latter case, the key 
claims are: 
 

• For the given design, built and maintained according to specified engineering standards, 
and for a stated body of operating procedures and conventions, we have identified the 
scenarios that lead to the undesirable consequences, and the severity of their 
consequences. 

• We know how to quantify the scenarios;  
o We know what probabilities to assign to basic events, and to combinations of 

basic events; 
 We have analyzed what levels of reliability performance are achievable, 

and we know (modulo some uncertainty) what it takes to achieve them. 
 We have analyzed the potential for linkages between the occurrence of 

various combinations of basic events, and have factored this into our 
quantification (with uncertainty). 

• We commit to the measures needed to attain (and maintain, and assure, and 
demonstrate on an ongoing basis) the levels of reliability performance credited in the 
analysis.  

 
Event probabilities are not constants of nature.  To assign a low failure probability to an 
engineered system or component is to take credit for an engineering accomplishment, and the 
results of our analysis are conditioned on that credit.  Our reason for reviewing operating 
experience is not that past performance guarantees future performance; we review operating 
experience (1) in order to understand how past engineering investments have panned out in past 
performance, (2) as a sanity check of the numbers that we put into our analysis, and (3) as a 
guide to the insurance activities to which we need to commit if our risk estimates are to come 
true.   

2.2.6.1  Quantification of individual scenarios 

2.2.6.1.1 Quantifying the probability / frequency of individual basic events:  

Historically, many analyses have implicitly treated PRA input numbers as if they were objectively 
significant: uncertain, to be sure, but having some objective (albeit unknown) value, analogous to 
the value of a physical constant, in the sense that you can look it up.  In some cases [2-2, 2-3], it is 
recognized that basic event probabilities may be, in effect, influenced by operating conditions at 
the subject facility.   

But in some applications, there seems to be a tacit supposition that a PRA result is an attribute of 
a facility.  This interpretation is inappropriate.  A more complete interpretation is the following.   

Assuming that  
 

• the scenario model is structurally complete (!), 
o addresses all initiating events, accounts for dependencies of all types, CCF, etc., 

• the data we have used to quantify our basic events are relevant,  
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o derived from components appropriately similar to ours, similar service 
conditions, similar maintenance practices, similar component ages,  

• and that we will follow operational practices similar to those to which the performance 
data pertain, 
 

we can reasonably hope to achieve performance comparable to the performance achieved by the 
facilities represented in the data base. 

 
In most cases, the basic event quantifications are not guarantees of future performance: they are 
simply PRA inputs, implicitly tied to a commitment of sorts (to the regulator) to an investment in 
achieving the level of reliability performance claimed.  We will return to this topic in Section 3 of 
this guide. 

On that understanding, we will now discuss a range of techniques for basic event quantification: 
the values for frequency (or, as appropriate, probability) of such things as component failures, 
initiating events, and human failures.   

The figure below is to be interpreted in the context of an existing scenario model that we wish to 
quantify.  That model should have been developed down to a level of detail at which the basic 
events are largely independent, and we can obtain some data bearing on how often the basic 
events occur.  This discussion focuses on events that we try to quantify from experience.  
Common-cause failures and failure events that are driven by scenario-dependent conditions are 
treated in other sections. 

 

Figure 2- 31. Sources of Information for Quantification of Basic Event 
Likelihood 

The Scenario Context of Basic Events 

Normally, the scenario model is developed in such a way that each “scenario” can be expressed 
in a narrative way.  For example:  

“Initiating event IE1 occurred; the intended response was for Valve A to open, but Valve 
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A failed to open; in that circumstance, Pump C was required to operate, and to continue 
to operate for at least 6 hours, but it was unavailable at the time.  As a result of this chain 
of events, the top event occurred.”  

 
This sort of narrative tells us what the basic events mean.  We need to know how often IE1 
occurs (the characteristic number of failures in a given time interval), the fraction of demands in 
which Valve A fails to open after IE1 occurs, and the fraction of time that Pump C is “unavailable” 
(under repair, for example) in the facility states within which IE1 can occur.  These are only 
examples, but serve to suggest the kinds of information that we would hope to obtain from 
operating experience. 

2.2.6.1.2 Estimating Parameters in Models for Basic Event Probability (Frequency) 

The two main phases of developing a PRA database are:  
• Information Collection and Classification 
• Parameter Estimation 

 
Typical quantities of interest are:  

• Initiating Event (IE) Frequencies 
• Component Failure Frequencies 
• Component Test and Maintenance Unavailability 
• Common Cause Failure (CCF) Probabilities 
• Human Error Rates 
• Software Failure Probabilities 
 

Developing a PRA database of parameter estimates involves the following steps: 
• Model-Data Correlation (identification of the data needed to correspond to the level 

of detail in the PRA models, determination of component boundaries, failure modes, 
and parameters to be estimated, e.g., failure rates, MTTR) 

• Data Collection (determination of what is needed, such as failure and success data to 
estimate a failure rate, and where to get it, i.e., identification of data sources, and 
collection and classification of the data) 

• Parameter Estimation (use of statistical methods to develop uncertainty distributions 
for the model parameters) 

• Documentation (how parameter uncertainty distributions were estimated, data 
sources used, and assumptions made) 

Typical PRA parameters, and the underlying probability models, are summarized in the Table 
below.  We do not simply examine experience and directly obtain a number (for a probability or 
frequency) that we can use in our scenario quantifier; we model the probability or frequency in 
terms of underlying parameters, which we seek to learn from experience.  Typically, there is 
epistemic uncertainty about the values of these underlying parameters, and carrying this 
uncertainty through the quantification can be important.  Parameters for which there is 
epistemic uncertainty are shown in bold in the table.   
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Note:  Model parameters for which there is epistemic uncertainty are shown in bold in the center column of the table.  
Data needed to estimate those parameters are listed in the right-hand column.  Other model parameters (such as 
“mission time”) are determined by the application. 
 
 

Table 2-6.  Typical Probability (or Frequency) Models in PRAs and their Parameters 

Basic Event Type Commonly-Used Models of 
Basic Event Probability 

Data Required In Order to 
Quantify Models 

Initiating event  

Poisson model for probability 
of seeing k events in time t: 

 𝑃𝑃𝑃𝑃(𝑘𝑘) = 𝑒𝑒−λ𝑡𝑡 (λ𝑡𝑡)𝑘𝑘

𝑘𝑘!
 

where 

t: Mission time  

λ: frequency  

Number of events k in time t  

Component fails on demand  

Constant probability of failure 
on demand, or  

q  

Number of failure events k in 
total number of demands N  

Standby component fails in 
time, or component changes 
state between tests (faults 
revealed on functional test 
only)  

Constant standby failure rate  

𝑄𝑄 = 1 −
1 − 𝑒𝑒−λ𝑠𝑠𝑇𝑇𝑠𝑠

λ𝑠𝑠𝑇𝑇𝑠𝑠
 

Ts: Time between tests  

λ s : Standby failure rate  

Number of events k in total 
time in standby T  

Component in operation fails 
to run, or component 
changes state during mission 
(state of component 
continuously monitored)  

Constant failure rate  

𝑈𝑈 = 1 − 𝑒𝑒−𝛌𝛌0𝑇𝑇𝑚𝑚 ≈ 𝛌𝛌0𝑇𝑇𝑚𝑚 

Tm: Mission time  

𝛌𝛌0 : Operating failure rate  

Approximation is adequate 
when 𝛌𝛌0𝑇𝑇𝑚𝑚 ≪ 1 

Number of events k in total 
exposure time T (total time 
standby component is 
operating, or time the 
component is on line)  

Component unavailable due 
to test  

𝑄𝑄 =
𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑆𝑆

 

TTD : Test duration (only in the 

Average test duration (TTD) 
and time between tests (Ts)  
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case of no override signal)   

Ts: Time between tests  

Component unavailable due 
to corrective maintenance 
(fault revealed only at 
periodic test, or preventative 
maintenance performed at 
regular intervals)  

𝑄𝑄 = 𝑇𝑇𝑈𝑈
𝑇𝑇𝑇𝑇
  

TU: Total time unavailable 
while in maintenance (out of 
service)  

TT: Total operating time  

Total time out of service due 
to maintenance acts while 
system is operational, Tu, 
and total operating time TT.   

Component unavailable due 
to unscheduled maintenance 
(continuously monitored 
components)  

𝑄𝑄 =
𝜇𝜇𝑇𝑇𝑅𝑅

1 + 𝜇𝜇𝑇𝑇𝑅𝑅
 

TR: Average time of a 
maintenance outage [“Repair 
time”].   

𝝁𝝁: Maintenance rate  

Number of maintenance acts 
r in time T (to estimate 𝜇𝜇)  

Standby component that is 
never tested.  Assumed 
constant failure rate.   

𝑄𝑄 = 1 − 𝑒𝑒−𝜆𝜆𝑚𝑚𝑇𝑇𝑝𝑝 

Tp : Exposure time to failure  

λm : Standby failure rate.   

Number of failures r, in T 
units of (standby) time  

Common-Cause Failure  
Probability (Refer to 
Appendix D) 

α through αm ,  

where m is the redundancy 
level  

n1 through nm where nk is 
the number of CCF events 
involving k components  
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The Table also shows the data needed to estimate the various parameters.  The type of data 
needed varies depending on the type of event, and on how its frequency or probability is 
modeled.  For example, probabilities typically require event counts (e.g., Number of Failures), 
and exposure or “Success Data” (e.g., Total Operating Time).  Other parameters may require only 
one type of data, such as Maintenance/Repair Duration for mean repair time distribution, and 
counts of multiple failures in the case of CCF parameter estimates.   

Sources of Information  

Ideally, parameters of PRA models of a specific system should be estimated based on operational 
data of that system.  As previously discussed, even past performance of “that system” does not 
guarantee future performance, for several reasons; but data from “that system” must be among 
the most relevant data available, unless something fundamental has recently changed.   

If system-specific data of adequate quantity, quality, or availability are lacking, the analysis has to 
rely on other sources and types of information.  In such cases, surrogate data, generic 
information, or expert judgment are used directly or in combination with (limited) system-
specific data.  It bears repeating that in submittals to regulators, the submitter is accountable for 
the treatment on which the conclusions are based. 

Parameter Estimation Methods  

Bayesian methods are widely used in PRA, while classical estimation has found only limited and 
restricted use in PRA.  Accordingly, this section describes only the Bayesian approach to 
parameter estimation.   

Bayesian estimation incorporates information beyond that contained in the data sample; this is 
part of what makes Bayesian inference different from classical estimation.  In practice, Bayesian 
estimation comprises two main steps.  The first step involves using previous information to 
develop a prior distribution for the parameters of a basic event model, such as a failure rate.  The 
second step of Bayesian estimation involves using additional or new data (e.g., recent 
performance history) to update the prior distribution, yielding a “posterior” distribution for the 
parameters of that basic event model.  This step is often referred to as “Bayesian updating” of 
the prior distribution.  This process is illustrated in Appendix F.   

For PRA applications, determining the prior distribution is usually based on generic data, and the 
new or additional data usually involve system-specific test or operating data.  The resulting 
posterior distribution would then be the system-specific distribution of the parameter.  If system-
specific data do not exist, the applicability of other data or information would need to be 
evaluated and used.  Refer to Appendices E and G. 

Within the standard approach, one formulates explicit state-of-knowledge probability 
distributions about uncertain variables, both epistemic and aleatory.  If these uncertain variables 
are model inputs, and one has distributions for them, one can infer the distribution of the model 
output(s), or at least the “parameter uncertainty” portion (which, in principle, ought to be 
evaluated together with other uncertainties) during quantification.  Given a proper 
understanding of the uncertainties that affect the analysis, one can proceed to apply the 
standard machinery of decision-making under uncertainty. 
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Within the standard Bayesian approach, information is gathered about epistemically uncertain 
variables (or hypotheses regarding which we are uncertain), including formulation of a “prior” 
distribution on the values of those variables (or the probabilities of the various hypotheses being 
true); those distributions are then “updated” as new information becomes available, and one’s 
state of knowledge is improved (sometimes).  Bayes’ so-called “theorem” states that  

, (1) 

where  
• Hi represents a hypothesis whose probability is to be updated with new evidence, 
• p(Hi ) is the prior probability of Hi, 
• E represents a new piece of evidence,  
• p(x|y) is the conditional probability of x given y, 
• p(E), the prior probability of the observed evidence, can be written as 

. (2) 

 

Hereafter, this is referred to as the “update rule.” The update rule says that the conditional 
posterior probability of hypothesis Hi, given new evidence E, is equal to the prior probability of 
hypothesis Hi, multiplied by the conditional probability of observing E if Hi is true, divided by the 
total prior probability of observing E, calculated as shown in (2).  In essence, new evidence that 
favors hypothesis Hi more than it favors hypothesis Hj (i.e.,  p(E|Hi ) > p(E|Hj )) tends to increase 
the posterior probability of hypothesis Hi relative to the posterior probability of Hj.  In 
accordance with the update rule, new evidence causes the probabilities of the competing 
hypotheses to shift towards the implications of the new evidence. 

The above paragraph has been worded as if the hypotheses were discrete, but it also applies if 
the hypotheses are understood to refer to different possible values of a continuous variable.  In 
the latter case, the quantity on the left is understood to be a posterior probability density 
function of that variable. 

The form of the update rule follows easily enough starting with the identity 

, for any a, b,  (3) 
 
dividing through by p(a), and identifying b with Hi and a with E.  The identity, in turn, is easily 
understood with reference to a Venn diagram: 

)(
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Figure 2- 32. Venn Diagram 

 

 
Figure 2- 33. Venn Diagram Illustration 

Examination of a few cases may serve to aid intuition.  Suppose our hypothesis (Hi, in the earlier 
notation) is that an adverse condition is present in a particular system (“A” for “adverse condition 
is present” in the above figure), and we have gathered evidence E to help determine whether A is 
true.  In the above figure, the Venn diagram on the right illustrates the situation in which A and E 
do not overlap, so p(E|A) is zero, and the Bayes update rule will yield p(A|E)=0.  The Venn 
diagram on the left illustrates a situation in which we see evidence E only if A is true, and putting 
the indicated numbers into the update rule will yield p(A|E)=1.  The case in between – partial 
overlap of A and E – is where the practical applications lie. 

Among the important properties of the update rule is that as new evidence is gathered, the 
process can be iterated; for a given collective body of evidence and a given starting prior and a 
given likelihood function, the same conclusion will be reached, regardless of how the evidence is 
parsed and applied in subsets.  An illustration of this is shown in Appendix F.
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Figure 2- 34. The Update Rule 

 

The preceding statement calls to mind a much stronger claim advanced by Bayesians: that all 
rational individuals will reach the same conclusion from a given body of evidence.   
 
The current state of knowledge depends not only on the evidence, but also the prior distributions 
of the variables, and the form of the likelihood function: how the evidence is interpreted in the 
context of the current application.  There is a vast literature on formulating the prior, but 
unfortunately, some of it shortchanges the topic of the likelihood function.  We will return to the 
likelihood function later. 
 
Prior Distributions  

Prior distributions can be specified in different forms depending on the type and source of 
information as well as the nature of the random variable of interest.  Functional forms widely 
used in PRA of engineered systems include:  
 

• Parametric (gamma, lognormal, beta):   
o Gamma or lognormal for rates of events (time-based reliability models)  
o Beta or truncated lognormal for event probabilities per demand   

• Numerical (histogram, CDF values/percentiles)   
o Applicable to both time-based and demand-based reliability parameters.    

Among the parametric forms, a number of probability distributions are extensively used in risk 
studies as prior and posterior distributions.  These are:   
 

• Lognormal (µ, σ)  
 

π(x)= 1
√2𝜋𝜋𝜎𝜎𝜎𝜎

𝑒𝑒−
1
2�
ln𝑥𝑥−𝜇𝜇

𝜎𝜎 �
2

, 0 < 𝑥𝑥 < ∞,  

where µ and σ are the parameters of the distribution.  The lognormal distribution can be 
truncated (truncated lognormal) so that the random variable is constrained to be less than a 
specified upper bound; if this sort of truncation is applied, then the distribution needs to be 
renormalized.   
 

• Gamma(α, β)  
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𝜋𝜋(𝑥𝑥) =
𝑥𝑥𝛼𝛼−1𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)
𝑒𝑒−𝛽𝛽𝜎𝜎  0 ≤ 𝑥𝑥 < ∞ 

where a and b are the parameters of the distribution.   
 

• Beta(α, β)  
 

𝜋𝜋(𝑥𝑥) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)

𝑥𝑥𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1      0 ≤ 𝑥𝑥 ≤ 1 

where α and β are the parameters of the distribution.   

Information content of prior distributions can be based on:  
• Previous system-specific estimates   
• Generic, based on actual data from other (similar) systems   
• Generic estimates from reliability sources   
• Expert judgment (see discussion in Appendix H)   
• Ignorance (i.e. lack of applicable data).   

In the above list, the first four situations lead to prior distributions that may reflect considerable 
uncertainty about the parameters, but nevertheless assign higher probability to some values than 
to others.  In those cases, application of situation-specific information through the update 
process is supposed to drive the posterior distribution to where it needs to be (or perhaps merely 
to reduce the uncertainty spread in that distribution).  In situations where essentially no a priori 
information exists, attempts are made to formulate a prior reflecting this ignorance.  A common 
approach to this is using a prior distribution that is uniform (constant) over the interval of 
interest.  Unfortunately, despite generations of work on how best to formulate such a prior, 
choice of prior distribution remains a research topic.  If the current decision is sensitive to the tails 
of the posterior distribution, extra attention to this issue is warranted.   

Selection of the Likelihood Function  

The form of the likelihood function depends on the nature of the assumed Model of the World 
representing the way the new data/information is generated:  

For data generated from a Poisson Process (e.g., counts of failures during operation), the Poisson 
distribution is the proper likelihood function:  

Pr(𝑘𝑘|𝑇𝑇, 𝜆𝜆) = (𝜆𝜆𝑇𝑇)𝑘𝑘

𝑘𝑘!
𝑒𝑒−𝜆𝜆𝑇𝑇, 

which gives the probability of observing k events (e.g., number of failures of a component) in T 
units of time (e.g., cumulative operating time of the component), given that the rate of 
occurrence of the event (failure rate) is λ .  The Maximum Likelihood Estimate (MLE) of λ is  

𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑘𝑘
𝑇𝑇

 . 

It is also possible to combine data from several independent Poisson processes, each having the 
same rate.  This applies to the case where data are collected on different but identical units of 



DRAFT 

2-55 
  January 5, 2017  

equipment to estimate their common failure rate.  The failure counting process for each unit is 
assumed to be a Poisson process.  In particular, suppose that the ith Poisson process is observed 
for time ti, yielding the observed count ki.  The total number of event occurrences is 𝑘𝑘 = ∑ 𝑘𝑘𝑖𝑖𝑖𝑖 , 
where the sum is taken over all of the processes, and the exposure time is 𝑇𝑇 = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 .  This 
combined evidence can be used in the likelihood function given above. 

For data generated from a Bernoulli Process (e.g., counts of failures on system demands), the 
Binomial distribution is the proper likelihood function:  

Pr(𝑘𝑘|𝑁𝑁, 𝑞𝑞) = �𝑁𝑁𝑘𝑘� 𝑞𝑞
𝑘𝑘(1 − 𝑞𝑞)𝑁𝑁−𝑘𝑘 

which gives the probability of observing k events (e.g., number of failures of a component) in N 
trials of a component (e.g., total number of tests of the component), given that the probability of 
failure per trial (failure on demand probability) is q.  The MLE of q is:  

𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑘𝑘
𝑁𝑁

  

Analogously to the Poisson processes discussed above, data from independent trials that are 
known to be exchangeable (they are known to be determined by the same q, because they are 
the same component or identical components operated similarly) can be pooled: the failures can 
be summed, 𝑘𝑘 = ∑ 𝑘𝑘𝑖𝑖𝑖𝑖 , and the demands can be summed, 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖 , and the results used in the 
binomial likelihood formula given above. 

These cases are simple ones but are widely used.  Likelihood functions for parameters of physical 
models are discussed in Appendix F.   

In some cases, resort must be had to a process that relies on experts to furnish input.  This is 
discussed in Appendix H. 

Development of the Posterior Distribution  

Using the update rule in its continuous form, the prior probability distribution of a continuous 
unknown quantity, Pro(x), can be updated to incorporate new evidence E as follows:  

Pr(𝑥𝑥|𝐸𝐸) =
𝐿𝐿(𝐸𝐸|𝑥𝑥)𝑃𝑃𝑃𝑃0(𝑥𝑥)

∫𝐿𝐿(𝐸𝐸|𝑥𝑥)𝑃𝑃𝑃𝑃0(𝑥𝑥)𝑑𝑑𝑥𝑥
 

where Pr(x|E) is the posterior or updated probability distribution of the unknown quantity x 
given evidence E (occurrence of event E), and L(E|x) is the likelihood function (i.e., probability of 
the evidence E, assuming that the value of the unknown quantity is x).  Illustrative combinations 
of prior and likelihood functions as well as the form of the resulting posterior distributions are 
listed in Table 2-7.   
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Table 2-7.  Typical Prior and Likelihood Functions Used in PRAs 

Functional Form of Prior Functional Form of the 
Likelihood 

Resulting Functional Form of 
the Posterior 

Lognormal Poisson Numerical 

Gamma Poisson Gamma 

Beta Binomial Beta 

Truncated Lognormal Binomial Numerical 

 

For certain cases in the above table, the posterior has the same functional form as the prior.  This 
occurs when there is a certain similarity between the functional form of the likelihood and that of 
the prior.  For example, the Beta prior is proportional to powers of q multiplying powers of 1-q, 
as is the binomial distribution used as the likelihood; and as a result, the posterior is likewise a 
product of powers of q and powers of (1-q).  In such a case, the update can be done analytically 
(in closed form).  When a combination of prior and likelihood has this property, the prior is said 
to be “conjugate” to the likelihood.  In the case of non-conjugate priors - for example, the case of 
“lognormal * Poisson => numerical” - resort must be had to numerical integration.   

Two commonly used conjugate distributions are listed in Table 2-8.  The formulas used to 
calculate the mean of the resultant posterior in terms of the parameters of prior and likelihood 
functions are provided.   

Table 2-8.  Common Conjugate Priors Used in Reliability Data Analysis 

Functional Form of 
Prior Distribution, 

Mean Value 

Functional Form 
of Likelihood 

Posterior 
Distribution 

(same as 
prior) 

Mean of Posterior 

Beta (α,β), 

𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�������� =
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
 

Binomial (k, N) Beta 𝑥𝑥𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝������������ =
𝛼𝛼 + 𝑘𝑘

𝛼𝛼 + 𝛽𝛽 + 𝑁𝑁
 

Gamma (α,β); 

𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�������� =
𝛼𝛼
𝛽𝛽

 
Poisson (k, T) Gamma 𝑥𝑥𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝������������ =

𝛼𝛼 + 𝑘𝑘
𝛽𝛽 + 𝑇𝑇

 

 

In the case of the conjugate priors listed in the above table, because we can compute the prior 
and posterior means in closed form, we can see how new data cause the mean to shift.
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In principle, a prior distribution should reflect a state of knowledge, not a choice made to avoid 
the need for numerical integration.  This has always been true, but is even more emphatically 
true in light of the very real improvements in computational capability in recent generations.  It 
used to be argued that given a halfway reasonable prior, updates with new data would 
eventually drive posterior distributions to where they need to be; but in practical applications, 
where there is not always a surfeit of new data, this ideal is not always realized.   

Developing Prior Distributions from Multiple Sources of Generic Information  

Typically, generic information can be categorized into two types:  
 

• Type 1 Failure data from operational experience with other similar but not identical 
components, or from identical components under different operating conditions.  This 
information is typically in the form of failure and success data collected from the 
performance of similar equipment in various systems.  The data in this case are assumed 
to come from a “non-homogenous” population.   

 
• Type 2 Failure rate estimates or distributions contained in various industry compendia, 

such as several of the databases discussed earlier.  Estimates from expert judgment 
elicitations would be included in this category.  Type 2 data are either in the form of 
point estimates (or “best estimates”), or a range of values centered about a “best 
estimate.” Ranges of the best estimate can be expressed in terms of low, high, and 
recommended values, or as continuous probability distributions.   

When multiple sources of generic data are available, then it is likely that we are dealing with a 
non-homogeneous population.  In these cases, the data cannot be pooled, and the reliability 
parameter of interest (e.g., failure rate) will have an inherent variability.  The probability 
distribution representing this variability is known as a population variability distribution of the 
reliability parameter of interest.  Refer to Appendix G for a discussion of this point. 

2.2.6.2  Quantifying the Scenario Set 

2.2.6.2.1 “Point” Estimates 

Reference is frequently made to “point estimates” of important quantities such as top event 
probability.  The term “point estimate” refers to the use of specific numbers for the inputs to the 
calculation, without immediate regard to uncertainty or variability.  (Propagation of uncertainty is 
discussed below.) Quantification of point estimates is discussed here not because point estimates 
should be used uncritically in decision-making, but rather because the point estimate is a first 
step towards a more complete model quantification, and as such, plays a role even in scenario 
generation (a point discussed further in Section 3.2) by helping determine the truncation cutoff 
to be used and allowing a sanity check of the results.   

Given the minimal cut sets for a particular top event, presented in sum-of-products form, we can 
obtain a point estimate of top event probability (or frequency) by:  
 

• Quantifying each cut set  
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o multiplying the basic event point estimates of probability or frequency, as 
appropriate), or 

o if the events in the cut set are related in some way, doing a side calculation to 
quantify the probability of the conjunction, and  

o summing over cut set results to obtain the estimate for the top event.   

This result, called the “rare-event approximation,” is (in some respects) easy to calculate, and 
provides a rigorous upper bound on top event probability: not that the point estimate is 
guaranteed to be an upper bound on top event probability, but that the exact calculation of the 
“point estimate” would be less than or equal to this estimate.  This follow because, for any two 
events X and Y (which could be basic events, or cut sets, or complex functional failures), we have  

 

𝑃𝑃(𝑋𝑋 + 𝑌𝑌) = 𝑃𝑃(𝑋𝑋) + 𝑃𝑃(𝑌𝑌) − 𝑃𝑃(𝑋𝑋 ∗ 𝑌𝑌).   
So 

𝑃𝑃(𝑋𝑋) + 𝑃𝑃(𝑌𝑌) ≥ 𝑃𝑃(𝑋𝑋 + 𝑌𝑌). 
 
The term P(X*Y) is small in many applications (hence the “rare event” nomenclature), and in 
those cases, neglect of it is reasonable; moreover, it is often straightforward to check on the 
magnitude of its effect.  In other words: Summing the cut set probabilities overestimates the top 
event, but is frequently reasonable.   
 
A somewhat more involved calculation is the “min cut upper bound,” obtained as  
 

P(TOP) ~ 1- sum product (1-p(xi)) 
 
2.2.6.2.2 Propagating uncertainty through the scenario set 

Given a way of calculating a point estimate for any setting of the basic event model parameters, 
we can propagate parameter uncertainty through the model in the same way that we can 
propagate parameter uncertainty through any model to obtain an uncertainty distribution on its 
output: we can sample from the joint distribution of the inputs, compute the result of that 
sample, iterate until the result is deemed to have converged to the point where key metrics can 
be evaluated (mean, median, mode, key percentiles).   

Special cases: 
 

Epistemic Coupling 
 

The above statement referred to sampling from the joint distribution of all of the variables.  If 
some of the variables are correlated epistemically, it is necessary to reflect this in the calculation.  
Consider the example of two essentially identical valves in series that are required to close under 
a certain challenge.  They are of common manufacture and are assumed to see the same 
operating conditions, including test and maintenance practices.  Arguably they should have the 
same failure probability.  Since they are in series, and are required to close, failure of this 
function entails failure of both valves; so the top event probability will contain a contribution that 
is proportional to p(X*X), where “X*X” means “failure of both identical valves.”  Treating this as if 
it were equal to p(X)*p(X) underestimates the contribution for possibly several reasons.  
Temporarily setting aside the issue of common cause failure, there is an epistemic issue: in 
general, for any quantity Z,  
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< 𝑍𝑍2 > ≥< 𝑍𝑍 >2, 
 

so failure to acknowledge this epistemic coupling tends by itself to underestimate the result.   
 
2.3 Simulation 

2.3.1 Phenomenological Modeling 

To Be Added 
 

2.3.2 Discrete Event Simulation 

Section 2.2 describes logic modeling: that is, modeling techniques using event trees and fault 
trees. By their nature, logic modeling techniques discretize the scenario descriptions, and thereby 
introduce approximations that may be severe. For example, as illustrated earlier, event tree end 
states are typically rather broadly specified, such as “large” and “limited” breaches of 
containment. It is possible to improve very significantly on these approximations using discrete-
event simulation (e.g. estimate the number of deaths or barrels of oil spilled). 

Discrete event simulation modeling is similar to developing an ESD as discussed in Section 2.2.  
Time ordered events are developed and decision blocks are used with probabilities that direct 
the flow of the simulation.  In addition, events can be used to simulate variables such as well flow 
rates and recovery times.  The model is run by performing numerous replications (i.e., thousands 
or more) using Monte Carlo sampling to obtain the probabilities or values at each decision event 
in the model, and the outcome of each replication is recorded.  Obtaining a sufficient number of 
replications is important to ensure that all desired events get sampled and all reasonable paths in 
the model are exercised.  For example, if a decision block has a probability of 0.01 (1 in 100), 
running 100 replications would, on average, only go down that path once.  A single data point on 
a path would fail to show the range of outcomes for that path. 
 
In the example discussed below, the specified outputs are the duration and magnitude of a 
release. 
 
An example of a discrete event simulation model was developed for the ESD shown in Figure 2-4; 
the model is shown in Figure 2-37.  The model was developed to mimic the ESD with the 
comment blocks included.  Additional blocks are included to assign flow rates and record the 
results. 
 
The data in the discrete event model was derived from the fault tree model.  Some events in the 
discrete event model use the same data used by the fault trees.  Other events have dependencies 
(i.e., conditional probabilities) that must be accounted for.  For example, the fault trees 
ANNULAR and PIPERAM from the event tree in Figure 2-11 both contain the failure of both the 
yellow and blue pods.  In the event tree software, this dependency is automatically accounted for 
in the cut set minimization process.  These dependencies could be explicitly modeled in the 
discrete event model or the model can be simplified by manually deriving the dependencies from 
the fault tree results and then using them as inputs in the discrete event model. 
The fault tree results for ANNULAR are shown in Table 2-9, while the fault tree results for 
PIPERAM are shown in Table 2-10. The cut sets highlighted in yellow (e.g., common cause failure 
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of the yellow and blue pods) are the same in each result, which means they cause both top 
events to be true.  Since the PIPERAM event is questioned after the ANNULAR event, the failures 
in ANNULAR that would fail both need to be determined.  From the yellow highlighted cut sets, 
about 7.0% of the failures are due to a common dependency.  In other words, if the ANNULAR 
event is true, 7.0% of the time the PIPERAM event will occur for the same causes.  In the 
PIPERAM event, the yellow highlighted cut sets account for approximately 96.5% of the total 
failure probability, which leaves 3.5% of the total failure probability or about a 1.3E-5 probability 
of failure due to independent causes.  To determine the total dependent failure probability of the 
PIPERAM event for the discrete event simulation model, the 7% (0.07) is added to the 1.3E-5, 
which is still approximately 0.07. 
 
A similar exercise is performed with the casing shear and blind shear rams to develop those 
probabilities. This is done for both the failure and success paths as applicable.  On the success 
path, only the independent failures may cause a top event to be true if the preceding event is 
successful and has some shared dependency. 
 

Table 2-9.  ANNULAR Fault Tree Results 

 

# Prob/Freq Total % Cut Set Description
Total 5.059E-3 100 Displaying 8 Cut Sets. (8 Original)
1 4.180E-3 82.62

4.180E-3 BOP-CYL-FTC-AP01 Annular preventer fails to seal
2 5.000E-4 9.88

5.000E-4 ANNULAROVERPRESS Well pressure over the design limit of annular
3 3.530E-4 6.98

3.530E-4 BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods
4 1.180E-5 0.23

1.180E-5 BOP-SHV-LKG-SV01 Crosstie shuttle valve external leakage
5 1.180E-5 0.23

1.180E-5 BOP-SHV-LKG-SV02 Annular ROV shuttle valve external leakage
6 6.708E-6 0.13

2.590E-3 BOP-POD-FTR-BLUE Blue pod (standby) fails to run
2.590E-3 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run

7 4.351E-8 < 0.01
2.590E-3 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run
1.680E-5 BOP-SHV-FTT-SV01 Crosstie shuttle valve fails to transfer to blue pod

8 2.590E-8 < 0.01
1.000E-5 BOP-HUM-ERR-XTIEPODS Driller fails to select blue pod after yellow pod failure
2.590E-3 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run
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Table 2-10.  PIPERAM Fault Tree Results (Top 10 Cut Sets) 

 
 
Other distributions for well flow rates and timing of recovery events such as when an ROV  
successfully  manipulates the BOP may be put in as histograms as shown in Figures 2-35 and 2-36. 
 
 

 
Figure 2- 35. Example Histogram of Probability vs. Well Flow Rate 

 

# Prob/Freq Total % Cut Set Description
Total 3.728E-4 100 Displaying 20 Cut Sets. (20 Original)
1 3.530E-4 94.68

3.530E-4 BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods
2 1.310E-5 3.51

1.310E-5 BOP-CYL-JAM-PRAM12 Common cause failure of upper and lower pipe rams
3 6.708E-6 1.80

2.590E-3 BOP-POD-FTR-BLUE Blue pod (standby) fails to run
2.590E-3 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run

4 2.590E-8 < 0.01
1.000E-5 BOP-HUM-ERR-XTIEPODS Driller fails to select blue pod after yellow pod failure
2.590E-3 BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run

5 8.538E-9 < 0.01
9.240E-5 BOP-LPR-FTC-PRAM01 Lower pipe ram jams
9.240E-5 BOP-UPR-FTC-PRAM02 Upper pipe ram jams

6 1.090E-9 < 0.01
9.240E-5 BOP-LPR-FTC-PRAM01 Lower pipe ram jams
1.180E-5 BOP-SHV-LKG-SV09 Crosstie shuttle valve external leakage upper Pipe Ram

7 1.090E-9 < 0.01
1.180E-5 BOP-SHV-LKG-SV08 ROV Shuttle valve external leakage lower Pipe Ram
9.240E-5 BOP-UPR-FTC-PRAM02 Upper pipe ram jams

8 1.090E-9 < 0.01
1.180E-5 BOP-SHV-LKG-SV07 Crosstie shuttle valve external leakage lower Pipe Ram
9.240E-5 BOP-UPR-FTC-PRAM02 Upper pipe ram jams

9 1.090E-9 < 0.01
9.240E-5 BOP-LPR-FTC-PRAM01 Lower pipe ram jams
1.180E-5 BOP-SHV-LKG-SV10 ROV Shuttle valve external leakage upper Pipe Ram

10 1.392E-10 < 0.01
1.180E-5 BOP-SHV-LKG-SV08 ROV Shuttle valve external leakage lower Pipe Ram
1.180E-5 BOP-SHV-LKG-SV09 Crosstie shuttle valve external leakage upper Pipe Ram
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Figure 2- 36. Example Probability of Success vs. Time for ROV 

Results from the discrete event simulation, shown in Table 2-11, are a sample of results from 
model simulation replications showing the end event and parameters of interest, in this case the 
time to shut in the well and the number of barrels of oil released.  The replication column shows 
on which model simulation run the event occurred.  The results can be manipulated to develop 
different kinds of useful products such as frequency of exceedance (F-N) curves discussed in 
Section III. 
 
 

Table 2-11.  Discrete Event Simulation Model Results 

Replication # End Event (what 
stopped flow) 

Duration 
of 

Release 
(hrs) 

Barrels of Oil 
Released 

272 ROV Intervention 3 3,029 
1703 ROV Intervention 33 55,211 
5019 ROV Intervention 7 8,965 
5556 Well Cap 93 183,980 
6603 Well Cap 80 124,490 
6725 Well Cap 92 88,314 
8174 Well Cap 66 127,280 
9287 Limited Release 0 741 

14068 ROV Intervention 12 11,360 
14287 ROV Intervention 5 4,390 
15444 Well Cap 141 295,550 
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Figure 2- 37. Example Discrete Event Simulation Model 
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3. Results: Presentation and Interpretation 
  
 
 
 
3.1 Risk Analysis Support to a Notional Safety Case 
 
Figure 3-1 shows a notional “claims tree:” a hierarchy of the claims that might be made in a 
safety case presented to a regulator. The regulation of facilities by BSEE is beyond the scope 
of this document, but it is nevertheless useful to organize the discussion of certain topics 
around a figure like this. 
 
In many venues of application of risk models, the models are developed by parties 
associated with the (proposed) facilities, even though the model results are to be applied in 
assurance cases put before regulatory decision-makers who are accountable to different 
parties for different considerations (e.g., regulators may be more accountable for public 
safety than for facility economics).  
 
The technical content of the present guidance is trying to be useful both to applicants and to 
regulators. The facility operators (and investors) need to “ensure” that the facilities are (or 
will be) safe; the regulator needs “assurance” that the facility is (or will be) safe. The needs 
of the two are distinct. The “claims tree” is aimed specifically at promoting a successful 
dialogue between applicants and regulators.  
 
The premise of the figure is that a finding has to be made regarding the safety of a specific 
facility, and this finding needs to be based in part on an analysis. The analysis needs to 
address certain figures of merit (such as risk metrics) and, potentially, to show that certain 
other requirements are met (such as requirements on barrier availability and 
performance). The four major sections of the figure are: 
 

1. Design characterization 
 
2. Analysis of risk (and possibly other metrics), conditional on a particular 
baseline allocation of performance (e.g., reliability) 

The analysis satisfies certain process requirements 
The analysis provides sensitivity and uncertainty information 
A process exists for identifying, and dealing with, unresolved safety 
questions  
 

3. [Optional] A process has been carried out to substantiate a claim that the 
facility is as safe as reasonably practicable.   
Note: This figure can be specialized to refer to a more general “Best Available and 
Safest Technology” (BAST) rather than strictly safety. In either case, process-based 
arguments to support the respective conclusions are called for. 
 
4. The performance allocation credited in the analysis is, in fact, feasible. The 
items considered critical, the associated levels of performance, and the activities 
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needed to make the risk analysis “come true” have been identified and committed 
to. This includes making reliability allocations come true, barrier availabilities come 
true, and so on, and includes a commitment to analysis of operating experience, 
looking for deficiencies in the model. Ordinarily, the model used for Item 2 above is 
also a starting point for this item.  
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Figure 3-1."Claims Tree" Figure 3-1."Claims Tree" Figure 3- 1. "Claims Tree" Figure 3-1. "Claims Tree" 
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Portions of Items 2 and 4 of the above list are within the scope of the present document. Item 2 
notionally covers the safety analysis, and the results that need to be presented, including 
sensitivity and uncertainty information. Item 4 captures the claims that tie the analysis results to 
reality, including commitments to scrutinize operating experience as part of an effort aimed at 
model improvement. Certain aspects of Item 4 are beyond the scope of this document, but an 
emphasis of this document is that the numbers on which PRA results are based are engineering 
accomplishments, not constants of nature; submittal of a PRA to a regulator needs to be tied to 
commitments to make those numbers come true, including identification of model inadequacies 
revealed by operating experience. This is part of Item 4. 
 
3.2 Quantifying the Model 
 
Quantification of a PRA model is a simple process; however, steps must be taken to ensure that 
the output is relatively complete and accurate.  The term “relatively” is used here with “complete” 
because PRA models can have millions of scenarios, and often many are of such a low probability 
that they do not need to be considered.  A PRA model can take a long time to run and produce a 
very large amount of data, so determining the right level for quantification is an important step to 
ensure the necessary results are obtained while still being manageable.  This applies to both the 
classical event tree – fault tree models and the discrete event models as discussed below. 
 
3.2.1 Event Tree – Fault Tree Model Quantification 

 
Quantifying an event tree – fault tree model typically involves choosing different options for 
performing the quantification.  Three of the most important are discussed below.  It should be 
noted that the model quantification and results discussed in this section is a simplified example 
for illustrating the results of PRA, and not an actual analysis of a real facility. 
 
3.2.1.1 Truncation Cutoff 
 
The truncation cutoff used in quantifying an event tree is used to stop the quantification of 
scenarios (i.e. minimal cut sets) below a user selected value.  A large PRA model can have millions 
or tens of millions of minimal cut sets and evaluating all of them can take a long time to run the 
model and result in an excessively large amount output that is hard to manipulate to display 
results.  Typically, lower probability scenarios may be many orders of magnitude lower than the 
overall result, and, therefore, are not significant.  Most PRA software therefore implements a user-
supplied truncation value, discarding cut sets whose probability is below that truncation value. In 
principle, this is an uncontrolled approximation, but is frequently the practical thing to do, 
provided that steps are undertaken to understand the effects of the truncation.   
 
The process to determine what the best truncation cutoff is should start at a level the analyst 
expects would be consistent with the result (this is essentially a guess based on construction of 
the model), and then vary the truncation cutoff by reducing it an order of magnitude until the 
results at least converge to a value less with less than a percent difference between two 
successive quantifications. 
 
Using the example developed in Section 2 (Figure 2-11), it is possible to see the effect the 
truncation limit has on the results in Table 3-1.  
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Table 3-1.  Effect of Truncation Limit on Event Tree Quantification 

Truncation 
Cutoff 

Number of 
Cut sets 

Overall 
Likelihood 

End States 

1.0E-4 2 4.471E-4 LARGERELEASEROV, 
LIMITEDRELEASE 

1.0e-5 4 5.525E-4 LARGERELEASEROV, 
LIMITEDRELEASE, 
LARGERELEASECAP, 
LARGERELEASERELIEF 

1.0E-6 6 5.590E-4 LARGERELEASEROV, 
LIMITEDRELEASE, 
LARGERELEASECAP, 
LARGERELEASERELIEF 

1.0E-7 8 5.597E-4 LARGERELEASEROV, 
LIMITEDRELEASE, 
LARGERELEASECAP, 
LARGERELEASERELIEF, 
LARGERELEASERELIEF2 

1.0E-8 17 5.599E-4 Same as 1.0E-7 
1.0E-9 27 5.599E-4 Same as 1.0E-7 
1.0E-10 38 5.599E-4 Same as 1.0E-7 
1.0E-12 68 5.599E-4 Same as 1.0E-7 
0.0 9794 5.599E-4 Same as 1.0E-7 

 
When reviewing the results in Table 3-1, two effects can be seen as the truncation cutoff is varied.  
First, when the truncation value has been reduced to 1.0E-8, the overall likelihood has converged 
to several decimal places, and the number of cut sets is 17 at that level.  When the truncation 
cutoff is set to 0.0, the model produces 9794 cut sets, and from the table, the majority of them are 
below 1.0E-12 so do not affect the overall result. 
 
A second consideration should also be given to the end states found in the results.  As seen in 
Table 3-1, the initial quantification of the model only resulted in two of the five end states being 
evaluated.  If the goal of the analysis is based on the overall risk and major contributors, whether 
end states show up in the result may not make a difference if they do not significantly contribute, 
but if end states are to be evaluated separately for dominant contributors, the truncation cutoff 
should also be selected to get representative cut sets from each end state. 
 
3.2.1.2 Solution Method 
 
A second quantification option that can have a significant impact on results is the solution method 
as the fault tree scenarios are combined in the event tree.  The success path on an event tree can 
be treated in different ways.  Linked fault tree software typically defaults to a solution that uses a 
“delete term” function.  The delete term function removes invalid cut sets from sequential top 
events with common basic events.  An example of an invalid cut set would arise if, in a particular 
sequence expression, failure of System A is combined with success of System B, and some of the 
“failure” cut sets for A are inconsistent with success of System B.  This condition cannot exist, so 
the cut set is deleted from that sequence expression.   
 
Using “delete term” is reasonable, but it is an approximation: the success of System B is set to a 
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probability of 1.0.  Because PRA analyses usually are evaluating rare events, the top event 
probabilities are small most of the time, and the approximation of a success path to 1.0 is 
acceptable.  In some cases, a top event may have a relatively large probability (> 0.01), and in this 
case, choosing a solution method that accounts for the proper success path probability may be 
required for a sufficiently accurate calculation. 
 
3.2.1.3 Uncertainty 
 
Quantifying the model to obtain the uncertainty distribution is similar to the truncation cutoff 
issue in that enough iterations of the model must be performed to ensure the mean value has 
converged.  PRA software generally runs quickly so the number of iterations needed to converge 
is usually not an issue.   

 
In many cases, the mean will actually differ from the point estimate, because in general, basic 
event distributions are correlated.  Correlation of basic events results if the same uncertainty 
distribution is used for a number of basic events.  Each sampling in the uncertainty calculation for 
the basic events that are correlated uses the same value from the common distribution.  This has a 
tendency to increase the mean value if an AND gate is used as the sampling from the extreme ends 
of the distribution compound and to stretch the distribution, resulting in a mean value higher 
than the point estimate.5 
 
3.2.2 Discrete Event Simulation Model Quantification 

 
For analyses using discrete event simulation, as discussed in Section 2.3.2, the main option for 
quantification that must be considered is the number of replications (i.e. the number of passes 
through the model).  Determining a sufficient number of replications is an iterative process that 
should start by reviewing the paths through the model along with the inputs to estimate the 
expected number of replications that result in a particular end state.  For example, if a review of 
the model inputs shows that the output should occur with a frequency of about 1E-4, then the 
number of replications to get a result on that path, on average, would be 1/1E-4 or 
10,000.  Because the mean will not have converged with a single point (or a small number of 
points), for this example a reasonable starting point would be 100,000 replications, or 10 times 
the average to get a single result.  Ideally, a sufficient number of replications can be run in order 
to obtain a mean within acceptable convergence bounds.  If an initial number of replications is not 
sufficient to establish convergence, then additional replications are required.  At some point, time 
constraints might limit the number of replications so that the desired convergence is not met.  In 
these cases the uncertainty due to the limited number of replications should be presented.  This 
uncertainty is often presented as 90% confidence bounds about the mean.   
 
Table 3-2 shows output from the model shown in Section 2.3.2 based on 50,000, 100,000, and 
250,000 replications.   
 
 
 
 
 
                                                           
5 In general, <x2> is greater than or equal to <x>2. 
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Table 3-2.  Discrete Model Simulation Results For Different Numbers of 

Replications 

 
 
 
3.3 Reviewing the Results 
 
The PRA model is typically developed to answer a specific question or questions regarding the 
risk of a facility or operation, and a range of results are produced and may be reviewed at a 
variety of different levels (e.g. from system reliabilities to magnitudes of oil released to the 
environment).  Common results evaluated as outputs from a PRA include: 

• Total likelihood6 of various end states;  
• The relative ranking of each scenario to the total end state likelihood or total risk;  
• Estimates of scenario consequences (e.g., environmental release, damage to property, 

number of injuries or fatalities, dollar loss, …);  
• Importance measures;  
• Display of uncertainties associated with various estimates; and  
• System level reliabilities. 

Each of these types of results are discussed in more detail in the following sections with examples 
based on the environmental release model developed in Section 2.  

3.3.1 Overall End State Likelihood and Relative Risk Ranking 

                                                           
6 In this section, the term “likelihood” is used to refer either to probability, frequency, or both. 

End Event Count Probability Min Mean Max Min Mean Max
Limited Release 16 1 in 3125 0.16 0.62 1.36 0.37 0.82 1.22
ROV 8 1 in 6250 1938.60 18796.70 48353 2.12 11.43 23.26
Well Cap 6 1 in 8333 89597 243699.50 484670 68.40 162.16 266.67
Relief Well 1 1 in 50000 4818100 4818100 4818100 3771.93 3771.93 3771.93
Replications: 50000

End Event Count Probability Min Mean Max Min Mean Max
Limited Release 25 1 in 4000 0.16 0.63 1.3616 0.28 0.81 1.22
ROV 15 1 in 6700 1938.6 18766.99 48353 2.12 12.45 24.06
Well Cap 13 1 in 7700 85475 271075.5 717960 68.36 186.02 440.56
Relief Well 1 1 in 100000 4818100 4818100 4818100 3771.93 3771.93 3771.93
Replications: 100000

End Event Count Probability Min Mean Max Min Mean Max
LimitedRelease 45 1 in 5600 0.16 0.62 1.4531 0.28 0.82 1.22
ROV 44 1 in 5700 1938.6 18645.58 100480 2.12 12.24 49.84
WellCap 33 1 in 7600 79285 302953.8 724090 68.36 201.56 440.56
ReliefWell 1 1 in 250000 4818100 4818100 4818100 3771.93 3771.93 3771.93
Replications: 250000

Barrels Leaked Time to Effect (Hours)

Barrels Leaked Time to Effect (Hours)

Barrels Leaked Time to Effect (Hours)
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The overall objective of performing a PRA is typically to evaluate a design or operation with 
respect to the risk involved.  The purpose could be to ensure the design or process is acceptably 
safe relative to safety goals or requirements, or to understand if there are any driving 
vulnerabilities that can be addressed further.  The first metrics assessed are usually the overall 
risk and a relative risk ranking of scenarios.  Sample output from the simplified model developed 
in Section 2 is shown in Table 3-3. 

Table 3-3.  Sample PRA Model Output 

# Prob/Freq Cut Set 
Contribution 

% 

Cut Set Description 

Total 5.598E-4 100 Displaying 10 Cut Sets. (9794 
Original) 

  

1 2.471E-4 44.14 DRILLING : sequence 14-1   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
 7.000E-1   /ROV ROV intervention unsuccessful 

    End State LARGERELEASEROV Added through Event Tree Add 

2 2.000E-4 35.73 DRILLING : sequence 16   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  2.000E-4   DRL-HUM-ERR-001 Kick not properly detected 
    End State LIMITEDRELEASE Added through Event Tree Add 

3 9.531E-5 17.03 DRILLING : sequence 14-2   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
  9.000E-1   /CAPSTACK Well Capping unsuccessful 
  3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 
    End State LARGERELEASECAP Added through Event Tree Add 

4 1.006E-5 1.80 DRILLING : sequence 14-3   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
  1.000E-1   CAP-LKG-001 Well capping unsuccessful 
  9.500E-1   /RELIEFWELL Relief Well unsuccessful 
  3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 
    End State LARGERELEASERELIEF Added through Event Tree Add 

5 4.696E-6 0.84 DRILLING : sequence 14-1   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  2.590E-3   BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
  2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
  7.000E-1   /ROV ROV intervention unsuccessful 
    End State LARGERELEASEROV Added through Event Tree Add 

6 1.811E-6 0.32 DRILLING : sequence 14-2   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  2.590E-3   BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
  2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
  9.000E-1   /CAPSTACK Well Capping unsuccessful 
  3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 
    End State LARGERELEASECAP Added through Event Tree Add 

7 5.295E-7 0.09 DRILLING : sequence 14-4   
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  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
  1.000E-1   CAP-LKG-001 Well capping unsuccessful 
  5.000E-2   REL-WELL-LKG-001 Relief well not successful on first attempt 
  3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 
    End State LARGERELEASERELIEF2 Added through Event Tree Add 

8 1.912E-7 0.03 DRILLING : sequence 14-3   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  2.590E-3   BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
  2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
  1.000E-1   CAP-LKG-001 Well capping unsuccessful 
  9.500E-1   /RELIEFWELL Relief Well unsuccessful 
  3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 
    End State LARGERELEASERELIEF Added through Event Tree Add 

9 4.942E-8 < 0.01 DRILLING : sequence 19-1   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
  2.000E-4   DRL-HUM-ERR-001 Kick not properly detected 
  7.000E-1   /ROV ROV intervention unsuccessful 
    End State LARGERELEASEROV Added through Event Tree Add 

10 2.471E-8 < 0.01 DRILLING : sequence 15-1   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
  1.000E-4   EDI-HUM-ERR-001 emergency disconnect fails 
  7.000E-1   /ROV ROV intervention unsuccessful 
    End State LARGERELEASEROV Added through Event Tree Add 

 

The above table shows an overall probability of approximately 5.6E-4 for having an 
environmental release of hydrocarbons during drilling.  The table then lists the top 10 cut sets 
that can be individually reviewed.  For this simplified model, the results show several things that 
could be of interest.  The top 3 cut sets account for over 95 percent of the risk, and therefore 
would be a focus of improvement if the overall risk was considered to be too high (implying that 
improvement is needed). The drivers for the first 3 cut sets are a common cause failure of the blue 
and yellow pods on the BOP (cut sets 1 and 3), and Driller error for cut set 2.  Further inspection 
of the top 3 cut sets shows that the cut set 2 end state is Limited Release while cut sets 1 and 3 are 
large release end states with potentially significantly higher consequences.   

In practice, PRA results are often more “flat” than shown in the results from the simplified model 
used in this guide because they are stated at a finer level of resolution, so that no single cut set 
contributes a significant percentage to the total.  Often there may be hundreds or even thousands 
of cut sets that make up 95 percent or more of the high level risk number.  In this case, the results 
may be put in a spreadsheet and manipulated by grouping cut sets related to a particular end 
state, component, or system to develop insights. 

3.3.2 Estimates of Consequences 

While the discussion in Section 3.3.1 focused on the frequency of end states, also of interest is the 
magnitude of the end state(s).  Classical PRA models using event trees and fault trees have end 
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states that are subjectively defined, e.g. Limited Release, Large Release, etc.  By manipulating the 
cut sets in the previous section, the frequencies of these end states may be estimated.  For many 
applications, this approach may be acceptable as it shows that frequency of the end state and any 
scenarios that are major contributors.  This information allows actions to be identified that may 
reduce risk. 

In some applications the actual magnitude of end states may be needed or desired.  For instance 
there may be governmental requirements on the expected casualty rate from a particular facility 
or operation.  In this case the model must estimate the number of deaths for individual scenarios 
to develop that result.  A discrete event simulation model as discussed in Section 2.3.2 is a method 
that can be used to perform that analysis.  The output from a discrete event simulation is the 
results related to each replication of the model and can be very large.  Table 3-4 shows a sample 
of typical results. 

Table 3-4.  Sample Results from a Discrete Event Simulation Model 

Replication 
End State Release 

Duration 
(hrs) Limited Release Relief 

Well 
Well 
Cap ROV 

272 0.30 0 0 0 0.5 
947 0.00 4818100 0 0 3771.9 

1064 0.00 0 0 18503 11.7 
6603 1.36 0 0 0 1.2 
6725 0.59 0 0 0 0.5 
8174 0.67 0 0 0 0.9 
9080 0.00 0 0 3408.7 3.3 
9287 0.42 0 0 0 1.2 
9882 0.00 0 0 1938.6 2.1 

14287 0.30 0 0 0 0.5 
 

The results are then manipulated to be useable by developing plots.  Because the inputs are based 
on distributions (e.g. flow rates), the results must be binned into logical ranges to show results. 
Figure 3-2 shows the output from the example developed in Section 2.3.2 in terms of probability 
versus magnitude of release. 
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Figure 3- 2. Example Output from Discrete Event Simulation 

The bins (e.g. 0-100, 100-1000) are chosen after reviewing the results to determine logical 
groupings.   

A special type of graph called a frequency of exceedance (F-N) curve can be a valuable tool if the 
probability of exceeding a particular magnitude of consequence is of interest.  This type of plot 
displays the magnitude of the end state on the x axis and the probability of exceeding it on the y 
axis. 

Table 3-5 shows the data needed to construct an F-N curve.  The magnitude is developed by the 
analyst subjectively based on reviewing the results and assigning the output to bins.  Note that 
each bin has a “greater than” designation.  The number of replications assigned to each bin is 
obtained from the results and then divided by the total number of replications, in this case 
250,000. This gives the frequency of exceedance for each bin.  The results is a graph as shown in 
Figure 3-3. 

Table 3-5.  Frequency of Exceedance Calculation 

Magnitude 
(Barrels 

released) 
Replications 

Frequency 
of 

Exceedance 
>0 123 0.000492 

>100 78 0.000312 
>1000 78 0.000312 
>5000 75 0.0003 

>10000 62 0.000248 

0

0.00002

0.00004

0.00006

0.00008
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0.0002
Pr

ob
ab

ili
ty

Barrels of Oil Released to Environment

Probability of Magnitude of Release (Barrels of Oil)



DRAFT 

3-13 
  January 5, 2017  

>20000 46 0.000184 
>50000 36 0.000144 

>100000 31 0.000124 
>200000 20 0.00008 
>500000 8 0.000032 

>10000000 1 0.000004 
 

 

Figure 3- 3. Example Frequency of Exceedance Curve 

The frequency of exceedance curves are typically plotted on a log-log scale because the data can 
span orders of magnitude.  Looking at the curve from right to left, flat frequency of exceedance 
curves indicate that the failures occurring between points are having a minimal effect on the 
overall magnitude of the consequence. When the curve goes more or less vertical, and the 
frequency drops very significantly, this means that it is difficult or impossible (highly infrequent) 
to exceed the corresponding magnitude of release.  

3.3.3 Importance Measures 

Ranking of risk scenarios based on their frequencies as discussed in Section 3.3.1 provides limited 
insight regarding the contribution of individual events such as component failures to the total 
risk. Scenario ranking provides insights on importance of group of failures, not failure of 
individual events. An event (say, component x failure) can appear in the structure of many low 
frequency scenarios, yet it may be absent in the definition of the dominant risk scenarios. If the 
contribution of low frequency scenarios to the total risk is comparable to that of a few dominant 
risk scenarios, then scenario ranking will not capture the risk importance of component x. To 
address this issue, and to provide perspective on importance of individual events or parameters 
of the PRA model, several quantitative importance measures are calculated.  

Once the importance measures are calculated, the events or parameters of the risk model can be 
ranked according to the relative value of the importance measure. This provides some insight into 
what is, or could be, influencing actual risk. This insight can inform risk-informed decision making 
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(e.g., allocating resources), or point to the need for risk mitigation efforts, such as redesign of 
hardware components, the addition of redundancy, etc., but should not be a sole basis for 
decision-making.  

The quantitative importance measures typically found in PRA software include:  

• Fussell-Vesely (F-V) 
• Risk achievement worth (RAW);  
• Risk reduction worth (RRW); and 
• Birnbaum.  

Another measure, the “Differential” importance measure, is discussed in Appendix I, and is 
reflects the fractional change of a risk metric due to a particular basic event given a change in a 
basic event probability.  This metric is not typically found in PRA software.  

All of the above are formulated in failure space: they say something about sets of minimal cut sets 
that involve a specific event or model parameter. A measure based on success space (i.e. path 
sets), Prevention Worth (PW), is a single-event measure that can afford different insights from the 
failure-space measures.  

The three most commonly used importance measures (F-V, RAW, and RRW) are discussed below 
with examples.  Detailed information on the derivation of the failure space based importance 
measures are included in Appendix I.  Prevention Worth, based in success space, is detailed in 
Appendix J.  Finally, a more comprehensive way of looking at model results, “Prevention analysis,” 
is discussed in Appendix K.  Instead of looking at basic events one at a time, Prevention analysis 
answers the question “what combinations of basic events should I undertake to prevent, in order 
to reduce risk in the most cost-effective way?” 

3.3.1.1 Fussell-Vesely Importance 

The most frequently used importance measure is the F-V importance of basic events. The F-V 
importance of a given basic event is the fraction of overall risk contributed by the cut sets 
containing that basic event.  This is similar to the scenario risk ranking in Section 3.3.1, but 
performed at a basic event level.  A basic event may show up in many cut sets that are lower 
frequency than the top scenarios, but the summation of the lower frequency cut sets for that 
component may show that basic event to be a significant risk because it is included in many 
scenarios. Because most cut sets are made up of multiple basic events, and the cut set frequency is 
counted for each basic event F-V importance value, the F-V contributions summed over all basic 
events will normally be greater than 1.0. 

Table 3-6 displays the top 5 cut sets from the example model developed in Section 2.  The basic 
event DRILLINGKICK occurs in all of the cut sets (since it is the only initiating event used), so it 
has a F-V importance of 1.0.  The Driller failing to detect a kick (DRL-HUM-ERR-001) is only found 
in cut set 2 which has a cut set value of 2.0E-4.  The F-V importance for this event is calculated 
simply by dividing 2.0E-4 by the total risk, 5.572E-4.  The result is 0.359 which is the same as the 
cut set value because the basic event is only included in that single cut set.  The basic event ROV-
FTR-001 is found in cut sets 3 and 4 with cut set values of approximately 9.53E-5 and 1.01E-5 
respectively.  In this case, the cut set values are added (1.05E-4) and divided by the total risk for a 
F-V importance of 0.189.  Table 3-7 shows the F-V importance for each of the failure events in 
Table 3-6.  The “/” basic events are not included because they represents success paths on the 
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event tree. 

Table 3-6.  Top 5 Minimal Cut sets Example for Importance Measures 

# Prob/Freq Total % Cut Set Description 
Total 5.572E-4 100    

1 2.471E-4 44.35 DRILLING : 14-1   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
 7.000E-1   /ROV ROV intervention unsuccessful 

2 2.000E-4 35.90 DRILLING : 16   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 2.000E-4   DRL-HUM-ERR-001 Kick not properly detected 

3 9.531E-5 17.11 DRILLING : 14-2   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
 9.000E-1   /CAPSTACK Well Capping unsuccessful 
 3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 

4 1.006E-5 1.81 DRILLING : 14-3   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow pods 
 1.000E-1   CAP-LKG-001 Well capping unsuccessful 
 9.500E-1   /RELIEFWELL Relief Well unsuccessful 
 3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 

5 4.696E-6 0.84 DRILLING : 14-1   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 

  2.590E-3   BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
  2.590E-3   BOP-POD-FTR-

YELLOW 
Yellow pod (operating) fails to run 

  7.000E-1   /ROV ROV intervention unsuccessful 

 

Table 3-7.  F-V Importance Calculation Example 

Basic Event Description Cut sets with 
Basic Event 

Total Cut set 
Value 

F-V 
Importance 

DRILLINGKICK Well Kick While Drilling 1, 2, 3, 4, 5 5.572E-4 1.00E+00 

BOP-POD-YLBL-CCF Common cause failure of blue and 
yellow pods 1, 3, 4 3.52E-04 6.33E-01 

DRL-HUM-ERR-001 Kick not properly detected 2 2.000E-4 3.59E-01 

ROV-FTR-001 ROV intervention unsuccessful 3, 4 1.05E-04 1.89E-01 

CAP-LKG-001 Well capping unsuccessful 4 1.006E-5 1.81E-02 

BOP-POD-FTR-BLUE Blue pod (standby) fails to run 5 4.696E-6 8.43E-03 

BOP-POD-FTR-
YELLOW Yellow pod (operating) fails to run 5 4.696E-6 8.43E-03 
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The F-V importance is based on basic event contributions.  When common cause of a component 
is modeled using separate common cause basic events, the F-V importance for the common cause 
events is treated separately from the independent failure basic event.  In this case, the F-V values 
from the common-cause cut set and the independent-failure cut set must be added to obtain the 
total for that particular component.  An example of this is shown in Table 3-7 with the blue and 
yellow pods.  The common cause failure event (BOP-POD-YLBL-CCF) has a F-V of 0.633, and the 
blue pod (BOP-POD-FTR-BLUE) (and yellow pod) has a F-V importance of 0.00843.  The total for 
the blue (and yellow) would be 0.641 after adding the common cause and independent failures. 

3.3.1.2   Risk Achievement Worth (RAW) 

The F-V importance shows the relative contributions of components and basic events to the 
overall risk, given the probability numbers put into the model.  But it cannot be concluded that 
components and basic events that do not show large contributions are “unimportant.” It may 
simply be that as a result of their low presumed failure probabilities, they do not contribute much 
to top event likelihood. Another way to review results is to use the RAW importance measure.  
The RAW basically executes a drastic sensitivity study: it assumes the basic event is failed by 
substituting a value of 1.0 for the basic event probability in all cut sets containing the event, and 
recalculating the total risk.7  The new total risk is divided by the total risk before the substitution 
to establish a ratio of how much the risk would increase if the basic event was failed. 

Using the sample data from Table 3-8 for the ROV intervention unsuccessful (basic event ROV-
FTR-001), if a value of 1.0 is substituted for the nominal value of 3.0E-1 (in cut set 2), the new 
total risk estimate is 8.03E-4 and ratioing over the original estimate (5.572E-4) gives a RAW of 
1.44. 

Table 3-8.  RAW Examples 

# Prob/Freq Total % Cut Set Description 
Total 5.572E-4 100    

1 2.471E-4 44.35 DRILLING : 14-1   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow 

pods 

 7.000E-1   /ROV ROV intervention unsuccessful 

2 2.000E-4 35.90 DRILLING : 16   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 2.000E-4   DRL-HUM-ERR-001 Kick not properly detected 

3 9.531E-5 17.11 DRILLING : 14-2   
 1.000E+0   DRILLINGKICK Well Kick While Drilling 
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow 

pods 

 9.000E-1   /CAPSTACK Well Capping unsuccessful 
 3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 

                                                           
7 Ideally, a value of “TRUE” is substituted in the logic model, the top event Boolean expression 
is re-evaluated and only then requantified.  
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4 1.006E-5 1.81 DRILLING : 14-3   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and yellow 

pods 

  1.000E-1   CAP-LKG-001 Well capping unsuccessful 
  9.500E-1   /RELIEFWELL Relief Well unsuccessful 
  3.000E-1   ROV-FTR-001 ROV intervention unsuccessful 

5 4.696E-6 0.84 DRILLING : 14-1   
  1.000E+0   DRILLINGKICK Well Kick While Drilling 
  2.590E-3   BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
  2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 

  7.000E-1   /ROV ROV intervention unsuccessful 

 

The RAW is a particularly good measure for identifying single failure points in the model.  An 
example in Table 3-8 is the driller failing to detect a kick in cut set 2.  If a 1.0 is substituted for that 
basic event (DRL-HUM-ERR-001), the RAW is about 1800, which is the inverse of the original total 
risk estimate (5.572E-4). 

The same caution on common cause as applied to F-V applies to the RAW.  If a component has 
independent and common-cause failure basic events, the basic event RAW only applies to that 
type of failure for that basic event.  Caution should also be applied to the RAW when selecting a 
truncation cutoff.  If the truncation cutoff is set too high, some basic events may not appear in the 
results, and therefore have erroneous RAW values. 

3.3.1.3   Risk Reduction Worth 

Risk Reduction Worth is closely related to the F-V importance.  Where the F-V importance shows 
the fractional contribution of a basic event to the total risk, the RRW is a ratio of the total risk if 
the basic event failure probability is set to 0.0 over the nominal total risk.  An easy method for 
calculating the RRW is: 

1.0 / (1.0-F-V importance) 

The resulting ratio is the factor by which the risk would be reduced if the failure probability of the 
basic event was set to 0.0. 

3.3.2 Uncertainty 

The failure data inputs to a PRA are typically distributions describing the uncertainty around each 
event being analyzed.  These individual uncertainties are used to estimate the uncertainty around 
the end state(s) of interest in the PRA model.  The output from PRA software is typically displayed 
in two ways, as a probability density curve (Figure 3-4), or a cumulative distribution (Figure 3-5).  
The probability density represents the relative likelihood (y-axis) for a given probability value (x-
axis).  The cumulative distribution shows the probability (y-axis) that the end state or event will 
be less than or equal to the probability value (x-axis). 
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Figure 3- 4. Example Probability Density Function 

 

 

Figure 3- 5. Example Cumulative Probability Distribution 

The probability density and cumulative distributions are good for describing the uncertainty of a 
single end state or event.  When one is comparing distributions, a chart like that shown in Figure 
3-6 can be used that readily displays a comparison of where the mean values lie as well as the 
distribution around the means for each point. 
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Figure 3- 6. Example Comparison of End State Distributions 

 
3.3.5 System Level Reliability 

A PRA is typically done on a facility with interest in a particular end state or states.  In developing 
the model, many systems or functions are analyzed and may be isolated to give insights 
specifically for those systems and functions.  For instance, in the model developed in Section 2, if 
the analyst wanted to review the causes and contributions to failure of the annular preventer to 
close, the fault tree results could be used to provide those insights.  These are shown in Table 3-9 
for the fault tree ANNULAR.  When reviewing system or function level results from the PRA 
model, it is important to note the context for which the fault tree was developed.  The PRA will 
have a specific focus and the system analysis may not include all failures of the system. 

Table 3-9.  Sample Fault Tree Results for ANNULAR 

# Prob/Freq Total % Cut Set Description 
Total 5.059E-3 100 Displaying 8 Cut Sets. (8 Original)   

1 4.180E-3 82.62     
 4.180E-3   BOP-CYL-FTC-AP01 Annular preventer fails to seal 

2 5.000E-4 9.88     
 5.000E-4   ANNULAROVERPRESS Well pressure over the design limit of 

annular 
3 3.530E-4 6.98     
 3.530E-4   BOP-POD-YLBL-CCF Common cause failure of blue and 

yellow pods 
4 1.180E-5 0.23     
 1.180E-5   BOP-SHV-LKG-SV01 Crosstie shuttle valve external leakage 
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5 1.180E-5 0.23     
 1.180E-5   BOP-SHV-LKG-SV02 Annular ROV shuttle valve external 

leakage 
6 6.708E-6 0.13     
 2.590E-3   BOP-POD-FTR-BLUE Blue pod (standby) fails to run 
 2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 

7 4.351E-8 < 0.01     
 2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 
 1.680E-5   BOP-SHV-FTT-SV01 Crosstie shuttle valve fails to transfer to 

blue pod 
8 2.590E-8 < 0.01     
 1.000E-5   BOP-HUM-ERR-XTIEPODS Driller fails to select blue pod after 

yellow pod failure 
  2.590E-3   BOP-POD-FTR-YELLOW Yellow pod (operating) fails to run 

 

3.3.6 Sanity Checks of the Results 

When the model quantification is completed and results are obtained, the analyst must perform a 
sanity check to ensure inputs and outputs are appropriate.  On a large model small errors in 
inputs can make a difference in results.   

3.3.6.1 Basic Event Input 

A basic check on the input data should be performed at the time of first quantification.  A quick 
review of a basic event listing will reveal any data that has not been input or has a value of 1.0 or 
0.0.  These should be adjusted as necessary.   

3.3.6.2 Fault Tree Linking 
Once cut sets are obtained from the first quantification, a review of the basic event names 
included should be performed to ensure that the correct fault tree results are being used and the 
fault trees are linked correctly.  Improper fault tree linking may yield cut sets with fault tree 
names versus basic event names.  If developed events are used, this is expected; if not, then the 
fault tree linking must be performed again. 

3.3.6.3 Reviewing Results 

With the basic event input and fault tree linking verified, the results should be reviewed to 
determine if other problems exist.  This is a subjective review, based on the analyst’s knowledge 
from building the model.  Questions to ask are: 

Does the overall risk make sense? 

Do the top scenarios make sense? 

Are any scenarios that were expected to be risk drivers missing? 

If the answer to any of these is less than adequate, the analyst may have to trace through specific 
scenarios to determine why the expected result is not showing up or higher than expected.  The 
answer may be reasonable, if not, troubleshooting is required to make the appropriate fixes to the 
model. 
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3.3.6.4 Sensitivity Studies on Assumptions 

When information is lacking heavy reliance is placed on the analyst’s judgment. For example, 
assumptions made regarding success requirements for pivotal events and for accident 
progression can significantly affect the PRA results. The effect of such assumptions needs to be 
investigated by sensitivity analyses. The results of sensitivity analyses should be reported in 
tabular form and it should include the base-case assumption (the basis for the nominal PRA 
results), the alternative assumption and its basis, and the change in the numerical results between 
the base case and the alternative case.  

3.4 Can the model support the decision being made?  
 

A risk model cannot be perfect; complex risk models contain too many idealizations and 
abstractions to be literally correct at a high level of detail, even without uncertainties; and in 
many cases, the uncertainties are significant as well. Is the model good enough to be used in the 
present decision situation? Or should we do additional work on the model? If the model’s results 
point to one decision alternative with a high degree of confidence – and if we believe the model 
results – then our work is done. On the other hand, if:  
 

• there is sufficient uncertainty about the model’s results to limit our confidence in the 
present decision, and  

• there is a way to reduce that uncertainty, and  
• the decision stakes are high enough to justify the additional effort,  

 
then more should be done.  However, it is necessary first to understand gain a better 
understanding of what the risk model is saying.  
 
Risk analysis must accomplish the following:  
 

Identification of accident scenarios;- 

Estimation of the likelihood of each scenario; and 

Evaluation of the consequences of each scenario. 

Once this is done, it is necessary to integrate the results into an assurance case, suitable for use by 
decision-maker(s).  

1. The integration includes, among other things, development of best estimates for frequencies 
and consequences, development of distributions reflecting the uncertainty associated with 
those estimates, propagation of the uncertainties to obtain final results, and development of 
appropriate displays to communicate the results with their associated uncertainties. 
Documentation related to PRA models whose analysis results are used to make critical 
decisions regarding design, development, manufacturing, and operations that may impact 
human safety or environmental damage should be reviewed. Specific methods and procedures 
should be used for assessing and communicating the credibility of PRA model analysis results 
based on factors such as peer review, input pedigree, uncertainty analysis, results robustness, 
use history, qualifications of the analysts, and so on.  

2. To provide focus for the presentation of results, the results should include identification of 
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system features that are the most important contributors to risk. Insights into relative 
importance of various features of the system, and the relative importance of various modeling 
assumptions, may be developed from uncertainty and sensitivity analyses. A discussion of 
these insights is required to provide the proper interpretation of the “bottom line” conclusions. 
Such insights should include an appreciation of the overall degree of uncertainty about the 
results and an understanding of which sources of uncertainty are critical to those results and 
which are not. In general, many of the insights gained are not strongly affected by the 
uncertainties. The numerical results need only be accurate enough to allow the decision maker 
to distinguish risk- significant elements from those of lesser importance.  The level of detail 
and the style of presentation of risk results depend on the risk assessment objectives. The 
results section must communicate the project’s motivations and objectives and should be done 
in a way that clearly establishes the appropriateness of the generated results in meeting the 
risk assessment objective. For example, if the risk assessment is intended for evaluation of 
alternative design features as in risk-informed decision-making, the results should be 
presented in a structure that allows comparison of various design options according to an 
appropriate ranking scheme.  

3. Ultimately the question must be asked: Are the results robust enough to support a decision? If 
not, what are the soft spots in the analysis (e.g., dominant uncertainties), and what can we do 
about them? 
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Appendix A – Example Basic Event Naming Conventions for Fault 
Trees 

 
As discussed in Section 2.2.5.3, a consistent naming convention for fault tree basic events is 
necessary for several reasons. Ultimately, a good naming convention helps in reading and parsing 
model results in an efficient manner; but even more importantly, the Boolean processing function 
requires that a given basic event be named consistently in all of the logic models in which it occurs.  
Serious errors can result if this is not done correctly.  If a model development is being carried out by 
more than one individual, enforcement of this condition and similar conditions is a management 
priority. 
 
Usually the naming convention is in a form similar to: 
 

XXX-YYY-ZZZ-DDDDD, 
 

where XXX, YYY, etc. represent identifying attributes to the component and failure mode that may 
include (as previously discussed): 
 

• The operation being performed (e.g. drilling); 
• The system the component belongs to (BOP); 
• The subsystem the component belongs to (e.g. Yellow pod); 
• The component (e.g. shuttle valve) 
• The failure mode (e.g. Fails to transfer) 
• A unique identifier for the valve (usually from a drawing)(e.g. SV837) 

 
The system, component, failure mode, and unique identifier should be included as a minimum, and 
other fields may be added based on the analysis and the character limitations of the PRA software 
being used.  Table A-1 and A-2 show typical naming conventions for failure modes and components.  A 
3-letter identifier was used for each, but that can vary depending on the analyst’s choice.  The number 
of characters should be related to the number of items to be accounted for in the field.  For instance if 
the operations being analyzed are; drilling, tripping, running casing, and an empty hole, an identifier 
for operation may only be one letter since only 4 operations are being considered.  Failure modes and 
components typically have many variations, so allocating 3 letters allows flexibility for those items as 
shown in the examples in Tables A-1 and A-2.  Unique identifiers from drawings or other documents 
may be variable, so as the last field in the name, it may be desirable to not specify the number of 
characters for that field.  

 
Table A-1.  Example Basic Event Naming Convention for Failure Modes 

Fails to close FTC 
Fails to open FTO 
Fails to operate on demand FOD 
Fails to reseat FRS 
Fails to run FTR 
Fails to start FTS 
Fails to transfer FTT 
Jammed JAM 
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Leakage LKG 
Plugged PLG 
Premature opening PMO 
Rupture RUP 
Short Circuit SHT 
Structural Failure STR 
Transfer closed XFC 
Transfer open XFO 

 
 

Table A-2.  Example Basic Event Naming Convention for Components 

Check Valve CKV 
Gate Valve VLV 
Safety Relief Valve SRV 
Hydraulic/Pneumatic Cylinder CYL 
Shuttle Valve SHV 
Accumulator ACC 
Reservoir RES 
Pump PMP 
Filter FLT 
Diesel Generator DGN 
Circuit Breaker CBR 
Electric Power Bus BUS 
Relay RLY 
Battery BAT 
Flow Switch FSW 
Pressure Switch PSW 
Level Switch LSW 
Manual Valve MNV 
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Appendix B – Fault Tree Gate Logic and Quantification 
 
The primary logic gates used in fault tree modeling are the OR gate, AND gate, and the COMBINATION 
gate shown in Figure B-1.   
 

 
Figure B- 1. Common Fault Tree Logic Gates 

 
B.1 OR Gates 
 
The OR gate is used for situations where if any event under the gate is TRUE (has occurred), then the 
OR gate will be TRUE (or occur).  For instance, if a well kick occurs, the Driller has to recognize the well 
kick and close the annular preventer.  For a fault tree, which is developed in failure space, the top 
event would be “Failure to close the annular preventer after a well kick.”  Since both actions have to 
occur for success, either one (Driller recognizing the kick or annular preventer closing) failing would 
result in the top event being true.  The simple OR gate is shown in Figure B-2. 
 

 
Figure B- 2. Simple OR Gate 

The OR gate ANNULAR-FTC is true if either basic event BOP-HUM-ERR-001 or BOP-ANP-FTC-001 is 
true.   
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The output from the OR gate would result in the following cut sets: 
 

BOP-HUM-ERR-001, and 
BOP-ANL-FTC-001.   

 

 
In Boolean logic the equation for the results becomes: 
 

ANNULAR-FTC = BOP-HUM-ERR-001 ∪ BOP-ANL-FTC-001 
 
The events in a fault tree are generally considered to be independent (with the exception of common 
cause, discussed in Appendix D).   That is, the occurrence of one event does not affect the likelihood of 
another.  Figure B-3 shows a representation of how the events in Figure B-2 are viewed in a Venn 
Diagram if they are independent.  As shown in the Venn Diagram, if the events are truly independent, 
either one of them could occur; or, some percentage of the time, both could be true as represented 
by the overlap of the two events.  In reality, both would never occur because if the Driller fails, the 
annular preventer will not have a chance to fail, even if a latent failure is present. 
 

 
Figure B- 3. Venn Diagram for Fault Tree Independent Events 

 
Quantification of the OR gate is performed once probabilities are assigned to the basic events.  The 
possibility of the two events being true concurrently must be accounted for if the values of the 
probabilities are relatively large, i.e. great than 0.01.  In order to do this, the intersection of the two 
events is subtracted from the total in the form: 
 

ANNULAR-FTC = BOP-HUM-ERR-001 + BOP-ANL-FTC-001 - BOP-HUM-ERR-001 * BOP-ANL-FTC-001. 
 
Assigning the probabilities below: 
 

BOP-HUM-ERR-001 = 0.001 
BOP-ANL-FTC-001 = 0.001 

 
Gives the equation: 
 

ANNULAR-FTC = 0.001 + 0.001 – 0.001 * 0.001 
 

ANNULAR-FTC = 1.999E-3 
 
In this case the probabilities are small, so the intersection term does not affect the answer 
significantly.  In these cases, the rare event approximation, leaving off the last intersection term, may 
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provide a reasonable answer.  If the probabilities were significantly higher, for example 0.5, the 
equation becomes: 
 

ANNULAR-FTC = 0.5 + 0.5 – 0.5 * 0.5 
 

ANNULAR-FTC = 0.75 
 
In this case, with large probabilities, the answer is significantly affected due to the event 
independence (the probability of ANNULAR-FTC would be calculated as 1 if it were not corrected for 
the intersection term).   
 
OR gates may have many inputs, including other gates. 
 
B.2 AND Gates 
 
The AND gate is used for situations where all events under the gate must be true in order for the AND 
gate to be “TRUE.” For instance, if a BOP has 3 pipe rams and closure of any one would stop the well 
from flowing, the top event for functional failure would be “Failure to close a pipe ram after a well 
kick.”  Since any one of the 3 pipe rams suffices for success, they all must be failed for the top event to 
be true.  The simple AND gate for this situation is shown in Figure B-4. 
 

 
Figure B- 4. Simple AND Gate 

 
The AND gate, PIPERAM-FTC is true if basic events BOP-PRA-FTC-001 AND BOP-PRA-FTC-002 AND 
BOP-PRA-FTC-003 are true.   
 
The output from the AND gate would result in the single cut set: 
 

BOP-PRA-FTC-001* BOP-PRA-FTC-002 * BOP-PRA-FTC-003  
 

 
In Boolean logic the equation for the results becomes: 
 

PIPERAM-FTC = BOP-PRA-FTC-001 ∩ BOP-PRA-FTC-002 ∩ BOP-PRA-FTC-003  
 
Figure B-5 shows a representation of how the events in Figure B-4 are viewed in a Venn Diagram if 
they are independent.  In the previous case of the OR gate, the area representing failure of the top 
event was the total shaded area.  For the AND gate, the area that satisfies the top event condition is 
that where all shaded areas overlap (“intersect”): label “A” in Figure B-5.  Anywhere outside of area A, 
at least one pipe ram has not failed.   

PIPERAM-FTC

All 3 pipe rams fail to close 
after a well kick

1.0000E+00BOP-PRA-FTC-001

Lower pipe ram fails to close

1.0000E+00BOP-PRA-FTC-002

Middle pipe ram fails to close

1.0000E+00BOP-PRA-FTC-003

Upper pipe ram fails to close
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Figure B- 5. Venn Diagram for Three Independent Events 

 
Quantification of the AND gate is performed once probabilities are assigned to the basic events.  The 
equation formed to calculate the probability of area “A” in Figure B-5 is: 
 

PIPERAM-FTC = BOP-PRA-FTC-001 * BOP-PRA-FTC-002 * BOP-PRA-FTC-003  
 

Assigning the probabilities below: 
 

BOP-PRA-FTC-001 = 0.001 
BOP-PRA-FTC-002 = 0.001 
BOP-PRA-FTC-003 = 0.001 

 

gives the equation: 
 

PIPERAM-FTC = 0.001 * 0.001 * 0.001 
 

ANNULAR-FTC = 1.0E-9 
 
B.3 COMBINATION Gates 

 
The COMBINATION gate is used for situations where M (at least 3) events are under the gate and N 
events (where N is at least 2 but less than M) must be true in order for the COMBINATION gate to be 
true or occur.  For instance, if a MODU has 3 thrusters (3 is used for simplicity in the example) for 
position keeping and any 2 operating is enough to keep position, the top event would be “At least 2 
thrusters fail and position keeping is lost.”  Since 2 of the 3 thrusters must be operating, if 2 of the 3 
fail the top event will be true.  The simple COMBINATION gate for this situation is shown in Figure B-6. 
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Figure B- 6. Simple COMBINATION Gate 

 

The COMBINATION gate, THRUSTER-FTO is true if any two of the basic events DPS-THR-FTR-001, DPS-
THR-FTR-002, and DPS-THR-FTR-003 are true.   
 
The output from the COMBINATION gate would result in the three cut sets: 
 

DPS-THR-FTR-001 * DPS-THR-FTR-002, 
DPS-THR-FTR-002 * DPS-THR-FTR-003, and 
DPS-THR-FTR-001 * DPS-THR-FTR-003. 

 

 
In Boolean logic the equation for the results becomes: 
 

THRUSTER-FTO = DPS-THR-FTR-001 ∩ DPS-THR-FTR-002 ∪ DPS-THR-FTR-001 ∩ DPS-THR-FTR-
003 ∪ DPS-THR-FTR-002 ∩ DPS-THR-FTR-003 

 
Figure B-7 shows a representation of how the events in Figure B-6 are viewed in a Venn Diagram if 
they are independent.  For the COMBINATION gate, the area that satisfies the top event condition is 
that where at least 2 shaded areas overlap.  These areas are labeled “A,” “B,” “C,” and “D” in Figure B-
6.  Areas “A,” “B,” and “C” are overlaps between 2 thrusters and represent the probabilities that each 
specific combination of 2 will fail.  Area “D” is the overlap of all 3 thrusters and represents the 
probability that they all fail.  This area will also satisfy the top event of at least 2 thrusters failing.   
 

THRUSTER-FTO

2 3

At least 2 thrusters fail and 
position keeping is lost

1.0000E+00DPS-THR-FTR-001

Thruster 001 fails to run

1.0000E+00DPS-THR-FTR-002

Thruster 002 fails to run

1.0000E+00DPS-THR-FTR-003

Thruster 003 fails to run

Figure B- 7. Venn Diagram for Three Independent Events 



DRAFT 

B-6 January 5, 2017  

 
Quantification of the COMBINATION gate is performed once probabilities are assigned to the basic 
events.  The equation formed to calculate the probability of areas “A,” “B,” ”C,” and “D” in Figure B-7 
is: 
 

THRUSTER-FTO = (DPS-THR-FTR-001 * DPS-THR-FTR-002) + (DPS-THR-FTR-001 * DPS-THR-FTR-
003) + (DPS-THR-FTR-002 * DPS-THR-FTR-003) – (2 * DPS-THR-FTR-001 * DPS-THR-FTR-002 * 
DPS-THR-FTR-003) 

 

The first 3 terms in parentheses in the above equation represent the intersection of each pair of 
thrusters (areas A, B, and C in Figure B-7).  The area D is included in each intersection term, and 
is therefore counted 3 times if the intersection terms are simply added.  The last term in the 
equation is a correction to account for this over-counting.  In this case, the correction is small 
because the probabilities are small. 
 
Assigning the probabilities below: 
 

DPS-THR-FTR-001 = 0.001 
DPS-THR-FTR-002 = 0.001 
DPS-THR-FTR-003 = 0.001 

 

 
Gives the equation: 
 

THRUSTER-FTO = 0.001 * 0.001 + 0.001 * 0.001 + 0.001 * 0.001 – 2 * 0.001 * 0.001 * 0.001 
 

THRUSTER-FTO = 2.998E-6 
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Appendix C - Calculating Frequency, Reliability, and Availability 
Metrics 

 

This appendix provides a highly simplified discussion of the basics of quantifying reliability, availability, 
and frequency of failure metrics for components and for systems.  It does so using conventional 
Markov model graphics.  This is done in order to clarify how most PRA software uses the component 
performance information that must be entered in order to run the program.  Most PRA software does 
not actually use Markov models, but the standard Markov model representation is a useful reminder 
of what sort of thing the subject calculations actually do, whether they are based on simulation, 
solution of Markov models, or hand calculations. 

For present purposes, it is assumed that the functions of systems and components are well defined, 
the failure modes of components and their effects have been identified, the rates of occurrence of 
these failure modes are quantified in some way, and the system configurations that would be 
considered “successful” have been defined.  For a system having redundancy (more than one way to 
succeed, despite failed components), this would mean that the number of trains or divisions needed 
for “success” has been defined; and it is additionally recognized that for different kinds of functional 
demands, different definitions of “success” might apply.   

At any given time, a component that is capable of doing its job is “available” (i.e., it is not out for test 
or maintenance) and in a “good” state.  A very simplified state diagram for a single component is 
shown in Figure C-1.  

 

Figure C- 1. Simple State Diagram for Component A 

The circles represent component states, and the arcs represent transitions between states.  The arc 
labeled λ is a “failure:” a transition from “good” to “failed.” This occurs at the failure rate λ, which has 
the units of “events per unit time.” Analogously, the arc labeled µ corresponds to restoration of the 
component to “good” status, occurring at the repair rate µ.  Within the model underlying this figure, a 
component is either “good” or “failed,” and the probabilities of these states must therefore sum to 1.  
If we treat λ and µ as stochastic and constant in time, we can write the following equations for the 
time rate of change of the probabilities of “up” and “down:” 
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𝑑𝑑(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑡𝑡

= −𝜆𝜆 ∗ 𝑢𝑢(𝑢𝑢𝑢𝑢) + 𝜇𝜇 ∗ 𝑢𝑢(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛), 
 

𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛)
𝑑𝑑𝑡𝑡

= 𝜆𝜆 ∗ 𝑢𝑢(𝑢𝑢𝑢𝑢) − 𝜇𝜇 ∗ 𝑢𝑢(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛), 
 

𝑢𝑢(𝑢𝑢𝑢𝑢) + 𝑢𝑢(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛) = 1. 
 
This is an extremely simple example of a class of models called “Markov.” A distinguishing feature of 
these models is that what happens at any given instant depends only on the state of the system at that 
instant: a Markov model has no memory of what went before.  The modeling of “repair” as a purely 
stochastic phenomenon, occurring independently of how long a component has been down, is a 
drastic and unrealistic approximation.  But it makes this set of equations trivial to solve, and, for some 
purposes, is a useful starting point.  We can do a better job of modeling things like this in discrete 
event simulation, which is discussed in Section 2.3. 

One can solve the above equations straightforwardly.  Typically, the initial condition is: at time 0, 
p(up)=1 and p(down)=0.   

This simple model has the property that over sufficient time, it will converge to a condition in which  
 

< 𝑢𝑢(𝑢𝑢𝑢𝑢) >= 𝜇𝜇
𝜇𝜇+𝜆𝜆

 𝑎𝑎𝑛𝑛𝑑𝑑 < 𝑢𝑢(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛) >= 𝜆𝜆
𝜇𝜇+𝜆𝜆

. 
 

This follows from setting the time derivatives to zero, and solving for <p(up)> and <p(down)> using 
simple algebra.  If we were reasoning intuitively, we might argue that the occupancy of the down state 
is given by the frequency of entering that state (λ), multiplied by the average dwell time in that state 
(1/µ).  This slight difference between this result (1µ) and the above formula results from the need to 
correct for the availability, discussed below.   

Convergence to the steady state is seen in Figure C-2, for illustrative values of λ and µ.  The system 
evolves from its initial condition (p(up)=1) to the steady state given by the above formulas, for the 
values of λ and µ given on the figure. 
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Figure C- 2. Steady State Diagram for Component A 

 
For many components, typical failure rates are on the order of one per many thousands of hours, and 
typical repair rates are on the order of one per some tens of hours, or less; putting these numbers into 
the formulae for <p(up)> and <p(down)> yields a number close to 1 for time-averaged availability 
(<p(up)>), and a small number (equal to 1-availability) for time-averaged unavailability (<p(down)>). 

The rate of failure events actually experienced is not given simply by λ; the component must be “up” 
in order to be able to fail.  The rate of failures actually experienced is therefore λ*p(up).  If p(up) is 
close to unity, then equating the expected rate of failures to λ is not a severe approximation; but in 
checking computer calculations, the difference between λ and the observed rate of failures may be 
observable, if unavailabilities are on the order of a few percent, which can easily be the case.   

This point generalizes: the rate at which any arc is traversed is the product of the rate associated with 
that arc, multiplied by the occupancy (the probability) of the state from which the arc originates. 

If a component is known to be “good” at time = 0, then the probability that it is failed at time T is ~ 
λ*T, for T<<1/λ.  Averaged over this interval, the probability of being in a failed state is (1/2)*λ*T. 
 
Figure C-3 makes a slightly different point.  In Figure C-1, a component was either “good” or “in 
repair.”  In some systems, failure will not immediately be detected, and we need more than a “repair 
rate” concept to build a model.  In Figure C-3, a failed component is placed into repair only when the 
failure is detected, which could occur either as a result of an actual demand on the system, or as a 
result of a scheduled test, carried out for the very purpose of detecting a failed state. 
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Figure C- 3. Slightly More Complicated State Diagram for Component A 

 
These figures begin to illustrate a general principle underlying the calculation of complex “rates” 
(accident frequencies, functional failure frequencies, …).  Figure C-4 shows a two-component system 
with a one-out-of-two success criterion: if the system is demanded and either component works, the 
system succeeds; if both components are down, the system fails.  The accident rate is the rate of 
demands multiplied by the probability of both components being down.  As modeled in Figure  C-4, 
that latter probability depends on the underlying failure rates and repair rates; but as mentioned 
above, we need a way of detecting component failures (as in Figure C-3) before we initiate repair.   
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Figure C- 4. Simplified State Diagram for System Containing Redundant 

Components A and B 

 
If, for some reason, we are interested in the rate of system failure, we obtain this by summing the 
rates of traversing the two arcs into the “both down” state: that is,  
 

λ∗ p(A failed, B still good) + λ∗ p(B failed, A still good). 
 

 
In all of this, we have assumed that  
 

• there is no causal linkage between the failures of A and B,  
• there is no causal linkage between the rate of demands and the failure rates,  
• all of the rates are constant in time (even the repair rate, and even though this is unlikely to be 

a realistic description). 
 
“Failure on Demand” 
 
The Reactor Safety Study (WASH-1400) defines “Demand Probabilities” as:  
 

… the probability that the device will fail to operate upon demand for those components that 
are required to start, change state, or function at the time of the accident [sic].  The demand 
probabilities, denoted by Qd, incorporate contributions from failure at demand, failure before 
demand, as well as failure to continue operation for a sufficient period of time for successful 
response to the need.  When pertinent, the demand data Qd can be associated with standard 
cyclic data or can be interpreted as a general unavailability.  Human error data can also be 
associated with demand probabilities (i.e. per action) as discussed in the human evaluation 
section. 

 
Not all communities of practice make use of all aspects of this definition.  Some argue that if a 
component is “good” in the instant before a demand, it will (by definition) function during the 
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demand; within this concept, “failures” are either failures in standby, or failures to run, and the 
occupancies of failed states are quantified accordingly (i.e., in terms of a standby failure rate or a rate 
of failure to run).  Others argue that owing to variability in the stresses imposed by a particular 
demand, there is a nonzero probability that a nominally “good” component will fail upon the arrival of 
a demand.  Still others would argue for modeling a state between “good” and “bad” (i.e., “degraded”) 
having a probability of failure on demand that is significant but still less than unity.  This is a modeling 
decision to be evaluated on a case-by-case basis; the present point is that operationally, Qd is simply 
the state probability that one multiplies by a “demand” arc to get the frequency of accidents or 
functional failures, as the case may be.   

Although it may seem simple and convenient to lump all causes of component non-performance 
together, it is conventional to split out maintenance unavailability contributions from actual 
component failures, because in some applications, operational rules proscribe having multiple 
components out for maintenance, and the logic model needs to reflect that point: the model should 
not generate system failure cut sets in which everything is out for maintenance, unless that can, in 
fact, occur.  Sometimes it is necessary to split out failure to start from failure to run, because the 
consequences are different, or perhaps because common cause failure considerations are different for 
the two failure modes, and so on.   
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Appendix D – Common Cause Failure 
 

 
 
 
 
 
 
 
 
 
 

To be added 
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Appendix E - Sources of Failure Rate and Event Data 
 
E.1 Background 
A fundamental requirement to quantify a risk assessment model is the basic equipment failure rate 
data.  These data comprised of numerical estimates of failure rate and event data that are used in the 
model and best represent the failure rate characteristics of the facility.  There are several categories of 
failure that are included in a risk model.  These include:  
  

• loss of containment (leaking or rupture) of equipment that belong to the hydrocarbon 
containment envelope 

• failure on demand of a component within a safeguard system when required, and 
• external event rate of occurrence for events that challenge the facility to maintain critical 

safety and environmental integrity functions. 
 
Ideally, parameters of PRA models of a specific system should be estimated based on operational data 
of that system.  The next most representative data is that from the fleet of similar facilities operated 
by the same entity.   

Often, however, the analysis has to rely on a number of sources and types of information if the 
quantity or availability of system-specific data are insufficient.  In such cases surrogate data, generic 
information, or expert judgment are used directly or in combination with (limited) system-specific 
data.  According to the nature and degree of relevance, data sources may be classified by the following 
types: 
 

• Historical performance of successes and failures of an identical piece of equipment under 
identical environmental conditions and stresses that are being analyzed (e.g., direct 
operational experience). 
 

• Historical performance of successes and failures of an identical piece of equipment under 
conditions other than those being analyzed (e.g., test data). 
 

• Historical performance of successes and failures of a similar piece of equipment or similar 
category of equipment under conditions that may or may not be those under analysis (e.g., 
another program’s test data, or data from handbooks or compilations).  General engineering 
or scientific knowledge about the design, manufacture and operation of the equipment, or an 
expert’s experience with the equipment. 

 

E.2 Generic Data Sources 
Generic data is surrogate or non-specific information related to a class of parts, components, 
subsystems, or systems.  Most generic data sources cover hardware failure rates.  All other data 
categories, particularly human and software failure probabilities, tend to be much more mission-
specific, system-specific, or context dependent.  As such, generic data either do not exist or need to be 
significantly modified for use in a PRA. 

The international offshore industry has performed risk and reliability assessments for a variety of 
facilities for over 30 years.  Each of these quantitative evaluations tends to increase the general 
collection of risk and reliability information when this information is stored or published for later use.  
In addition to the individual quantitative evaluations, various industry entities also manage failure data 
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and incident reporting systems, for example the *** system.  A selection of offshore industry data 
collection systems includes:  
 

• Guidelines for Process Equipment Reliability Data with Data Tables 
• Process Equipment Reliability Database (PERD) 
• Failure Rate and Event Data for use within Risk Assessments (HSE PCAG) 
• Failure Frequency Guidance Process Equipment Leak Frequency Data for use in QRA 
• Lees’ Loss Prevention in the Process Industries (Third Edition) 
• OGP Risk Assessment Data Directory 
• OIR/12 
• Offshore Reliability Data  
• Pipeline and Riser Loss of Containment (PARLOC) Report   
• Wellmaster RMS 
• Worldwide Offshore Accident Database 

 
These data sources are presented in this guideline along with content descriptions.  These sources are 
commonly utilized in Probabilistic Risk Assessments conducted for offshore facilities.  This list is not 
exhaustive nor endorsed for use, but simply a compilation of frequently used sources.  They are 
presented in alphabetical order. 
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Table E-1. Guidelines for Process Equipment Reliability Data with Data Tables 

Name Guidelines for Process Equipment Reliability Data with Data Tables 

Sponsor/Author: Center for Chemical Process Safety of the American Institute of 
Chemical Engineers 

Data Types The level three taxonomy contains 50 component types under the 
following groups; 

• Electrical Equipment 
• Instrumentation 
• Process Equipment 
• Protection Systems 

 
Description Failure rate data handbook, multi-industry sources. 

Number and Type of 
Records: 

Book 

300 pages, 75 individual failure rate estimate pages. 

Frequency of Update None 

Time Frame: Prior to 1989 

Data Access Commercial publication 

Notes 

 

The PERD handbook is a compilation of data tables based on literature 
review of estimates from many industries and from proprietary files of 
previously analyzed and selected information.  There is no clear 
relationship to analysis of individual failure events although the 
format resembles other handbooks which are based on estimates 
derived from analysis of event data from equipment populations. 

The intent of the data is for use in the Chemical Process Industry. 

Failure rate estimates are given as lower, mean and upper bound as 
failure rates or demand failure probabilities, by failure mode. 

Reference ISBN 0-8169-0422-7 
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Table E-2. Process Equipment Reliability Database (PERD) 

Name Process Equipment Reliability Database (PERD) 

Sponsor/Author: Center for Chemical Process Safety of the American Institute of 
Chemical Engineers 

Data Types Relief Devices 

Description Event failure database 

Number and Type of 
Records: 

2,000 relief valve inventory records and over 5,000 proof test event 
records. 

Frequency of Update 0 

Time Frame: 2001-2013 

Data Access Tiered membership scheme.  Access to raw event data to allow 
statistical data analysis for contributing members. 

Notes 

 

The PERD database is based on taxonomies developed within the 
PERD project and is an extension of the Guidelines for Process 
Equipment Reliability Data with Data Tables.  Relief devices were 
selected to collect event and test data and implement the database. 

Reference http://www.aiche.org/ccps/resources/process-equipment-reliability-
database-perd 

 

  

http://www.aiche.org/ccps/resources/process-equipment-reliability-database-perd
http://www.aiche.org/ccps/resources/process-equipment-reliability-database-perd
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Table E-3. Failure Rate and Event Data for use within Risk Assessments (HSE PCAG) 

Name Failure Rate and Event Data for use within Risk Assessments  

(HSE PCAG) 

Sponsor/Author: UK Health and Safety Executive, Hazardous Installations Directorate 

Data Types Categories include: mechanical, electrical, bulk transport and 
moveable storage. 

Specific types include: vessels, reactors, valves, pumps, hoses and 
couplings, flanges and gaskets, Pipelines and compressors. 

Description Non-mandatory reference compiled by the agency for assisting their  

Number and Type of 
Records: 

A compilation of many of references ranging from proprietary study 
reports to textbooks comprising 96 pages of data tables and 
background information 

Frequency of Update 0 

Time Frame: 1972-2012 

Data Access Publication available from HSE website. 

Notes 

 

HID CI5 has an established set of failure rates that have been in use for 
several years in QRAs submitted for land use planning cases.  The 
estimates “do not necessarily take account of all factors that could be 
relevant and significant at particular installations.”  However, in the 
absence of site specific data, the values given here may serve as a 
starting point for safety reports. 

Reference http://www.hse.gov.uk/landuseplanning/failure-rates.pdf 

 

  

http://www.hse.gov.uk/landuseplanning/failure-rates.pdf
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Table E-4. Failure Frequency Guidance Process Equipment Leak Frequency Data for 
use in QRA 

Name Failure Frequency Guidance Process Equipment Leak Frequency Data 
for use in QRA 

Sponsor/Author DNVGL 

Data Types 

 

Compressors Centrifugal and reciprocating 

Filters 

Flanges 

Heat Exchangers (Air Cooled, Plate, Shell and Tube) 

Pig Traps 

Process Piping 

Pumps (Centrifugal and Reciprocating) 

Instruments 

Valves (Actuated and Manual) 

Pressurized Process Vessels 

Atmospheric Storage Tanks 

Description A proprietary publication containing guidance and data on process 
equipment leak frequency for use in QRA.  In this document, a 
detailed review and comparison is made between the DNV taxonomy 
and frequency values and the UK HSE HCRD Database taxonomy and 
frequency values.  Additional comparisons are made to guidance 
developed by Flemish and Dutch governments for the same purpose. 

Number and Type of 
Records: 

The guide is 40 pages, with 20 pages of data tables presenting leak 
frequency by equivalent hole size for each equipment type.   

Frequency of Update Continuously 

Time Frame: 2005-2012 

Data Access Proprietary publication available for purchase from DNVGL. 

Notes 

 

The leak frequency data contained in the guidance document was 
generated by the LEAK software, which is an application that contains 
a continuously updated database of leak frequency data and a 
structured computational capability for leak frequency calculations 

Reference https://www.dnvgl.com/services/calculate-leak-frequency-data-leak-
1759 

  

https://www.dnvgl.com/services/calculate-leak-frequency-data-leak-1759
https://www.dnvgl.com/services/calculate-leak-frequency-data-leak-1759
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Table E-5. Lees’ Loss Prevention in the Process Industries (Third Edition) 

Name Lees’ Loss Prevention in the Process Industries (Third Edition) 

Sponsor/Author Texas A&M University, Department of Chemical Engineering 

Data Types 

 

Vessels and tanks 

Pipework 

Heat Exchangers 

Rotating Machinery 

Valves 

Instruments 

Process Computers 

Relief Systems 

Fire and Gas Detection Systems 

Fire Protection Systems 

Emergency Shutdown Systems 

Utility Systems 

LNG Plants 

Leaks 

Ignition 

Explosion following ignition 

Fires 

Explosion 

Transport 

External Events 

Description A well-known, seminal reference 3 volume text compiling the wide 
range of topics relevant to process safety.   

Number and Type of 
Records: 

Appendix 14 of this reference is titled Failure and Event Data.  It 
compiles 38 pages of reference failure rate data  

Frequency of Update 3rd Ed (2005), 2nd Ed (1994), 1st Ed (1979) 

Time Frame: Cited references range from 1960 – 2004 

Data Access Commercial publication 

Notes Failure rate data contained in the book are compilations of many 
failure rate publications from numerous industries.  Failure rate 
estimates are reproduced from cited publications. 

Reference ISBN 0-7506-7589-3 
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Table E-6. OGP Risk Assessment Data Directory 

Name OGP Risk Assessment Data Directory 

Sponsor/Author International Association of Oil and Gas Producers 

Data Types 

 

Major accidents  

Occupational risk  

Land transport accident statistics  

Aviation transport accident statistics  

Water transport accident statistics  

Construction risk for offshore units  

Process release frequencies  

Risers & pipeline release frequencies  

Storage incident frequencies  

Blowout frequencies  

Mechanical lifting failures  

Ship/installation collisions 

Ignition probabilities  

Consequence modelling  

Structural risk for offshore installations  

Guide to finding and using reliability data for QRA  

Vulnerability of humans  

Vulnerability of plant/structure  

Escape, evacuation and rescue  

Human factors in QRA 

Description The Risk Assessment Data Directory is a series of guidance documents 
that provide data and information for use to improve the quality and 
consistency of risk assessments with readily available benchmark data.  
The directory includes references for common incidents analyzed in 
upstream production operations.   

Number and Type of 
Records: 

20 individual documents (Datasheets) 

Frequency of Update 1st Ed (1997), 2nd Ed (2009) 

Time Frame: Prior to 2009 

Data Access Commercial publication 

Notes This series of documents was commissioned with the specific goal of 
defining generic data for use in QRAs 

Reference http://www.iogp.org/pubs 

http://www.iogp.org/pubs
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Table E-7. OIR/12 

Name OIR/12 

Sponsor/Author UK Health and Safety Executive 

Data Types 

 

Hydrocarbon release event database compiled by UK Health and 
Safety Executive, with periodic publications of the analysis of these 
data in publically available report format. 

Description Event data are required to be submitted under the Reporting of 
Injuries, Diseases and Dangerous Occurrences Regulations 1995 - 
(RIDDOR 95).  OIR/12 addresses offshore hydrocarbon release events. 

Number and Type of 
Records: 

585 event records. 

Frequency of Update Continuous 

Time Frame: 2001-2008, previous data deemed inconsistent with current analysis 
taxonomy and analysis requirements 

Data Access Publication available online 

Notes Data are analyzed by time trend, platform type, platform age, release 
magnitude, system, cause.   Data prior to 2001 are presented with 
disclaimer. 

Reference http://www.hse.gov.uk/research/rrpdf/rr672.pdf 

 

  

http://www.hse.gov.uk/research/rrpdf/rr672.pdf
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Table E-8. Offshore Reliability Data 

Name Offshore Reliability Data 

Sponsor/Author OREDA, managed, produced and distributed by Veritec, followed by 
Sintef/Det Norske Veritas 

Data Types 

 

Comprehensive topsides and subsea production equipment, safety 
equipment and limited onshore exploration and production 
equipment 

Description OREDA is a project organization sponsored by eight oil and gas 
companies with worldwide operations.  OREDA’s main purpose is to 
collect and exchange reliability data among the participating 
companies and act as The Forum for co-ordination and management 
of reliability data collection within the oil and gas industry.   

Number and Type of 
Records: 

Event records from 278 installations, 17,000 equipment items with 
39,000 failure and 73,000 maintenance records.  The database also 
includes subsea fields with over 2,000 years operating experience.   

Frequency of Update 6th Ed (2015), 5th Ed (2009) 4th Ed (2002), 3rd Ed (1997), 2nd Ed (1992), 
1st Ed (1984) 

Time Frame: Corresponding with updates 

Data Access Tiered membership scheme.  Access to raw event data to allow 
statistical data analysis for contributing members.  Handbook 
available for purchase. 

Notes All estimates in these handbooks are derived from statistical analysis 
of event data.   

Reference https://www.oreda.com/ 

 
  

https://www.oreda.com/
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Table E-9. Pipeline and Riser Loss of Containment (PARLOC) Report 

Name Pipeline and Riser Loss of Containment (PARLOC) Report 

Sponsor/Author Oil and Gas UK 

Data Types 

 

Pipeline and Riser 

Description The Pipeline and Riser Loss of Containment (PARLOC) report is a 
source of risk assessment data for generic loss of containment 
frequencies and covers pipelines and risers in the offshore oil and gas 
industry.   

Number and Type of 
Records: 

206 incident events, loss of containment and near miss.  10,000 km-yr 
pipeline, 4,000 riser-yr from the UK sector of North Sea, eastern Irish 
Sea, West of Shetland 

Frequency of Update 1990, 1992, 1994, 1996, 2001online in 2006/07Hard copy update 
commenced 2013 

Time Frame: 1988 - Current 

Data Access Commercial publication 

Notes Most complete and homogeneous dataset of subsea pipeline and riser 
incident event data 

Reference http://oilandgasuk.co.uk/parloc.cfm 

 

  

http://oilandgasuk.co.uk/parloc.cfm


DRAFT 

E-12 January 5, 2017  

Table E-10. Wellmaster RMS 

Name Wellmaster RMS 

Sponsor/Author 7 member companies, managed by exprosoft 

Data Types 

 

Subsea (subsurface) equipment types, limited subsea (seabed) 
equipment, e.g. X-mas Trees. 

Description The world's largest database of reliability data for well and subsea 
equipment 

Number and Type of 
Records: 

6,000 wells/40,000 well years 

Frequency of Update Continuous 

Time Frame: 1986-2016 

Data Access Online access available commercially 

Notes All estimates are derived from statistical analysis of event data using 
the online application 

Reference https://wellmaster.exprosoft.com 

 

  

https://wellmaster.exprosoft.com/
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Table E-11. Worldwide Offshore Accident Database 

Name Worldwide Offshore Accident Database 

Sponsor/Author DNVGL 

Data Types Accident events from global population 

Description Event data including name, type and operation mode of the unit 
involved in the accident, date, geographical location, chain of events, 
causes and consequences, and evacuation details 

Number and Type of 
Records: 

6451 accidents occurring among 3795 operating units 

Frequency of Update Continuous 

Time Frame: 1986-2016 

Data Access Purchase of data search consultancy or a database subscription.  The 
program is a web application 

Notes Comprehensive database of offshore accident event data 

Reference https://www.dnvgl.com/services/world-offshore-accident-database-
woad-1747 

 

It is important to recognize the perspective of the risk modeler in order to establish requirements on 
the quality of failure rate and event data to be used in a risk model.  Once a complete risk model is 
constructed and quantified, it is often the case that a large number of individual failure rate and event 
data input values do not strongly influence the overall calculated level of risk or contribute to insights 
provided by analyzing risk contributors.  This being the case, the requirements for high fidelity and 
representative failure rate and event data should vary corresponding to the significance to the 
calculated risk results.  In short, if the failure rate and event data do not significantly influence the 
results, then we can use lower quality estimates. 

 

E.3 System-Specific Data Collection and Classification 
 
System-specific data can be collected from sources such as: 
 

• Maintenance Logs 
• Test Logs 
• Operation Records 

 
In the majority of cases, system-specific data are gathered from operation and test records in their 
“raw” form (i.e., in the form that cannot be directly used in a statistical analysis).  Even when data 
have already been processed (e.g., reduced to counts of failure), care must be exercised to ensure that 
the data reduction and processing are consistent with QRA modeling requirements, such as having a 
consistent failure mode classification, and correct count of the total number of tests or actual 
demands on the system). 

https://www.dnvgl.com/services/world-offshore-accident-database-woad-1747
https://www.dnvgl.com/services/world-offshore-accident-database-woad-1747
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In collecting and classifying hardware failure, a systematic method of classification and failure 
taxonomy is essential.  A key element of such taxonomies is a classification of the functional state of 
components.  One such classification system has been offered in Reference [E-1].  Using a taxonomy 
implies a knowledge structure used to describe a parent-child relationship (i.e., a hierarchy).  Under 
the guidelines for evaluation of risk and reliability-related data, the taxonomy provides the structure 
by which data and information elements provide meaning to analysts.  Within the risk and reliability 
community, a variety of taxonomies and associated definitions are used.  ISO 14224 provides a 
taxonomy for collection and processing of equipment failure data in the petroleum industry. 

When concerned about the physical causes of failures, a set of physics-based causal factors would be 
required.  However, this low level of information is not necessary if the inference being made for a 
specific component or system is concerned with – in general – failures or successes.  If, instead, we 
wished to infer the probability of failure conditional upon a specific failure mechanism, we would need 
to have information related to the nature of failure (e.g., the physical causal mechanisms related to 
specific failures). 

In other words, this classification can take place via a failure modes and effects analysis, similar to the 
functional failure modes and effects analysis.  Henley and Kumamoto [E-2] carried this idea one step 
further when they proposed a formal cause-consequences structure to be stored in an electronic 
database.  In their approach, specific keywords, called modifiers, would be assigned to equipment 
failures.  For example, modifiers for on-off operation included: close, open, on, off, stop, restart, push, 
pull, and switch.  Alternative hierarchy related to system/component/failure modes may look like: 

System 
└ Component 
└ Failure Mode 
└ Affected Item 
└ Failure Mechanism 
└ Failure Cause 
 

With regard to the intended function and in reference to a given performance criterion, a component 
can be in two states: available or unavailable.  The unavailable state includes two distinct sub-states: 
failed and functionally unavailable, depending on whether the cause of the unavailability is damage to 
the component or lack of necessary support such as motive power.  The state classification also 
recognizes that even when a component may be capable of performing its function (i.e., it is available), 
an incipient or degraded condition could exist in that component, or in a supporting component.  
These failure situations are termed potentially failed and potentially functionally unavailable, 
respectively.  These concepts have proven useful in many PRA data applications. 

Another aspect of reliability data classification is the identification of the failure cause.  In the context 
of the present discussion, the cause of a failure event is a condition or combination of conditions to 
which a change in the state of a component can be attributed.  It is recognized that the description of 
a failure in terms of a single cause is often too simplistic.  A method of classifying causes of failure 
events is to progressively unravel the layers of contributing factors to identify how and why the failure 
occurred.  The result is a chain of causal factors and symptoms. 

A hierarchy of parts or items that make up a component is first recognized, and the functional failure 
mode of the component is attributed to the failure or functional unavailability of a subset of such parts 
or items.  Next the physical sign or mechanism of failure (or functional unavailability) of the affected 
part(s) or item(s) are listed.  Next the root cause of the failure mechanism is identified.  Root cause is 
defined as the most basic reason or reasons for the failure mechanism, which if corrected, would 
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prevent reoccurrence.  The root cause could be any causal factor, or a combination of various types of 
causal factors. 

 

E.4 References 
 

E-1 OREDA, “Offshore and Onshore Reliability Data 6th edition,” 2015 

E-2 H. Kumamoto and E. J. Henley, “Probabilistic Risk Assessment and Management for Engineers 
and Scientists 2nd Edition,”   IEEE Press, Piscataway, New Jersey,  1996
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Appendix F - Further Discussion of Bayesian Updating 
 
F.1 Simple Examples 

 
F.1.1 Updating of Prior for a Poisson Example  

In this example, the goal is to estimate an hourly failure rate for a component, assuming that the 
failures obey a Poisson distribution.  We choose a lognormal distribution for the prior, and a Poisson 
distribution for the likelihood model.  8  The operational data for the component category indicate 2 
failures in 10,000 hours.   

Since the prior distribution is lognormal, and the likelihood function is Poisson, and these two are not 
“conjugate,” the posterior distribution must be derived numerically.  The prior and posterior 
distributions are shown in Figure F-1, along with the “maximum likelihood estimate” (the MLE).  The 
MLE, the value of the parameter for which the likelihood function P(E|parameter) is maximum, is 2E-4 
in this case (failures / hours).  Note that the probability density functions are plotted as a function of 
log frequency.   

The posterior distribution is shifted from the prior distribution towards the MLE.  This is typical.   

 
Figure F-1. The Prior Distribution Distributions for the Failure Rate Example 

 
F.1.2 Updating Distribution of Failure-on-Demand Probability  

In this example, the goal is to estimate a failure-on-demand probability.  We have chosen the prior 
distribution of a particular component failure probability on demand to be a beta distribution with 
Mean = 1E-4 failures per demand, and Standard Deviation = 7E-5.  The operational data for the 
component category are 1 failure in 2,000 demands.  Our chosen likelihood model is the Binomial 
distribution, which is conjugate to the Beta prior.  Therefore, the posterior distribution is also a Beta 

                                                           
8 These distributions are discussed in Section 2.2.1.6.2. 
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distribution.  The prior and posterior distributions are shown in Figure F-2, along with the MLE 
(1/2000=5E-4). 

 
Figure F-2. The Prior and Posterior Distributions for the Failure-on Demand 

Example 

Once again, we see the posterior distribution shifted towards the MLE.  In this example, however, we 
also see something else: the MLE is quite unexpected, given the prior.  This situation should give us 
pause, and is discussed below in Section F.2 of this Appendix. 

F.1.3 Sequential Updating  

Bayes’ Theorem provides a mechanism for updating the state of knowledge when the information is 
accumulated in pieces.  The updating process can be performed sequentially and in stages 
corresponding to the stages in which various pieces of information become available.  If the total 
amount of information is equivalent to the “sum” of the pieces, then the end result (posterior 
distribution) is the same regardless of whether it has been obtained in stages (by applying Bayes’ 
Theorem in steps) or in one step (by applying Bayes’ Theorem to all the evidence at once).   

Example: Updating Failure Rate for a Poisson Process  

A component is tested for 1000 hours in one test and 4000 hours in another.  During the first test the 
component does not fail, while in the second test one failure is observed.  We are interested in an 
updated estimate of the component failure rate assuming a gamma prior distribution with parameters 
α= 1, β = 500.   

Approach 1: Sequential.  We first start with prior (Gamma distribution): Γ(x|α=1, β=500).  We also use 
Poisson as the likelihood function: Pr(k1=0|T1=1000, λ), representing the first data set (k1 = 0 in T1 = 
1000 hours).  The parameters of the resulting Gamma posterior distribution are α’=α+k1=1+0=1, and 
β’=β+T1=500+1000=1500 (refer to Section 2.2.6 for a general discussion of the update process).   

Next, we use this posterior as the prior distribution in for a new update, using the second data set.  
The prior is Γ’(l|α’=1, β’=1500) and the likelihood is again Poisson: Pr(k2=1|T2=4000, l).  The 

parameters of the posterior after the second update are α’’=α’+k2=1+1=2, and 
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β’’=β’+T2=1500+4000=5500.  The posterior mean is given by  

�̅�𝜆 = 𝛼𝛼′′
𝛽𝛽′′

= 2
5500

= 3.6𝐸𝐸 − 4 failures/hour 

Approach 2: Use all the data at once.  The total evidence on the failure history of the component in 
question is k=k1+k2=0+1=1, and T=T1 +T2 =1000+4000=5000.  Starting with our prior distribution with 
parameters α = 1, b = 500, the above cumulative evidence can be used in one application of Bayes’ 
Theorem with Poisson likelihood: Pr(k=1|T2  =5000, l).  The parameters of the resulting Gamma 

posterior distribution are α’=α+k=1+1=2, β’=β+T=500+5000, and  

�̅�𝜆 = 𝛼𝛼′
𝛽𝛽′

= 2
5500

= 3.6𝐸𝐸 − 4 failures / hour, 

 
as for Approach 1.  In this case, the equivalence of the two approaches is clear from the functional 
form: the numerator of the mean is given by the sum of the prior α and the total failures, and similarly 
for the denominator.  But the principle holds generally.  Note that the validity of the result depends on 
the trials all being exchangeable; this point is discussed below in Section 2 of this appendix. 
 
F.2 Prior Distributions, Likelihood Models, and Data Applicability 

 
It is difficult to avoid making choices in the assessment of uncertainty.  This subsection discusses the 
kinds of things that need to be considered when those choices are made, taking as a point of 
departure the situation noted in the demand failure probability update illustrated above. 
 
F.2.1 All Prior Distributions Contain Information 

The amount of information that a prior distribution contains can be quantified (in various ways), and 
the distributions that contain the least amount of information can be found and used if so desired; but 
there is no such thing as a prior that contains no information.  This is not necessarily a bad thing: none 
of the questions to which Bayesian analysis is applied, even the simplest, can be answered without 
some information.  Classical methods avoid this need by answering different questions, which may or 
may not be similar enough to the questions we ask for the answers to be useful to us. 

Take the simple example of determining whether a coin is fair or two-headed.  If we flip a coin and it 
comes up heads six times in a row, we have collected some evidence against the coin being fair.  But 
we must use our prior belief about the coin to reach a conclusion about whether we believe this coin is 
fair.  If we just obtained the coin at the bank, where it is extremely unlikely to find a forged or 
misprinted coin mixed in amongst thousands of real coins, we should not be in a hurry to assume the 
coin is two-headed even after ten consecutive flips.  On the other hand, if we found the coin on the 
floor of a magic shop, we should seriously consider the possibility that someone dropped a joke coin.  
Without prior probabilities we can't answer the question "how likely is this to be a fair coin?" All we 
can say is that it is sixty-four times easier for a two-headed coin to generate the data we collected 
than for a fair coin to generate it.  A classical statistician would say "there is less than a 5% chance that 
a fair coin will come up heads 6 times in a row," but he will say nothing about the chance that we are 
holding a two-headed coin in our hands now.  A blind devotee of non-informative priors will assign a 
prior probability 1/2 to the fair and two-headed possibilities, calculate posterior probabilities of 1/65 
for fair, 64/65 for two-headed -- and probably make a lot of false accusations of two-headed coins.  A 
reasonable Bayesian will assign a prior probability somewhere between 1/1000 and 1/1000000 to the 
two-headed possibility if he is at the bank (and not suspicious at all of a coin that comes up heads six 
times), and something closer to 1/100 if he is at a magic shop (and start seriously considering the 
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possibility of a two-headed coin after several heads in a row come up.) 

Proper choices of model form and prior should encapsulate all available information that we had 
about a problem before we started collecting data.  This is an easy task if we have a small set of 
alternatives and easily quantifiable information, but it can be a very hard task for real-world problems 
-- often impossible to do perfectly.  The better of a job we do at choosing the prior, the better our final 
answer will be. 

The importance of choosing the correct model -- choosing the correct family of distributions to try to 
fit one's data to -- is often downplayed, but the success of the whole model-fitting enterprise depends 
on the reasonableness of this model.  This is also a convenient and effective way to encapsulate 
information about the allowable range of the data.  

For example, consider the distribution of times between failures of some component (or times 
between eruptions of a volcano, or some similar problem). If failure appears to be a completely 
random process, perhaps controlled by some external process, then a constant hazard rate, and 
exponential distribution of failure times, may be appropriate.  If components accumulate damage 
through use, or pressure builds up during the interval between eruptions, then the hazard function 
increases with time, and the underlying distribution has a thinner-than-exponential tail.  The Weibull 
distribution is popularly used to model component lifespans because it has a polynomial hazard 
function, convenient to model rapidly increasing risk of failure as the component exceeds its design 
lifespan.  An nth degree polynomial hazard function corresponds to a distribution with tail thickness 
proportional to e^-(x^(n+1)). 

On the other hand, consider the length of time a car sits in a parking lot.  One's natural reaction to 
seeing the car sit there for a full day is not "surely the owner is going to be back any second now!" but 
rather "while originally I thought that car would only be there for a few minutes or hours, I should now 
entertain the possibility that it will be left here all week or all month" -- a situation modeled by a 
distribution with decreasing hazard function and a very long (decaying more slowly than exponential) 
tail, such as a lognormal or power-law distribution. 

If the variable of interest takes on values only in a certain range, then it usually makes good sense to 
choose a prior that covers only that same range.  When the data are confined to [0,1], the Beta prior is 
a common choice; when the data are confined to positive numbers, the gamma, Weibull, and 
lognormal are common choices.  If there is a theoretical reason to expect the data to take a certain 
form, the model should usually be chosen to match that form: if you are trying to estimate the size of 
a 100-year flood from annual peak discharges of a river, fitting a Gumbel distribution to the data is 
probably a better choice than fitting some general-purpose distribution. 

Modelers should be wary of choosing a prior that is at odds with the real world.  In particular, 
remember that the normal distribution has support from -∞ to +∞, and if one models lengths or times 
or some other variable which is nonnegative by a normal distribution, the resulting posterior will 
always assign a nonzero probability to negative values (maybe very small, but still nonzero).  The 
normal distribution is also very thin-tailed: it is extremely hard to make the posterior mean be more 
than a few standard deviations from the prior mean.  This is a feature for some applications like 
modeling measurement errors that are known to be small compared to the quantity being measured; 
but this can be a significant flaw if a diffuse prior is desired. 

A similar problem arises if one uses a lognormal distribution to model the probability of a rare event, 
as is commonly done in human reliability analysis.  The lognormal is an excellent choice when a prior 
distribution spanning several orders of magnitude is needed (as when you don't know whether a rare 
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event has probability 0.001 or 0.00001) but the lognormal has support on [0, ∞], not just [0,1], so care 
must be taken to handle the case when the posterior has substantial mass beyond 1.  Truncation 
(treating all mass beyond 1 as if it were concentrated at 1) is only reasonable if very little mass is 
beyond 1. 

F.2.2 How much information does a prior contain? 

Sometimes it is easy to directly interpret how much information the prior contains relative to the data 
set.  The simplest example is the beta-binomial model: a Beta(a,b) prior can be interpreted as 
providing "the same amount of information as if we had obtained a successes and b failures already." 
The same kind of interpretation can be applied to a gamma-Poisson model for failure rates. 

A popular intuitive assessment of how much information the prior contains relative to the data is 
obtained by inspecting the posterior mean: the posterior mean always lies between the prior mean 
and the mean of the data.  For many Bayesian models, the posterior mean can be thought of as a 
weighted average of these two means.  If the posterior mean is, say, 3/4 of the way from the prior 
mean to the mean of the data, one interprets the data as containing three times as much information 
as the prior contained. The example of Section 1.2 above is a case where the prior contained more 
information. 

For several of the most popular Bayesian models that use conjugate priors, including the beta-
binomial, gamma-poisson, and normal-normal, the intuitive interpretations in the two paragraphs 
coincide with each other and can be made rigorous. 

Even so-called "non-informative" priors contain information.  Three popular families of priors -- 
maximum entropy priors, Jeffreys priors, and reference priors -- seek to minimize the information 
content of the prior, for three different technical definitions of 'information'.  The first maximizes the 
information-theoretic entropy of the prior, subject to some given constraints; the second creates a 
distribution the shape of which is invariance under any change of variables; the last maximizes the 
expected Kullback-Leibler divergence ("information gain") between prior and posterior, given some 
assumptions about the posterior.  Jeffreys and Reference priors coincide in 1 dimension but differ in 
multi-dimensional problems. 

Revisiting our coin that came up heads six times in a row at the beginning of the chapter, suppose we 
start with a Beta(10,10) prior -- a fairly strong belief the coin is approximately fair.  Our posterior is a 
Beta(16,10) distribution.  Our prior has a mean 1/2, our data have mean 1, our posterior has mean 
16/26 ~ 0.615.  The posterior mean moved 23% of the way -- 6/26ths -- from 1/2 toward 1, in 
agreement with the intuitive assessment that our prior contained 10+10=20 coinflips worth of 
information, to which we add 6 more with our new data. 

Had we done the same experiment with a Jeffreys or reference prior, Beta(1/2,1/2), our posterior 
would be a Beta(6 1/2, 1/2) distribution with mean 6.5/7 ~ 0.929.  The posterior mean moved 6/7ths 
of the way toward the mean of the data, in agreement with the interpretation that a Jeffreys prior 
provided "as much information as 1 coinflip, 0.5 heads and 0.5 tails." 

The situation one might intuitively think of as a "no-information prior" -- Beta(0,0) -- is in fact a very 
strange improper prior, with all its mass concentrated at p=0 and p=1. 

F.2.3 Bias 

Maximum likelihood estimates (MLEs) are the "gold standard" of classical statistical estimation 
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because of their desirable properties.  Chief among these are that MLEs are asymptotically unbiased 
and efficient (no other asymptotically unbiased estimate has a smaller variance).  Note that being 
asymptotically unbiased does not guarantee that an MLE based on finite sample size is unbiased.  
Some MLEs (like �̅�𝑥/𝑛𝑛 for the mean of a normal distribution) are always unbiased, but others -- like the 
MLE for the variance of a normal distribution, ∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)2/𝑛𝑛, are biased.  In this last case it is easy to 
compute a bias correction -- this is why the usual formula for sample variance is ∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)2/(𝑛𝑛 − 1) -- 
but in many other cases it is not a trivial task to remove the bias.  When computing maximum 
likelihood estimates for complicated models using small data sets, the bias problem may be severe. 

MLEs are a special case of a Bayesian point estimate, with a uniform (possibly improper) prior.  
Bayesian point estimates are almost always biased as a result of the choice of prior: for a binomial 
distribution with a uniform (Beta(1,1)) or Jeffreys (Beta(1/2,1/2)) prior, observing x successes in n trials 
results in a point estimate of (x+1)/(n+2) (uniform) or (x+1/2)/(n+1) (Jeffreys), in contrast to the 
unbiased x/n.  Generally speaking, the more information in the prior, the more strongly the Bayesian 
estimate is biased.  In a well understood problem, this may be considered a feature, not a flaw: when 
we have strong prior knowledge we may want our posterior estimate to be only slightly different, and 
even without strong prior knowledge, we may want to prevent the estimate of a binomial probability 
from being unreasonably close to 0 or 1, for instance.   

It is important to remember that a Bayesian update never "fails:" it always returns an answer.  If you 
ask a question about which you have collected little or no data, the answer it gives is driven entirely by 
the prior.  Especially in cases where it is not obvious how much information the prior contains, or an 
experimenter uses a standard non-informative prior without thinking about how that will affect his 
answer, this can lead to surprisingly bad, or at least unexpected, answers. 

This is simply a limitation of having sparse data.  Careful choice of prior can mitigate this issue but not 
avoid it entirely.  Consider a rare type of accident that is only expected to occur once in 1000 site-years 
of exposure.  No one site is going to have sufficient local experience to independently estimate its 
accident rate; instead, each site is going to use the nationwide average rate as a prior for a gamma-
Poisson model, and update it with its local experience.  How strong of a prior should each plant use? 

Suppose one takes a very strong prior like Gamma(10,10000).  A plant that has no accidents in 10 
years will update this to a Gamma(10,10010) posterior.  A plant with two accidents in 10 years -- wildly 
unlikely, if that site's true accident rate is close to once in 1000 years of exposure -- updates this to a 
Gamma(12,10010) prior, and claims that its site-specific accident rate is around once in 800 years.  
Using too strong of a prior distribution means that grossly underperforming sites are not called to 
account for their poor performance. 

Now suppose one takes a very weak prior like Gamma(0.01,10).  Now the plant with 2 accidents in 10 
years has a Gamma(2.01,30) posterior, estimates a site-specific accident rate of once in 15 years, and 
is forced to take corrective action.  But a site with no accidents in ten years has a Gamma(0.01,20) 
posterior, and, on the basis of only ten years of experience containing almost no real information -- we 
EXPECT not to see a once-in-1000-years accident in any given 10 years period -- now claims its site-
specific accident rate has improved to once in 2000 years. 

There is no prior that can completely avoid both of these two flaws.  Any scheme that ensures poorly 
performing sites are "properly punished" will also "improperly reward" well-performing (or just lucky) 
sites. 

The non-informative priors for the gamma-Poisson model have shape parameters near 0.5 -- the 
intuitive interpretation is "pretend 0.5 accidents happened at each site, in addition to however many 
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were really observed" -- as a compromise so that sites with 1 or more accidents see some kind of 
significant increase in site-specific estimated rate, while sites with 0 accidents don't calculate 
impossibly rare site-specific rates. 

F.2.4 Bayesian analysis assumes a static underlying process 

Bayesian modeling is rooted in the notion that the observed data are exchangeable.  Many classical 
methods are based on the similar but stronger idea that all of the observations are independently and 
identically distributed.  This constitutes an assumption that the order in which the data were collected 
does not matter.  If one flips a coin 10 times today, and flips the same coin 10 more times tomorrow, 
these can be pooled into a set of 20 equally-important observations. 

This assumption breaks down if the underlying process has changed over the observation period.  
Estimating the value of real estate based on last year's (or last decade's) sales prices gives poor results 
if economic conditions have changed.  Similarly, using the failure rate of brand-new pumps to estimate 
the failure rate of broken-in and well-maintained pumps, or using well-maintained pumps to estimate 
the failure rate of worn-out pumps, has that same issue. 

When data are sparse, the temptation to pool data over an unreasonably long time period is strong.  
Sometimes it is justified: if one is average across thousands of pumps nationwide, perhaps it is fair to 
assume that pumps are constantly wearing out and being replaced, such that the overall distribution 
of pump ages remains static, even though any one individual pump's behavior may be different next 
year than last year.  This is a difficult assumption to defend.  Conditions nationwide may change -- in 
an economic downturn, facilities across the nation may defer maintenance, or a new law may be 
passed mandating replacement at a certain age -- or maybe a large proportion of units entered service 
at the same time: look at what happened to Social Security when it assumed the ratio of earners to 
retirees would stay approximately constant forever. 

For convenience, we often use models that we know are an over-simplification of the real world.  
Using several years of old data to create a prior distribution for what we expect to see next year is a 
very common practice.  It is important, when doing so, not to just directly use the distribution of past 
observations as one's prior, but rather to use a more diffuse prior that takes into account the 
possibility that conditions are the same now as they were in the past. 

F.2.5 Assessing goodness of fit  

Assessing whether new data are consistent with a proposed model is an important task, but it is not a 
task for which a single universal method exists.  One (extreme) perspective is that if the prior has 
properly encapsulated everything we know, the posterior should always be correct: that is, one of 
things the posterior tells us is exactly how much we should change our belief after collecting surprising 
data.  In principle this is true, but in practice, people commonly use less-than-perfect priors, either for 
mathematical convenience or due to lack of information that would have been desirable while 
choosing a prior. 

Classical tests exist for determining whether a data set appears to have been drawn from a particular 
distribution, and for determining whether two data sets appear to be drawn from the same 
distribution or not.  These tests, or their Bayesian adaptations, may be suitable for answering some 
questions of this type. 

One particularly valuable classical test consists of fitting two models to the same data, with one model 
(the "reduced model") a special case of the other (the "full model").  If the larger family of 
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distributions fits the data significantly better than the smaller, embedded, family of distributions does, 
this is evidence that the reduced model is inadequate for the task at hand. 

This is typically done when one wishes to argue for the more complicated model.  When a study 
reports that it has found that family income has a significant effect on academic success "after 
controlling for gender and race", it means that it fit a model that explains success by income, gender, 
and race, and shown that that model is significantly better than a model that explains success only by 
gender and race. 

One might, for instance, assess whether a linear trend is a good fit to a scatter plot, by fitting a 
quadratic or cubic model to the same data set, and conclude that if the quadratic term of the larger 
model is statistically significant, then the simple linear model is a poor explanation of the data.  Note 
that a non-significant result does not prove the simple model is correct, but it is evidence in favor of 
that claim. 

This type of test can be adapted to almost any problem of interest.  The question of data seemingly 
inconsistent with a prior might be approached in this way by, for instance, fitting both a simple 
Poisson model with Gamma prior to a set of count data, and an over dispersed Poisson model.  If the 
later model fits much better than the former, one has a basis for arguing that there is something 
wrong with the first model: either you needed a more complicated model all along, or the prior and 
the data were not consistent, or something else. 

F.2.6 Surprise    

An alternative to formally testing goodness of fit (or lack thereof) is assessing whether the data are 
"surprising," without considering any particular alternative.  This is useful, as a sanity check and to get 
a feel for one's data; but developing a firm rule for how surprising data must be before saying "our 
model is wrong" is not possible without bringing in some outside information (such as showing that 
another model fits the data better.) 

Various people have proposed formal definitions of the notion of 'surprise'.  No one definition has 
achieved universal acceptance.  Bayarri and Berger [F-1] review the options that have been used in the 
past.  The classical p-value has sometimes been interpreted as a measure of surprise [F-2]. Two more 
recent alternatives are the "s-value" [F-3] and the Kullback-Leibler divergence from the prior to the 
posterior, which is being vigorously promoted as a "formal Bayesian theory of surprise" [F-4]. 

This last proposal, grounded in the same mathematics that underlies the reference prior, may be the 
most likely of these to stand up to the test of time, though the emotionally charged notion of 
"surprise" is not likely to remain attached to it.  The Kullback-Leibler divergence is more often 
described in drier terms like "bits of information gained" (in formal Shannon-information sense, not 
the informal "information contained in n observations" terms used earlier in this appendix). 

Returning one last time to our coin-flip example, suppose we have a Beta(10,10) prior, and we flip a 
coin six times.  We would be not surprised at all to see 3 heads and 3 tails, or 4-2 or 2-4; we might be 
mildly surprised to see 6 heads in a row.  If we flipped the coin 10 times, we would not be surprised by 
anything between say 8-2 and 2-8; 9 heads out of 10 would be about as surprising as 6 out of 6; 10 out 
of 10, more surprising still -- about one bit of information more surprising, seeing something that was 
supposed to be a 50-50 proposition happen an additional time. 

If we calculate the Kullback-Leibler divergence between prior p(x) and posterior q(x) 
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�𝑞𝑞(𝑥𝑥) log2
𝑞𝑞(𝑥𝑥)
𝑢𝑢(𝑥𝑥)

𝑑𝑑𝑥𝑥 
 

we see that the divergence between Beta(10,10) and Beta(13,13) is 0.024 bits -- almost no surprise at 
all; between Beta(10,10) and Beta(14,12), 0.112 bits; between Beta(10,10) and Beta(15,11), 0.379 bits; 
and between Beta(10,10) and Beta(16,10),0.837 bits.  The K-L divergence between Beta(10,10) and 
Beta(15,15) is 0.054 bits; between Beta(10,10) and Beta(18, 12), 0.654 bits;  between Beta(10,10) and 
Beta(19,11), 1.14 bits; and between Beta(10,10) and Beta(20,10), 1.79 bits. 

The question "how surprising is surprising enough to cause us to doubt that we chose an appropriate 
prior?" still lacks a rigorous answer. 
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Appendix G – Population Variability Modeling 
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Appendix H – Expert Elicitation 
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Appendix I - Failure Space Based Importance Measures 
 
It will be convenient in the following to refer to a formula for the risk metric (e.g., top event 
probability) with respect to which the measures are being calculated:  

R = f(x1,x2 ,..., xi ,xj ,..., xn )  

where xk is the kth basic event, having probability pk , and R0 means “R evaluated with all 
p’s set to their nominal values.” It is an aid to understanding the following formulas to bear 
in mind that the reduced Boolean expression for the minimal cut sets maps simply into an 
arithmetic expression for the rare event approximation to top event probability, and the 
same idea applies to any subset of the minimal cut sets. The notation “|” means “given:” A|B 
means “A given B.” 

I.1 Fussell-Vesely and Risk Reduction Worth Importance Measures  
The F-V importance measure is used to determine the importance of individual minimal cut 
sets containing basic event xi to the risk. F-V of event xi is given by:  

𝐼𝐼𝜎𝜎𝑖𝑖
𝐹𝐹𝐹𝐹 =

𝑃𝑃𝑃𝑃 �⋃ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
𝜎𝜎𝑖𝑖

𝑗𝑗 �

𝑃𝑃𝑃𝑃�⋃ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗 �
=
𝑃𝑃𝑃𝑃�⋃ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗 �

𝑅𝑅0
 

where: I FV is the F-V importance for event 𝑥𝑥𝑖𝑖, 

𝑃𝑃𝑃𝑃(⋃ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
𝜎𝜎𝑖𝑖

𝑗𝑗 ) is probability of the union of the minimal cut sets containing event xi ;  

𝑃𝑃𝑃𝑃�⋃ 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗 � = 𝑅𝑅0 (the probability of the union of ALL of the minimal cut sets) is the 
baseline risk.  

The simple interpretation of the FV is that it is the fraction of total risk involving xi. 
Corollary interpretations are (1) that the FV is the conditional probability that at least one 
minimal cut set containing event xi will occur, given that the system has failed, or (2) the 
fraction by which risk would decrease if Pr(xi) were reduced to zero. The latter 
interpretation points to another way of calculating FV: 

 

𝐼𝐼𝜎𝜎𝑖𝑖
𝐹𝐹𝐹𝐹 =

𝑅𝑅0 − 𝑅𝑅|𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) = 0
𝑅𝑅0

 

where 𝑅𝑅|𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) = 0 is the value of the risk metric when the probability of event xi is set to 
zero. In this calculation, in the numerator, we are subtracting off the contribution from 
minimal cut sets that do NOT contain xi, leaving the minimal cut sets that DO contain xi.  

The closely-related Risk Reduction Worth (RRW) is a measure of the change in risk when a 
basic event probability (e.g., unavailability of a hardware device) is set to zero. It measures 
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the amount by which risk would decrease if the event would never occur. The RRW 
measure is calculated as the ratio9 of the baseline expected risk to the conditional expected 
risk when the probability of event xi is set to zero (assuming that the hardware device is 
“perfect”):  

𝐼𝐼𝜎𝜎𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑅𝑅0
𝑅𝑅|𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) = 0

 

where 𝐼𝐼𝜎𝜎𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅  is the risk reduction worth for event xi  . 

It should be clear that FV and RRW will produce essentially the same ranking:  event lists 
ordered by decreasing FV and decreasing RRW are the same.  In fact, it is straightforward to 
show that 

𝐼𝐼𝜎𝜎𝑖𝑖
𝐹𝐹𝐹𝐹 = 1 −

1
𝐼𝐼𝜎𝜎𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅. 

I.2 Birnbaum (B) and Risk Achievement Worth (RAW)  
 

The B is the rate of change of the expected risk as a result of the change in the probability of 
an individual event. Mathematically, the B importance of event xi is  

𝐼𝐼𝜎𝜎𝑖𝑖
𝐵𝐵 =

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

. 

In many cases, B can be calculated as:  

𝐼𝐼𝜎𝜎𝑖𝑖
𝐵𝐵 = (𝑅𝑅|𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) = 1) − (𝑅𝑅|𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) = 0) 

where 𝑅𝑅| Pr(𝑥𝑥𝑖𝑖) = 1 (0) is the risk metric calculated with Pr(xi) set to 1 (0). 

In general, the B of a basic event xi does not depend on the probability of xi; it depends on 
the probabilities of the other basic events in the cut sets in which xi appears.  

Risk Achievement Worth (RAW) is a measure of the change in risk when the probability of a 
basic event (e.g. unavailability of a component) is set to unity. Analogously to RRW, the 
calculation is typically done as a ratio:   

𝐼𝐼𝜎𝜎𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑅𝑅|𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) = 1
𝑅𝑅0

. 

Again analogously to RRW, some PRA codes calculate an interval measure corresponding to 
RAW, the “Risk Increase Interval,” which is the difference between the conditional expected 
risk when event xi is set to unity, and the baseline risk.  

                                                           
9 Instead of ratio, some PRA codes calculate “Risk Decrease Interval,” which is the difference 
between baseline risk and the conditional risk when event xi is set to zero. 
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Both RAW and RRW correspond to drastic sensitivity studies, displaying how much 
difference it makes when a basic event probability is maximized (RAW) or minimized 
(RRW). This kind of information points to properties of the model, and perhaps the system; 
for example, a high RAW can result from a component for which there is relatively little 
backup, such as a single item that is required to succeed regardless of whether anything else 
succeeds or fails. But as discussed in [I-1], measures such as RAW are difficult to use in 
quantitative reasoning processes.  

I.3 Computing B, FV, RAW, RRW 
 

It is straightforward to compute FV and RRW within the rare event approximation, given a 
Boolean expression for the top event in properly reduced form. If the basic event names are 
replaced by their probability values, AND by multiplication symbols, and OR by addition 
symbols, one has an expression for top event probability (again, within the rare event 
approximation). If a more precise answer is required, better approximations can be applied 
(such as the min cut upper bound). 

Strictly speaking, evaluating RAW calls for actually restructuring the expression. Computing 
the RAW of a basic event calls for setting that event to “TRUE” (typically, the corresponding 
component to “failed” or perhaps “unavailable”) and re-reducing the top event expression. 
Consider computing the numerator of the RAW of event A in an expression including  

A*B*C + X*B*C + … . 

If we simply set A to a value of 1, we will still include the contribution of X*B*C, which, 
strictly speaking, we should not. Setting A to “TRUE” and re-reducing leaves us with  

B*C + … , the “X*B*C” having been absorbed. 

However, computing B(A) gives us  

R(A=1)-R(A=0) =[B*C + X*B*C + …] – [X*B*C + …] = B*C (plus perhaps other terms) . 

 

I.4 Differential Importance Measure for Basic Events and Parameters  
The importance measures discussed previously are defined to deal with basic event 
probabilities one event at a time, and, as formulated, they do not reflect the influence of the 
underlying parameters in the models of event probability: they do not measure the 
importance of changes that affect component properties or failure modes. They also lack an 
additive property that some workers consider desirable. For these reasons, the “differential 
importance measure, DIM, was introduced. 

I.4.1 Definition of DIM  

 Let R be the risk metric of interest expressed as a function of basic events or 
fundamental parameters of the PRA model as shown below:  

R= f(x1,x2 ,..., xi ,xj ,..., xn ) where x i is the generic parameter such as basic event 
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probability of a component xi or the failure rate of a component xi . 

The differential importance measure of xi is defined as  

𝐼𝐼𝜎𝜎𝑖𝑖
𝑇𝑇𝐷𝐷𝑀𝑀 =

𝑑𝑑𝑅𝑅𝜎𝜎𝑖𝑖
𝑑𝑑𝑅𝑅

=

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖

∑ 𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗 𝑑𝑑𝑥𝑥𝑗𝑗

 

 

DIM reflects the fraction of the total change in R due to a change in parameter x i.  It can be 
shown that DIM is additive, that is,  

𝐼𝐼𝜎𝜎𝑖𝑖 ⋃𝜎𝜎𝑗𝑗…⋃𝜎𝜎𝑘𝑘
𝑇𝑇𝐷𝐷𝑀𝑀 = 𝐼𝐼𝜎𝜎𝑖𝑖

𝑇𝑇𝐷𝐷𝑀𝑀 + 𝐼𝐼𝜎𝜎𝑗𝑗
𝑇𝑇𝐷𝐷𝑀𝑀 + ⋯+ 𝐼𝐼𝜎𝜎𝑘𝑘

𝑇𝑇𝐷𝐷𝑀𝑀 . 

 

I.4.2 Calculations of DIM  

With respect to calculation of DIM for a parameter of the PRA model, there are two 
computational inconveniences:  

1. The DIM can be calculated only if the expression for the risk is in parametric form, 
which is not a standard output form generated by the PRA codes.  

2. There is no available computer program for use.  

However, one can compute DIM for basic events using the F-V and RAW importance 
measures. The latter measures are often generated by standard PRA codes by applying 
formulas developed in the previous subsection.  

As noted, calculation of DIM deals with change in R (its differential). Since the change 
depends on how the values assigned to a parameters are varied, DIM can be calculated in 
different ways. Two possibilities are: 

1. Assume a uniform change for all parameters (i.e.,  𝛿𝛿𝑥𝑥𝑖𝑖 = 𝛿𝛿𝑥𝑥𝑗𝑗 = 𝛿𝛿𝑥𝑥𝑘𝑘 … ). Under this 
operation, parameters are ranked according to the effect they produce on R when 
they undergo small changes that are the same for all. This has meaning when 
parameters of the model have the same dimensions (e.g., the risk metric is 
expressed in terms of basic event probabilities only). DIM for parameter xi is 
calculated as follows: 

𝐼𝐼𝜎𝜎𝑖𝑖
𝑇𝑇𝐷𝐷𝑀𝑀 =

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖

∑ 𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗 𝑑𝑑𝑥𝑥𝑗𝑗

=

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖
∑ 𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗
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2. Assume a uniform percentage change for all parameters (𝛿𝛿𝜎𝜎𝑖𝑖
𝜎𝜎𝑖𝑖

= 𝛿𝛿𝜎𝜎𝑗𝑗
𝜎𝜎𝑗𝑗

= 𝛿𝛿𝜎𝜎𝑘𝑘
𝜎𝜎𝑘𝑘

… ). Under 

this operation, PRA parameters are ranked according to the effect they produce on R 
when they are changed by the same fraction from their nominal values. This ranking 
scheme, which is applicable to all analysis conditions, can be calculated from:  

𝐼𝐼𝜎𝜎𝑖𝑖
𝑇𝑇𝐷𝐷𝑀𝑀 =

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖

∑ 𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗 𝑑𝑑𝑥𝑥𝑗𝑗

=

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖

∑ 𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑗𝑗

𝑑𝑑𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗

𝑥𝑥𝑗𝑗𝑗𝑗

=

𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖

∑ 𝜕𝜕𝑅𝑅
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗 𝑥𝑥𝑗𝑗

 

The relation between DIM and F-V, RAW, and BM are shown in the Table below. These 
relationships hold only when the risk metric is (1) linear, and (2) expressed in terms of 
basic events only.  

 

Table I-1. Relation between DIM and F-V, RAW, and Birnbaum Importance 
Measures. 

 Relation between DIM and … 
F-V RAW B 

 Constant Increment: 

𝐼𝐼𝜎𝜎𝑖𝑖
𝑇𝑇𝐷𝐷𝑀𝑀 = 

𝐼𝐼𝜎𝜎𝑖𝑖
𝐹𝐹−𝐹𝐹

𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖)

∑
𝐼𝐼𝜎𝜎𝑘𝑘
𝐹𝐹−𝐹𝐹

𝑃𝑃𝑃𝑃(𝑥𝑥𝑘𝑘)𝑘𝑘

 

𝐼𝐼𝜎𝜎𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅 − 1

1− 𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖)

∑
𝐼𝐼𝜎𝜎𝑘𝑘
𝑅𝑅𝑅𝑅𝑅𝑅 − 1

1 − 𝑃𝑃𝑃𝑃(𝑥𝑥𝑘𝑘)𝑘𝑘

 

  

 
𝐷𝐷𝑥𝑥𝑖𝑖
𝐵𝐵

∑ 𝐷𝐷𝑥𝑥𝑘𝑘
𝐵𝐵

𝑘𝑘
 

Constant Percentage 
Increment: 

𝐼𝐼𝜎𝜎𝑖𝑖
𝑇𝑇𝐷𝐷𝑀𝑀 = 

𝐼𝐼𝜎𝜎𝑖𝑖
𝐹𝐹−𝐹𝐹

∑ 𝐼𝐼𝜎𝜎𝑘𝑘
𝐹𝐹−𝐹𝐹

𝑘𝑘
 

𝐼𝐼𝜎𝜎𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅 − 1
1

𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖)
− 1

∑
𝐼𝐼𝜎𝜎𝑘𝑘
𝑅𝑅𝑅𝑅𝑅𝑅 − 1
1

𝑃𝑃𝑃𝑃(𝑥𝑥𝑘𝑘)− 1
𝑘𝑘

 
𝐷𝐷𝑥𝑥𝑖𝑖
𝐵𝐵 𝑃𝑃𝑝𝑝(𝜎𝜎𝑖𝑖)

∑ 𝐷𝐷𝑥𝑥𝑘𝑘
𝐵𝐵 𝑃𝑃𝑝𝑝(𝜎𝜎𝑘𝑘)𝑘𝑘
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Appendix J - Prevention Worth 
 
The measures of “basic event” importance summarized above are not really about just 
the basic events; each basic event measure reflects properties of the union of cut sets 
that contain the designated basic event. So the “importance” of a basic event is really an 
attribute of the cut sets (the failure scenarios) in which that event appears. All of the 
measures introduced above are couched in failure space: they reflect contributions to 
risk, or the sensitivity of risk to changes in basic event characteristics.   Analogous 
measures can be defined in success space:  we can examine the properties of the union of 
path sets containing a designated component. One such measure is “Prevention Worth,” 
defined as  
 

𝑃𝑃𝑃𝑃𝑖𝑖 = 𝑃𝑃��𝑀𝑀𝑃𝑃𝑀𝑀𝑗𝑗𝑖𝑖

𝑗𝑗

�, 

 
in which PW stands for “Prevention Worth,” i indexes basic events, and 𝑀𝑀𝑃𝑃𝑀𝑀𝑗𝑗𝑖𝑖 are the 
minimal path sets containing basic event i. This is a bit like the numerator of the F-V 
measure, substituting path sets for cut sets; but since success path probabilities are 
generally of order unity, the rare event approximation cannot be used to calculate the 
probability associated with a union of success paths. However, in many cases, we can 
approximate the right-hand side by computing the probability of failure of that union of 
path sets, and subtracting it from unity:  
 

𝑃𝑃𝑃𝑃𝑖𝑖 ≅ 1 − 𝑃𝑃��𝑀𝑀𝑃𝑃𝑀𝑀𝚥𝚥𝑝𝑝
𝚥𝚥

�
����������������

 

 
Finally, for ease of interpretation, it is useful to introduce the “NINES” index, which, for 
a given PW, is calculated as  
 

𝑁𝑁𝐼𝐼𝑁𝑁𝐸𝐸𝑀𝑀(𝑃𝑃𝑃𝑃) = − log(1 − 𝑃𝑃𝑃𝑃). 
 
This says how many “nines” of reliability are afforded by the union of path sets 
considered: for example, a reliability of 0.999 is said to provide three nines of 
reliability. 
 
Table K-1 shows the results for the case of the simple problem used in Appendix L to 
introduce prevention analysis. 

Table J-1. Comparison of PW with RAW and F-V 

Importance 
Measure 

Element (From Figure L-1) 

 N2 A B C D 
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F-V 1.0 ~1 0.001 0.001 0.001 

RAW 104 103 1.1 1.1 1.1 

NINES 4 2.9996 1.9586 1.9586 1.9586 

 
For a given element, this measure reflects the safety significance of the success paths 
containing that element. Put another way: each element potentiates the success paths 
that contain it, and its Prevention Worth is measured by the worth of the totality of 
those success paths. N2 has the highest Prevention Worth: for the numbers assumed, 
the path that contains N2 is “worth” more than all of the other success paths put 
together. This is true because all of those other success paths contain A, whose failure 
probability (success probability) is greater (less) than that of N2. 
 
Other insights are available from the table. N2 has a F-V of 1, independently of its 
failure probability, because it appears in every minimal cut set. But all of the other 
measures tabulated depend, to some extent, on the nominal failure probabilities 
assigned to the associated basic events. 

 
Prevention Worth was formulated originally for the purpose of illustrating the benefits 
of thinking both in success space and in failure space, rather than focusing exclusively 
on failure space. However, although the measure arguably provides an interesting 
perspective on the role played by events in the model, as far as the authors are aware, 
no commercial PRA software computes Prevention Worth. Unfortunately, for realistic 
problems, the calculations are rather difficult; one needs first to parse out the success 
paths containing the element(s) of interest, and then (in order to use the above 
approximation to compute PW) evaluate the complement of that expression in order to 
approximate PW.  
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Appendix K - Top Event Prevention Analysis 
 

Consider the problem of determining the allocation of resources to activities aimed at maintaining 
and verifying the performance and reliability of safety equipment (“special treatment,” as it is 
called in the nuclear industry). This is important both to facility operators and to their regulators. 
To see why basic event importance measures are not necessarily a reliable guide to solving this 
problem, consider the example presented in the figure below. The system shown is supposed to 
supply compressed nitrogen (or air) to another system downstream. In order to succeed, we need 
either to supply air from one of the compressors via the receivers and the air dryers shown in 
Figure L-1, or to supply compressed nitrogen from the tanks shown in the upper portion of the 
figure. A simplified fault tree is shown on the left, showing that the top event is an AND of the 
failure of these two options (“Air” and “N2”). For simplicity, the compressed-nitrogen option is 
modeled as a single event “N2.” All components in that leg are logically in series, so no 
information is lost by this, unless there is some linkage between components in that segment and 
components in functionally redundant segments. In a real system, this is a real possibility, but the 
present illustration does not require us to address it. Similarly, the Air Dryer segment is modeled 
as a unit, and each compressor-receiver pair is modeled as a unit. Again, shared dependency of the 
compressors (e.g., of power supply) is a real possibility, but the present illustration does not 
require us to address it.  
 
There are two minimal cut sets of the fault tree shown: N2 * A and N2 * B * C * D. Notional basic 
event probabilities are assigned on the fault tree figure itself, and based on these, the F-V and 
RAW are tabulated below the system diagram. One sees that N2 and the Air Dryer have large 
values for both RAW and F-V, while the compressors do not. This is a result of the compressors 
being mutually redundant: if B fails, you still probably have C and D; if C fails, you still probably 
have B and D; and if D fails, you still probably have B and C. This is an example of the “portfolio” 
effect mentioned above. It would be inappropriate (but not unprecedented) to conclude from 
these F-V and RAW values that the compressors are not “important.” This example is simple 
enough to see through without much machinery, but not all applications have that property.  
 
Instead of trying to determine “special treatment” from importance measures, consider a different 
approach, called “Top Event Prevention.” Within extant versions of this approach, one first 
formulates a prevention criterion to be satisfied by the complement of equipment to be 
considered “special.” A simple example is to require single-failure tolerance in the complement of 
credited equipment: require the function(s) to succeed despite any single failure. Next, one 
applies an algorithm to identify subsets of the equipment potentially available, each subset having 
the property of satisfying the prevention criterion. In the lower left portion of the figure, we see 
the mechanics and the results of applying the single-failure criterion to the problem given. Start 
with the minimal cut sets given in the lower left of the figure (under “Top Event”). Evidently, any 
subset satisfying the single-failure criterion must contain both N2 and A; if a subset contains only 
A, and not N2, then the single failure of A fails the function, and vice versa. The second cut set 
requires us to work out some combinations: any single-failure-tolerant subset of the elements in a 
cut set must contain at least two of the elements in each cut set, and the logic expression for the 
six possibilities for the second cut set is shown. Since we need to “prevent” all of the cut sets, in 
order to obtain the prevention sets for the system, we “AND” together the prevention sets for each 
minimal cut set, and reduce the resulting expression. The resulting “minimal prevention sets” (the 
sets of events that collectively satisfy the prevention criterion) are shown in the lower right. It is 
straightforward to verify by inspection that each prevention set satisfies the prevention criterion. 
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A noteworthy feature of these prevention sets is that they all contain at least one compressor, a 
result that the importance-measure-based heuristic does not achieve. In general, prevention 
analysis always yields solutions that comprise unions of complete success paths, a result that is 
not to be expected from importance-measure-based reasoning. 
 

 

Figure K- 1. Top Event Prevention (Simple Example) (After (K-1, K-2]) 

Each prevention set satisfies the prevention criterion, without credit for any other elements. As 
shown in the figure, the method has given us three options. In a real application, one could simply 
choose any one of the options, and assure that sufficient resources are allocated to every 
component in that set to achieve a good quantitative outcome (for example, test the active 
components at some regular interval).  
 
The importance-measure-based heuristic does not, in general, point to unions of complete path 
sets. This is not to say that importance measures are “wrong;” they provide information about 
what the model is saying. But they do not answer questions that need to be addressed at the 
portfolio level.  
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It is straightforward to extend the calculations illustrated above to address prevention criteria 
that call for quantitative reliability estimates, rather than essentially barrier-counting, although 
that form of the algorithm is not a true global reliability optimizer. However, it illustrates the 
more general process of choosing not only what items of equipment (operator actions, 
instrumentation, …) need to be credited, but also what assumptions, initial conditions, and so on 
need to be assured (and perhaps monitored during the operational phase) in order to provide 
reasonable assurance of the claims presented in the claims tree of Figure 3-1. This iterative 
process of self-consistently determining this portfolio of items is illustrated in Figure L-2 below. 

 
 

K.1 References 
 

K-1 W. Brinsfield, J. Voskuli, “Focusing the Scope of Fire PRA Human Reliability Analysis Using Top 
Event Prevention (TEP),” PSA 2015, 2015 
K-2 D. P. Blanchard and R. W. Youngblood, “Risk-Informed Safety Margin Characterization Case 
Study: Use of Prevention Analysis in the Selection of Electrical Equipment to Be Subjected to 
Environmental Qualification,” PSAM 12, 2014
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