Run No.	Borehole Record (MD)
4B | 24.000 ft

casing Record (MD)
---|---
425.000 ft | 222.000 ft

Weight From	To
36.000 in | 746.00 lb

Unit No.	Job No.
1 | 1AK-XX-0901604700

Plot Type	Plot Date
Final | 31-Oct-15

Depth Logged	To
222.00 ft | 1,512.00 ft

Date Logged	To
30-Jul-15 | 24-Aug-15

Total Depth MD	TVD
1,512.00 ft | 1,511.97 ft

Spud Date
---|---
30-Jul-15

Location
---|---
PosY 6912

Well
---|---
OCS-Y-2321 BJ001 ST00BP00

Company
---|---
Shell Gulf of Mexico Inc.

Rig
---|---
Polar Pioneer

API Number	Job Number
55-352-00004-00 | 257.00 ft

Final UTM Easting = 565.034.550 m
Final UTM Northing = 7,897.425.308 m

Location
---|---
71° 10' 24.06" North
163° 28' 18.67" West

Latitude	Longitude
71° 10' 24.06" | 163° 28' 18.67"

Other Services
---|---
ADR, DGR, EWR
ALD, CTN, XBAT

Mean Sea Level
---|---
0.00 ft

Drill Floor
---|---
76.00 ft

Elev.KB	N/A
WD | N/A
GL | 146.00 ft

Min Inc (deg) @ Depth (MD, ft)
---|---
0.00 @ 957.99

Max Inc (deg) @ Depth (MD, ft)
---|---
0.99 @ 495.25

Bit TFA (in2) / Bit Type
---|---
1.12 / Tricone

Flow Rate (gpm)
---|---
1,100.00

Max AV (tpm) / CV (tpm) @ MWD
---|---
51.0 / 636.0

Fluid Type
---|---
Sea Water

Density (ppg) / Viscosity (spqt)
---|---
8.55 / 27.00

Filtrate CL (ppm)
---|---
35,000.00

pH / Fluid Loss (mptm)
---|---
8.50 / 0

PV (cP) / YP (lhf2)
---|---
17 / 31.00

% Solids / % Sand
---|---
0.1 / .01

% Oil / Oil:Water Ratio
---|---
0 / 0:100

Rm @ Measured Temp (degF)
---|---
N/A @ N/A

Rmf @ Measured Temp (degF)
---|---
N/A @ N/A

Rmc @ Measured Temp (degF)
---|---
N/A @ N/A

Max Tool Temp (degF) / Source
---|---
46.10 / DDSr-HCIM

ROP Rate of Penetration
---|---
Time Log

DDS Drillstring Dynamics
---|---
PWD Pressure While Drilling

MWD Run Number | 401

Date run completed | 20-Aug-15

Rig Bit Number | 4B

Bit Size (in) | 26.000

Tool Nominal OD (in) | 8.000

Log Start Depth (MD, ft) | 425.00

Log End Depth (MD, ft) | 1,512.00

Drill or Wipe | Drill

Drill/Wipe Start Date and Time
---|---
19-Aug-15 00:27

Drill/Wipe End Date and Time
---|---
20-Aug-15 06:22

Min Inc (deg) @ Depth (MD, ft)
---|---
0.00 @ 957.99

Max Inc (deg) @ Depth (MD, ft)
---|---
0.99 @ 495.25

Bit TFA (in2) / Bit Type
---|---
1.12 / Tricone

Flow Rate (gpm)
---|---
1,100.00

Max AV (tpm) / CV (tpm) @ MWD
---|---
51.0 / 636.0

Fluid Type
---|---
Sea Water

Density (ppg) / Viscosity (spqt)
---|---
8.55 / 27.00

Filtrate CL (ppm)
---|---
35,000.00

pH / Fluid Loss (mptm)
---|---
8.50 / 0

PV (cP) / YP (lhf2)
---|---
17 / 31.00

% Solids / % Sand
---|---
0.1 / .01

% Oil / Oil:Water Ratio
---|---
0 / 0:100

Rm @ Measured Temp (degF)
---|---
N/A @ N/A

Rmf @ Measured Temp (degF)
---|---
N/A @ N/A

Rmc @ Measured Temp (degF)
---|---
N/A @ N/A

Max Tool Temp (degF) / Source
---|---
46.10 / DDSr-HCIM

ROP Rate of Penetration
---|---
Time Log

DDS Drillstring Dynamics
---|---
PWD Pressure While Drilling
SENSOR INFORMATION

Downhole Processor Information

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>HCIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Version</td>
<td>88.58</td>
</tr>
<tr>
<td>Sub Serial Number</td>
<td>12562642</td>
</tr>
<tr>
<td>Insert Serial Number</td>
<td>11753209</td>
</tr>
<tr>
<td>Date and Time Initialized</td>
<td>18-Aug-15 20:47</td>
</tr>
<tr>
<td>Date and Time Read</td>
<td>20-Aug-15 15:15</td>
</tr>
<tr>
<td>ECMB SW Version</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Directional Sensor Information

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>PCDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance From Bit (ft)</td>
<td>123.78</td>
</tr>
<tr>
<td>Software Version</td>
<td>6.21</td>
</tr>
<tr>
<td>Sub Serial Number</td>
<td>12185782</td>
</tr>
<tr>
<td>Sonde Serial Number</td>
<td>11477951</td>
</tr>
<tr>
<td>Sensor ID Number</td>
<td>N/A</td>
</tr>
<tr>
<td>Toolface Offset (deg)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Pressure Sensor Information

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance From Bit (ft)</td>
<td>133.70</td>
</tr>
<tr>
<td>Recorded Sample Period (sec)</td>
<td>2</td>
</tr>
<tr>
<td>Software Version</td>
<td>4.14</td>
</tr>
<tr>
<td>Collar Serial Number</td>
<td>11905281</td>
</tr>
<tr>
<td>Insert Serial Number</td>
<td>11996744</td>
</tr>
</tbody>
</table>

DDSr-HCIM Sensor Information

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>DDSr-HCIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance From Bit (ft)</td>
<td>140.14</td>
</tr>
<tr>
<td>Recorded Sample Period (sec)</td>
<td>16</td>
</tr>
<tr>
<td>Software Version</td>
<td>20.88</td>
</tr>
<tr>
<td>Sub Serial Number</td>
<td>12562642</td>
</tr>
<tr>
<td>Insert Serial Number</td>
<td>11463449</td>
</tr>
<tr>
<td>Sensor ID Number</td>
<td>7194</td>
</tr>
</tbody>
</table>

REMARKS

1. ALL DEPTHS ARE MEASURED DEPTHS (MD), UNLESS OTHERWISE NOTED. THESE DEPTHS ARE BIT DEPTHS AND ARE CALIBRATED TO THE DRILLERS PIPE TALLY. NO DEPTH CORRECTIONS HAVE BEEN MADE FOR PIPE STRETCH OR COMPRESSION.

2. ALL VERTICAL DEPTHS ARE TRUE VERTICAL DEPTHS (TVD), UNLESS OTHERWISE NOTED. ONLY INVERTED / REVERTED SECTIONS GREATER THAN 30' TVD ARE PRESENTED.

3. ALL DATA PRESENTED IS RECORDED DATA UNLESS OTHERWISE STATED.

4. LWD RUN 1 WAS COMPRISED OF DIRECTIONAL, DUAL GAMMA RAY (DGR) UTILIZING GEIGER-MUELLER TUBE TYPE DETECTORS, AZIMUTHAL DEEP ELECTROMAGNETIC WAVE RESISTIVITY (ADR), PRESSURE WHILE DRILLING (PWD) DRILLSTRING DYNAMICS SENSOR (DDSr), AZIMUTHAL LITHODENSITY (ALD), COMPENSATED THERMAL NEUTRON (CTN), MAGNETIC RESONANCE WHILE DRILLING (MRIL-WD), AZIMUTHAL BIMODAL ACOUSTIC TOOL (XBAT), AND THE AZIMUTHAL ACOUSTIC CALIPER TOOL (XCAL).
5. RUN 200 WAS A 36” HOLE OPENING RUN, NO MWD TOOLS WERE PRESENT THEREFORE IT IS NOT PRESENTED.
6. RUN 300 WAS A 42” HOLE OPENING RUN, NO MWD TOOLS WERE PRESENT THEREFORE IT IS NOT PRESENTED.
7. RUN 400 WAS A CLEANOUT RUN TO DRILL OUT THE SHOE TRACK AND 30’ OF NEW FORMATION, NO MWD TOOLS WERE PRESENT THEREFORE IT IS NOT PRESENTED.
8. RUN 401 WAS A 26” HOLE OPENING RUN UTILIZING DIRECTIONAL, DRILL STRING DYNAMICS SENSOR AND PRESSURE WHILE DRILLING. NO LOGGING SENSORS WERE PRESENT.
9. MWD RUN 500 WAS A 17.5” DRILLING RUN UTILIZING DIRECTIONAL, DRILL STRING DYNAMICS SENSOR AND PRESSURE WHILE DRILLING. NO LOGGING SENSORS WERE PRESENT.
10. LWD RUN 6 WAS COMPRISED OF DIRECTIONAL, DUAL GAMMA RAY (DGR) UTILIZING GEIGER-MUELLER TUBE TYPE DETECTORS, ELECTROMAGNETIC WAVE RESISTIVITY PHASE 4 (EWR-P4), PRESSURE WHILE DRILLING (PWD) DRILLSTRING DYNAMICS SENSOR (DDSr), AZIMUTHAL LITHODENSITY (ALD), COMPENSATED THERMAL NEUTRON (CTN), AZIMUTHAL BIMODAL ACOUSTIC TOOL (XBAT), AND THE AZIMUTHAL ACOUSTIC CALIPER TOOL (XCAL).
11. LWD RUN 7 WAS COMPRISED OF DIRECTIONAL, DUAL GAMMA RAY (DGR) UTILIZING GEIGER-MUELLER TUBE TYPE DETECTORS, AZIMUTHAL DEEP ELECTROMAGNETIC WAVE RESISTIVITY (ADR), PRESSURE WHILE DRILLING (PWD) DRILLSTRING DYNAMICS SENSOR (DDSr), AZIMUTHAL LITHODENSITY (ALD), COMPENSATED THERMAL NEUTRON (CTN), MAGNETIC RESONANCE WHILE DRILLING (MRIL-WD), AZIMUTHAL BIMODAL ACOUSTIC TOOL (XBAT), AND THE AZIMUTHAL ACOUSTIC CALIPER TOOL (XCAL).
12. OVER THE COURSE OF THE 12.25” HOLE SECTION THERE ARE SEVERAL INSTANCES WHERE THE BOREHOLE RUGOSITY HAS CREATED “SPIKES” IN THE RESISTIVITY DATA. THIS IS DUE TO ONE RECIEVER READING THE HIGH SALINITY BOREHOLE FLUID (WASHOUT) AND THE OTHER READING THE FORMATION. THERE ARE ALSO AREAS ACROSS THE LOGGED INTERVAL THAT SHOW AN UNDERGAUGE HOLE.
13. RUNS 1-7 REPRESENT THE OCS-Y-2321 BJ001 ST00BP0 WELL WITH AN API# OF 55-352-00004-00. THIS WELL REACHED A TOTAL DEPTH OF 6,800'MD / 6,795'TVD

WARRANTY

HALLIBURTON WILL USE ITS BEST EFFORTS TO FURNISH CUSTOMERS WITH ACCURATE INFORMATION AND INTERPRETATIONS THAT ARE PART OF, AND INCIDENT TO, THE SERVICES PROVIDED. HOWEVER, HALLIBURTON CANNOT AND DOES NOT WARRANT THE ACCURACY OR CORRECTNESS OF SUCH INFORMATION AND INTERPRETATIONS. UNDER NO CIRCUMSTANCES SHOULD ANY SUCH INFORMATION OR INTERPRETATION BE RELIED UPON AS THE SOLE BASIS FOR ANY DRILLING, COMPLETION, PRODUCTION, OR FINANCIAL DECISION OR ANY PROCEDURE INVOLVING ANY RISK TO THE SAFETY OF ANY DRILLING VENTURE, DRILLING RIG OR ITS CREW OR ANY OTHER THIRD PARTY. THE CUSTOMER HAS FULL RESPONSIBILITY FOR ALL DRILLING, COMPLETION AND PRODUCTION OPERATION. HALLIBURTON MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SERVICES RENDERED. IN NO EVENT WILL HALLIBURTON BE LIABLE FOR FAILURE TO OBTAIN ANY PARTICULAR RESULTS OR FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, RESULTING FROM THE USE OF ANY INFORMATION OR INTERPRETATION PROVIDED BY HALLIBURTON.
<table>
<thead>
<tr>
<th>Time</th>
<th>Speed (ft/min)</th>
<th>RPM (rev/min)</th>
<th>PWD (lbs/gal)</th>
<th>Avg EMW (lbs/in²)</th>
<th>Avg SPP (g)</th>
<th>Avg DDSr (g)</th>
<th>Avg X (in)</th>
<th>Avg Xg (g)</th>
<th>Avg Avg (g)</th>
<th>Avg Peak (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00</td>
<td>140</td>
<td>140</td>
<td>78</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>17:30</td>
<td>140</td>
<td>140</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>18:00</td>
<td>140</td>
<td>140</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>18:30</td>
<td>174</td>
<td>180</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>19:00</td>
<td>180</td>
<td>180</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>19:30</td>
<td>180</td>
<td>180</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>20:00</td>
<td>222</td>
<td>211</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>20:30</td>
<td>211</td>
<td>207</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>21:00</td>
<td>207</td>
<td>207</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>21:30</td>
<td>207</td>
<td>207</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
- 18-Aug-15: 17:00 - 18:00
- 18-Aug-15: 18:00 - 19:00
- 18-Aug-15: 19:00 - 20:00
- 18-Aug-15: 20:00 - 21:00
- 18-Aug-15: 21:00 - 21:30

Events:
- PICK UP BHA 400B
- CONFIDENCE TEST MWD TOOLS
- DOWNLOAD MWD TOOLS
- PICK UP REMAINING BHA
17:00 - FINISH LAYING DOWN BHA
16:30 - FINISH MWD TOOLS
14:30 - READ MWD TOOLS
20-Aug-15
14:00 - READ MWD TOOLS
13:30 - FLUSH MWD TOOLS
13:00 - FLUSH MWD TOOLS
12:30 - FLUSH MWD TOOLS
12:00 - FLUSH MWD TOOLS
10:00 - FLUSH MWD TOOLS
08:00 - FLUSH MWD TOOLS
06:00 - FLUSH MWD TOOLS
04:00 - FLUSH MWD TOOLS
02:00 - FLUSH MWD TOOLS
20-Aug-15
12:00 - FLUSH MWD TOOLS
11:30 - FLUSH MWD TOOLS
11:00 - FLUSH MWD TOOLS
10:30 - FLUSH MWD TOOLS
10:00 - FLUSH MWD TOOLS
09:30 - FLUSH MWD TOOLS
09:00 - FLUSH MWD TOOLS
08:30 - FLUSH MWD TOOLS
08:00 - FLUSH MWD TOOLS
07:30 - FLUSH MWD TOOLS
07:00 - FLUSH MWD TOOLS
06:30 - FLUSH MWD TOOLS
06:00 - FLUSH MWD TOOLS
05:30 - FLUSH MWD TOOLS
05:00 - FLUSH MWD TOOLS
04:30 - FLUSH MWD TOOLS
04:00 - FLUSH MWD TOOLS
03:30 - FLUSH MWD TOOLS
03:00 - FLUSH MWD TOOLS
02:30 - FLUSH MWD TOOLS
02:00 - FLUSH MWD TOOLS
01:30 - FLUSH MWD TOOLS
01:00 - FLUSH MWD TOOLS
00:30 - FLUSH MWD TOOLS
00:00 - FLUSH MWD TOOLS
DIRECTIONAL SURVEY REPORT

Shell Gulf of Mexico Inc.
OCS-Y-2321 BJ001 ST00BP00
Posey 6912
Alaska
USA
AK-XX-0901604700

Final Survey is projected to well TD

<table>
<thead>
<tr>
<th>Measured Depth (feet)</th>
<th>Inclination (degrees)</th>
<th>Direction (degrees)</th>
<th>Vertical Depth (feet)</th>
<th>Latitude</th>
<th>Departure (feet)</th>
<th>Vertical Section (feet)</th>
<th>Dogleg (deg/100ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00 N</td>
<td>0.00 E</td>
<td>0.00</td>
<td>TIE-IN</td>
</tr>
<tr>
<td>220.00</td>
<td>0.00</td>
<td>0.00</td>
<td>220.00</td>
<td>0.00 N</td>
<td>0.00 E</td>
<td>2.71 E</td>
<td>0.81</td>
</tr>
<tr>
<td>320.88</td>
<td>0.51</td>
<td>129.80</td>
<td>320.88</td>
<td>0.29 S</td>
<td>0.35 E</td>
<td>-1.34 E</td>
<td>0.88</td>
</tr>
<tr>
<td>406.77</td>
<td>0.31</td>
<td>89.93</td>
<td>406.76</td>
<td>0.53 S</td>
<td>0.88 E</td>
<td>-0.53 E</td>
<td>0.39</td>
</tr>
<tr>
<td>495.25</td>
<td>0.99</td>
<td>122.22</td>
<td>495.24</td>
<td>0.93 S</td>
<td>1.76 E</td>
<td>-0.93 E</td>
<td>0.84</td>
</tr>
<tr>
<td>590.43</td>
<td>0.31</td>
<td>82.72</td>
<td>590.41</td>
<td>1.34 S</td>
<td>2.71 E</td>
<td>-1.34 E</td>
<td>0.81</td>
</tr>
<tr>
<td>684.05</td>
<td>0.64</td>
<td>327.24</td>
<td>684.03</td>
<td>0.87 S</td>
<td>2.68 E</td>
<td>-0.87 E</td>
<td>0.88</td>
</tr>
<tr>
<td>866.10</td>
<td>0.28</td>
<td>101.20</td>
<td>866.08</td>
<td>0.09 S</td>
<td>2.55 E</td>
<td>-0.09 E</td>
<td>0.47</td>
</tr>
<tr>
<td>957.99</td>
<td>0.00</td>
<td>269.46</td>
<td>957.97</td>
<td>0.13 S</td>
<td>2.77 E</td>
<td>-0.13 E</td>
<td>0.30</td>
</tr>
<tr>
<td>1051.65</td>
<td>0.14</td>
<td>176.72</td>
<td>1051.63</td>
<td>0.24 S</td>
<td>2.78 E</td>
<td>-0.24 E</td>
<td>0.15</td>
</tr>
<tr>
<td>1144.54</td>
<td>0.26</td>
<td>120.65</td>
<td>1144.52</td>
<td>0.46 S</td>
<td>2.97 E</td>
<td>-0.46 E</td>
<td>0.23</td>
</tr>
<tr>
<td>1235.66</td>
<td>0.41</td>
<td>134.11</td>
<td>1235.63</td>
<td>0.80 S</td>
<td>3.38 E</td>
<td>-0.80 E</td>
<td>0.19</td>
</tr>
<tr>
<td>1328.60</td>
<td>0.51</td>
<td>59.75</td>
<td>1328.58</td>
<td>0.83 S</td>
<td>3.98 E</td>
<td>-0.83 E</td>
<td>0.61</td>
</tr>
<tr>
<td>1378.50</td>
<td>0.25</td>
<td>111.62</td>
<td>1378.48</td>
<td>0.76 S</td>
<td>4.27 E</td>
<td>-0.76 E</td>
<td>0.81</td>
</tr>
<tr>
<td>1540.18</td>
<td>0.12</td>
<td>50.83</td>
<td>1540.15</td>
<td>0.78 S</td>
<td>4.74 E</td>
<td>-0.78 E</td>
<td>0.14</td>
</tr>
<tr>
<td>1723.74</td>
<td>0.39</td>
<td>34.99</td>
<td>1723.71</td>
<td>0.14 S</td>
<td>5.26 E</td>
<td>0.14 E</td>
<td>0.15</td>
</tr>
<tr>
<td>1818.58</td>
<td>0.58</td>
<td>50.01</td>
<td>1818.55</td>
<td>0.43 S</td>
<td>5.81 E</td>
<td>0.43 E</td>
<td>0.24</td>
</tr>
<tr>
<td>2003.18</td>
<td>1.06</td>
<td>39.81</td>
<td>2003.12</td>
<td>2.35 N</td>
<td>7.82 E</td>
<td>2.35 E</td>
<td>0.27</td>
</tr>
<tr>
<td>2095.93</td>
<td>0.87</td>
<td>35.51</td>
<td>2095.87</td>
<td>3.57 N</td>
<td>8.57 E</td>
<td>3.57 E</td>
<td>0.22</td>
</tr>
<tr>
<td>2186.15</td>
<td>0.69</td>
<td>72.12</td>
<td>2186.07</td>
<td>4.30 N</td>
<td>9.49 E</td>
<td>4.30 E</td>
<td>0.57</td>
</tr>
<tr>
<td>2373.34</td>
<td>0.75</td>
<td>76.36</td>
<td>2373.25</td>
<td>4.93 N</td>
<td>11.76 E</td>
<td>4.93 E</td>
<td>0.04</td>
</tr>
<tr>
<td>2463.93</td>
<td>0.78</td>
<td>75.65</td>
<td>2463.83</td>
<td>5.23 N</td>
<td>12.93 E</td>
<td>5.23 E</td>
<td>0.03</td>
</tr>
<tr>
<td>2555.30</td>
<td>0.79</td>
<td>70.25</td>
<td>2555.19</td>
<td>5.59 N</td>
<td>14.13 E</td>
<td>5.59 E</td>
<td>0.08</td>
</tr>
<tr>
<td>2646.22</td>
<td>0.79</td>
<td>78.51</td>
<td>2646.11</td>
<td>5.95 N</td>
<td>15.33 E</td>
<td>5.95 E</td>
<td>0.10</td>
</tr>
<tr>
<td>2743.03</td>
<td>0.70</td>
<td>74.08</td>
<td>2742.91</td>
<td>6.27 N</td>
<td>16.55 E</td>
<td>6.27 E</td>
<td>0.10</td>
</tr>
<tr>
<td>2837.42</td>
<td>0.74</td>
<td>67.59</td>
<td>2837.29</td>
<td>6.66 N</td>
<td>17.68 E</td>
<td>6.66 E</td>
<td>0.10</td>
</tr>
<tr>
<td>2875.38</td>
<td>0.64</td>
<td>69.95</td>
<td>2875.25</td>
<td>6.83 N</td>
<td>18.10 E</td>
<td>6.83 E</td>
<td>0.27</td>
</tr>
<tr>
<td>2978.31</td>
<td>0.74</td>
<td>64.69</td>
<td>2978.17</td>
<td>7.31 N</td>
<td>19.25 E</td>
<td>7.31 E</td>
<td>0.11</td>
</tr>
<tr>
<td>3074.55</td>
<td>0.58</td>
<td>52.33</td>
<td>3074.40</td>
<td>7.88 N</td>
<td>20.20 E</td>
<td>7.88 E</td>
<td>0.22</td>
</tr>
<tr>
<td>3169.04</td>
<td>0.67</td>
<td>47.05</td>
<td>3168.89</td>
<td>8.55 N</td>
<td>20.99 E</td>
<td>8.55 E</td>
<td>0.11</td>
</tr>
<tr>
<td>3258.93</td>
<td>0.77</td>
<td>27.36</td>
<td>3258.77</td>
<td>9.44 N</td>
<td>21.65 E</td>
<td>9.44 E</td>
<td>0.30</td>
</tr>
<tr>
<td>3351.80</td>
<td>0.94</td>
<td>33.05</td>
<td>3351.63</td>
<td>10.64 N</td>
<td>22.35 E</td>
<td>10.64 E</td>
<td>0.21</td>
</tr>
<tr>
<td>3445.40</td>
<td>0.89</td>
<td>33.34</td>
<td>3445.22</td>
<td>11.90 N</td>
<td>23.18 E</td>
<td>11.90 E</td>
<td>0.06</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>3537.90</td>
<td>0.88</td>
<td>3537.71</td>
<td>13.05</td>
<td>N 24.03</td>
<td>E 13.05</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>3630.29</td>
<td>0.86</td>
<td>3630.09</td>
<td>14.20</td>
<td>N 26.98</td>
<td>E 14.20</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>3724.13</td>
<td>1.05</td>
<td>3723.91</td>
<td>15.40</td>
<td>N 27.99</td>
<td>E 15.40</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>3815.47</td>
<td>1.16</td>
<td>3815.23</td>
<td>16.71</td>
<td>N 28.80</td>
<td>E 16.71</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>3909.95</td>
<td>1.11</td>
<td>3909.70</td>
<td>18.28</td>
<td>N 29.67</td>
<td>E 18.28</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>4001.98</td>
<td>1.55</td>
<td>4001.69</td>
<td>20.24</td>
<td>N 30.54</td>
<td>E 20.24</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>4095.18</td>
<td>1.55</td>
<td>4094.87</td>
<td>22.60</td>
<td>N 30.26</td>
<td>E 22.60</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>4189.17</td>
<td>1.52</td>
<td>4188.83</td>
<td>24.97</td>
<td>N 31.27</td>
<td>E 24.97</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>4280.67</td>
<td>1.73</td>
<td>4280.29</td>
<td>27.46</td>
<td>N 32.25</td>
<td>E 27.46</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>4373.26</td>
<td>2.11</td>
<td>4372.83</td>
<td>30.39</td>
<td>N 33.26</td>
<td>E 30.39</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>4465.71</td>
<td>1.69</td>
<td>4465.23</td>
<td>33.26</td>
<td>N 34.35</td>
<td>E 33.26</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>4559.04</td>
<td>2.02</td>
<td>4558.51</td>
<td>36.11</td>
<td>N 35.37</td>
<td>E 36.11</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>4651.17</td>
<td>2.19</td>
<td>4650.58</td>
<td>39.24</td>
<td>N 36.32</td>
<td>E 39.24</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>4743.27</td>
<td>2.64</td>
<td>4742.59</td>
<td>42.77</td>
<td>N 37.32</td>
<td>E 42.77</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>4836.87</td>
<td>3.09</td>
<td>4836.08</td>
<td>46.87</td>
<td>N 38.49</td>
<td>E 46.87</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>4929.20</td>
<td>3.15</td>
<td>4928.26</td>
<td>51.06</td>
<td>N 39.68</td>
<td>E 51.06</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>5021.52</td>
<td>3.28</td>
<td>5020.45</td>
<td>55.22</td>
<td>N 40.85</td>
<td>E 55.22</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>5113.59</td>
<td>3.34</td>
<td>5112.36</td>
<td>59.37</td>
<td>N 42.06</td>
<td>E 59.37</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>5206.14</td>
<td>3.59</td>
<td>5204.74</td>
<td>63.39</td>
<td>N 43.32</td>
<td>E 63.39</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>5299.05</td>
<td>3.70</td>
<td>5297.46</td>
<td>67.34</td>
<td>N 44.62</td>
<td>E 67.34</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>5364.19</td>
<td>3.45</td>
<td>5362.48</td>
<td>69.95</td>
<td>N 45.95</td>
<td>E 69.95</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>5429.81</td>
<td>3.65</td>
<td>5427.97</td>
<td>72.59</td>
<td>N 47.32</td>
<td>E 72.59</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>5518.31</td>
<td>3.73</td>
<td>5516.29</td>
<td>76.55</td>
<td>N 48.72</td>
<td>E 76.55</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>5612.70</td>
<td>3.58</td>
<td>5610.48</td>
<td>80.90</td>
<td>N 50.19</td>
<td>E 80.90</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>5704.09</td>
<td>3.56</td>
<td>5701.70</td>
<td>85.09</td>
<td>N 51.62</td>
<td>E 85.09</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>5795.19</td>
<td>3.47</td>
<td>5792.62</td>
<td>89.22</td>
<td>N 53.15</td>
<td>E 89.22</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>5889.32</td>
<td>3.48</td>
<td>5886.58</td>
<td>93.46</td>
<td>N 54.78</td>
<td>E 93.46</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>5980.70</td>
<td>3.42</td>
<td>5977.80</td>
<td>97.52</td>
<td>N 56.54</td>
<td>E 97.52</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>6075.07</td>
<td>3.43</td>
<td>6072.00</td>
<td>101.26</td>
<td>N 58.42</td>
<td>E 101.26</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>6167.81</td>
<td>3.55</td>
<td>6164.57</td>
<td>105.99</td>
<td>N 60.35</td>
<td>E 105.99</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>6259.59</td>
<td>3.53</td>
<td>6256.17</td>
<td>110.37</td>
<td>N 62.47</td>
<td>E 110.37</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>6346.61</td>
<td>3.75</td>
<td>6343.02</td>
<td>114.70</td>
<td>N 64.70</td>
<td>E 114.70</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>6445.34</td>
<td>3.89</td>
<td>6441.52</td>
<td>120.10</td>
<td>N 67.10</td>
<td>E 120.10</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>6536.48</td>
<td>3.96</td>
<td>6532.44</td>
<td>125.27</td>
<td>N 69.51</td>
<td>E 125.27</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>6628.63</td>
<td>3.92</td>
<td>6624.37</td>
<td>130.38</td>
<td>N 72.05</td>
<td>E 130.38</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>6721.62</td>
<td>3.89</td>
<td>6717.15</td>
<td>135.49</td>
<td>N 74.64</td>
<td>E 135.49</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>6845.05</td>
<td>3.99</td>
<td>6840.52</td>
<td>140.80</td>
<td>N 77.83</td>
<td>E 140.80</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>6800.00</td>
<td>3.99</td>
<td>6795.34</td>
<td>139.90</td>
<td>N 79.90</td>
<td>E 139.90</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

CALCULATION BASED ON MINIMUM CURVATURE METHOD

SURVEY COORDINATES RELATIVE TO WELL SYSTEM REFERENCE POINT

TVD VALUES GIVEN RELATIVE TO DRILLING MEASUREMENT POINT

VERTICAL SECTION RELATIVE TO WELL HEAD

VERTICAL SECTION IS COMPUTED ALONG A DIRECTION OF 0.00 DEGREES (GRID)

A TOTAL CORRECTION OF 10.95 DEG FROM MAGNETIC NORTH TO GRID NORTH HAS BEEN APPLIED

HORIZONTAL DISPLACEMENT IS RELATIVE TO THE WELL HEAD.

HORIZONTAL DISPLACEMENT (CLOSURE) AT 6800.00 FEET IS 183.78 FEET ALONG 40.42 DEGREES (GRID)

Map System: NAD 83 UTM Zones
Geo Datum: North American Datum of 1983
Map Zone: Universal Transverse Mercator Zone 03N

Date Printed: 31 October 2015