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1. INTRODUCTION 

1.1 Purpose of this Guide 

This guide is intended to assist in the development of probabilistic risk assessment (PRA) of offshore 

drilling facilities, in order to support decision-making by the Bureau of Safety and Environmental 

Enforcement (BSEE) and by the industry. This guide is not a policy document, nor does it establish 

regulatory requirements; rather, it discusses particular modeling techniques that have been found to be 

useful in a range of applications to decision-making about complex and high-hazard facilities. In order to 

motivate the approach taken in the remainder of this Guide, this section discusses what kinds of analysis 

support what kinds of decisions. 

The point of departure for development of this guide is the National Aeronautics and Space 

Administration (NASA) PRA Procedures Guide [1-1], which was itself derived from earlier PRA 

procedural guidance; but the present development has been informed by numerous other developments 

from within NASA, as well as work done for the Department of Energy and the Nuclear Regulatory 

Commission. 

1.2 Risk and Risk Management 

The term “risk” has many definitions. Most of these definitions are generally consistent with the idea 

that “risk is uncertainty about the future, viewed through the lens of a value structure (i.e., focusing on 

outcomes that would be considered adverse).” 

In the context of making decisions about complex, high-hazard systems, “risk” is usefully conceived 

as a set of triplets: failure scenarios, likelihoods of those scenarios, and their actual consequences [1-2].  

There are good reasons reasons to focus on these elements rather than focusing on simpler, higher-level 

quantities such as expected consequences. Risk management involves prevention of (reduction of the 

frequency of) adverse scenarios (scenarios having undesirable consequences), and promotion of favorable 

scenarios (scenarios with favorable, or at least benign, outcomes). This requires understanding the 

elements of adverse scenarios so that they can be prevented, and understanding the elements of successful 

scenarios so that they can be promoted. 

Even if the decision problem is simply to decide whether a facility is deemed adequately safe, the 

level of assurance (the decision-maker’s confidence) derivable from understanding scenarios far exceeds 

the level of assurance derivable from an abstract summary of expected consequences. 

1.3 Scope of this Guide 

Figure 1-1 (adapted from [1-3]) illustrates a general process for safety analysis. The leftmost portion 

of the figure begins the process with recognition of the decision being supported and an assessment of 

what technical results are needed to support that decision. The central portion of the figure notionally 

suggests a range of techniques for safety analysis, going from “qualitative” techniques (thought processes 

such as Hazard and Operability Studies (HAZOPs), which identify accident potential) to quantitative 

techniques (modeling processes that generate and quantify scenarios, frequencies, and consequences). 
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Figure 1-1. Process for safety analysis. 

Different situations will call for a different mix of techniques. It is not always clear a priori what 

techniques are appropriate in a given situation; correspondingly, in the rightmost portion of the figure, the 

current state of knowledge (after analysis done to date) is assessed to determine whether there is a need to 

loop back and do more analysis (or get more information) in order to support the current decision. 

Broadly speaking, quantitative techniques such as fault tree analysis are techniques that lead to (a) an 

explicit scenario set, (b) quantification of the likelihoods of those scenarios, and (c) analysis of the 

consequences of those scenarios (in short, analysis of the triplets discussed above). Calling the other 

techniques qualitative does not mean that they are applied absolutely without regard to probability; in 

fact, it is extremely difficult to absolutely decouple safety thinking from probability. Rather, the term 

“qualitative” is shorthand for “thought processes that help us to identify accident potential, without 

explicitly generating and quantifying a comprehensive scenario set.” 

This guide is focused on the quantitative end of the above-described analysis spectrum, using selected 

qualitative techniques as a front end to the quantitative analysis, in order to help us think appropriately 

about what we need to analyze in more detail. 
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1.4 Probabilistic Risk Assessment 

1.4.1 Probabilistic Risk Assessment—What We Get Out of it, How We Use It 

Based on modeling scenarios, frequencies, and consequences, PRA quantifies risk metrics. The term 

“risk metric” refers to probabilistic performance measures that might appear in a decision model, such as 

the frequency or probability of adverse consequences of a specific magnitude, or perhaps expected 

consequences. Figures of merit such as system failure probability can be used as risk metrics, but the 

phrase “risk metric” ordinarily suggests a higher-level, more consequence-oriented figure of merit, such 

as “spills of a certain magnitude.” 

In order to support resource allocation from a risk point of view (for a permittee or regulator), it is 

necessary to evaluate a comprehensive set of scenarios. The set of scenarios may need to include events 

that are more severe than those considered during design, and more success paths than were explicitly 

factored into the design. Additionally, system performance must be evaluated realistically. In order to 

support resource allocation decisions, the point is not usually to establish a bound on system capability or 

reliability, but rather to quantify capability and reliability (to characterize them realistically). In other 

words, risk-informed resource allocation requires identification and realistic quantification of all 

risk-significant scenarios, where “risk-significant” depends on the context of the evaluation. 

In all but the simplest cases, decision support requires that uncertainty be addressed. Because risk 

analysis frequently needs to address severe outcomes of complex scenarios, and because these scenarios 

are too infrequent for us to be able to calibrate our models from experience, uncertainties may be highly 

significant. These uncertainties need to be reflected in the decision model, not only because they may 

influence the decision, but also because it is important to understand which of the uncertainties that 

strongly affect the decision outcome are potentially reducible through testing or research. 

PRA is needed (and the effort is justified) when decisions need to be made that involve high stakes in 

a complex situation, as in a high-hazard mission with critical functions being performed by complex 

systems. Intelligent resource allocation depends on a good risk model; even programmatic research 

decisions need to be informed by a state-of-knowledge risk model. (Allocating resources to research 

programs needs to be informed by insight into which uncertainties’ resolution offers the greatest 

payback.) Developing a comprehensive scenario set to provide decision-makers with the best informed 

picture of threats and mitigation opportunities is a special challenge, and systematic methods are needed 

for development and quantification of such a model. Those methods are the subject of this guide. 

1.4.2 Using Probabilistic Risk Assessment in the Formulation of a 
Risk-Informed Safety Case 

The above discussion has been carried out with emphasis on the role of PRA in assessing system 

adequacy, especially with regard to selection of design features. This sort of application began even 

before safety goals were widely discussed. Increasingly, risk managers need to argue that system designs 

satisfy explicit risk thresholds; nowadays, even if there is no absolute regulatory or policy requirement, 

the promulgation of safety goals and thresholds creates an expectation that goals and thresholds will be 

addressed in the course of safety-related decision-making. This creates an issue for PRA, because in 

general, it is impossible to prove that the level of risk associated with a complex, real-world system is 

below a given decision threshold. 
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Partly because PRA results cannot be proven, a “Risk-Informed Safety Case” (RISC) [1-4] is 

desirable. The RISC marshals evidence (tests, analysis, operating experience) and commitments to adhere 

to specific manufacturing and operating practices in order to assure that PRA assumptions, including the 

performance and reliability parameters credited in the PRA, are fulfilled. Among the commitments 

needed to justify confidence in the safety of the system is a commitment to analyze operating experience 

on an ongoing basis, including near misses, to improve operations, improve the risk models, and build 

additional confidence in the models’ completeness. This is not the same as proving that the PRA results 

are correct, but it is the best proxy for safety that can be obtained. 

These matters are discussed further in the following sections of this guide. The present discussion is 

simply to motivate the emphases placed in treatments of the risk analysis techniques addressed in 

Section 2. 

1.4.3 Characterization of Safety Margin 

For purposes of making safety decisions (deciding whether it is necessary to modify the design or 

operating practices, whether the system risk is Lowest Level Practicable (LLP), or whether reasonable 

assurance of adequate protection is available), it is useful to analyze system performance in terms of 

margin, and moreover to do this in a risk-informed way. What attributes does a model need, to support a 

risk-informed assessment of margin? What is meant by risk-informed? 

The phrase “risk-informed” originated in US Nuclear Regulatory Commission (NRC) practice. The 

NRC website [1-5] offers the following definitions related to “Risk-Informed:” 

 Risk-Informed Decision-Making: An approach to regulatory decision-making, in which insights 

from probabilistic risk assessment are considered with other engineering insights. 

 Risk-Informed Regulation: An approach to regulation taken by the NRC, which incorporates an 

assessment of safety significance or relative risk. This approach ensures that the regulatory burden 

imposed by an individual regulation or process is appropriate to its importance in protecting the 

health and safety of the public and the environment.  

One important consideration is whether a comprehensive scenario set is modelled with a view to 

quantitative analysis of decision alternatives, as opposed to pass-fail compliance with prescriptive 

requirements derived from surrogates formulated by engineering judgment (such as a large-break loss of 

coolant accident, an early focus of Atomic Energy Commission thinking about the regulation of 

light-water reactors in the United States). If you are not modeling a scenario set in a way that supports 

saying what’s important and what is not, you are not being risk-informed. 

The phrase “risk-informed” is now widely used to describe a certain thought process. It appears to 

have originated with NRC Chairman Jackson in the early or mid-1990s. During the 1980s and early 

1990s, numerous papers were being written on the subject of risk-based regulation (emphasis added). The 

context of those papers was deciding whether regulatory burden could legitimately be reduced (or, in 

principle, whether it needed to be tightened up), based on risk model results. Often, risk model results 

suggest that burden can be reduced; but then, as now, there was a lot of opposition to reducing burden 

significantly, based on PRA as the primary justification. For the traditionalists, “risk-based” was a 

non-starter. Enter Chairman Jackson: our decision-making will not be risk-based, but it will be 

risk-informed, meaning that we will use risk information as one of several inputs to a decision process, 

other inputs being things like “defense in depth” and “safety margins,” and addressing a broad range of 

issues of diverse kinds, and not just compliance with regulations. 
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The concept of margin has evolved in recent years. Originally, the general idea was that a system’s 

capacity to withstand expected loads should be designed with some leeway, recognizing that things may 

be a bit worse than anticipated, and this excess capacity could be specified either in terms of a point value 

of extra capacity, or a point value of a safety factor. Recent years [1-6, 1-7] have seen increased 

appreciation of the usefulness of viewing margin probabilistically, as summarized in a fairly recent 

doctoral thesis [1-7]: 

 Safety margin is the difference between a characteristic value of the capacity and a characteristic 

value of the load. 

 While [this measure] provides a first approximation of functional reliability, ranking different systems 

on safety margins alone can lead to erroneous results. The knowledge of the distance from failure in 

terms of safety margins is not sufficient to evaluate the risk of a system; the breadth of the uncertain 

distribution [emphasis added] is the other important part of the assessment. 

The breadth of the uncertain distribution is suggested notionally in Figure 1-2. 

 

Figure 1-2. Breadth of uncertain distribution. 

Figure 1-2 shows an uncertain applied load (such as a pressure) together with the uncertain capacity 

of a component to survive that load (in this case, the pressure-retaining capability). What matters in the 

risk analysis is whether the pressure will exceed the actual pressure-retaining capability, and the point of 

the figure is that if both of these are uncertain, a naïve idea of margin, such as “the distance between the 

two modes,” is inadequate. We need to understand the probability that load exceeds capacity. 

Even this load-capacity idea is oversimplified for some purposes, because it is stated above as if the 

two can be evaluated independently. In some cases, they cannot. Consider a notional example in which 

high pressure and low pressure-retaining capability are related due to high temperature; in such a case, a 

calculation based on the simple figure above would underestimate failure probability. In such a case, a 

more simulation-based approach to risk analysis is necessary; this is discussed in Section 2. 
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Safety margin characterization is risk-informed if it is based on the following: 

 An issue space is formulated, implicitly defining a class of scenarios to be analyzed probabilistically 

and the figures of merit
a
 to be evaluated probabilistically, margin then to be analyzed in terms of 

those figures of merit in those scenarios. 

- Aleatory
b
 variables are identified and assigned appropriate distributions. 

- The state of knowledge within that issue space is delineated in terms of state-of-knowledge 

probability distributions on uncertain variables, or perhaps probability bounds analysis.
c
 

 The scenario set is analyzed in sufficient detail (with sufficient coverage of the issue space) to: 

- Characterize margin in the relevant figures of merit, including the comparison of absolute margin 

with variability and uncertainty 

- Understand the significance of variability and uncertainty separately 

- Understand the probability of failure (the probabilistic weight of scenarios having zero or 

negative margin) at least semi quantitatively 

- Understand the main drivers (particular conditions under which margin is high or low) pointing 

to: 

 Failure modes or initial conditions, control of which would increase margin 

 Information that needs to be obtained in order to reduce uncertainty. 

This definition does not address whether the analysis is good or poor; it only addresses whether it is 

structured to culminate in a probabilistic characterization of margin in a given issue space. 

1.4.4 Summary 

The essence of “risk-informed” is to create a basis for resource allocation (by permittee and by 

regulator) that does the best job we know how to do, consistent with our state of knowledge and 

institutional constraints (such as limitations on the kinds of analysis we can afford). In order to be 

risk-informed, the analysis must be geared to supporting conclusions about which scenarios are more 

important than others, and how much more important, and how beneficial (or how justifiable) it would be 

to add preventive or mitigative measures beyond what is already there. Modeling to support risk-informed 

decision-making will tend to have the following attributes: 

 It will comprehensively analyze representative scenarios within the slice of event space that is 

probabilistically significant for the decision 

 It will make little or no use of bounding (worst-case) arguments, and will instead strive for realism 

embedded within an honest treatment of uncertainty 

                                                      

a Typically, these will be performance metrics in terms of which system success and system failure can be defined. 

b “Aleatory” uncertainty refers to the variability in outcomes from one trial to the next: the outcome of a roll of honest dice is 

uncertain, and this uncertainty is aleatory. The term “aleatory” is contrasted with “epistemic,” which refers to limitations of our 

state of knowledge. If we are not sure what fraction of the time a given coin will yield “heads,” this is a kind of uncertainty that 

we could, in principle, reduce by carrying out experiments; this kind of uncertainty is “epistemic.” These concepts are 

discussed in Section 3. 

c “Probability bounds analysis” [1-8] is the name given to an approach to propagating uncertainty that works with intervals 

(upper and lower bounds) on the values of the uncertain variables, rather than sampling from explicit probability density 

functions of those variables. 
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 It will comprehensively analyze the variability (the aleatory uncertainty) in scenario outcomes. 

 It will methodically analyze the implications for the decision of the limitations of the current state of 

knowledge 

This is what we can get out of PRA, and how we use it. The methods and tools discussed in this guide 

are aimed at accomplishing these things. 
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2. RISK ANALYSIS TECHNIQUES 

2.1 Qualitative Risk Assessment Techniques 

As noted in Section 1, the phrase “qualitative risk assessment techniques” is here taken to refer to 

“thought processes that help us to identify accident potential, without explicitly generating and 

quantifying a comprehensive scenario set.” The terms “quantitative” and “qualitative” are not perfect 

descriptors of the distinction that we are trying to make; refraining from using numbers in fault-tree 

analysis does not eliminate its capability to generate, and even notionally rank, a comprehensive scenario 

set (e.g., based on the order of the minimal cut sets). By “qualitative,” we mean techniques such as 

HAZOP, which entail a great deal of thought, but do not typically involve explicit construction of a 

risk-model representation of a facility. 

There are multiple reasons to consider qualitative techniques: 

 Sometimes, qualitative techniques are adequate, by themselves, to support the current decision (for 

example, “design evaluation” can be a category of decision). 

 In practice, quantitative techniques need to start out with the insights provided by the qualitative 

methods: for example, identification and grouping of initiating events, and the development of event 

tree structure, need to be informed by insights from techniques such as HAZOP. 

For the latter reason, discussion of some qualitative techniques is provided in Section 2.2. The present 

section mentions a few qualitative techniques and suggests how to decide when they are sufficient. 

However, it is not the purpose of this section to provide detailed procedural guidance on those techniques 

as stand-alone applications. First, such a discussion would be beyond the scope of this guide; second, 

abundant material of that kind already exists elsewhere. 

Accordingly, the following subsections will mention selected tools with a view to showing how they 

address the above two considerations: when they suffice for decision-making, and how they fit into 

quantitative modeling. 

2.1.1 Comparison of Selected Qualitative Risk Assessment Techniques 

 Hazard and Operability Study. HAZOPs are performed in a group setting where a 2.1.1.1
facilitator leads a technically diverse group of experts through an exercise to identify hazards related to 

equipment or operations of a given system in a given operating mode. The design intent in each operating 

mode needs to have been specified in sufficient detail to support a sensible discussion of system behavior; 

in particular, nominal values need to have been specified for all important system parameters. The 

HAZOP discussion is then cued to analyze the system considering deviations of key parameters in one 

node at a time, based on applying guide words (e.g., high, low) to each parameter (e.g., flow) 

characterizing each node (e.g., high flow in Node 32, low flow in Node 32). For each such deviation, the 

group brainstorms possible causes and possible consequences of each cause, and then may consider other 

factors relevant to the decision context, including possible recommendations for design changes. This 

discussion implicitly addresses classes of scenarios, identifying them in terms of physical behaviors, 

many of which could be caused by any of several different component states (good or failed), and some of 

which could arise even if no components are nominally failed. A notional example of part of a HAZOP 

table is shown in Table 2-1. 
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Table 2-1. Example of Hazard and Operability Study. 

HAZOP of Drilling Rig’s Mud System 

Node Deviation Cause Consequence Mitigation 

Risk 

Ranking 

1 Low mud weight Improper materials Potential 

underbalance 

condition leading 

to well kick 

Proper vendor 

selection for 

materials 

Inspection of 

materials 

before use 

Verification of 

analysis 

Training 

Likelihood - 3 

Medium - 3 

…   

Incorrect mud 

weight analysis 

   

Human error    

2 High mud weight ….  …. …. 

…. … ….. …. …. …. 

 

 Failure Modes and Effects Analysis. Failure modes and effects analysis (FMEA) is a 2.1.1.2
component-based technique that breaks down a system into mechanical and electrical components and 

postulates how each component can fail and the effect the failure has locally and on the overall system. 

The result is given in tabular form, and documents, for each component, the ways in which it can fail, and 

the effects of those failures on the system. FMEAs also typically include how the failure can be detected 

and the mitigations that are in place to prevent or lessen negative effects. An FMEA may be extended to 

become a Failure Modes, Effects, and Criticality Analysis (FMECA) by adding an evaluation of the 

likelihood and consequences of each failure mode. An example of part of an FMEA is shown in Table 2-2. 

Table 2-2. Example of failure modes and effects analysis. 
Component 

Failure 

Mode 

Effects 

Detection 

Method Mitigation System Component Identifier 

Local 

Effect 

Next Level 

Effect 

System 

Level 

Effect 

Blowout 

Preventer 

(BOP) 

Blind shear 

ram (BSR) 

BSR Fails to 

close 

If well kick 

occurs, and 

BSR is 

required to 

shut in the 

well, the 

BSR will 

not close 

and seal 

If well kick 

occurs, the 

annulus 

will not be 

sealed  

If well kick 

occurs, 

formation 

fluid will 

rise past the 

BOP and 

potentially 

reach the 

drill floor 

If well kick 

occurs 

return mud 

flow will 

be high  

Remotely 

operated 

vehicle 

(ROV) 

intervention, 

lower marine 

riser package 

(LMRP) 

disconnect 

BOP BSR BSR Fails to 

open 

     

  …. ….      
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2.1.2 Other Decision Aids 

 Bowtie Diagrams. Bowtie analysis results in a graphical representation of a class of 2.1.2.1
scenarios that helps decision makers to reason appropriately. 

 The middle of the bowtie represents a hazardous condition that results when control of a facility is 

lost (e.g., an underbalanced condition). 

 The left-hand side develops causes that can lead to the hazardous condition and the controls in place 

to prevent its occurrence. 

 The controls (including physical barriers) are placed between the cause and hazard showing the 

failures that must occur for the hazard to occur. 

 The right-hand side portrays scenarios ensuing from the occurrence of the hazardous condition, 

culminating in consequences on the far right. The scenarios on the right are specified in terms of the 

functions (including physical barriers) that limit or mitigate the consequences potentially resulting 

from the hazard. 

 Each complete left-to-right path through a bowtie is a representation of a hazardous scenario to be 

considered.  

An example of the parts of a bowtie analysis is shown in Figure 2-1. 

 

Figure 2-1. Example of bowtie analysis diagram. 

 Risk Matrices. A risk matrix is commonly used to communicate perspective on the 2.1.2.2
significance of particular risks (scenarios, or classes of scenarios having something in common). 

Notionally, the matrix elements correspond to discrete categories of frequency and consequence, as shown 

in Figure 2-2; individual scenarios are assigned a likelihood and consequence level and placed on the 

picture, as illustrated by the numbered circular symbols. Symbol 1 refers to a risk having both low 

consequences and low likelihood. Its placement in the green region is a way of saying that it is no real 

threat; either the threat is inherently minimal, or a previously identified real threat has been successfully 

controlled by prevention or mitigation. Symbol 3 refers to a risk having high likelihood and high 

consequences, and its placement in the red region is a way of saying that this one needs to be addressed; it 

may be a showstopper. Symbol 2 refers to a risk that is in between. 
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Figure 2-2. Typical qualitative risk matrix. 

2.1.3 Strengths and Weaknesses of Qualitative Risk Assessment Techniques 

The qualitative risk assessment techniques described above, as well as others not mentioned here, 

provide a systematic approach to evaluating risk, albeit with different focuses for each method. HAZOP, 

FMEA, and other methods in this general category promote completeness, which is perhaps the single 

most critical issue affecting the performance and application of risk modeling. FMEA promotes 

completeness by considering (in principle) all failure modes for all components; HAZOP does this by 

considering (in principle) all physical deviations in all nodes. If design intent is properly specified, then 

anything that would be considered an accident must represent a deviation from design intent; so, by 

considering all deviations, HAZOP creates at least an opportunity for the group to identify any accident 

potential that is reasonably foreseeable in the context of any given deviation. Moreover, if a similar 

system has some operating history, we may have a sense of the likelihood of the deviations identified, and 

we may have at least some perspective on their consequences. 

However, neither FMEA nor HAZOP is particularly well suited to identification or ranking of 

scenarios that involve multiple failures, or combinations of failure events with off-normal initial 

conditions. This is not a fault of the thought processes involved; rather, for a system of even moderate 

complexity, it is impractical for humans to evaluate multiple-failure scenarios without constructing an 

explicit scenario model and processing that model by computer. Except for very simple systems, it is 

difficult to determine manually whether a system is single-failure-proof. In principle, FMEA tries to 

capture the cascading implications of each postulated single failure, but in practice, it is difficult to 

propagate such implications through the system without some sort of computer aid. 

Moreover, it turns out that on-the-fly assessments of probability are unreliable, and it is 

correspondingly difficult to estimate the likelihood of even moderately complex scenarios. The first 

large-scale quantitative risk analysis, the Reactor Safety Study, indicated that risk from light-water 

reactors was dominated not by the sort of postulated pipe rupture event that had dominated safety thought 

for generations, but rather by events initiated by much more mundane, almost everyday, deviations that 

are less severe but still challenge safety functions, and need to be dealt with appropriately. The high 

relative frequency of those challenges means that the reliability of the mitigating systems must be 

correspondingly high. 

2.1.4 When to Consider Probabilistic Risk Assessment 

This guide is not a policy document, nor is it meant to prescribe to facility operators precisely when 

they need PRA. The present subsection is meant to help management decide what sort of analysis result 

they need, based on what kind of decision is being made, and what sorts of risks may be in play. 
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PRA is essentially a high-end risk analysis for supporting certain kinds of decisions. Quite generally, 

the choice of techniques in a given decision analysis needs to be made in light of the stakes associated 

with the decision, the complexity involved in analyzing the possible outcomes, the uncertainties, the 

diversity of stakeholders involved, and perhaps other considerations. By “stakes,” we mean the magnitude 

of the consequences of accidents: fatalities or health effects, adverse environmental effects, significant 

expense, perhaps other adverse effects on the operating corporation. But high stakes alone may not justify 

the formulation of a detailed risk model. Selection of a particular course of action may need to be based 

on strong evidence of low accident likelihood, but if we can get that evidence without a risk model, then 

we do not need the model. 

As an example: if operation of a facility could result in severe safety or environmental consequences 

and involves new technology or new environments, quantitative risk assessment such as PRA should be 

considered, because that situation involves high stakes, uncertainty, and (potentially) complexity. 

Generalizing from that example, questions such as the following can be used to help determine when a 

PRA should be considered: 

 Is the facility design complex? 

 Could the consequence of failure of the facility or operation result in higher human or environmental 

consequences than similar facilities or operations? 

 Does the location of the facility or operation magnify the potential consequences of failure? For 

example, is the location in an area that is fragile, or contain a vulnerable population? 

 Have the potential recovery or mitigation measures for the proposed facility or operation been proven 

in similar environmental situations? 

 Has the facility or equipment been used in the proposed type of operation before? 

- How much experience has been gained? 

- What are the outcomes of the use? 

 Is the proposed facility or operation in a new or extremely challenging environment? 

 Are there any new hazards associated with the facility or operation when compared to facilities or 

operations performing similar jobs? 

 If the facility or operation is being applied in a similar environment with similar consequences to 

existing facilities or operations, are there any new aspects such as material, equipment layouts, types 

of equipment, or positioning systems that are untested? 

More generally, going back to Figure 1-1, in a situation with high stakes, complexity, uncertainty, and 

so on, it is unlikely that a qualitative model result will pass the robustness test in the decision diamond on 

the right of the figure. Correspondingly, the analysts will be directed to loop back through the figure, and 

choose tools that furnish the results needed to get past the robustness test. 

2.2 Quantitative Scenario Modeling: Probabilistic Risk Assessment 

When the decision has been made that the qualitative techniques do not offer the assurance necessary 

to make a decision, quantitative techniques (i.e., PRA) should be considered. The PRA ultimately presents 

a set of scenarios, frequencies, and associated consequences, developed in such a way as to inform 

decisions regarding the allocation of resources to accident prevention or mitigation. The implication of the 

analysis could be a change in design or operational practice, or could be a finding that the design is 

acceptable as is. Decision support in general requires quantification of uncertainty, and this is understood 

to be part of modeling and quantification. 
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For simplicity, the discussion below will be carried out as if the process of PRA model development 

were a once-through process. But this is not the case. In general, a significant amount of iteration will 

occur. The process of development is steered by whether the model is adequate for purposes of the 

decision being supported. Examples of consistency checks include: 

 Have we included events that are probabilistically significant relative to the current bottom line (or to 

other events that we have decided to include)? 

 Have we parsed events sufficiently to be able to quantify them accurately? 

 Are events parsed down to a level at which we can reasonably treat them as if they were independent? 

2.2.1 Elements of a Probabilistic Risk Assessment 

This subsection discusses the elements of a PRA logic model. Major elements of the logic are 

introduced and briefly described; each is then illustrated with respect to simplified examples. The 

examples emphasize the logic-based (event tree/fault tree) modeling approach; however, some of the 

concepts described in this section are also applicable to other modeling approaches such as simulation, as 

discussed in Section 2.3. 

A scenario contains an Initiating Event (IE) and, usually, one or more pivotal events leading to an end 

state. As modeled in most PRAs, an IE is a perturbation that requires some kind of response from the crew 

or one or more systems. Note that for an IE to occur, there may need to be an associated enabling event(s) 

that exists (e.g., for a fire IE to occur, there would need to be combustible material present). Then, the 

scenario end state(s) is defined according to the decisions being supported by the analysis, in terms of the 

kind and severity of consequences, ranging from completely successful outcomes to losses of various 

kinds. The pivotal events are then formulated so that specifying which ones occur in a given scenario (and 

which ones do not occur) is sufficient to determine which end state that scenario goes to. Pivotal events may be 

system failures, human errors, external events, or other things. 

The first major step in logic model development, Step 1, is to determine the boundaries of the analysis. 

First, based on the goals of the analysis and decisions to be made, what end state(s) are of interest? 

Examples include: 

 Loss of life or injury to personnel 

 Damage to the environment 

 Damage to, or loss of, equipment or property (including facilities and public properties) 

 Unexpected or collateral damage. 

Determination of which end states will be analyzed will determine the IEs and critical functions that 

must be included in the analysis. 

In many cases, in addition to the end state(s), the boundaries of the analysis would define what a 

successful end state would be. For instance, if the end state of interest was an uncontrolled release of 

hydrocarbons to the environment during exploration drilling, the success state may be defined in different 

ways depending on the goals of the analysis. If the goal is to evaluate the likelihood of an accident, the 

success end state may be defined as successful control of the well by the blowout preventer (BOP). If the 

goal is to evaluate the likelihood of a release as a function of the magnitude of release, considerations 

beyond the BOP must be taken into account, such as ROV intervention and well capping, and success 

becomes killing the well rather than successfully isolating the well by the BOP alone. 
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Step 2 involves determining what perturbations to the process, or IEs, present a challenge that could 

lead to the end state(s) of interest. There may be many IEs, some of which may be grouped together 

because the response is the same or very similar (e.g., a well kick due to the swab effect and a well kick 

due to an unexpected overpressure zone), or the IEs may require different responses (e.g., a well kick due 

to an unexpected overpressure zone and an inadvertent LMRP disconnect). Determination of the IEs will 

further determine the critical functions necessary to achieve a successful end state through development 

of event sequence diagrams (ESDs) that detail the response to the IE. Identification of IEs and ESDs /  

critical functions are discussed in more detail in Sections 2.2.2 and 2.2.3, respectively. 

Step 3 is building the event tree(s) that develops specific accident sequences leading to the end 

state(s) of interest, and is used, in conjunction with fault trees, to quantify the frequency of each end state. 

One event tree is usually developed for each IE or group of IEs. The graphical event tree starts with the 

IE, which is followed by a number of pivotal events determined through the accident progression / critical 

function assessment in Step 2. Each of the pivotal events has a potential success or failure path (although 

in some cases, more than a binary state is possible), and are usually ordered as a time sequence of the 

response to the IE. A detailed discussion of how event trees are built and function is found in 

Section 2.2.4. 

Step 4 involves pivotal event development. This generally involves development of models such as 

fault trees for each of the pivotal events in the event trees. Fault trees (discussed later in some detail) are 

models that start with a “top event” that is a failure or condition, and develop ways in which that event 

can happen, expressed in terms of “basic events.” There can be many basic events (the lowest level in the 

fault tree) and very many combinations of basic events that can cause the top event. The top-event model 

may comprise systems, human actions, environmental conditions, etc. The basic-event level is where the 

probabilistic data are used for quantification. Fault tree development and quantification are discussed in 

Section 2.2.5. 

With the development of the event trees and supporting fault trees, the logic model is completed. 

Quantification requires the development of data to populate the logic model and is discussed in Section 3. 

2.2.2 Initiating Event Development 

One of the first modeling issues that must be resolved in performing a PRA is the identification of 

accident scenarios that are related to the analysis goals. This modeling of “what can go wrong?” follows 

the systematic identification of accident initial causes, called initiators or Initiating Events (IEs), grouping 

of individual causes into like categories, and subsequent quantification of their likelihood. IEs may lead 

directly to adverse consequences; or, more typically, additional failures, equipment and/or human, are 

required in order to reach an adverse consequence. 

The identification of initiators can come from a variety of techniques, including those discussed in 

Section 2.1 (e.g., HAZOPs). Precursor events may also suggest the types and frequencies of applicable 

upsets. In addition to those, one may deduce IEs through the development of a Master Logic Diagram 

(MLD). 

The MLD is analogous to a fault tree. The top event of an MLD is a type of challenge to facility safety. 

The top levels are defined by functional events and/or external events (e.g., environment), and successive 

levels of the MLD are developed until the effect of the failure or event is the same as the block it feeds 

into. The goal is not only to support identification of a comprehensive set of IEs, but also to group them 

according to the challenges that they pose (the responses that are required as a result of their occurrences). 

IEs that are completely equivalent in the challenges that they pose, including their effects on subsequent 

pivotal events, are equivalent in the risk model. 
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A  useful starting point for identification of IEs in a MLD is a specification of “normal” operation in 

terms of (a) the nominal values of a suitably chosen set of physical variables and (b) the envelope in this 

variable space outside of which an IE would be deemed to have occurred. An example of this could be the 

difference in pressure between the wellbore and formation. There is an expected value for the pressure, 

and a deviation (increase or decrease) by a certain amount would not be “normal” and could result in a 

well kick. A comprehensive set of process deviations can then be identified, and causes for each of these 

can be addressed in a systematic way. 

Figure 2-3 shows an example of a MLD that might be used to identify IEs (not exhaustive) related to 

an uncontrolled release of hydrocarbons during normal drilling operations due to an excessive pressure 

differential between the wellbore and formation. 

For this example, the end state of an excessive delta P between the wellbore and formation is the top 

block. The next level down would be the sense of the excessive pressure, either high or low. Each of those 

paths may then be developed into individual events (e.g., swab effect), or categories (e.g., loss of mud column) 

that may have even lower levels. The level of the MLD in blue represents IEs that are challenges to the end 

state. 

Once an exhaustive list of IEs has been identified, the frequency of the IEs may be quantified. Note 

that IEs are developed as frequencies because they are on a per-unit-time or per-mission basis. Some IEs 

may be singular events, such as the frequency of a tropical storm in a particular geographical area and of a 

specific magnitude that could result in station-keeping challenges. Historical data are available and might 

be applicable to quantification of the frequency of this IE. Other IEs may be more complex and require 

further development before quantification can occur. IEs like inadvertent disconnect of the LMRP may 

require a fault tree to establish the causes or enabling events, which may then be quantified in the fault 

tree to estimate the IE frequency. Occasionally, some IEs may be conditional. For instance, severe 

environmental conditions resulting in a drift-off condition may be seasonally and geographically 

dependent. A severe environment may be more likely in some months (e.g., June–September in the Gulf 

of Mexico due to the potential formation of tropical cyclones). In this case, a temporary exploration 

operation may consider the time that is planned for the well, or in the case of a production platform, 

different initiators with different seasonal frequencies may be used to account for the IE dependencies. 

Quantification of an IE frequency is often done using a Bayesian approach, where operational data 

are evaluated to determine the initiator frequency, including the uncertainty on the frequency. This 

approach is described in Sections 2.2.5.9 and 3. 

2.2.3 Event Sequence Diagrams 

Once an exhaustive set of IEs has been established, accident progression, with the elements shown in 

Figure 2-4, can be modeled using an ESD and/or its derivative, an event tree. Both are used in PRAs to 

provide organized displays of sequences of system failures or successes, and human errors or successes 

that can lead to specific end states. A traditional accident progression analysis begins with an ESD, 

refines it, and then transforms it into an event-tree format. An ESD starts with the premise that some IE 

has occurred, and then maps out what could occur in the future if particular systems (or humans) fail or 

succeed in responding appropriately to the IE. The ESD shows event sequences (or pathways) leading to 

different end states. ESDs are a very useful step in developing logic models: ESDs permit the complex 

relationships among IEs and subsequent responses to be displayed more readily and understandably than 

do event-tree models. 
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Figure 2-3. Notional MLD related to candidate IEs. 
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.

 

Figure 2-4. The elements of an accident scenario. 
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In principle, one ESD is developed for each IE; however, responses to nominally different IEs in 

terms of system controls or mitigations may be very similar, or even the same. In such a case, a single 

ESD may be used to represent the accident progression for a set of IEs. The objective is to illustrate all 

distinct paths from the IE to the end states. 

An important attribute of an ESD is its ability to describe and document assumptions used in event 

trees. An ESD can be very detailed, depicting all sequences considered by the PRA analyst. When 

simplifying assumptions are used to facilitate event-tree construction or quantification, the ESD may 

furnish a basis for demonstrating why such assumptions are conservative, or (alternatively) 

probabilistically justified. 

Figure 2-5 depicts a simple ESD and its symbols. The Figure 2-5 ESD begins with an IE that perturbs 

the function being modeled from a stable state. The initial response to this perturbation is provided by 

System A, and if System A compensates for the IE, then  a successful end state results. 

If System A should fail, Systems B and C together can compensate for the IE. According to 

Figure 2-5, a successful end state ensues if Systems B and C start and operate satisfactorily. 

Failure of System B to start or operate results in End State 1. If System B is successful and System C 

fails to start or operate properly, successful crew intervention can still provide some mitigation for the 

accident and will result in a different end state (End State 2). If the crew efforts are unsuccessful, End 

State 1 results. 

Figure 2-6 is a more complex (but still relatively simple) ESD developed to evaluate accident 

sequences related to a well kick from drilling while drilling that results in an environmental release. Five 

different end state designations are used: WELLCONTAINED and 4 different environmental release end 

states. The WELLCONTAINED end state represents paths that result in no release or a relatively 

insignificant environmental release and the condition of the well is stable (i.e., no hydrocarbon flow) and 

contained. The environmental release end states represent paths where mitigating events have failed to 

prevent the accident from progressing, resulting in a release to the environment. A different end state 

designation is used for each path depending on the mitigation used for gaining control of the well (e.g., 

ROV intervention, and well capping). Even for a given path, the magnitude of the release can vary; for 

example, the magnitude of the release would depend on the flow rate of the well, and on the time it is 

flowing to the environment. If a relief well is needed to stop the flow, the resulting time delay will lead to 

a much larger release than if an ROV can intervene and stop the flow early on in the accident. 

In general, an ESD is based on the designer’s intentions. Figure 2-7 illustrates the process of ESD 

development. Since an ESD is success-oriented, the process begins (Step 1) by identifying the anticipated 

response to the IE, in this case a well kick while drilling, out to a successful outcome. For this example, 

the anticipated response is to first properly detect the kick before it reaches the BOP. If that occurs, then 

mitigating actions can take place to shut in the well. The first responses are shown as comments, stopping 

the rotation of the drill pipe and positioning the drill string. The mud pumps are then stopped before the 

annulus is closed by the annular or pipe ram. These first two actions are listed as comments because they 

affect other steps and will be accounted for in them. The next pivotal event is closing the annular 

preventer and opening the choke line. This isolates the well except for the path up the drill string if the 

drill string or another tubular is present in the BOP. With the annular successfully working, the next 

question would be if the path through the drill string is isolated. The drill string has a float valve that 

prevents back flow through the pipe when closed. The well is monitored for flow/pressure and if isolation 

is successful and no flow is present, the well is controlled, and a well kill program may be initiated. In 

order to keep the diagram simple, the well kill process is not shown here. 
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Figure 2-5. Notional ESD. 
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Figure 2-6. ESD for a well kick while drilling. 
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Figure 2-7. ESD development steps. 
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The next step (Step 2 in Figure 2-7) in developing the ESD is to consider what happens when failures 

occur. On the first block after the IE, if the kick is not detected prior to formation fluid reaching the BOP, 

then no other barriers exist to prevent the fluid already past the BOP from reaching the rig. A comment 

was placed in the ESD to show that the diverter may be used, but the diverter is for personnel safety and 

not for preventing environmental release. The purpose of the ESD is to estimate environmental release, 

which the diverter does not mitigate, so it is commented for later use if personnel safety is also analyzed.  

Once it is determined that that the rig will be impacted, the mitigating actions are assumed to start 

with an emergency disconnect from the well. This action sets mitigation in motion by operating the casing 

shear ram and then the blind shear ram (BSR). Successful operation of the BSR is all that would be 

required to seal the well, as the casing shear ram is assumed not to provide an effective sealing surface. 

The casing shear ram is operated first, however, in case there is any tubular present in the BOP that would 

prevent or inhibit closure of the BSR. In developing the sequence of events, it was noted that the casing 

shear and BSRs may not be effective for all tubulars, and if some specific types of tubulars such as drill 

collar or tool joints are present, the shear rams will not be able to perform their function. Failures due to 

nonshearables have the same effect as equipment failures in preventing the shear rams from closing, and 

will be accounted for in fault trees discussed later. If the BSR works, the end state is that the well is 

controlled, but a limited release has occurred. 

The second failure path is in response to a failure of the annular. In this case, the next step would be 

to close the pipe rams. The pipe rams will close around the pipe and close the annulus. There are a 

minimum of two pipe rams available; however, there may be more, and only one has to be successful to 

shut down flow from the well through the annulus. If the pipe rams fail to contain the well due to a 

system failure or possibly a tubular that is outside of the design of the pipe ram (e.g., drill collar), 

formation fluid will continue to travel up the annulus, and operating the shear rams is assumed to be the 

response. If the pipe rams are successful, then the drill string path is questioned to determine whether that 

path is isolated or not. 

Should both the annular and the pipe rams fail to close the annulus, the shear rams are questioned as 

in the emergency disconnect sequence, with the difference being in this case that it is a manual action, and 

not automated like the emergency disconnect sequence. Success of the BSR at this level is assumed to 

result in a successful containment of the well, with no (or very little) formation fluid getting past the 

BOP. Success then allows starting the well kill process. 

The last pivotal event in the top line is the pivotal event for the isolation of the drill string. If the float 

valve fails (for simplicity, no credit for a topsides Internal BOP [IBOP] was assumed), formation fluid 

can reach the rig. In this case, the flow will be significantly less than it would be if the annulus were open 

to flow, but there is still a risk for personnel on the rig, so the BOP shear rams are questioned. If the BSR 

is successful, the well kill process can be started. 

If the BSR fails to close and seal the well, formation fluid will continue past the BOP and pose a risk 

to the crew. The next action taken is to perform an emergency disconnect. This action will reattempt to 

close the shear rams using both the topsides hydraulics and the autoshear function. Success will result in 

little or no fluid reaching the drill floor, but the rig will be disconnected. This sequence stops here because 

the well is stable even though the rig is no longer attached. 
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Step 3 in Figure 2-7 further develops the ESD through the accident management stage out to an 

environmental release if the emergency disconnect is unsuccessful in closing the BSR. For simplicity, the 

events considered are only shown as a single block each. At this point in the ESD, the BSR has failed to 

close or seal, and a release will occur. The next possibility for mitigation would be attempting to 

manipulate the BOP with an ROV. If this is successful, a release will have occurred, but the magnitude 

will be somewhat limited due to the relatively short response time. Failure of the ROV (because of BOP 

condition, ROV failure, etc.) will lead to the next available option, which would be well capping. If well 

capping is unsuccessful, the only remaining option is a relief well. This is assumed to be successful; 

however, the release may vary significantly depending on how long the relief well takes to seal the well. 

The example ESD developed in Figure 2-7 analyzes end states corresponding to environmental 

release given that a well kick while drilling has occurred. A well kick may have different causes, such as 

those shown in Figure 2-3. The ESD can provide a common response in terms of events for similar 

initiators; however, the probabilities in the ESD may be conditional on the initiator. For instance, if the 

trip occurs with nothing across the BOP the probability of successfully closing the BSR may be different 

than if there is drill pipe across the BOP. When quantifying using event trees, these conditions must be 

accounted for, if we are to accurately estimate the probability of the consequences of interest. 

There also may be other IEs that could lead to an environmental release that may have different event 

sequences. For instance, an inadvertent LMRP disconnect would not have the detection or annular blocks 

on the top row in Figure 2-7 since the loss of communication with the BOP after the LMRP disconnect 

negates any actions by the driller. This may therefore require an ESD to be developed specifically to 

address those scenarios. 

2.2.4 Event Trees 

Once the accident progression paths are understood, the next step is to build event trees for scenario 

quantification. An event tree is a graphic that displays scenarios potentially resulting from a specific IE 

(or a group of functionally similar IEs). Event trees are derivable from ESDs, but event trees are one step 

closer than ESDs to generation and quantification of scenarios. An event tree distills the pivotal event 

scenario definitions from the ESD and presents this information in a tree structure that is used to help 

classify scenarios according to their consequences and perform a quantification of the scenarios. The 

headings of the event tree are the IE, which is the starting point, the pivotal events showing success or 

failure of mitigating/ aggravating events, and lastly the end state to bin the consequence of each scenario. 

Each individual path through the event tree is a “sequence.” The event-tree pivotal events are linked to fault trees, 

and the pivotal event name should match the corresponding fault-tree top-event description. This is because fault 

trees are tied to the pivotal events and are based on potential failures for that event. An example event tree based 

on the ESD is shown in Figure 2-8. The simple example in Figure 2-8 shows five sequences on the 

right-hand side of the event tree with three different end states: 

1. SUCCESS 

2. ENDSTATE-1 

3. ENDSTATE-2. 
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Figure 2-8. Example event tree. 

Each sequence resulting in the end state represents a combination of the IE and success and or failures 

of the pivotal events. For instance, consider Sequence 3 in Figure 2-9. 

 

Figure 2-9. Example event-tree sequence. 

Sequence 3 starts with the IE and results in ENDSTATE-2. The resulting sequence is a combination 

of successes and failures of the pivotal events along the path, yielding the expression: 

INIT-EV * SYSTEM-A * /SYSTEM-B * SYSTEM-C * /CREW 

In the above expression, INIT-EV represents the frequency of the IE, SYSTEM-A and SYSTEM-C 

represent the probabilities of failure of Systems A and C, respectively, as indicated by the downward step 

at each of those pivotal events in the event tree. /SYSTEM-B and //CREW represent NOT failure of 

SYSTEM-B (i.e., success of B) and NOT failure of CREW (i.e., success of Crew), indicated by the 

upward step in the event tree. 

Quantification will be discussed in more detail later. However, for purposes of illustration, the 

frequency of this event sequence can be quantified, assuming IE and pivotal event values of: 

 INIT-EV = 0.10 events per unit time 

 SYSTEM-A = 0.02 (failure probability of A given INIT-EV) 

 SYSTEM-B = 0.03 (failure probability of B given INIT-EV and failure of A) 

 SYSTEM-C = 0.03 (failure probability of C, given INIT-EV, failure of A, and success of B) 

 CREW= 0.05 (failure probability of CREW, given INIT-EV, failure of A, success of B, failure of C). 
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This yields the following as the frequency of occurrence of ENDSTATE-2 (in events per unit time): 

0.1* 0.02 * (1-0.03) * 0.03 * (1-0.05) = 5.53E-5 (2-1) 

From Figure 2-10, it can be seen that not all pivotal events are questioned in every sequence. 

Sequence 5 in Figure 2-9 does not question SYSTEM-C or CREW, because once SYSTEM-A and 

SYSTEM-B have failed, SYSTEM-C and CREW can no longer affect the end state. Dependences like 

this are typically accounted for when the event tree is developed, so that the resulting sequences are the 

minimal sets of pivotal events that must occur for that end state to occur. The expression for Sequence 5 

then becomes: 

INIT-EV * SYSTEM-A * SYSTEM-B. 

Substituting the values from above yields: 

0.1 * 0.02 * 0.03 = 6.0E-5 (2-2) 

 

Figure 2-10. Example event-tree sequence where not all pivotal events are questioned. 

When the pivotal events are replaced with fault trees, as discussed in Section 2.2.5, it becomes 

possible to express the event sequences in more detail, namely, in terms of basic events (e.g., component 

failures) rather than pivotal event names (failures of systems or entire functions). Depending on the size 

of the fault tree, each event-tree sequence can result in many cut sets or unique contributors that can cause 

the end state, since pivotal events such as SYSTEM-A may have many different ways to fail (e.g., pump 

failures, valve failures, and leaks). 

 Event-Tree Development. Developing an event tree usually begins with the ESD. From the 2.2.4.1
ESD in Figure 2-5, four pivotal events were shown: 

1. System A operates 

2. System B operates 

3. System C operates 

4. Crew intervention. 

The event tree in Figure 2-11 is the start at mapping out the ESD paths from the ESD from the IE to 

the end states. For clarity, event-tree development often follows the time sequence of events from the 

ESD. In Figure 2.5, the initial response after the IE is the System A status, so it logically is the second 

event in the event tree (converted to failure). “System B Fails to Operate” is questioned if “System A 

Fails to Operate” in the ESD, and if System B is successful, “System C Fails to Operate” is questioned. 

System B is listed after System A on the event tree because the status of System A must be known before 

System B is questioned. Similarly, System C is listed after System B because the status of System B must 
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be known. Lastly, Crew Intervention is only questioned if System C is failed, so it must be listed after 

System C. 

 

Figure 2-11. Step 1 in building example event tree. 

With the top line of the event tree laid out, the next step is to develop the branches for the pivotal 

events. From the ESD, System A operation directly follows the IE, so it must have a success and failure 

path as shown in the event tree. If System A is successful in the ESD, then the end state is success. The 

translation to the event tree in Figure 2.9 shows that none of the other pivotal events after System A 

operates needs to have a downward branch for failure, since they do not affect the scenario. The end state 

of the first sequence is labeled SUCCESS as in the ESD as shown in Figure 2-11. 

Once System A has failed (downward path on the event tree), the status of System B is questioned. 

The failure path of System B leads directly to a negative consequence labeled as ENDSTATE-1 

(Sequence 4 listed to the left of the End State column) since no other mitigation options are available with 

both System A and System B failing. If System B is successful, then the status of System C is questioned, 

with its success (up path) leading to a SUCCESS end state, as shown in Figure 2-12 in Sequence 2. 

 

Figure 2-12. Step 2 in building example event tree. 

The last step in building the event tree is to fill out the scenarios if System C fails after System A fails 

and System B is successful. The Crew Intervention event lessens the impact of the consequence per the 

ESD, and therefore the success path of the Crew Intervention event leads to a second, lesser, negative 

consequence labeled as ENDSTATE-2 in Figure 2-8. The failure of Crew Intervention leads to the same 

end state and if Systems A and B or A and C had failed, ENDSTATE-1. The final event tree is shown in 

Figure 2-8. 

The resulting sequences of events for each of the end state in the example (Figure 2-8) are: 

 SUCCESS: 

Sequence 1: Initiating Event Occurs * /System A fails to operate 

Sequence 2: Initiating Event Occurs * System A fails to operate * /System B fails to operate and 

/System C fails to operate 

 ENDSTATE-1: 
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Sequence 4: Initiating Event Occurs * System A fails to operate * /System B fails to operate * 

System C fails to operate * Crew intervention fails 

Sequence 5: Initiating Event Occurs * System A fails to operate * System B fails to operate 

 ENDSTATE-2: 

Sequence 3: Initiating Event Occurs * System A fails to operate * /System B fails to operate * 

System C fails to operate * /Crew intervention fails 

The objective is to develop a tractable model for the important paths leading from the IE to the end 

states. Generally, risk quantification is achieved by developing fault-tree models for the pivotal events in 

an event tree. This linking between an event tree and fault trees permits a Boolean equation to be derived 

for each event sequence. Event sequence quantification occurs when reliability data are used to 

numerically evaluate the corresponding Boolean equation. 
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Figure 2-13. Event-tree structure for well kick while drilling. 
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 Event-Tree Transfers. Figure 2-13 is a more complicated event tree corresponding to the 2.2.4.2
Figure 2-6 ESD to estimate the frequency of an environmental release in response to a well kick while 

drilling. In this example, there are many different scenarios modeled. Going back to the original identification of 

IEs and development of ESDs in Sections 2.2.2 and 2.2.3, it was noted that some IEs may have the same 

sequence of events and can use the same ESD/event tree, albeit perhaps with different conditional probabilities 

possibly assigned to the pivotal events. Other IEs may have completely different scenarios that are modeled, or 

may be partially the same. For initiators with common sequences of events, the common sequences may be best 

developed in a stand-alone event tree and used as an event-tree transfer. Listed on the right side of Figure 2-13 

under the end states is a transfer condition ACCIDENTMGMT shown as the symbol in Figure 2-14. 

 

Figure 2-14. Event-tree transfer. 

The ACCIDENTMGMT end state is a transfer to a second event tree. A transfer is used generally in 

the case when there may be common elements to multiple IEs or when an event tree gets very large and 

has distinct and different sequential processes. The event tree in Figure 2-6 is based on a well during 

drilling. Other IEs, such as a loss of position, may have different initial responses, but the responses after 

a failure of the BSR may be the same from the ESD in Figure 2-6. In the case of Figure 2-6, it was 

decided to use a separate event tree for the ROV intervention through relief well part of the ESD, in order 

to manage the size of the event tree and because other IEs may have that part in common. Accordingly, 

the ACCIDENTMGMT event tree is shown in Figure 2-15. 

 

Figure 2-15. ACCIDENTMGMT event tree. 

The first event, ACCMGMT, is simply the entry point from the previous event tree, and does not 

show up in event sequences. The sequences of events from the previous event tree will continue in the 

ACCIDENTMGMT event tree to the end state where the sequences will contain all IE and pivotal event 

information from the initial event tree and the transfer event tree. 

In Figure 2-13, the end states are WELLCONTAINED, which would represent success; where 

formation fluid has stopped flowing, the well is controlled, and a well kill program may be put in place. 

This end state is shown in Sequences 1, 2, 5, 8, and 11 in Figure 2-13. The remaining sequences are 

shown as the LIMITEDRELEASE end state or an event-tree transfer to the ACCIDENTMGMT event 

tree. These scenarios are associated with a failure of the BSR to contain the well; some formation fluid 

has risen above the BOP, and will reach the rig floor or environment. The sequences that have their end 

state transfer to the ACCIDENTMGMT event tree are longer duration events that end in that event tree 

with one of three end states possible. Each end state in ACCIDENTMGMT is different because the 

failures are time dependent in that an ROV intervention may happen earlier than well capping while the 

ACCMGMT

Accident Management 

Required

ROV

Unable to Contain Well 

with ROV due to BOP 

failure
CAPSTACK

Capping Stack Fails to 

Contain Well

# End State

(Phase - )

1 ROVCONTAIN

2 CAPSTACKCONTAIN

3 RELIEFWELLSEAL
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relief well is much longer term. Therefore, the duration of the releases will vary based on the type of 

successful intervention, and these are separated into distinct end states as shown in Figure 2-15. 

Ultimately, if no other well intervention techniques are successful, a relief well will be needed. 

The end states discussed do separate out, to some degree, the magnitude of release as a measure of 

consequences. It may be desired to provide more deterministic estimates showing probabilistically the 

magnitude of release expected (i.e., barrels of oil released) as a function of probability. This can be done 

through the use of simulation as described in Section 2.3. 

 Multibranch Event Trees. The pivotal events in the previously described examples are all 2.2.4.3
binary in that they only have paths related to success or failure of the event. In some cases, there may be 

multiple states or conditions that an event may be in, each with a different probability. Related to the ESD 

in Figure 2-6, there are different types of tubulars that may be present across the BOP when the shear 

rams are called on to work, depending on which operation is being performed (e.g., drilling or running 

casing). Since the casing shear and blind shear have different shearing capability, and there are some 

tubulars that are nonshearable, it is important to model the type of tubular present in the BOP at the time 

of shearing in order to achieve model accuracy. This may be done in the fault trees linked to the event tree 

(discussed in the next section), but fault trees addressing multiple possible configurations or conditions 

can be complicated. Another way to address multiple conditions is the event-tree structure using a 

multibranch node in the event tree, as shown in Figure 2-16. 

  

Figure 2-16. Multibranch node in an event tree. 

In Figure 2-16, the ESD from Figure 2-7 has been broken up into three operational conditions: 

nothing across the BOP, drill pipe across the BOP, and casing across the BOP. The first node in the event 

tree has three branches with each representing one of the conditions. Each branch of the event tree for this 

event can be assigned a probability of that event being true, and together they would add up to 1.0 since 

one of the conditions has to be true if the branches cover all possible conditions. Using this approach 

logically changes the downstream paths if the event tree is fully developed. For instance, if there is 

nothing across the BOP (top branch of first node) when containment is required (top branch), then the 

status of the pipe rams do not need to be questioned since they not capable of containment in this 

condition. A transfer event tree with specific sequences can be developed for each operational condition 

in the first node and a transfer end state can be used as shown in Figure 2-7. 
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2.2.5 Fault-Tree Modeling 

In many problems of practical interest, estimating pivotal event frequencies actuarially is not possible, 

even if the events occurred independently, because they do not happen often enough to permit useful 

statistical analysis. In general, pivotal events are not independent, so even if their frequencies (or 

probabilities) could be quantified actuarially, those results could not be combined straightforwardly to 

obtain a sequence frequency. Therefore, such events must be modeled synthetically
d
 (i.e., functional 

failures must be expressed in terms of system failures, system failures in terms of component failures, and 

component failures in terms of their causes) in sufficient detail that the lowest-level elements of the model 

can be quantified. Having done that, we then work our way back up to a synthetic estimate of pivotal 

event probability (or conditional frequency), conditional on its role in each scenario of interest, to finally 

quantify the top-event frequencies themselves. For PRAs, pivotal events are typically modeled using fault 

trees. More information, beyond what is in this guide, can be found in [2-1]. 

 System Success Criteria. Prior to development of the pivotal event fault trees, success 2.2.5.1
criteria are needed to define satisfactory performance in terms of the function included in the event tree. 

System success criteria impose operating requirements on the systems needed to successfully perform a 

particular function. The duration needed for that function determines the system operating time. Once the 

success criteria for a function have been established, top-event fault-tree logic is established from the 

Boolean complement of the success criteria (e.g., at least one of two pipe rams must fail to close and seal 

around the drill pipe when demanded). Success criteria should be clearly defined. All assumptions and 

supporting information used to define the success criteria should be listed in the documentation (i.e., what 

is considered to constitute system success needs to be explicitly stated). Some examples of success criteria 

are: 

 The BSR must close and shut in the well on demand 

 At least one of two pipe rams must close and seal around the drill pipe when demanded 

 At least four of six thrusters (two forward, two aft) must operate to maintain station-keeping under 

calm (specified) environmental conditions 

 At least six of six thrusters must operate to maintain station-keeping under extreme (specified) 

environmental conditions. 

The last two examples show that success criteria may be dependent on external factors and may need 

to be discretely modeled. In addition, again referring to the last two examples, the conditions may require 

specific thrusters to be available (e.g., the 4 out of 6 case may require 2 forward and 2 aft thrusters and 

any such specific details should be included as part of the success criteria). The development of success 

criteria into logic representations leans heavily on engineering analysis: physical simulation of system 

behavior in specified conditions, determination of time available for crew actions, and determination of 

the severity of the consequences associated with scenarios. Behind every logic model is another body of 

modeling whose results are distilled into the logical relationships pictured in the scenario model. 

Assignment of system states into “success” or “failure” depends on such modeling, as does classification 

of scenarios into consequence categories. 

                                                      
d. The term “synthetic” is used here to refer to modeling a complex event in terms of its contributors. For example, we 

“synthesize” an estimate of the probability of a complex event by combining estimates of the probabilities of its contributors. 
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 Modeling Pivotal Events. Complex pivotal events are usually modeled using fault trees. A 2.2.5.2
fault tree is a picture of a set of logical relationships between more complex (more aggregated) events, 

such as system-level failures, and more basic (less aggregated) events, such as component-level failures. 

Fault-tree modeling is applicable not only to modeling of hardware failures, but also other complex event 

types as well, including descriptions of the circumstances surrounding software response and crew 

actions. 

Pivotal events must be modeled in sufficient detail to support valid quantification of scenarios. As a 

practical matter, the model must reach a level of detail at which data are available to support quantification 

of the model’s parameters. 

Additionally, much of the time, pivotal events are not independent of each other, or of the IEs; the 

modeling of pivotal events must be carried out in such a way that these dependencies are captured 

properly. For example, pivotal events corresponding to system failure may have some important 

underlying causes in common (e.g., support systems). If the purposes of the PRA are to be served—if such 

underlying causes are to be identified and addressed—it is imperative to capture such dependencies in the 

scenario model. If pivotal events were known to be independent of each other, their probabilities could be 

combined multiplicatively, and there would be less reason to analyze them in detail. Because pivotal events 

often share functional support systems or other dependencies, their modeling in some detail is important. 

Functionally, a fault tree is a deductive logic model where a top event, usually a system failure, is 

postulated, and reverse paths are developed to gradually link this top event with all subsystems, 

components, software errors, or human actions (in order of decreasing generality) that can contribute to 

the top event, down to those whose basic probability of failure (or success) is known and can be directly 

used for quantification. Graphically, a fault tree at its simplest consists of blocks (e.g., rectangles or 

circles) containing descriptions of failure modes and binary logic gates (e.g., union or intersection) that 

logically link basic failures through intermediate-level failures to the top event. Figure 2-17 depicts a very 

simple fault-tree structure. 

 

Figure 2-17. Typical fault-tree structure and symbols. 

Fault trees are constructed to define all significant failure combinations, called cut sets that lead to the 

top event. The result of a Boolean reduction of the fault tree results in combinations of failures that are the 

minimum set(s) required to result in the top event and are called minimal cut sets. 
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Ultimately, fault trees are graphical representations of Boolean expressions representing the minimal 

cut sets. For the fault tree in Figure 2-17, there are three minimal cut sets: 

1. MUD-PMP-FTR-001 

2. MUD-PMP-FTS-001 

3. SYSTEM-A-PUMP-PWR. 

The corresponding Boolean equation for the fault tree is: 

SYSTEM-A = MUD-PMP-FTR-001  MUD-PMP-FTS-001  SYSTEM-A-PUMP-PWR (2-3) 

More detail on minimal cut sets and the Boolean reduction that are the results of the fault tree are shown 

in Section 4. 

 Fault-Tree Considerations. Developing a fault tree requires several considerations 2.2.5.3
including: 

 Identifying the objective and scope of the analysis 

 Determining the level of detail 

 Setting ground rules and naming conventions. 

The objective and scope of the fault tree, in the context of a PRA analysis, is normally defined when 

the event sequences are being developed by constructing the ESDs/event trees. The critical 

systems/events required to respond to an IE are assessed by the processes in previous sections, and 

incorporated as pivotal events in the event tree(s). These pivotal events become top events for the fault 

trees and should be worded in language specific enough to highlight the failure mode of the event being 

analyzed based on the success criteria. 

Simply labeling the top event as “System A Fails” is generally inadequate as System A may have 

different failure modes, and the objective of the analysis may only require specific ones to be modeled. If 

extraneous failures are included in the analysis that do not contribute to the analysis objective, the results 

of the analysis will be erroneous. For instance, the Emergency Disconnect on a mobile offshore drilling 

unit (MODU) has several functions, including separation of the LMRP from the BOP and triggering the 

autoshear function on the BOP. The separation from the well is performed in an emergency situation for 

personnel safety to allow the MODU to move clear of the well. The intent of the autoshear function is to 

seal the well and prevent a hydrocarbon release. From the ESD developed in Figure 2-6, the objective of 

the analysis is to estimate the probability of a hydrocarbon release, so when developing the top event, 

only the contributors to the failure of the autoshear function of the Emergency Disconnect need to be 

included, and the top event should be worded with that failure mode. 

Defining the scope of the analysis includes understanding the initial configuration/operation of the 

system being analyzed. The initial state of the system will describe which components are active, which 

are in a standby state, and any external conditions: for example, if failure of the BOP BSR is being 

analyzed, it is important to identify what operation is being performed, such as, e.g., running casing. The 

initial state of the components will determine the applicable failure modes for those components. A pump 

that is active may fail to operate while a pump in standby may fail to start or fail to operate. In cases 

where a component is in standby, the analysis may need to account for human error if manual activation 

is required for the system to start. 

The level of detail on the causes resulting in the top event for a PRA analysis should be based on the 

level at which data is available, the objective of the analysis, and the interdependencies between systems 

and operations. Data analysis is discussed in Section 3 in detail, but generally data can be found at the 

major component level (e.g., pumps, valves, electrical busses, etc.) from a variety of sources. Going 

beyond the level at which data are available may result in an unquantifiable fault tree. The objectives of 
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the analysis must also be considered in determining the resolution of the fault tree. For a fault-tree 

analysis of a BOP, the analysis could be performed at the yellow/blue pod level; or, if the analyst needs 

more detail down to the hydraulic component level in order to account for cross-connect ability, then that 

level may be modeled. Interdependencies, such as cross-connect capability, often drive the analysis down 

to the component level of detail. 

The last consideration is setting up modeling ground rules in order to ensure consistency across the 

PRA. Establishing a naming convention for fault-tree gates and particularly for basic events is necessary 

to be able to easily read cut sets and results from the analysis. Cut set naming schemes for the basic 

events may include: 

 The operation being performed (e.g., drilling) 

 The system the component belongs to (BOP) 

 The subsystem the component belongs to (e.g., yellow pod) 

 The component (e.g., shuttle valve) 

 The failure mode (e.g., Fails to transfer) 

 A unique identifier for the valve (usually from a drawing [e.g., SV01]). 

There is usually a character limit to the size of the basic event name, so abbreviations must be used 

for the above items such as BOP for blowout preventer, YPO for yellow pod, etc. As a minimum, the 

system, component, failure mode, and a unique identifier should be used when the naming scheme is 

developed. The overall naming scheme typically has a form like XXX-YYY-ZZZ-DDDDD, where XXX 

corresponds to the system, YYY is the component, etc. The abbreviations for each are developed before 

modeling begins with the exception of the unique identifiers. The failure modes for active components 

should correspond to active failures and not a failed condition. For example, for a valve that is initially 

open and fails when commanded to close, the best way to express the failure mode is “fails to close” 

rather than “fails closed.” In the “fails closed” case, it is not clear what the initial condition of the valve is; 

was the valve open and did not close when commanded? Or was the valve initially closed and failed in 

that state when commanded to open? Using the active word “to” in “fails to close” implies that the valve 

is initially open. 

A well-thought-out naming scheme for basic events is essential to avoid duplication of names for 

different events in different fault trees, particularly if multiple analysts are involved. If duplication does 

exist, the results produced for those events could be erroneous. Examples of typical naming conventions 

for failure modes and components are provided in Appendix A. 

There can be some special events that are adapted to the naming scheme used for components or they 

may have their own separate scheme. For example, environmental conditions do not have a system or 

unique identifier associated with them; therefore, these conditions have a separate naming scheme 

developed for just those types of events. 

Gate naming schemes may be more free form since gates are not shown in the results. However, a 

consistent naming scheme for gates is advisable, in order to ensure that each gate is named uniquely, and 

to avoid having gates with different logic and the same name in different fault trees. 

 Fault-Tree Symbols. Starting with the top event, the fault tree is developed by deductively 2.2.5.4
determining the cause of the previous fault, continually approaching finer resolution until the limit of 

resolution is reached. In this fashion, the fault tree is developed from the system end point backward to 

the failure source. The limit of resolution is reached when fault-tree development below a gate consists 

only of basic events (i.e., faults that consist of component failures, faults that are not to be further 

developed, phenomenological events, support system faults that are developed in separate fault trees, 

software errors, or human actions). The logic of the fault tree is represented by symbols used for fault 
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tree gates and basic events. The most common types of gates are shown in Figure 2-18, along with a 

description of the logic for each. Appendix B gives a detailed explanation of how each gate is used and 

quantified. Other gate types such as “NOR” or “INHIBIT” exist, but are rarely used. 

 

Figure 2-18. Commonly used fault-tree gates. 

The most common basic event types are shown in Figure 2-19 with a description of what they 

represent. 
 

 

Figure 2-19. Commonly used basic-event types. 

House events are often used in fault-tree analysis as switches to turn logic on and off or represent a 

condition. If used as a switch, their probability is usually quantified as unity or zero, they require no 

reliability data input. House events are also used to indicate conditional dependencies. 
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 Simple Fault-Tree Example. Using the steps described above, and going back to the 2.2.5.5
example event tree provided in Figure 2-13, a simplified example of fault-tree construction is developed 

for the “ANNULAR” event (second event after the initiator in Figure 2-13), which represents the failure 

of the annular preventer to block the annulus through the BOP. A simplified drawing of a BOP is shown 

in Figure 2-20. 

  

Figure 2-20. Simple BOP schematic. 

The top event of the fault tree, as stated in the event tree, is “annular preventer fails to close prior to 

the kick reaching the BOP, or pressure is beyond the design of the annular.” The wording of the top event 

implies that the initial condition for the annular preventer is “open,” and for success of this event, the 

annular preventer must close in order to prevent flow past the BOP. The simplified example diagram in 

Figure 2-20 shows that both the blue and yellow pods, used for control, are connected to the annular 

preventer. Either one is adequate to close the annular preventer and, in this example, it is assumed that a 

crosstie exists. To switch pods, a manual action by the Driller is required. 

To develop the next level down in the fault tree, the design and operation is reviewed. In this 

example, one of the pods must provide hydraulic fluid to the preventer, the preventer itself must close, 

and the pressure must stay below the design pressure of the annular. 

The failure of the annular preventer (BOP-CYL-FTC-AP01) is a singular failure point, so it is 

included under an “OR” gate, as shown in Figure 2-21. For the purposes of this example, the basic event 

related to the pressure of the annular has been left as an undeveloped event and is also included under the 

OR gate (ANNULAROVERPRESSURE). The failure of the pods includes multiple events and 

combinations of events that must fail to satisfy the top event. Therefore, an intermediate “AND” gate is 

needed to develop this event (BOTHPODSFAIL) further. The left input (YELLOWPODFAILS) to the 

AND gate is an intermediate gate for the operating yellow pod, while the blue pod (BLUEPODFAILS) is 

the standby pod and addressed on the right-hand side of the AND gate. For convenience, selected portions 

of the blue and yellow pods (gate names: BLUEPODCOMMON, YELLOWPODCOMMON), have been 

made transfer events to allow these portions of the fault tree to be used with the blind shear, pipe, and 

casing shear rams. The transfer for each is also shown in Figure 2-21. For each pod, an OR gate is used 

with the inputs broken down into the pods themselves and the hydraulic paths from the pods. From Figure 

2-20, the yellow path is aligned to the annular and the shuttle valves are in position to permit flow, so the 

only applicable failure mode considered is external valve leakage. Since the flow passes through both 

valves, both are included (BOP-SHV-LKG-SV01, BOP-SHV-LKG-SV02). 
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Figure 2-21. Basic fault tree. 
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The blue pod side needs to be treated differently because it is in a standby state. Because the pods are 

manually selected, a basic event for the Driller failing to select the blue pod after the yellow pod fails is 

added (BOP-HUM-ERR-XTIEPODS). On the hydraulic path intermediate event, a basic event for the 

crosstie shuttle valve failing to transfer to the correct position is added (BOP-SHV-FTT-SV01). From 

Figure 2-21, it should be noted that several events are included on both the yellow and blue pods, 

including the two shuttle valve external leakages and the common-cause failure (CCF) of both the yellow 

and blue pods. In a fault tree, events or gates may be used in multiple areas and when the fault tree is 

solved, the cut sets produced will be reduced and will not contain any duplicates. 

The result of solving the ANNULAR fault tree in Figure 2-21 is shown in Table 2-3. Using the logic 

of the fault tree, the inputs are reduced to the “minimal cut sets” that result in the top event. Each minimal 

cut set is a conjunction of conditions that are sufficient to cause the top event, and are necessary in the 

sense that if any of the constituent basic events were not true, the top event would not be true. In 

Table 2-3, Cut Sets 1 through 5 are all single basic events that would result in the top event, while Cut 

Sets 6, 7, and 8 are double failures. When the basic events are assigned values, a ranked listing can be 

produced. 

Table 2-3. ANNULAR fault-tree minimal cut sets. 

No. Cut Set Description 

1 BOP-SHV-LKG-SV01 Crosstie shuttle valve external leakage 

2 BOP-SHV-LKG-SV02 ROV shuttle valve external leakage 

3 BOP-CYL-FTC-AP01 Annular preventer fails to seal 

4 BOP-POD-FTO-YLBLCCF CCF of blue and yellow pods 

5 ANNULAROVERPRESS Well pressure over the design limit of annular 

6 BOP-POD-FTO-BLUE Blue pod (standby) fails to run 

 
BOP-POD-FTO-YELLOW Yellow pod (operating) fails to run 

7 BOP-POD-FTO-YELLOW Yellow pod (operating) fails to run 

 
BOP-SHV-FTT-SV01 Crosstie shuttle valve fails to transfer to blue pod 

8 BOP-HUM-ERR-XTIEPODS Driller fails to select blue pod after yellow pod failure 

 
BOP-POD-FTO-YELLOW Yellow pod (operating) fails to run 

 

 Modeling Common Cause. For complex systems with redundancy, CCF of like 2.2.5.6
components can be a major risk contributor. The specifics on how common cause is evaluated and 

quantified is shown in Section 3. This section discusses the options on how it should be represented in the 

fault-tree model as basic events. 

In Figure 2-21, the basic fault-tree example of the annular preventer, common cause was modeled for 

the blue/yellow pods designated by the basic event name ending in CCF. In this example, the basic event 

BOP-POD-FTO-YLBLCCF is included under the intermediate gates for both the yellow pod and the blue 

pod. Since the yellow and blue pods are under an AND gate, and both are required to fail in order for the 

top event to be true, this one basic event satisfies that condition. The result of solving the fault tree is 

shown in Table 2-3, where Cut Set 4 is a single common-cause event. It is logically possible to put 

common-cause events at or near the top of the fault tree, but repeating a common-cause basic event 

wherever the effect is appropriate, in this case with the yellow and blue pods, is the preferred method of 

modeling common cause, because it maintains the relationship of the basic event to the intermediate 

events. When fault-tree transfers are needed, this practice can be important to ensure accuracy in the 

model. For systems that have three or more redundant components / systems (e.g., dynamic positioning 

thrusters), this may lead to multiple common-cause events under each thruster as shown in Figure 2-22 
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(shown as stacked basic events for simplicity). In Figure 2-22, the Dynamic Positioning System (DPS) 

Thruster 1 has been filled out with all common-cause terms, and the appropriate ones involving Thruster 

1 have also been included for the other three thrusters. 

 

Figure 2-22. Common-cause modeling for a three of four system (only complete for Thruster 1). 

For highly redundant systems, PRA analysts sometimes include only a global common-cause term, 

one that accounts for all like components that are failing. This is done for simplicity and can be a good 

approximation, as the global common-cause terms are often the dominant contributor for CCF. If this 

approximation is considered appropriate, the single basic event can be included under each system as 

previously described, or as a single basic event at the same fault-tree level as the AND or N-of-M gate 

modeling the redundancy. 

In some special situations, failure of highly redundant systems or functions may involve specific 

combinations of equipment that are not symmetric. An example of this may be thruster operation where a 

vessel may have three forward and three aft thrusters, and the success criterion is that at least one forward 

and one aft thruster need to be available (i.e., loss of all forward or all aft thrusters causes loss of 

position). In this case, it may be appropriate to discard the common-cause terms that include both forward 

and aft thrusters (except for the global term) as they may not be large contributors, while the all-forward-

thrusters or all-aft-thrusters terms may affect the results. 

 Modeling Conditionality. The house event, shown in Figure 2-19, is used to show whether a 2.2.5.7
particular condition that affects the analysis is present or not. This is often used as a switch by the analyst 
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to turn a condition on (set the event probability to 1.0) or off (set the event probability to 0.0), in order to 

see what the effect is on the results. In other cases, there may be a condition that exists a fraction of the 

time, and the logic that satisfies the top event changes depending on whether the condition is present or 

not. A case like this was assumed for the BLIND_SHEAR_RAM_DR top event in Figure 2-13. This top 

event considers that a tool joint may be in the plane of the BSR some fraction of the time, requiring action 

by the Driller to mitigate if the BSR is to be successful. The condition of a tool joint being present is 

shown as a house event, since it is not a failure. The simplified fault tree for this event is shown in Figure 

2-23. 

 

Figure 2-23. Modeling conditionality in a fault tree. 

As can be seen in Figure 2-23, an intermediate event (AND gate)  models the condition that a tool 

joint is present, and the Driller fails to position the string to allow the drill string to be sheared by the 

BSR. The failure of the BSR itself, BOP_CYL_JAM_BSRDP, may occur whenever there is drill pipe 

across the BOP. 

When modeling these type of conditions, the analyst must ensure that the dependence is maintained. 

In this example, the failure of the BSR is always applicable when drill pipe is across the BOP, so it does 

not need to be conditioned further. In some situations, a different approach is needed. Consider a top 

event that models a loss of position, as in Figure 2-24. There are different success criteria depending on 

the weather condition (calm or high weather), as shown by the events requiring a different number of 

thrusters depending on the weather condition. In this case, the weather condition for each success 

criterion is modeled to include a house event with the probability of that condition. Because only one or 

the other weather condition can be applicable at any given time, the sum of the probabilities will be 1.0. If 

one condition occurs at a very small probability, it may be acceptable to not include the compliment. For 

example, if high weather occurs with a probability of 0.005, it may acceptable to assume calm weather is 

1.0 and not to include the house event if the effect on results would be negligible. 
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Figure 2-24. Modeling conditionality in a fault tree, loss of position. 

 Modeling Maintenance. Component failure is not the only type of component event that 2.2.5.8
may be used in a PRA. Some equipment is regularly maintained in a preventive maintenance program, or 

equipment can fail when it is operating and require corrective maintenance. When a component is out of 

service for maintenance, it can be logically equivalent to the component being failed in a PRA scenario, 

and this must be accounted for. Likewise, in some cases, scheduled testing of a component may make a 

component unavailable for its required purpose from a PRA perspective. 

Preventive Maintenance/Testing 

Most systems with redundancy on a drilling rig will have at least one unit of the system operating 

under normal conditions while there may be one or more units in standby in case of a failure. Since 

preventive maintenance and testing is scheduled in advance, unavailability due to these activities would 

not apply to an operating unit, and would only apply to the unit(s) in standby. Modeling in this case 

would result in an added basic event for the standby unit with the unavailability determined by the 

frequency of maintenance/testing and a distribution for the length of the activity. An example of this is 

shown in Figure 2-25 modeling two diesel generators, with Diesel Generator 1 operating and Diesel 

Generator 2 in standby. In the figure, basic event EPS_DGN_PMT_002 has been added to account for the 

preventive maintenance unavailability. 

LOSS_OF_POSITION_INIT

Loss of Position

LOSS_OF_POSITION_INIT2

Loss of position in calm 

weather

9.0000E-01CALM_WEATHER

Calm weather

1.3500E-02DPS-THR-FTR-01

Thruster 1 is unavailable 

during well operations

1.3500E-02DPS-THR-FTR-02

Thruster 2 is unavailable 

during well operations

LOSS_OF_POSITION_INIT3

Loss of position in high 

weather

1.0000E-01HIGH_WEATHER

High weather

LOSS_OF_POSITION_INIT31

One of two thrusters in 

unavailable during high 

weather

1.3500E-02DPS-THR-FTR-01

Thruster 1 is unavailable 

during well operations

1.3500E-02DPS-THR-FTR-02

Thruster 2 is unavailable 

during well operations
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Figure 2-25. Preventive maintenance modeling on a diesel generator. 

In some cases, there may be a system with redundancy that is all in standby and preventive 

maintenance may be applicable to all units at any time. This may present a problem in that preventive 

maintenance would not typically be scheduled on all units at the same time if a system were critical to 

operations. The fault tree is constructed in a fashion similar to the previous case, as shown in Figure 2-26. 

One of the cut sets results from solving this fault tree would be EPS_DGN_PMT_001 AND 

EPS_DGN_PMT_002. On the stated assumptions, this cut set would be spurious if left in the results, if, in 

reality, preventive maintenance would not be performed on both diesel generators at the same time. In 

order to deal with this situation, PRA software generally has options allowing the post-processing of 

results to automatically delete combinations of events that cannot occur. 
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Diesel Generator 2 Unavailable 

due to Preventive Maintenace
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Figure 2-26. Preventive maintenance modeling on diesel generators when both are in standby. 

Corrective Maintenance 

Corrective maintenance is modeled similarly to preventive maintenance, but is treated separately 

since it is unscheduled and the duration of the maintenance may be different. Figure 2-27 is similar to 

Figure 2-25 with the corrective maintenance event added. 

Appendix C provides more background on unavailability of systems, and shows how it can be 

estimated using Markov models. 
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DGMAINTSBY3
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Figure 2-27. Preventive and corrective maintenance modeling on a diesel generator. 

 Modeling Initiating Events. IEs may come from a variety of sources, and may 2.2.5.9
correspondingly require different modeling techniques. Typical categories of IEs that may occur, 

depending on what is being modeled, are equipment failures, human error, and external events. IEs are 

developed as frequencies rather than probabilities. For instance, IEs for an exploration well could be 

expressed as events per well, while for an ongoing production operation, events per year may be more 

appropriate. Each type of IE is discussed in more detail in the following sections. 

Equipment Failure 

Equipment failure, in the case of IEs, usually implies that a critical function has been lost, and a 

sufficiently severe perturbation has occurred that mitigating actions are required. Modeling of equipment 

failure for an IE is similar to that of mitigating events, but it does have some significant differences. 

Because the IEs are developed in terms of frequency, the exposure time for failure is usually significantly 

longer than just responding to an event. For an exploration well, this could typically be on the order of 

100 days. Because of the large time window for an IE to occur, equipment may fail and be repaired. 

Sometime this can occur multiple times as shown in Figure 2-28. 

DGMAINTCMT

Diesel Generators 1 and 2 

Unavailable

DGMAINTCMT2

Diesel Generator 1 (Operating) 

Unavailable

1.0000E+00EPS_DGN_FTR_001

Diesel Generator 1 Fails to Run

DGMAINTCMT3

Diesel Generator 2 (Standy) 

Unavailable

1.0000E+00EPS_DGN_FTR_002

Diesel Generator 2 Fails to Run

1.0000E+00EPS_DGN_FTS_002

Diesel Generator 2 Fails to 

Start

1.0000E+00EPS_DGN_PMT_002

Diesel Generator 2 Unavailable 

due to Preventive Maintenace

1.0000E+00EPS_DGN_CMT_002

Diesel Generator 2 Unavailable 

due to Corrective Maintenance



 

2-38  

 

Figure 2-28. Failures with repair. 

For systems having redundant components with all of them normally operating, the frequency of loss 

of that system is the frequency at which enough components fail to violate the success criterion: for 

example, all (or most, depending on the success criteria) of the redundant components are unavailable at 

the same time. Because all parts of the system are planned to be operating for the whole mission, any 

unavailability that occurs is due to random failure (i.e., no planned maintenance will remove the 

equipment from service). Unavailability, then, is the figure of merit used for redundant-equipment–

failure-based IEs. The formula to calculate unavailability of a component is: 

𝑃 = ({𝜆𝜏} {1 + {𝜆𝜏}}⁄ ) ∗ (1 − 𝐸𝑋𝑃 {− (𝜆 +
1

𝜏
) ∗ 𝑇𝑚}) (2-4) 

where: 

P = Unavailability of an operating component during mission time Tm when repair is possible 

𝜆 = Mean failure rate of the operating component 

𝜏 = Mean repair time for the component. 

Both 𝜆 and 𝜏 have uncertainty distributions associated with them, which must be included in 

estimating the unavailability of the component. With the unavailability calculated, the modeling can be 

done in a fault tree as with the mitigating systems. A simple example would be to consider a ship with 

two thrusters, both normally operating to maintain position, and both required to maintain station-keeping 

capability. Figure 2-29 shows a simple AND gate with both thrusters and their associated unavailabilities. 
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Figure 2-29. Loss of station-keeping due to both thrusters being unavailable. 

In the case just discussed, it was assumed that a loss of station-keeping capability only occurred if 

both thrusters were unavailable. Real conditions are often more complicated, and the number of thrusters 

required may depend on environmental conditions. If conditions were identified where one thruster was 

adequate to remain on station, then a more accurate model would account for the two conditions where 

one or both thrusters are actually required, as was shown in Figure 2-24. 

For a critical system with redundancy, where one or more components of the system are in a standby 

condition, a different approach is required. Preventive maintenance may occur on the standby component 

and must be taken into account along with the random possibilities of corrective maintenance and failure 

to start and run. The result is logically equivalent to the diesel generator fault tree in Figure 2-27. If the 

fault tree were developed as an IE, Diesel Generator 1 would have the entire mission time, while the 

standby diesel generator would have a mission time equal to the average total unavailable time for Diesel 

Generator 1. 

Human Error 

Human error can be a source of IEs in routine operations or off nominal conditions, such as severe 

weather, and is evaluated using human reliability analysis, Evaluating human errors in quantifying IEs is 

different from evaluating human errors in mitigating events. First, because IEs have the units of 

frequency, the number of opportunities to have the IE must be accounted for. If a well is being drilled in 

an area with frequent weather events and the response to weather is to align the ship properly or a loss of 

position may occur, the frequency of storms requiring the realignment must be accounted for. Other 

factors such as stress level and amount of time to complete a task factor into human reliability analysis. 

Human reliability analysis is discussed in more detail in Section 3. 

In some cases, it may be possible to estimate the human error frequency for IEs from existing data if 

the event has occurred before, or possibly from simulator data used for training if it exists. 

External Events 

Besides equipment failure and human error, external events may also cause IEs. “External events” 

refers to those events that do not initiate within the systems in the scope of the PRA. For an offshore 

drilling rig, external events may be man-made or natural. They present a challenge that could result in the 

consequence being assessed and may involve use of specialized models to assess their unique 

characteristics. Examples of external events are: 

 Severe weather 

 Helicopter crashes 
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 Ship collision 

 Mudslides. 

Because of the broad range of events, and diversity of data needed for these type of assessments, this 

guide will only provide a high-level overview of the approach needed to incorporate external events in a 

PRA. 

Many external events may occur with a range of magnitudes (wind speed, wave height, ship collision 

energy, etc.). The first step is determining whether there is a relationship between frequency and 

magnitude of an event. 

The effect on the facility is reviewed to determine what magnitudes of the external event are 

important to the PRA. For instance, wind and waves may cause a loss of position, but the wind and wave 

magnitudes required to cause a loss of position may vary based on the availability of the thrusters. In this 

case, magnitudes of wind and wave with the potential to cause a loss of position would vary from the case 

where no thrusters were available (e.g., a blackout condition on the rig), which would require a minimum 

wind/wave combination, to a case where all thrusters were functioning, which would require a maximum 

wind/wave combination. There may also be intermediate cases where some loss of thrusters has occurred. 

Once the magnitudes of interest are known, an analysis of the frequency of each is performed. Events 

having very small magnitudes (judged not to be risk drivers) can be screened out of the process as 

non-contributors. The remaining events and their associated frequencies are treated like other equipment-

based events in the PRA model. 

Events whose magnitudes are not frequency-dependent, such as helicopter crashes, may still need 

some analysis of frequency of visits to the rig, and the probability of damaging critical parts of the rig if 

the PRA consequence involves an effect on rig operations. 

2.2.6 Importance of Dependence in Probabilistic Risk Assessment 

Significant risk contributors are typically found at the interfaces between components, subsystems, 

systems, and the surrounding environment. Risk drivers emerge from aspects in which one portion of the 

design depends on, or interacts with, another portion, or the surrounding environment. Failures arising 

from dependencies are often difficult to identify and, if neglected in PRA modeling and quantifications, 

may result in an underestimation of the risk. This section provides an overview of the various types of 

dependencies typically encountered in a PRA of engineered systems, and discusses how such 

dependencies can be treated. 

 Definition and Classification of Dependent Events. Two events, A and B, are said to be 2.2.6.1

dependent if Pr( A  B) ≠ Pr( A) Pr( B). In the presence of dependencies, often, but not always, 

Pr( A  B) > Pr( A) Pr( B). In such a case, if A and B represent failure of a function, the actual probability 

of failure of both will be higher than the expected probability calculated based on the assumption of 

independence. In cases where a system provides multiple layers of defense against total system or 

functional failure, ignoring the effects of dependency can result in underestimation of the probability of 

failure. 

Dependencies can be classified in many different ways. A classification that is useful in relating 

operational data to reliability characteristics of systems is presented in the following paragraphs [2-2]. In 

this classification, dependencies are first categorized based on whether they stem from intended 

functional and physical characteristics of the system, or are due to external factors and unintended 

characteristics. Therefore, dependence is either intrinsic or extrinsic to the system. The definitions and 

sub-classifications follow. 

Intrinsic. This refers to dependencies where the functional state of one component is affected by the 

functional state of another. These dependencies normally stem from the way the system is designed to 



 

2-41  

perform its intended function. There are several subclasses of intrinsic dependencies based on the type of 

influence that components have on each other. These are: 

 Functional Requirement Dependency. This refers to the case where the functional status of 

Component A determines the functional requirements of Component B. Possible cases include: 

- B is not needed when A works 

- B is not needed when A fails 

- B is needed when A works 

- B is needed when A fails. 

Functional requirement dependency also includes cases where the load on Component B is 

increased upon failure of Component A. 

 Functional Input Dependency (or Functional Unavailability). This is the case where the 

functional status of Component B depends on the functional status of Component A. An example 

is the case where Component A must work in order for Component B to work. In other words, 

Component B is functionally unavailable as long as Component A is not working. An example is 

the dependence of a motor-driven pump on electric power. Loss of electric power makes the pump 

functionally unavailable. Once electric power becomes available, the pump will also be operable. 

 Cascade Failure. This refers to the cases where failure of Component A leads to failure of 

Component B. For example, an over-current failure of a power supply may cause the failure of 

components it feeds. In this case, even if the power supply is made operable, the components 

would still need to be repaired (or perhaps their breakers would need to be reset). 

Combinations of the above dependencies identify other types of intrinsic dependencies. An example 

is the Shared Equipment Dependency, when several components are functionally dependent on the 

same component. For example, if both Component B and Component C are functionally dependent on 

Component A, then Component B and Component C have a shared equipment dependency. 

Extrinsic. This refers to dependencies that are not inherent and intended in the designed functional 

characteristics of the system. Such dependencies are often physically external to the system. Examples of 

extrinsic dependencies are: 

 Physical/Environmental. This category includes dependencies due to environmental factors, 

including a harsh or abnormal environment. For example, sea states can affect the requirement for 

the number of thrusters needed to remain on station, or a fire in an engine room may disable 

multiple diesel generators. 

 Human Interactions. This is a dependency due to human-machine interaction. An example is an 

equipment failure due to a maintenance error. 

 Accounting for Dependencies in Probabilistic Risk Assessments. Standard 2.2.6.2
practice is to try to include the intrinsic dependencies in the basic system logic model (e.g., fault trees). 

For example, functional dependencies arising from the dependence of systems on electric power are 

included in the logic model by including basic events, which represent component failure modes 

associated with failures of the electric power supply system. Failures resulting from the failure of 

another component (cascading failures) are also often modeled explicitly. Sections 2.2.4 and 2.2.5 discuss 

event tree and fault-tree modeling, and how to incorporate intrinsic dependencies into a PRA model. 

Extrinsic dependencies can be treated through modeling of the phenomena and the physical processes 

involved. Examples are the effects of fire, sea states (wind/wave), etc., in the category of 

Physical/Environmental dependencies. A key feature of the so-called “external events” is the fact that 

they can introduce dependencies among PRA basic events. Explicit treatment of the external events such 

as fire may be a significant portion of a PRA study (see Section 2.3). 
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 Modeling Support Systems. Intrinsic dependencies are commonly found in developing a 2.2.6.3
PRA model, in the form of support systems. Support systems are those that provide power, flow, etc., to 

other systems where critical functions are being performed. They may also support other support systems. 

From the simple example in Figure 2-17, the lower-right-hand basic event is related to electric power that 

energizes the pump. The electric power system is a separate system and may provide support for many 

systems. Since a fault tree is typically detailed down to the component level where data exists, the fault 

tree in Figure 2-17 would normally have the electric power feeding the pump detailed down to the 

boundary of the analysis, which on an offshore rig would be the diesel generator(s) (and maybe the fuel 

and air intake systems) as shown in the simplified fault tree in Figure 2-30. 

 

Figure 2-30. Simple fault tree with support system modeled. 

From Figure 2-30, the electric power support is shown to be composed of the diesel generator, power 

bus, and the circuit breaker that feeds Mud Pump 1. The diesel generator and electric power bus would 

likely feed multiple items, and should be separated so that they can be modeled only once, and that model 

used where necessary. Figure 2-31 shows the proper way to model this situation. The common parts of 

the electric power system have been separated under a separate OR gate and generically labeled as power 

from Diesel Generator 1. If these components are needed in another fault tree, the OR gate can be made a 

transfer event as shown in Figure 2-32, and that transfer event can be used wherever needed. 

SUPPORTSYSTEM1

Mud System Fails to Operate

SUPPORTSYSTEM12

Mud Pump 1 Does Not Start

1.0000E+00MUD-PMP-FTS-001

Mud Pump 1 Fails to Start

SUPPORTSYSTEM122

No Electric Power to Mud 

Pump 1

1.0000E+00EPD-DGN-FTR-001

Diesel Generator 1 Fails to Run

1.0000E+00EPD-BUS-SHT-001

Electric Power Bus 1 Fails due 

to Short Circuit

1.0000E+00EPD-CBR-XFO-001

System A Pump Circuit Breaker 

Transfers Open

1.0000E+00MUD-PMP-FTR-001

Mud Pump 1 Fails to Run
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Figure 2-31. Support system (Diesel Generator 1 and the power bus) modeled so it can be used in 

multiple fault trees. 

 

Figure 2-32. Power from Diesel Generator 1 modeled as a transfer that will be used in multiple fault trees. 

SUPPORTSYSTEM2

Mud System Fails to Operate

SUPPORTSYSTEM22

Mud Pump 1 Does Not Start

SUPPORTSYSTEM222

No Electric Power to Mud 

Pump 1

1.0000E+00EPD-CBR-XFO-001

System A Pump Circuit Breaker 

Transfers Open

SUPPORTSYSTEM2223

Electric Power Support from 

Diesel Generator 1 Fails to 

Provide Power

1.0000E+00EPD-DGN-FTR-001

Diesel Generator 1 Fails to Run

1.0000E+00EPD-BUS-SHT-001

Electric Power Bus 1 Fails due 

to Short Circuit

1.0000E+00MUD-PMP-FTS-001

Mud Pump 1 Fails to Start

1.0000E+00MUD-PMP-FTR-001

Mud Pump 1 Fails to Run

SUPPORTSYSTEM2

Mud System Fails to Operate

SUPPORTSYSTEM22

Mud Pump 1 Does Not Start

SUPPORTSYSTEM222

No Electric Power to Mud 

Pump 1

1.0000E+00EPD-CBR-XFO-001

System A Pump Circuit Breaker 

Transfers Open

ExtSUPPORTSYSTEM2223

Electric Power Support from 

Diesel Generator 1 Fails to 

Provide Power

1.0000E+00MUD-PMP-FTS-001

Mud Pump 1 Fails to Start

1.0000E+00MUD-PMP-FTR-001

Mud Pump 1 Fails to Run
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 Dependency Matrices. Because system dependencies may get complex, PRA analysts may 2.2.6.4
map the system relationships prior to starting a fault tree, in order to ensure that all dependencies are 

properly accounted for, by developing a system dependency matrix. Figure 2-33 shows a simple block 

diagram of typical systems on a drill ship. The front-line systems are those that are used to accomplish a 

primary task such as drilling (mud, drawworks, etc.), and the “support” systems (electric power, cooling, 

etc.) are those that support the front-line systems, but do not directly perform a front-line function. 

 

Figure 2-33. Simplified system block diagram. 

Knowing the relationships in Figure 2-33, a dependency matrix may be constructed as shown in 

Figure 2-34. Using the dependency matrix assists the PRA analyst in ensuring the correct support system 

dependencies are accounted for. The added notes should detail any special situations such as crossties. 

Occasionally, “loops” occur in models of support systems. For instance, from Figure 2-34, the 

seawater system supports the fresh water system, which in turn supports the diesel generator. However, 

the diesel generator powers the sea water system and the fresh water system; explicitly putting all of this 

mutual dependency into a logic model creates a “loop,” which a logic code considers to be a modeling 

error (code generally will not produce cut sets from a model containing a loop).  

In general, from a modeling perspective, support systems should be modeled in the fault tree the way 

they support the front-line system being modeled. For a fault tree of the drawworks, based on this 

example, the first support systems included would be supporting electrical buses, then the diesel 

generators. The fresh water systems would be a support to the diesel generators, and the sea water 

systems would support the fresh water systems. In this case, the seawater systems are supported by the 

same electrical busses as the diesel generators and are already included in the model, so there is no need 

to create a loop in the fault tree for electrical busses that support the seawater system. The one missing 

element would be the electric power bus 1-2 and 2-2, which power the fresh water systems but not the 

drawworks. The specific electric busses 1-2 and 2-2 must be included separately with the fresh water 

system for this example. 
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Sea Water 

System 1 

Sea Water 

System 2 

Fresh 

Water 

System 1 

Fresh 

Water 

System 2 

Diesel 

Generator 

System 1 

Diesel 

Generator 

System 2 

Electric 

Power 

Bus 1-1 

Electric 

Power 

Bus 1-2 

Electric 

Power 

Bus 2-1 

Electric 

Power 

Bus 2-2 Drawworks 

Pipe 

Racker 

Sea Water 

System 1 
  A A         

Sea Water 

System 2 
  A A         

Fresh Water 

System 1 
    X        

Fresh Water 

System 2 
     X       

Diesel 

Generator 

System 1 
      X X     

Diesel 

Generator 

System 2 
        X X   

Electric Power 

Bus 1-1 
X          B  

Electric Power 

Bus 1-2 
  X         C 

Electric Power 

Bus 2-1 
 X         B  

Electric Power 

Bus 2-2 
   X        C 

Notes: 

A – Seawater Systems 1 and 2 are normally separated but can be crosstied so either System 1 or 2 can be used to cool one or both freshwater systems. 

B – The Drawworks can be used from either Electric Power Bus 1-1 or 2-1. 

C – The Pipe Racker can be used from either Electric Power Bus 1-2 or 2-2. 

Figure 2-34. Example dependency matrix. 
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2.2.7 Linking Fault Trees and Event Trees 

Once the event trees and their associated fault trees have been developed and linked, the qualitative 

part of the PRA model is completed. Fault trees and event trees are said to be “linked” when the fault 

trees for pivotal events and the event trees containing those pivotal events are tied together properly in the 

software being used to evaluate the accident sequence cut sets. The scenarios are formed from the basic 

events and fault-tree logic combined with the event-tree sequences and end states. The model can now be 

evaluated qualitatively to review individual scenarios. Table 2-4 shows a sample of the output from a 

model in terms of cut sets. 

Each cut set has the well kick IE, INIT-EV_DRILLING, followed by other basic events whose 

combined occurrence leads to the end state. Typically, all the events shown are failure basic events; 

however, success events are sometimes shown and indicated with “/” or other identifiers, depending on 

the PRA software being used. For computational reasons, success events are often approximated as 

having unit probability, because in many problems, the values of failure are small enough that “success” 

actually has essentially unit probability; this approximation can save a lot of computation. When failure 

probabilities become large, success terms must be computed more accurately in order to provide accurate 

results.  Figure 2-35 shows the path from the second and third cut sets, sequence 15-2, from the table 

below. 

Table 2-4. Sample cut sets from linked fault-tree/event-tree model. 

# 

Total 

Cut Set 

Displaying 5 Cut Sets 

(10551 Original) Description 

1 DRILLING: 14  

 INIT-EV_DRILLING Well Kick While Drilling 

 BOP-HUM-ERR-KICKDET Driller fails to realize a kick has occurred or does not take timely action. 

 LIMITEDRELEASE  

2 DRILLING: 15-2  

 INIT-EV_DRILLING Well Kick While Drilling 

 BOP-CYL-JAM-BSRDP BSR fail to close and seal after emergency disconnect. 

 BOP-HUM-ERR-KICKDET Driller fails to realize a kick has occurred or does not take timely action. 

 CAPPINGSTACKCONTAIN  

3 DRILLING: 15-2  

 INIT-EV_DRILLING Well Kick While Drilling 

 BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe properly before activating BSR. 

 BOP-HUM-ERR-KICKDET Driller fails to realize a kick has occurred or does not take timely action. 

 DP_TOOLJOINT_PRESENT Drill pipe tool joint is present. 

 CAPPINGSTACKCONTAIN  

4 DRILLING: 15-3  

 INIT-EV_DRILLING Well Kick While Drilling 

 BOP-CYL-JAM-BSRDP BSR fail to close and seal after emergency disconnect. 

 BOP-HUM-ERR-KICKDET Driller fails to realize a kick has occurred or does not take timely action. 

 CAP_STACK_FAILS Capping stack is unsuccessful. 

 RELIEFWELLSEAL  

5 DRILLING: 15-1  

 INIT-EV_DRILLING Well Kick While Drilling 

 BOP-HUM-ERR-KICKDET Driller fails to realize a kick has occurred or does not take timely action. 

 BOP-PRG-FLO-I02 Subsea manifold pressure regulator I02 fails low (Yellow). 

 ROVCONTAIN  
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Figure 2-35. Sequence 15-2 for Cut Sets 2 and 3. 

The Boolean reduction yields minimal cut sets: combinations of basic events that are each sufficient 

to cause the top event, and necessary in the sense that if one event is eliminated from a cut set, the 

remaining events are no longer sufficient to cause the top event. For instance, if the annular preventer 

fails due to the CCF of the yellow and blue pods, that common-cause failure will not appear in a minimal 

cut set together with a failure of the BSR to close or one of the shuttle valve failures. This is because the 

CCF of the pods has already guaranteed the failure of the BSR, and the failure of the ram or shuttle valve 

is inconsequential if the CCF has occurred. 

The final step in building the PRA model is populating the fault trees with data. Section 3 discusses 

the various methods needed to establish the most credible data for quantification. 
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2.3 Simulation 

2.3.1 Background 

In general, risk modeling is done in order to help a decision-maker appreciate what the future might 

hold, conditional on the choices available in the decision situation: perhaps a design decision whether to 

include a proposed safety system, or perhaps an operational decision whether the current facility 

configuration is safe enough. As stressed in earlier sections, the choice of techniques to use to model the 

risk depends on the level of rigor needed for the decision at hand, and on the particulars of the situation. 

But the general idea of rigor does not explicitly reflect all of the considerations that are involved. The 

technical ingredients of the analysis need to be considered. This section discusses modeling choices from 

the point of view of how hard we need to work, and what considerations we need to include, in order to 

adequately capture both the phenomenology aspects and the reliability aspects of a given situation. 

Section 2.2 has extensively discussed logic modeling. But even in situations where logic models are 

sufficient for the purposes at hand, they need to be informed by mission success criteria, which are 

obtained from phenomenological modeling. In addition, at the back end of a logic-based PRA model, 

consequences of the scenarios may need to be estimated and reported on some form of continuous or 

discrete scale with a large number of states. Thus, non-binary physical and phenomenological models, 

such as “casualty expectation models,” are also applicable and commonly found in this portion of a PRA. 

Moreover, as discussed below, logic models are not always sufficient.  

Phenomenological modeling involves physics-based analysis methods used to study and characterize 

complex, interactive systems where the progression of events is governed by physical processes. 

Phenomenological modeling techniques are used to complement and extend traditional reliability 

modeling methods by evaluating events that are driven by physical processes. Fault trees and event trees 

found in PRAs include IEs that are statistically generated. However, models of the pivotal events that 

represent the subsequent events following the initiators may need to address phenomenology. This is 

especially true when the sequence of events and processes depends upon the physical interactions of the 

system with its current surroundings. 

Engineering models based on the fundamental laws of motion, heat transfer, chemical reactions, gas 

dynamics, structural analysis, and other phenomena can be used to represent the conditions and state of the 

environment surrounding the system. These physical processes evolve as a function of time and system 

state, and are defined using mathematical equations that describe fluid flow, wave propagation, structural 

fatigue, combustion, and so forth. A failure is defined to occur when the system observes physical 

conditions that violate a subsystem’s specific physical limit or capacity. 

In phenomenological risk models, the interactions of a complex system are coupled through common 

physical parameters, and the subsequent responses and consequences are dynamically determined based on 

the current conditions of the system, its environment, and its design limits. Failure probabilities are then 

developed by calculating the range of current state conditions, and determining whether they violate a 

specific design limit or system threshold. 

Failure probabilities developed by this approach directly and explicitly connect the existing design 

definition to the physical failure mechanism, providing design teams with actionable engineering 

information. 

In some cases, a specific type of scenario that lends itself to modeling via physical and 

phenomenological models may be addressed as a special subject within a PRA, or often is treated as a 

complementary study. 

Summary 
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All models include both phenomenology and reliability, at least implicitly. Logic models to be used 

for reliability analysis are structured based on the results of phenomenological analysis (or, if analysis is 

lacking, expert judgment about the phenomenology); and when scenario phenomenology is simulated, the 

elements of the scenario that is to be analyzed (including facility configuration, initial conditions, whether 

components fail, and so on) are specified by the analysts based on some notion of what is either 

probabilistically significant or, perhaps, what we can take to be a bounding case, depending on the 

framing of the decision being supported. While both phenomenology and reliability are present in 

principle, one or the other is typically implicit, and their relative emphasis depends on the application. 

Therefore, the approach to analysis depends not only on what level of rigor is needed, but also on how the 

results are influenced by the ingredients of the situation being modeled. 

Accordingly, the following sections describe certain strengths and weaknesses of: 

 Classical logic modeling 

 Discrete-event / event-driven simulation 

 Simulation of phenomenology-driven time histories. 

Then we discuss current approaches to efficiently combining phenomenology and reliability, when 

we need to model both aspects with some care. Finally, examples are given of a phenomenology-driven 

analysis and of a discrete-event analysis. 

 Classical Logic Modeling. In general, logic models work to articulate the various sets of 2.3.1.1
conditions under which some undesired event (some adverse accident consequence) will occur. 

“Articulate” is used because the logic cannot, by itself, determine when a system or functional failure will 

occur. Rather, given a body of simulation results for scenario phenomenology,
e
 the logic model is 

structured by the modeler to yield a listing of ALL sets of conditions (system configurations) that 

correspond to functional failure, and ONLY system configurations that correspond to failure. 

As explained in earlier sections, this is done by using logic to keep track of a potentially large set of 

potentially complicated conditions, usually corresponding to combinations of component states. If a 

system comprises redundant functional trains, and engineering analysis shows that success of the system 

is assured if either train functions, then failure must be modeled as a logical “AND” of the failure of each 

train, failure of each train is modeled as failure of its segments, and failure of each segment as failure of 

its components, and failure of each component is modeled as failure of the component itself or failure of 

its various support systems (power, actuation signal, etc.). Incidentally, this level of detail sounds 

complex, but may not be, even if many components are involved, if the topology of the system is simple. 

On the other hand, if the topology of the system is complex (e.g., crossties between divisions or between 

divisions of support systems), the model may be complex in some sense, even if the number of 

components involved is not large. 

The structure of this logic is determined by mission success criteria: statements (based on engineering 

analysis, e.g., simulation) of what possible system configurations correspond to success. For a fluid 

system, success may be defined in terms of providing a particular flow at a particular pressure, which 

implies success of a certain number of pump trains. The above example of a system succeeding if either 

of its trains functions is an example of a mission success criterion. 

Typical Approximations in Classical Logic Modeling (Event-Tree / Fault-Tree Modeling) 

Mission Success Criteria 

                                                      

e. .… or a body of assumptions based on expert judgment of what simulation would say if it were 

performed … 
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Ideally, event trees are built with pivotal event headings that collectively serve to accurately 

determine success or failure of each event sequence, based on the mission success criteria. But in practice, 

the degree to which this ideal is realized varies considerably. In many models, some event-tree sequences 

labeled “success” will really be “failure” some fraction of the time, and vice versa, owing to such things 

as variations in initial conditions, event timing (discussed below), and heroic actions that could not be 

anticipated (e.g., Apollo 13). One could imagine trying to deal with these possibilities by adding pivotal 

event headings to the event trees in order to introduce the additional distinctions between sets of 

conditions leading to success or failure. One could distinguish different sets of initial conditions, different 

timing possibilities, and so on, and develop corresponding multiple versions of fault trees to model 

pivotal events conditional on different upstream conditions; but doing the work needed to specify detailed 

success criteria for all these possibilities begins to approach doing the work needed to carry out a fully 

simulation-based approach. 

Discrete Versus Continuous Variables 

In theory, logic modeling can address system state variables that are continuous in nature, such as 

degraded heat transfer, partial blockages of flow paths, and so on. Propositional calculus, as it used to be 

called, was meant to apply to propositions, which can be true-or-false statements about ranges of physical 

variables or time intervals. However, since the advent of fault-tree analysis, the tendency has been to map 

component failures onto Boolean variables. Modeling continuous-valued performance variables in logic 

models is not common practice, partly because for many systems, deviations in those variables are 

relatively insignificant contributors to assessed risk. For many systems, failure is dominated by failures of 

active components to change state when they are required to do so, which is natural to capture in Boolean 

variables having values of either “true” (the pump started up) or “false” (the pump did not start up). 

However, in some systems, it may be the case that something like a combination of partial blockage 

and degraded heat transfer would cause failure of the system. In such a case, trying to express the problem 

in terms of Boolean variables can be tried, but would result in writing out many combinations of 

conditions and still being unable to quantify them. Failure could be due to a little blockage together with a 

significant degradation in heat transfer, or a little more blockage and a slightly less significant degradation 

in heat transfer, etc. In fact, for a problem like this, we need to explore issue space with a series of 

simulations, in order to map out a “limit surface” delineating the settings of these variables corresponding 

to failure. [2-3] This will be discussed further below. 

Timing Issues 

Another approximation is introduced when we model “success” or “failure” in terms of whether 

something happens before some designated fixed time. For example, failure may occur in a particular 

model if a system fails to run continuously for 24 hours, or if emergency power is not restored in 4 hours; 

but the reality may be that in some situations, failure will occur sooner, and success may occur later, than 

such a specific cutoff. Treating this sort of situation in logic models is particularly thorny when two 

timing-related events appear “ANDed” together. Certain types of simulation are much better suited to 

modeling this kind of situation. 

Presumed Independence of Basic Events 

Boolean algebra works whether or not the propositions being manipulated are independent of each 

other. If failure of Pump A and Pump B logically causes system failure, then the truth of this does not 

depend on whether these two failures are correlated. The probability of this situation depends on the 

correlation, but the logic expression does not. 

Although some capability exists in some software implementations (GO) [2-4] to allow for 

dependency between basic events for purposes of quantification, most fault-tree codes essentially assume 

independence of basic events in the initial transformation of the logic input into disjunctive normal form 

(the cut sets). Users of such codes are tacitly expected to model correlations as separate basic events 
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(e.g., common-cause basic events), or perhaps post-process the cut set expression in various ways in order 

to render a more accurate representation of the scenario set. 

For example, consider modeling of recovery actions. In many models of facility safety, it is 

appropriate to consider the possibility that recovery can occur to prevent the top event, even after a 

combination of basic events has occurred that will cause the top event if recovery is not successful. Not 

modeling recovery may lead to an unrealistic assessment of top event probability; but in general, it is 

impractical to put recovery into the model a priori, because the probability of its success depends in detail 

on the specifics of each cut set. However, post-processing the cut sets can model recovery, because each 

cut set can be analyzed individually, and recovery of each cut set can be quantified conditional on the 

other basic events in the cut set. Putting a one-size-fits-all recovery event into the logic model a priori is 

likely to be wrong. [2-5] 

Another example of correlation occurs if certain events cannot occur together in a scenario. A 

post-processor can delete terms containing such impossible conjunctions. In analysis of regulated nuclear 

facilities, a popular application of this idea is to eliminate conjunctions of maintenance actions that, while 

not physically impossible, are not supposed to occur. Such combinations can be optimistically presumed 

to have vanishingly low probabilities, so these terms are deleted [2-5]. 

Actually, this “delete term” capability was formulated in order to avoid the need for “NOT” logic in 

modeling of accident sequences where it is necessary to model “Failure of System A and NOT Failure of 

System B.” One way to evaluate such a conjunction is to do exactly what the event definition says: form 

an expression for Failure of System A and an expression for NOT Failure of System B, and then compute 

the AND of these two expressions. An alternative way to get a generally good result (approximate but 

highly satisfactory in many situations) is to evaluate a logic expression for Failure of System A, and then 

delete from that expression any term that implies Failure of System B. This avoids the need to evaluate 

the “NOT” of System B failure, and then grind through evaluating the conjunction of that with Failure of 

System A. 

In short, a post-processing algorithm can examine each cut set, and replace particular conjunctions of 

basic events with different conjunctions of events to account for correlation or common cause, or add 

basic events corresponding to scenario-specific recovery actions. 

Strengths of Classical Logic Modeling 

Classical logic modeling is useful for: 

 Modeling topologically complex systems. For example, logic modeling is useful for capturing failure 

modes in systems that depend on support systems in a complicated way. Logic modeling has been 

known to point out system-level failure modes that are sufficiently obscure to be difficult to 

comprehend, even in retrospect. 

 Finding obscure combinations of component-level failure modes that would cause system failure, but 

might elude simulation-based approaches. In a complex facility that has, in principle, trillions of 

combinations of component-level failure modes, logic modeling may struggle to generate all of them, 

but can generate many combinations that are worth knowing. In particular, logic modeling can 

identify combinations having nominal probabilities that are sufficiently low that they will not 

typically show up in a simulation-based approach. For example, if we are simulating histories 

initiated by a particular event, and some possible histories have conditional probabilities on the order 

of 1E-4, we will need to simulate multiple tens of thousands of time histories in order to have a 

decent chance of seeing them; but a logic model should readily identify them. 

Classical logic modeling is approximate, of course, but for some purposes, it is adequate. The first 

plant-scale logic model, WASH-1400 [2-6], needed to be detailed enough to distinguish the risk 

significance of station blackout events from the risk significance of large loss-of-coolant accidents. These 
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scenarios differ significantly in frequency, and for the purpose of comparing their risk significance, the 

state of logic modeling practice at that time (mid-1970s) was adequate. For purposes of evaluating 

operating procedures, it was not adequate. A more recent analysis of the functional failure of “feed and 

bleed” showed that classical mission success criteria are deficient, and it is conceivable that 

corresponding plant procedures are deficient as a result. 

Weaknesses of Classical Logic Modeling: 

 Time dependence is difficult to model accurately. There are many ways in which this arises [2-5]. 

 Certain system degradations are difficult to map onto Boolean (discrete logic) variables. For certain 

types of systems, this is a large difficulty [2-3]. 

 Mission success criteria that are simple are likely to be approximations, and not necessarily good 

approximations [2-7]. 

 Discrete-Event/ Event-Driven Simulation. Suppose that we wish to estimate the 2.3.1.2
reliability of a system whose complexity makes it impractical to compute reliability either directly (for 

example, by evaluating a closed-form expression for reliability in terms of component reliability models) 

or using logic models. One common way of estimating complex system reliability is to simulate a large 

number of time histories, sampling over different instantiations of component failure time; if the sampling 

is done appropriately, then the reliability can be calculated in terms of the number of time histories in 

which the system succeeded, and the total number of time histories simulated. 

One way of simulating a time history is the following: 

1. Initialize the component states and the system clock. 

2. Increment the system clock by a small time step dt. 

3. If the current time exceeds the mission time, report the outcome (e.g., “system success”), and go to 

Step (1) to begin the next time history. 

4. For each component, sample a random number and compare it with λ *dt to determine whether that 

component fails in the current time step (λ being that component’s failure rate). Propagate the effects 

of all component state changes through the system configuration. 

5. If the system is now failed, return that result, and go to Step (1) to begin a new time history; if not, 

return to Step (2) to continue the present time history. 

Iteration continues until the entire mission has been analyzed, with appropriate tracking of reliability, 

availability, and performance-related metrics throughout the current time history. 

A number of time histories are simulated in this fashion, sufficient to provide adequate statistics for 

quantification of the metrics being analyzed. 

Note that in Step 4, it is possible in principle to condition each component’s λ on the time history of 

the entire system up to that point, including all of the states of the other components. For example, if we 

are modeling electronics that depend on room cooling, and room cooling has been lost in an earlier time 

step, the λ of the electronics can be conditioned on abnormally high temperature. However, this approach 

tends to force the time step to be small, which makes large problems (involving many components and 

long times) less feasible. 

Another way of developing time histories is the following. Instead of determining each component’s 

failure time by marching along the time axis one dt at a time, and waiting for a random number generator 

to decide which time step will yield a transition, sample once per component to determine its failure time 

directly from its failure time distribution. As illustrated in Figure 2-36, the random-number sampling 

process for this component furnished the random number 0.7, which yields a failure time of about 51. 

Carrying out a similar process for all of the aleatory degrees of freedom, and knowing all of the scheduled 
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events (like planned tests) a priori, makes it possible to immediately determine the individual variable 

(component) state transition times in this time history and the system-level state transition times. The 

reliability/ availability/ performance (RAP) metrics can then be assessed immediately in each time 

history. 

 

 

Figure 2-36. Sampling from the cumulative failure time distribution to determine a time-history-specific 

component failure time. 

This latter approach (most commonly called “event-driven” simulation) has been used for generations 

[2-8] to assess RAP metrics for very large-scale, very complex systems. It is much faster than evaluating 

RAP metrics over a long mission time by generating stochastic events in each small time interval dt. 

However, in this type of event-driven simulation, dependencies among components or between 

component behavior and current physical state are either not reflected or are modeled rather selectively.  

This is because each component’s failure time distribution is written down a priori, which does not reflect 

time-history-specific developments that might influence the component’s behavior in that time history. 

“Exhaustive” simulation, which generates state transitions (or not) in each time step dt, “knows” 

everything about past history and current state, and can, in principle, model a broad range of influences on 

the stochastic or deterministic state transitions based on this knowledge. However, this modeling 

flexibility comes at a high price in terms of execution time. 

Strengths of Event-driven Simulation 

Simulation of time histories based on sampling component failure times a priori can quantify 

reliability/ availability metrics efficiently, given: 

 Failure time distributions 

 Schedules for all scheduled events (planned events, such as scheduled maintenance) 

 Simple rules relating component states to train/ system/ function success. 
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Simulation of time histories based on incrementing one dt at a time, and modeling failures in that dt 

conditional on current conditions and on the entire scenario-specific history, can reflect all influences on 

component failure times. 

Weaknesses of Event-driven Simulation 

Extant approaches for doing this generally treat the component failure times as completely stochastic 

given their failure time distributions. Scenario-specific influences on component failure time distributions 

are not reflected. 

Exhaustive modeling is prohibitive for large systems with complex influences on component failure 

times. For smaller dt, a larger number of time steps need to be analyzed individually in order to simulate a 

long time, with a potentially high cost at each time step. 

 Simulation of Phenomenology-driven Time Histories. In this document, by 2.3.1.3
“phenomenology-driven,” we mean scenarios that are specified in terms of IEs, with subsequent 

evolutions determined entirely by physical laws, and not by discontinuous changes of component states. 

For example, consider rupture of a pressurized tank containing toxic or flammable fluid. The fluid is 

released under pressure and either disperses, with one set of adverse consequences, or ignites, culminating 

in a different set of adverse consequences; or perhaps a vapor cloud is transported for some distance and 

then ignites, with yet other consequences. The evolution of these scenarios is described in terms of sets of 

differential equations or partial differential equations that implement a particular physical model, and 

initial and boundary conditions; apart from initiation of the scenario, the modeling may not include 

anything stochastic, other than perhaps a source of ignition in some of the scenarios. 

If fire or explosion can cause damage to nearby personnel, equipment, or structures, then it is 

necessary to characterize that damage, including a range of possible outcomes. For some purposes, it may 

be adequate to simplify the analysis by assuming that personnel within a certain radius of the site of the 

fire or explosion will be injured or killed, and systems or structures within another radius of the fire or 

explosion will be put into a failed state. This would be typical of a bounding analysis, which is 

satisfactory for some purposes. For other purposes, it may be important to understand which initial 

conditions realistically lead to adverse outcomes. For this latter purpose, it may be necessary to analyze 

with a great deal more rigor: running the simulations with finer mesh and smaller time steps, and running 

many more time histories with different initial conditions, in order to understand where, in the relevant 

issue space, the risk lies. An analysis like this can easily overwhelm the computational resources 

available. 

The analysis becomes even more difficult if, in addition to analyzing the scenario consequences, the 

time evolution of the scenario is affected by phenomenology-induced damage to components along the 

way, especially if there is a potential for failure of mitigating systems, structures, or components, due to 

harsh environments created by the accident conditions. Real analysis of those effects may call for a 

multi-physics kind of analysis, either treating multi-physics within a single solver, or somehow tying 

together analysis tools that each specialize in one of the problem’s physics domains. 

Phenomenological models may be used to characterize unintended physical interactions among 

systems and/or between a system and its environment. Developing a strong understanding of 

system-environment interactions is extremely important because the environment is not a directly 

controllable system and may deviate unexpectedly. Therefore, system capabilities must be explored within 

a range of conditions, not just nominal conditions, in order to better understand potential vulnerabilities 

and the levels of safety margins required. Because phenomenological modeling is based on specific 

conditions and physical interactions, it can be used to characterize off-nominal system behavior and 

unsteady physical processes in addition to nominal, steady behavior. 
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Since the environment and system interactions studied in phenomenological methods are highly 

dynamic, traditional reliability methods based on statistical means and steady-state behaviors are not 

adequate to model these situations. Instead, physical modeling is needed to understand how potentially 

small off-nominal events or deviations can cascade into more serious failures; it is necessary to 

dynamically track the key conditions of the system over time. The physical models that are used to define 

the processes, whether they are steady or unsteady behaviors, are mathematical engineering models based 

on deterministic equations. 

Because physics-based models depend on the laws of nature, they are not heavily dependent on expert 

opinion or failure data developed through traditional reliability techniques or data sources, such as military 

handbooks, to determine expected outcomes. The mean time to failure cannot be evaluated using 

handbooks because the system state is constantly evolving and the outcome is dependent on these evolving 

conditions. Physics-based models also do not specifically address such things as human factors or human 

error since they are not governed by laws of nature. 

For scenarios having the characteristics mentioned above, a state-of-practice simulation of accident 

phenomenology is needed, along with an appropriate amount of verification and validation of the 

simulation.   

Potential Weaknesses of Phenomenology-Driven Analysis 

It may be impractical to scope the analysis to include everything important, because the solver may 

not be equipped to deal efficiently with all of the multi-physics and multi-chemistry, or with component 

state changes, which inject physical discontinuities into the analysis. 

Some simulations require inordinate amounts of time to specify the simulation inputs, which may 

require numerous flowpath dimensions and the geometry of the layout. 

 Combining Phenomenology and Reliability 2.3.1.4

Brute Force 

Combination of phenomenology and reliability is often difficult. Simulators are available that are 

efficient for simulating system phenomenology (more efficient for single-physics than for multi-physics), 

provided the effects of component failures can be imposed on the time evolution through boundary 

conditions. Also, simulators are available that are efficient for simulating time histories of systems whose 

component states can be represented in terms of discrete (logic) variables, provided that those component 

states are not influenced by phenomenology. But the general state of practice is not yet efficient for 

simulating combined effects.  The desired state of affairs is suggested below in Fig. 2-37. It is difficult to 

put phenomenology-dependent component state transitions into the phenomenology simulators that are in 

wide use, and then account for the effects of those component state transitions on the subsequent 

evolution of the phenomenology. Phenomenology solvers may respond badly if asked to deal with a 

discontinuity in the system whose phenomenology they are trying to simulate. 

 

Figure 2-37. Coupling between phenomenology and component failure times. 
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Heartbeat Model [2-9] 

Recently, a step was taken making it more feasible to include, in a single simulator, the effects of 

multi-physics, the effects of component state changes, and the effects of two-way coupling between 

component states and phenomenology. Details of the solver have been presented elsewhere. The general 

idea is that everything is handled by a single solver, which takes time steps that are determined by the 

most rapidly varying thing in the simulation, and/or impending near-discontinuities. Representative 

near-discontinuities are things like safety valve lifts, random component failures, or 

environmentally-induced component failures. These can be near-discontinuities because they can induce 

very abrupt changes in the physics of the evolving system. Refer to Figure 2-38, which notionally 

displays the time steps taken by the solver, as a function of what is happening. 

 

Figure 2-38. Notional time stepping based on activity. 

Part of the traditional difficulty of coupling component states to phenomenology has to do with the 

habit of regarding component failures as stochastic in nature, because reliability formulae superficially 

resemble formulae for radioactive decay. Arguably, as installed, each component has a specific effective 

lifetime under nominal operating conditions, due to how it was manufactured. But the actual lifetime of a 

specific component is unknown a priori; what is known about the lifetime is the distribution of failure 

times that characterizes the population of components from which the component is drawn.
f
 This is 

reminiscent of an old popular idea that each human is born with a certain number of heartbeats, varying 

from individual to individual, and when an individual’s quota is consumed, the individual dies.  A 

lifestyle that induces a high average heart rate will lead to an early death; a lifestyle that induces a low 

average heart rate will prolong life. The high-average-heart-rate situation is analogous to premature 

expenditure of those heartbeats leads to early death; and analogously, operating components in a harsh 

environment (for example, high temperature), which may hasten their demise as well. 

Within this picture, we can model a system of components can be modeled by specifying their 

nominal failure times as initial conditions of each simulated time history; then, within the time history 

                                                      
f This is reminiscent of an old popular idea that each human is born with a certain number of heartbeats, varying from individual 

to individual, and when an individual’s quota is consumed, the individual dies. 
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simulation, we model the changes to that destined failure time as the result of harsh environments. An 

example is illustrated in Figure 2-39. 

 

Figure 2-39. Example time history effect on damage. 

In Figure 2-39, two time histories are illustrated: one proceeds at nominal temperature, and the other 

includes a transient increase in temperature. When the temperature increases, damage (or effective 

component age) accumulates at a greater rate, and the component fails at an earlier time than it would 

have without the transient. In the figure, the horizontal dotted line at around 63 is the sampled, 

component-specific, time-history-specific failure threshold that amounts to an initial condition for the 

time history to be simulated; all else is determined mechanistically. 

The above approach was shown to be practical in an ab initio development of a thermal-hydraulic 

simulator [2-9], but that does not mean that any existing simulator can easily implement the idea. The 

present point is that it is feasible in principle to apply simulation in this way, and for some purposes, it 

may be necessary to do so. 

The Limit Surface [2-10] 

In the above subsections, we have tacitly assumed that the goal is to explore an “issue space” of 

phenomenological possibilities, initial and boundary conditions, and component states by simulating a 

sufficiently large number of time histories to be able to understand the kinds of conditions likely to lead 

to adverse consequences, and how likely they are. If we are able to simulate a sufficiently large number of 

time histories, we will be able to quantify the probability of adverse consequences, and understand what is 

driving that probability. However, it may be difficult to simulate enough time histories to obtain adequate 
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statistics on the probability of failure, or make useful statements about the conditions that lead to failure, 

which may limit the ability to prevent failures through proactive risk management. 

In order to help work around the difficulty of building up statistics, the “limit surface” idea was 

proposed around 1990 [2-11]. The point is that instead of sampling the issue space randomly, and doing 

the implied simulations, one drives the simulator in an adaptive, searching mode to determine the “limit 

surface”: the surface in the issue space that separates success from failure. Depending on the 

dimensionality of the problem, the savings in simulation time can be enormous. In exploring an event 

whose probability is on the order of 1E-4, multiple tens of thousands of runs will get a decent estimate by 

brute-force Monte Carlo; however, we may be able to determine the limit surface to sufficient accuracy in 

a few hundred runs, and thereafter trivially calculate the failure probability. 

A side benefit of this approach is that the limit surface does not depend on the probability 

distributions of the underlying parameters, so once the surface is determined, the sensitivity of 

performance to any perturbation in those distributions can readily be determined. The limit surface is a 

continuous-variable analog of the minimal cut sets, which likewise do not depend on basic event 

probability. 

 Summary. In the 1970s and 1980s, logic modeling was coupled to phenomenology 2.3.1.5
simulation, but only rather loosely. A logic modeler needs to begin with a statement of what success and 

failure mean in terms of component states. There is always some approximation involved in this. A highly 

precise statement of success of a cooling system will almost surely be wrong a small fraction of the time: 

when performance is near the threshold, a given flow may be success in some cases, and failure in others. 

Much of the time, this does not matter, but some of the time, it does. 

It has been found that judgment-based mission success criteria can be seriously off, for reasons of 

system complexity and scenario timing. 

For these reasons, some analysts consider that for high-end applications, a much more 

simulation-based approach to risk analysis should replace logic modeling. However, there are difficulties 

with this. Reliability can be analyzed well enough for many purposes, and phenomenology can be 

analyzed with some difficulty; but analyzing them together cannot be said to be the current state of 

practice. Moreover, as computational progress continues to be made and modeling improves, the more 

detailed inputs must still be developed to these models, and for some facility types, this development is 

already an enormous effort. 

The above sections have summarized why one would try certain approaches, and have cited recent 

progress in some areas. For now, managers and principal investigators need to consider carefully the 

intended application (and, arguably, the potential applications) of the analysis being undertaken, and 

formulate the analysis approach accordingly. 

2.3.2 Examples 

 Production Facility Fire/Explosion Probabilistic Risk Assessment. Fire and 2.3.2.1
explosion are potentially large risks on an offshore hydrocarbon production facility and can lead to 

personnel fatalities and/or significant damage. This section describes the basic steps that can be used to 

incorporate this type of phenomenological event into a PRA. 

System Familiarization and Hazard Identification 

Production facilities can be large and complex; therefore, the first step in the risk assessment is 

becoming familiar with the facility. Several common sources of data used for this are: 

 Piping and instrumentation diagrams 

 Process flow diagrams, including heat and material balances 
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 Safety Analysis Function Evaluation (SAFE) charts 

 General arrangement drawings for fixed platforms and typical drilling support rigs. 

Once the basic layout and process of the facility are understood, hazard identification is performed 

qualitatively. This may already exist in the form of a HAZOP analysis or other qualitative technique. The 

facility can then be further defined into sections of interest. This can be done by breaking the facility up 

into isolatable sections of the processing plant, which then allows the scenarios to be defined. 

Scenario Definition 

To develop the scenarios, an ESD may be useful. Figure 2-40 shows a simple example ESD for a 

single isolatable section of a facility. 

 

Figure 2-40. Example ESD for a process system leak. 

Each isolatable section is reviewed for the components included in that section. The failure frequency 

of these components is the basis for the IE frequency for a hydrocarbon leak, which can lead to a fire or 

explosion. 

Leak size is also important as it affects release rates, flame shape/length, and the duration of a release 

of a given section of the facility. The initial release rate depends on the on the section pressure and on the 

size of the hole, and on whether the fluid is gas, liquid, or two-phase. Multiple leaks sizes may need to be 

analyzed as the consequences may vary. The frequencies for all leak sizes must sum to the total failure 

frequency for the section. Leak sizes may be obtained from sources such as Lee’s Loss Prevention in the 

Process Industries [2-11]. 

Ignition probabilities, as well as the probability of an explosion if ignition occurs, can be found in 

sources such as [2-11]. Each section will have an associated hazardous inventory during normal operation 

and an operating pressure. Using commercially available software such as SAFER, TRACE
TM

, or 

PHAST, the section design information along with any other applicable information (e.g., site 

meteorology) may be used to determine consequence characteristics such as jet flame length, duration, 

and explosion overpressure as a function of distance. 

If no specific information is available to associate a leak with a particular direction, the direction may 

be taken to be random with each of the cardinal directions and up and down. Leaks with immediate 

ignition generally have high momentum and will not be significantly changed by wind effects. However, 

unignited releases should account for average meteorological conditions. 
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With the probabilities of ignition and explosion developed, the escalation event is evaluated. 

Escalation may result from failure to isolate a section resulting in a higher mass of hydrocarbons to 

release, or damage to other pressure vessels from flame impingement or explosion following the initial 

release. Failure to isolate a section is handled as an equipment failure and treated like other component 

failures in the PRA. The results of the phenomenological analysis may be used to determine the 

probability of escalation due to equipment failure following the initial release. Using the general 

arrangement drawings and output of the phenomenological analysis (e.g., flame length, duration of 

release, etc.), significant sources of hydrocarbons in the affected area can be analyzed to determine 

whether they are at risk. Using the duration and heat flux from the consequence analysis, an estimate can 

be made as to the probability of escalation due to other pressure vessel/equipment failures. 

The effect on personnel may be estimated by first determining the probability that personnel will be 

in an affected area. This can be done by reviewing operating and maintenance practices to determine the 

frequency and duration of maintenance in specific areas. Some areas, such as a control room, may be 

crewed at all times, while others may have a very low probability of having personnel in in them. Using 

the heat flux and overpressure results by location, immediate fatalities may be estimated. 
 

 Discrete Event Simulation 2.3.2.2

Section 2.2 described logic modeling, in which scenarios are described using logic (true / false) 

variables. By their nature, logic modeling techniques discretize the scenario descriptions, and thereby 

introduce approximations. For example, as illustrated earlier, event-tree end states are typically broadly 

specified in terms of categories, such as “large” and “limited” breaches of containment, rather than as 

specific magnitudes of breaches. It is possible to improve significantly on these approximations using 

discrete-event simulation (e.g., estimate the number of deaths or barrels of oil spilled). 

Discrete event simulation modeling is similar to developing an ESD, as discussed in Section 2.2. 

Time-ordered events are developed and decision blocks are used with probabilities that direct the flow of 

the simulation. In addition, events can be used to simulate variables such as well flow rates and recovery 

times. The model is run by performing numerous replications (i.e., thousands or more) using Monte Carlo 

sampling to obtain the probabilities or values at each decision event in the model, and the outcome of 

each replication is recorded. Obtaining a sufficient number of replications is important to ensure that all 

desired events get sampled and all reasonable paths in the model are exercised. For example, if a decision 

block has a probability of 0.01 (1 in 100), running 100 replications would, on average, only go down that 

path once. A single data point on a path would fail to show the range of outcomes for that path. 

In the example discussed below, the specified outputs are the duration and magnitude of a release 

based on the example developed in Figure 2-13. 

The model was developed as an extension to the event-tree model to estimate the environmental 

leakage based on the scenarios modeled. Three end states were used to determine what sealed the well 

and prevented further release; the ROV, well capping, or a relief well. In the case where well capping was 

used to stop flow, the cut sets were broken down further to try to estimate to determine whether the well 

cap could be applied to the BOP as it sat (in a vertical position), whether the BOP needed to be adjusted 

to a more vertical position (if it was tilted [i.e., did not completely disconnect when required]), or whether 

the well cap had to be applied to the wellhead. 

A discrete event simulation model for these conditions was developed, and is shown in Figure 2-41. 

There are three main types of blocks used in the model. The Assign block provides the value of a 

parameter such as well flow rate. The Decide block allows the direction of flow to be chosen from 

multiple potential paths, and the Process block captures the delay time in the successful method to stop 

the flow.
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Figure 2-41. Example discrete event simulation model. 
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The total probability of a large environmental release from the event-tree model is about 5.0E-5 with 

the probabilities for the three end states shown in Table 2-5. 

Table 2-5. End state probabilities for discrete event simulation model. 

 Probability Normalized 

P(ROV) 1.64E-06 0.0327 

P(WELL CAP) 4.39E-05 0.8793 

P(RELIEF WELL) 4.39E-06 0.0879 

 

The events are normalized to allow faster model runs than if the actual probabilities were used. Well 

capping was broken down further by assuming that the probabilities for a vertical BOP, tilted BOP, and 

using the wellhead were 0.9, 0.09, and 0.01, respectively. 

Distributions for well flow rates and timing of recovery events, such as when an ROV successfully 

manipulates the BOP, may be added as histograms as shown in Figures 2-42 and 2-43. 

 

Figure 2-42. Example histogram of probability versus well flow rate. 
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Figure 2-43. Example probability of success versus time for ROV. 

Results from the discrete event simulation, shown in Table 2-6, are a sample of results from model 

simulation replications showing the end event and parameters of interest, in this case the time to shut in 

the well and the number of barrels of oil released. The replication column shows on which model 

simulation run the event occurred. The results can be manipulated to develop different kinds of useful 

products such as frequency of exceedance (F-N) curves discussed in Section 4. 

Table 2-6. Discrete event simulation model results. 

Replication No. End Event (what stopped flow) Duration of Release (hrs) Barrels of Oil Released 

1 CAP with vertical BOP 223 199,660 

2 Relief well 3,089 2,474,100 

3 CAP with vertical BOP 260 211,600 

4 CAP with tilted BOP 519 906,370 

5 CAP with vertical BOP 183 313,090 

6 CAP with vertical BOP 176 157,030 

7 CAP with tilted BOP 367 619,310 

8 CAP with vertical BOP 288 251,220 

9 CAP with vertical BOP 148 174,060 

10 CAP with vertical BOP 164 240,840 
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3. DATA DEVELOPMENT/ QUANTIFICATION 

For purposes of this section, it is assumed that implementation of the processes previously described 

has developed a scenario set (a collection of scenarios leading to some consequence); their frequencies (or 

their conditional probabilities) and perhaps their consequences need to be modeled, and these activities 

need to be carried out with appropriate regard for uncertainty. Those tasks are the subjects of the present 

section. 

In order to claim a low level of risk, it is necessary either to be able to argue some kind of inherent 

safety (the situation is safe because of physical laws), or to develop a lot of evidence and argument 

regarding the performance of the engineered systems. In the latter case, the key claims are: 

 For the given design built and maintained according to specified engineering standards, and for a 

stated body of operating procedures and conventions, we have identified the scenarios that lead to the 

undesirable consequences, and the severity of their consequences. 

 We know how to quantify the scenarios: 

- We know what probabilities to assign to basic events, and to combinations of basic events; 

 We have analyzed what levels of reliability performance are achievable, and we know 

(modulo some uncertainty) what it takes to achieve them. 

 We have analyzed the potential for linkages between the occurrences of various combinations 

of basic events, and have factored this into our quantification (with uncertainty). 

 We commit to the measures needed to attain (and maintain, and assure, and demonstrate on an 

ongoing basis) the levels of reliability performance credited in the analysis. 

Event probabilities are not constants of nature. To assign a low failure probability to an engineered 

system or component is to take credit for an engineering accomplishment, and the results of the analysis 

are conditioned on that credit. The reason for reviewing operating experience as part of data development 

is not that past performance guarantees future performance; operating experience must be reviewed (1) in 

order to understand how past engineering investments have panned out in past performance, (2) as a 

sanity check of the numbers that we put into the analysis, and (3) as a guide to the insurance activities to 

which we need to commit if the risk estimates are to come true. 

3.1 Quantification of Individual Scenarios 

3.1.1 Quantifying the Probability/ Frequency of Individual Basic Events 

Historically, many analyses have implicitly treated PRA input numbers as if they were objectively 

significant: uncertain, to be sure, but having some objective (albeit unknown) value, analogous to the 

value of a physical constant, in the sense that it can be looked up. In some cases [3-1, 3-2] it is recognized 

that basic event probabilities may be, in effect, influenced by operating conditions at the subject facility. 

But in some applications, there seems to be a tacit supposition that a PRA result is an attribute of a 

facility. This interpretation is inappropriate. A more complete interpretation is the following. 

Assuming that: 

 The scenario model is structurally complete (it addresses all IEs, accounts for dependencies of all 

types, CCF, etc.) 

 The data used to quantify the basic events are relevant (the data are derived from components 

appropriately similar, with similar service conditions, maintenance practices, and ages), 
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 Operational practices similar to those to which the performance data pertain will be followed, 

we can reasonably hope to achieve performance comparable to the performance achieved by the facilities 

represented in the data base. 

In most cases, the basic event quantifications are not guarantees of future performance: they are 

simply PRA inputs, implicitly tied to a commitment of sorts (to the regulator) to an investment in 

achieving the level of reliability performance claimed. We will return to this topic in Section 4 of this 

guide. 

The following paragraphs discuss a range of techniques for basic event quantification: the values for 

frequency (or, as appropriate, probability) of such things as component failures, IEs, and human failures. 

Figure 3-1 shows the context of an existing scenario model to be quantified. The scenario model 

should have been developed down to a level of detail at which the basic events are largely independent. 

This makes it possible to directly apply data on how often the basic events occur. The present discussion 

focuses on events that can be quantified from experience. Common-cause failures and failure events that 

are driven by scenario-dependent conditions are discussed in other sections. 

 

Figure 3-1. Sources of information for quantification of basic event likelihood. 

The Scenario Context of Basic Events 

Normally, the scenario model is developed in such a way that each scenario can be expressed in a 

narrative way. For example: 

Initiating event IE1 occurred; the intended response was for Valve A to open, 

but Valve A failed to open; in that circumstance, Pump C was required to 

operate, and to continue to operate for at least 6 hours, but it was unavailable at 

the time. As a result of this chain of events, the top event occurred. 

Per this narrative, in order to model this scenario, the analyst needs to know how often IE1 occurs 

(the characteristic number of failures in a given time interval), the fraction of demands in which Valve A 

fails to open after IE1 occurs, and the fraction of time that Pump C is unavailable (under repair, for 

example) in the facility states within which IE1 can occur. These are only examples, but serve to suggest 

the kinds of information that we would hope to obtain from operating experience. 
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3.1.2 Estimating Parameters in Models for Basic Event Probability (Frequency) 

The two main phases of developing a PRA database are: 

 Information Collection and Classification 

 Parameter Estimation. 

Typical quantities of interest are: 

 IE Frequencies 

 Component Failure Frequencies 

 Component Test and Maintenance Unavailability 

 CCF Probabilities 

 Human Error Rates 

 Software Failure Probabilities. 

Developing a PRA database of parameter estimates involves the following steps: 

 Model-Data Correlation (identification of the data needed to correspond to the level of detail in the 

PRA models, determination of component boundaries, failure modes, and parameters to be estimated, 

such as failure rates, Mean Time To Repair (MTTR), etc. 

 Data Collection (determination of what is needed, such as failure and success data to estimate a 

failure rate, and where to get it [i.e., identification of data sources, and collection and classification of 

the data]) 

 Parameter Estimation (use of statistical methods to develop uncertainty distributions for the model 

parameters) 

 Documentation (how parameter uncertainty distributions were estimated, data sources used, and 

assumptions made). 

Typical PRA parameters and the underlying probability models are summarized in Table 3-1. We do 

not simply examine experience and directly obtain a number (for a probability or frequency) that we can 

use in our scenario quantifier; rather, we model the probability or frequency in terms of underlying 

parameters, which we seek to learn from experience. Typically, there is epistemic uncertainty about the 

values of these underlying parameters, and carrying this uncertainty through the quantification can be 

important. Parameters for which there is epistemic uncertainty are shown in bold in Table 3-1. 

Table 3-1. Typical probability (or frequency) models in PRAs and their parameters.

Basic Event Type 

Commonly Used Models of Basic 

Event Probability 

Data Required to Quantify 

Models 

Initiating event  

Poisson model for probability of 

seeing k events in time t: 

𝑃𝑟(𝑘) = 𝑒−λ𝑡
(λ𝑡)𝑘

𝑘!
 

where 

t: Mission time 

λ: frequency  

Number of events k in time t  

Component fails on demand  

Constant probability of failure on 

demand, or 

q  

Number of failure events k in 

total number of demands N  



Table 3-1. (continued). 
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Basic Event Type 

Commonly Used Models of Basic 

Event Probability 

Data Required to Quantify 

Models 

Standby component fails in 

time, or component changes 

state between tests (faults 

revealed on functional test 

only)  

Constant standby failure rate 

𝑄 = 1 −
1 − 𝑒−λ𝑠𝑇𝑠

λ𝑠𝑇𝑠
 

Ts: Time between tests 

λ s : Standby failure rate  

Number of events k in total 

time in standby T  

Component in operation fails 

to run, or component 

changes state during mission 

(state of component 

continuously monitored)  

Constant failure rate 

𝑈 = 1 − 𝑒−𝛌0𝑇𝑚 ≈ 𝛌0𝑇𝑚 

Tm: Mission time 

𝛌0 : Operating failure rate 

Approximation is adequate when 

𝛌0𝑇𝑚 ≪ 1 

Number of events k in total 

exposure time T (total time 

standby component is 

operating, or time the 

component is on line)  

Component unavailable due 

to test  

𝑄 =
𝑇𝑇𝐷

𝑇𝑆
 

TTD : Test duration (only in the case 

of no override signal)  

Ts: Time between tests  

Average test duration (TTD) 

and time between tests (Ts)  

Component unavailable due 

to corrective maintenance 

(fault revealed only at 

periodic test, or preventive 

maintenance performed at 

regular intervals)  

𝑄 =
𝑇𝑈

𝑇𝑇
 

TU: Total time unavailable while in 

maintenance (out of service) 

TT: Total operating time  

Total time out of service due to 

maintenance acts while system 

is operational, Tu, and total 

operating time TT.  

Component unavailable due 

to unscheduled maintenance 

(continuously monitored 

components)  

𝑄 =
𝜇𝑇𝑅

1 + 𝜇𝑇𝑅
 

TR: Average time of a maintenance 

outage [“Repair time”]. 

𝝁: Maintenance rate  

Number of maintenance acts r 

in time T (to estimate 𝜇)  

Standby component that is 

never tested. Assumed 

constant failure rate.  

𝑄 = 1 − 𝑒−𝜆𝑚𝑇𝑝 

Tp : Exposure time to failure 

m : Standby failure rate.  

Number of failures r, in T units 

of (standby) time  

Common-Cause Failure 

Probability  

1 through m, 

where m is the redundancy level  

n1 through nm where nk is the 

number of CCF events 

involving k components  

Note: Model parameters for which there is epistemic uncertainty are shown in bold in the center column of the table. Data 

needed to estimate those parameters are listed in the right-hand column. Other model parameters (such as “mission time”) are 

determined by the application. 
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Table 3-1 also shows the data needed to estimate the various parameters. The type of data needed 

varies depending on the type of event, and on how its frequency or probability is modeled. For example, 

probabilities typically require event counts (e.g., number of failures), and exposure or success data 

(e.g., total operating time). Other parameters may require only one type of data, such as maintenance/ 

repair duration for mean repair time distribution, and counts of multiple failures in the case of CCF 

parameter estimates. CCF parameters are discussed later in this section, while more information regarding 

maintenance unavailability can be found in Appendix C. 

Sources of Information 

Ideally, parameters of PRA models of a specific system should be estimated based on operational data 

of that system. As previously discussed, even past performance of that system does not guarantee future 

performance, for several reasons; but data from that system must be among the most relevant data 

available, unless something fundamental has recently changed. 

If system-specific data of adequate quantity, quality, or availability are lacking, the analysis has to 

rely on other sources and types of information. In such cases, surrogate data, generic information, or 

expert judgment are used directly or in combination with (limited) system-specific data. A survey of 

generic information sources is given in Appendix D. It bears repeating that in submittals to regulators, the 

submitter is accountable for the treatment on which the conclusions are based. 

Parameter Estimation Methods 

Bayesian methods of parameter estimation are widely used in PRA, while classical estimation has 

found only limited and restricted use in PRA. Accordingly, this section describes only the Bayesian 

approach to parameter estimation. 

Bayesian estimation incorporates information beyond that contained in the data sample; this is part of 

what makes Bayesian inference different from classical estimation. In practice, Bayesian estimation 

comprises two main steps. The first step involves using previous information to develop a prior 

distribution for the parameters of a basic event model, such as a failure rate. The second step of Bayesian 

estimation involves using additional or new data (e.g., recent performance history) to update the prior 

distribution, yielding a posterior distribution for the parameters of that basic event model. This step is 

often referred to as Bayesian updating of the prior distribution. This process is illustrated in Appendix E. 

For PRA applications, determining the prior distribution is usually based on generic data, and the new 

or additional data usually involve system-specific test or operating data. The resulting posterior 

distribution would then be the system-specific distribution of the parameter. If system-specific data do not 

exist, the applicability of other data or information would need to be evaluated and used. Refer to 

Appendices D and F. 

Within the standard approach, one formulates explicit state-of-knowledge probability distributions 

about uncertain variables, both epistemic and aleatory. If these uncertain variables are model inputs, and 

one has distributions for them, the distribution of the model output(s), or at least the “parameter 

uncertainty” portion (which, in principle, ought to be evaluated together with other uncertainties) can be 

inferred during quantification. Given a proper understanding of the uncertainties that affect the analysis, 

one can proceed to apply the standard machinery of decision-making under uncertainty. 

Within the standard Bayesian approach, information is gathered about epistemically uncertain 

variables (or hypotheses regarding which we are uncertain), including formulation of a prior distribution 

on the values of those variables (or the probabilities of the various hypotheses being true); those 

distributions are then updated as new information becomes available, and one’s state of knowledge is 

improved (sometimes). Bayes’ so-called theorem states that: 

𝑝(𝐻𝑖|𝐸) = 𝑝(𝐻𝑖) ×
𝑝(𝐸|𝐻𝑖)

𝑝(𝐸)
, (3-1) 
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where 

 Hi represents a hypothesis whose probability is to be updated with new evidence 

 p(Hi) is the prior probability of Hi 

 E represents a new piece of evidence 

 p(x|y) is the conditional probability of x given y 

 p(E), the prior probability of the observed evidence, can be written as

. 

Hereafter, this is referred to as the update rule. The update rule says that the conditional posterior 

probability of hypothesis Hi, given new evidence E, is equal to the prior probability of hypothesis Hi, 

multiplied by the conditional probability of observing E if Hi is true, divided by the total prior probability 

of observing E, calculated as shown in Eq. 3-1. In essence, new evidence that favors hypothesis Hi more 

than it favors hypothesis Hj (i.e., p(E|Hi ) > p(E|Hj )) tends to increase the posterior probability of 

hypothesis Hi relative to the posterior probability of Hj. In accordance with the update rule, new evidence 

causes the probabilities of the competing hypotheses to shift towards the implications of the new 

evidence. 

The above paragraph has been worded as if the hypotheses were discrete, but it also applies if the 

hypotheses are understood to refer to different possible values of a continuous variable. In the latter case, 

the quantity on the left is understood to be a posterior probability density function of that variable. 

The form of the update rule follows easily enough starting with the identity: 

𝑝(𝑎)𝑝(𝑏|𝑎) = 𝑝(𝑏)𝑝(𝑎|𝑏), for any a, b, 

dividing through by p(a), and identifying b with Hi and a with E. The identity, in turn, is easily understood 

with reference to a Venn diagram (Figure 3-2). 

 

Figure 3-2. Venn diagram.  

Examination of a few cases may serve to aid intuition. Suppose the hypothesis (Hi, in the earlier 

notation) is that an adverse condition is present in a particular system (“A” for “adverse condition is 

present;” refer to Figure 3-3), and we have gathered evidence E to help determine whether A is true. In 

Figure 3-3, the Venn diagram on the right illustrates the situation in which A and E do not overlap, so 

p(E|A) is zero, and the Bayes update rule will yield p(A|E)=0. The Venn diagram on the left illustrates a 

situation in which we see evidence E only if A is true, and putting the indicated numbers into the update 

rule will yield p(A|E)=1 (see Figure 3-4). The case in between – partial overlap of A and E – is where the 

practical applications lie. 

)()|()( i

i
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Among the important properties of the update rule is that as new evidence is gathered, the process can 

be iterated; for a given collective body of evidence and a given starting prior and a given likelihood 

function, the same conclusion will be reached, regardless of how the evidence is parsed and applied in 

subsets. An illustration of this is shown in Section 1.3 of Appendix E. 

 

Figure 3-3. Venn diagram illustration. 

 

Figure 3-4. The update rule. 

The preceding statement calls to mind a much stronger claim advanced by Bayesians: that all rational 

individuals will reach the same conclusion from a given body of evidence. 

The current state of knowledge depends not only on the evidence, but also the prior distributions of 

the variables, and the form of the likelihood function: how the evidence is interpreted in the context of the 

current application. There is a vast literature on formulating the prior, but, unfortunately, some of it 

shortchanges the topic of the likelihood function. Further work is needed in this area. 

Prior Distributions 

Prior distributions can be specified in different forms depending on the type and source of 

information as well as the nature of the random variable of interest. Functional forms widely used in PRA 

of engineered systems include: 

 Parametric (gamma, lognormal, beta): 
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- Gamma or lognormal for rates of events (time-based reliability models) 

- Beta or truncated lognormal for event probabilities per demand   

 Numerical (histogram, CDF values/percentiles) 

- Applicable to both time-based and demand-based reliability parameters. 

Among the parametric forms, a number of probability distributions are extensively used in risk 

studies as prior and posterior distributions. These are: 

 Lognormal () 

π(x)=
1

√2𝜋𝜎𝑥
𝑒

−
1
2

(
ln 𝑥−𝜇

𝜎
)

2

, 0 < 𝑥 < ∞, 

where and  are the parameters of the distribution. The lognormal distribution can be truncated 

(truncated lognormal) so that the random variable is constrained to be less than a specified upper 

bound. If this sort of truncation is applied, then the distribution needs to be renormalized. 

 Gamma() 

𝜋(𝑥) =
𝑥𝛼−1𝛽𝛼

Γ(𝛼)
𝑒−𝛽𝑥 0 ≤ 𝑥 < ∞ 

where a and b are the parameters of the distribution. 

 Beta() 

𝜋(𝑥) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 0 ≤ 𝑥 ≤ 1 

where  and  are the parameters of the distribution. 

Information content of prior distributions can be based on: 

 Previous system-specific estimates 

 Generic, based on actual data from other (similar) systems 

 Generic estimates from reliability sources 

 Expert judgment (see discussion in Appendix G) 

 Ignorance (i.e., lack of applicable data). 

In the above list, the first four situations lead to prior distributions that may reflect considerable 

uncertainty about the parameters, but nevertheless assign higher probability to some values than to others. 

In those cases, application of situation-specific information through the update process is supposed to 

drive the posterior distribution to where it needs to be (or perhaps merely to reduce the uncertainty spread 

in that distribution). In situations where essentially no a priori information exists, attempts are made to 

formulate a prior reflecting this ignorance. A common approach to this is using a prior distribution that is 

uniform (constant) over the interval of interest. Unfortunately, despite generations of work on how best to 

formulate such a prior, choice of prior distribution remains a research topic. If the current decision is 

sensitive to the tails of the posterior distribution, extra attention to this issue is warranted. 
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Selection of the Likelihood Function 

The form of the likelihood function depends on the nature of the assumed Model of the World 

representing the way the new data/information is generated: 

For data generated from a Poisson Process (e.g., counts of failures during operation), the Poisson 

distribution is the proper likelihood function: 

Pr(𝑘|𝑇, 𝜆) =
(𝜆𝑇)𝑘

𝑘!
𝑒−𝜆𝑇 (3-2) 

which gives the probability of observing k events (e.g., number of failures of a component) in T units of 

time (e.g., cumulative operating time of the component), given that the rate of occurrence of the event 

(failure rate) is  . The maximum likelihood estimate (MLE) of  is: 

𝜆𝑀𝐿𝐸 =
𝑘

𝑇
 . (3-3) 

It is also possible to combine data from several independent Poisson processes, each having the same 

rate. This applies to the case where data are collected on different but identical units of equipment to 

estimate their common failure rate. The failure counting process for each unit is assumed to be a Poisson 

process. In particular, suppose that the ith Poisson process is observed for time ti, yielding the observed 

count ki. The total number of event occurrences is 𝑘 = ∑ 𝑘𝑖𝑖 , where the sum is taken over all of the 

processes, and the exposure time is 𝑇 = ∑ 𝑡𝑖𝑖 . This combined evidence can be used in the likelihood 

function given above. 

For data generated from a Bernoulli Process (e.g., counts of failures on system demands), the 

Binomial distribution is the proper likelihood function: 

Pr(𝑘|𝑁, 𝑞) = (
𝑁
𝑘

) 𝑞𝑘(1 − 𝑞)𝑁−𝑘 (3-4) 

which gives the probability of observing k events (e.g., number of failures of a component) in N trials of a 

component (e.g., total number of tests of the component), given that the probability of failure per trial 

(failure on demand probability) is q. The MLE of q is: 

𝑞𝑀𝐿𝐸 =
𝑘

𝑁
 (3-5) 

Analogously to the Poisson processes discussed above, data from independent trials that are known to 

be exchangeable (they are known to be determined by the same q, because they are the same component 

or identical components operated similarly) can be pooled: the failures can be summed, 𝑘 = ∑ 𝑘𝑖𝑖 , and the 

demands can be summed, 𝑁 = ∑ 𝑛𝑖𝑖 , and the results used in the binomial likelihood formula given above. 

These cases are simple ones but are widely used. Likelihood functions for parameters of physical 

models are discussed in Appendix E. 

In some cases, resort must be had to a process that relies on experts to furnish input. This is discussed 

in Appendix G. 

Development of the Posterior Distribution 

Using the update rule in its continuous form, the prior probability distribution of a continuous 

unknown quantity, Pro(x), can be updated to incorporate new evidence E as follows: 

Pr(𝑥|𝐸) =
𝐿(𝐸|𝑥)𝑃𝑟0(𝑥)

∫ 𝐿(𝐸|𝑥)𝑃𝑟0(𝑥)𝑑𝑥
 (3-6) 
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where Pr(x|E) is the posterior or updated probability distribution of the unknown quantity x given 

evidence E (occurrence of event E), and L(E|x) is the likelihood function (i.e., probability of the evidence 

E, assuming that the value of the unknown quantity is x). Illustrative combinations of prior and likelihood 

functions as well as the form of the resulting posterior distributions are listed in Table 3-2. 

Table 3-2. Typical prior and likelihood functions used in PRAs. 

Functional Form of Prior 

Functional Form 

of the Likelihood 

Resulting Functional Form 

of the Posterior 

Lognormal Poisson Numerical 

Gamma Poisson Gamma 

Beta Binomial Beta 

Truncated Lognormal Binomial Numerical 

 

For certain cases in the above table, the posterior has the same functional form as the prior. This 

occurs when there is a certain similarity between the functional form of the likelihood and that of the 

prior. For example, the Beta prior is proportional to powers of q multiplying powers of 1-q, as is the 

binomial distribution used as the likelihood; and as a result, the posterior is likewise a product of powers 

of q and powers of (1-q). In such a case, the update can be done analytically (in closed form). When a 

combination of prior and likelihood has this property, the prior is said to be conjugate to the likelihood. In 

the case of non-conjugate priors (e.g., the case of “lognormal * Poisson => numerical”), resort must be 

had to numerical integration. 

Two commonly used conjugate distributions are listed in Table 3-3. The formulas used to calculate 

the mean of the resultant posterior in terms of the parameters of prior and likelihood functions are 

provided. 

Table 3-3. Common conjugate priors used in reliability data analysis. 

Functional Form of 

Prior Distribution, 

Mean Value 

Functional Form of 

Likelihood 

Posterior 

Distribution 

(same as prior) Mean of Posterior 

Beta (), 

𝑥𝑝𝑟𝑖𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ =
𝛼

𝛼 + 𝛽
 

Binomial (k, N) Beta 𝑥𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝛼 + 𝑘

𝛼 + 𝛽 + 𝑁
 

Gamma (); 

𝑥𝑝𝑟𝑖𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ =
𝛼

𝛽
 

Poisson (k, T) Gamma 𝑥𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝛼 + 𝑘

𝛽 + 𝑇
 

 

In the case of the conjugate priors listed in the above table, because we can compute the prior 

and posterior means in closed form, we can see how new data cause the mean to shift. In 

principle, a prior distribution should reflect a state of knowledge, not a choice made to avoid 

the need for numerical integration. This has always been true, but is even more emphatically 

true in light of the very real improvements in computational capability in recent generations. 

It used to be argued that given a halfway reasonable prior, updates with new data would 

eventually drive posterior distributions to where they need to be; but in practical applications, 

where there is not always a surfeit of new data, this ideal is not always realized. 
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Developing Prior Distributions from Multiple Sources of Generic Information 

When multiple sources of generic data are available, the data may not be able to be pooled, and the 

reliability parameter of interest (e.g., failure rate) will have an inherent variability. The probability 

distribution representing this variability is known as a population variability distribution of the reliability 

parameter of interest. Refer to Appendix F for a discussion of this point. 

 

 

3.2 Common Cause 

3.2.1 Common-Cause Definition 

Many years ago, it was realized that a significant fraction (up to around 10%) of component failure 

events involve failures of multiple components due to essentially the same cause; therefore, modeling 

multiple-failure events as if all failures were independent would seriously underestimate the number of 

multiple-failure events. Common-cause models are meant to address this issue. A formal definition of 

CCF is provided below: 

A common cause failure event is defined as the failure (or unavailable state) 

of more than one like component due to a shared cause during the system 

mission. Viewed in this fashion, common cause failures are inseparable from the 

class of dependent failures and the distinction is mainly based on the level of 

treatment and choice of modeling approach in reliability analysis. 

Essentially, common-cause failures are dependent failures whose root causes are not explicitly 

modeled in a PRA. Instead, we address this category of failures by introducing common-cause basic 

events in the PRA logic models. Components that fail due to a shared cause normally fail in the same 

functional mode. The term “common mode failure,” which was used in early literature and is still used by 

some practitioners, is more indicative of the most common symptom of CCFs (i.e., failure of multiple 

components in the same mode), but it is not a precise term for communicating the important 

characteristics that describe a CCF event. 

The following are examples of CCFs: 

 Stress corrosion cracking of multiple subsea bolts due to improper coatings 

 Multiple diesel generator failures due to improper maintenance 

 Multiple BOP hydraulic valve failures due to contamination. 

CCFs may also be viewed as being caused by the presence of two factors: a Root Cause (i.e., the 

reason for failure of each component that failed in the CCF event), and a Coupling Factor (or factors) that 

was responsible for the involvement of multiple components. For example, failure of two identical 

redundant electronic devices due to exposure to excessively high temperatures is not only the result of 

susceptibility of each of the devices to heat (considered to be the root cause in this example), but also a 

result of both units being identical, and being exposed to the same harsh environment (coupling factor). 

Since the use of identical components in redundancy formation is a common strategy to improve system 

reliability, coupling factors stemming from similarities of the redundant components are often present in 

such redundant formations, leading to vulnerability to CCF events. Therefore, CCF events of identical 

redundant components merit special attention in risk and reliability analysis of such systems. The 

remainder of this section is devoted to methods for modeling the impact of these CCF events. 

The process of identifying and modeling CCFs in systems analysis usually involves two important 

steps: 



 

3-12  

1. Screening analysis 

2. Detailed analysis. 

The objectives of the screening analysis are to identify, in a preliminary and conservative manner, the 

potential vulnerabilities of the system to CCFs, and to identify those groups of components within the 

system whose CCFs contribute significantly to the system unavailability. The screening step develops the 

scope and justification for the detailed analysis. The screening analysis typically provides conservative, 

bounding system unavailabilities due to CCFs. Depending on the objectives of the study and the 

availability of resources, the analysis may be stopped at the end of this step, recognizing that qualitative 

results may not accurately represent the actual system vulnerabilities, and that quantitative estimates may 

be very conservative. 

The detailed analysis phase uses the results of the screening step and through several steps involving 

the detailed logic modeling, parametric representation, and data analysis, develops numerical values for 

system unavailabilities due to CCF events. 

3.2.2 Preliminary Identification of Common-Cause Failure Vulnerabilities 
(Screening Analysis) 

The primary objective of this phase is to identify all important groups of components susceptible to 

CCF. At this stage, the point is not to miss potentially significant groups, so the screening is typically 

done in a simple and conservative way. Later analysis will undo any “conservatism” introduced at this 

stage. 

Screening is done in two steps: 

 Qualitative screening 

 Quantitative screening. 

 Qualitative Screening. At this stage, an initial qualitative analysis of the system is 3.2.2.1
performed to identify the potential vulnerabilities of the system and its components to CCFs. This 

analysis is aimed at providing a list of components that are believed to be susceptible to CCF. At a later 

stage, this initial list will be modified on quantitative grounds. In this early stage, deliberate conservatism 

is justified, because it is important not to discount any potential CCF vulnerability, unless there are 

immediate and obvious reasons to discard it. 

The most efficient approach to identifying common-cause system vulnerabilities is to focus on 

identifying coupling factors, regardless of defenses that might be in place against some or all categories of 

CCFs. The result will be a conservative assessment of the system vulnerabilities to CCFs. However, this 

is consistent with the objective of this stage of the analysis, which is a preliminary, high-level screening. 

From the earlier discussion, it is clear that a coupling factor is what distinguishes CCFs from multiple 

independent failures. Coupling factors are suspected to exist when two or more component failures 

exhibit similar characteristics, both in the cause and in the actual failure mechanism. Therefore, the 

analyst should focus on identifying those components of the system that share one or more of the 

following: 

 Same design 

 Same hardware 

 Same function 

 Same installation, maintenance, or operations personnel 

 Same procedures 
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 Same system/component interface 

 Same location 

 Same environment. 

The above list, or a similar one, is a tool to help identify the presence of identical components in the 

system and most commonly observed coupling factors. It may be supplemented by a system “walk-down” 

and review of operating experience (e.g., failure event reports). Any group of components that share 

similarities in one or more of these characteristics is a potential point of vulnerability to CCF. However, 

depending on the system design, functional requirements, and operating characteristics, a combination of 

commonalities may be required to create a realistic condition for CCF susceptibility. Such situations 

should be evaluated on a case-by-case basis before deciding on whether there is a vulnerability. A group 

of components identified in this process is called a common-cause component group. 

Finally, in addition to the above guidelines, it is important for the analyst to review the operating 

experience to ensure that past failure mechanisms are included with the components selected in the 

screening process. Later, in the detailed qualitative and quantitative analysis phases, this task is performed 

in more detail to include the operating experience of the system being analyzed. 

 Quantitative Screening. The qualitative screening step identifies potential vulnerabilities 3.2.2.2
of the system to CCFs. However, detailed modeling and analysis of all potential common-cause 

vulnerabilities identified in the qualitative screening may still be impractical and beyond the capabilities 

and resources available to the analyst. Consequently, it is desirable to reduce the size of the problem 

even further, in order to enable detailed analysis of the most important common-cause system 

vulnerabilities. Reduction may be achieved by performing a quantitative screening analysis. This step is 

useful for systems fault-tree analysis, and may be essential for ESD-level analysis, in which 

exceedingly large numbers of cut sets may be generated in solving the fault-tree logic model. 

In performing quantitative screening for CCF candidates, one is actually performing a complete 

quantitative analysis except that a conservative and simple quantitative model is used. The procedure is as 

follows: 

1. The component-level fault trees are modified to explicitly include a global or maximal CCF event for 

each component in every common-cause component group. A global common-cause event in a group 

of components is one in which all members of the group are assumed to fail. A maximal common-

cause event is one that represents two or more common-cause basic events (see Figure 3-5). As an 

example of this step of the procedure, consider a group composed of three mud pumps. According to 

the procedure, the basic events of the fault tree involving these components (i.e., “Mud pump 1 fails to 

run,” “Mud pump 2 fails to run,” and “Mud pump 3 fails to run,”) are expanded to include the basic 

event “CCF to run of mud pumps 1, 2, and 3,” which is defined as the concurrent failure of Pumps 1, 2, 

and 3 due to a common cause, as well as “MUD-PMP-FTR-001,” “MUD-PMP-FTR-002,” and 

“MUD-PMP-FTR-003,” denoting the independent failure of Pumps 1, 2, and 3, respectively. 
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Figure 3-5. Example use of a global common-cause term. 

2. Numerical values for the common-cause basic event can be estimated using a simple global parametric 

model: 

Pr(MUD-PMP-FTR-123CC ) = g Pr(MUD-PMP-FTR-001) (3-7) 

Pr(MUD-PMP-FTR-001) is the fail-to-run probability of the component (this would be the same for 

Pumps 2 and 3). Typical generic values for “g” range between 0.05 and 0.10, but more accurate 

generic values that consider different logic configuration (k-out-of-n) can also be used. Table 3-4 lists 

values of the global common-cause factor, g, for dependent k-out-of-n system configurations for 

success. The basis for these screening values is described in Reference [3-3]. Note that different g 

values apply depending on whether the components of the system are tested simultaneously 

(non-staggered) or one at a time at fixed time intervals (staggered). More details on the reasons for 

the difference are provided in Mosleh et al. [3-3]. 

The fault trees are now solved to obtain the minimal cut sets for the system or accident sequence. Any 

resulting cut set involving the independent failure of all three pumps will have an associated cut set 

involving the CCF of all three pumps. The significance of this process is that, in large system models 

or event sequences, some truncation of the cut sets on failure probability may be performed to obtain 

any solution at all; the product of independent failures is often lost in the truncation process due to its 

small value, while the (numerically larger) common-cause term will survive. The cut sets from the 

above mud pump example are: 

MUD-PMP-FTR-001, MUD-PMP-FTR-002, MUD-PMP-FTR-003 = 1.0E-12 (3-8) 

MUD-PMP-FTR-123CC = 7.0E-6 (3-9) 

This simple example shows the difference between the independent-failure cut set and the 

common-cause cut set. Because of its low probability, the independent-failure cut set could easily be 

truncated from the results, leaving no indication of the significance of this particular combination of 

failures. 

MUDSYSTEMFAILS

All three mud pumps fail to run

MUDPUMP1FAILS

Mud pump 1 fails to run

1.0000E-04MUD-PMP-FTR-001

Mud pump 1 fails to run

7.0000E-06MUD-PMP-FTR-123CC

Common cause failure to run 

of mud pumps 1, 2, and 3

MUDPUMP2FAILS

Mud pump 2 fails to run

1.0000E-04MUD-PMP-FTR-002

Mud pump 2 fails to run

7.0000E-06MUD-PMP-FTR-123CC

Common cause failure to run 

of mud pumps 1, 2, and 3

MUDPUMP3FAILS

Mud pump 3 fails to run

1.0000E-04MUD-PMP-FTR-003

Mud pump 3 fails to run

7.0000E-06MUD-PMP-FTR-123CC

Common cause failure to run 

of mud pumps 1, 2, and 3
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Table 3-4. Screening values of global CCF (g) for different system configurations. 

Success Configuration 

Values of g 

Staggered 

Testing Scheme 

Non-staggered 

Testing Scheme 

1 of 2 
0.05 0.10 

2 of 2 

1 of 3 0.03 0.08 

2 of 3 
0.07 0.14 

3 of 3 

1 of 4 0.02 0.07 

2 of 4 0.04 0.11 

3 of 4 
0.08 0.19 

4 of 4 

 

Those common-cause component groups that are found to contribute little to system unavailability or 

event sequence frequency (or which do not survive the probability-based truncation process, even with 

this quantification) can be dropped from further consideration. Those that are found to contribute 

significantly to the system unavailability or event sequence frequency are retained and further analyzed 

using the guidelines for more detailed qualitative and quantitative analysis. 

The objective of the initial screening analysis is to identify potential common-cause vulnerabilities 

and to determine those that are insignificant contributors to system unavailability and to the overall risk, 

to eliminate the need to analyze them in detail. The analysis can stop at this level if a conservative 

assessment is acceptable and meets the objectives of the study. Otherwise the component groups that 

survive the screening process should be analyzed in more detail, according to the Detailed Analysis 

phase. 

3.2.3 Detailed Analysis 

Proper treatment of CCFs requires identifying those components that are susceptible to common 

causes and accounting for their impact on the system reliability. The oldest, and one of the simplest 

detailed methods for modeling the impact of CCFs, is the Beta-Factor model [3-4]. 

To illustrate the way the beta-factor model treats CCFs, consider a simple redundancy of two 

identical components. Each component may be divided into an “independently failing” component and 

one that is affected by CCFs only. The beta-factor model further assumes that: 

Total component failure rate (λT )  =  Independent failure rate() + Common cause failure rate( λC) 

A factor, , is then defined as: 

𝛽 =
𝜆𝐶

𝜆𝑇
 (3-10) 

𝜆𝐶 = 𝛽𝜆𝑇  (common cause failure rate) 

𝜆𝐼 = (1 − 𝛽)𝜆𝑇  (independent failure rate) 

Failure probability of the two-unit parallel system is then calculated as 

𝑄𝑆 = (𝜆𝐼𝑡)2 + (𝜆𝐶𝑡) = [(1 − 𝛽)𝜆𝑇]2 + 𝛽𝜆𝑇𝑡 (3-11) 
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where t is an approximation for the exponential failure probability model. 

A point estimate for beta is given by 

𝛽 =
2𝑛2

𝑛1+2𝑛2
 (3-12) 

where: 

n1 = number of independent failure events 

n2 = number of common cause failure events. 

Failure events are then used to obtain values of n1 and n2 for the specific component of interest. The 

resulting beta factor value, together with the total failure rate, T, of the identical redundant components, 

is then used to calculate the reliability of the function in the presence of CCF events. 

For the two-unit parallel system discussed above, consider a failure history where 100 independent, 

single failures have occurred, and three common-cause events have occurred where both units failed at 

the same time. The resulting beta would be: 

𝛽 =
2(3)

100+2(3)
=

6

106
= 0.057 (3-13) 

If one is using the beta-factor model as a global common-cause term for a system with x parallel 

units, the point estimate for beta is given by: 

𝛽 =
2𝑛2+3𝑛3+⋯𝑥𝑛𝑥

𝑛1+2𝑛2+3𝑛3+⋯𝑥𝑛𝑥
 (3-14) 

The Beta-Factor model is often useful for simple, dually redundant systems or systems where the 

global common-cause term of all components failing is driving the risk. For systems where the exact 

combinations of failures are important, a more comprehensive detailed method, such as the alpha-factor 

model, is needed. An example would be where a MODU has six thrusters for positioning, and certain 

combinations (e.g., losing all aft or forward thrusters) can lead to failure coupled with the necessary 

environmental conditions. The alpha-factor model is presented in Appendix H. 

Earlier in this discussion, an example of CCF was mentioned that involved failures of multiple bolts 

due to issues with their coating. The above models apply most straightforwardly to demands on multiple 

components that occur more or less simultaneously, and the common cause induces the affected 

components to fail more or less simultaneously. The simple models given above are not necessarily 

adequate for events of the multiple-bolt type; more sophisticated models are needed. 

3.3 Human Reliability Analysis 

Human Reliability Analysis (HRA) is the systematic identification, modeling, and probabilistic 

quantification of human error. HRA can be qualitative, entailing only identification and modeling of the 

error; or quantitative, by additionally estimating a Human Error Probability (HEP) for a given task. 

Human error becomes important when it has consequences such as when it contributes to the failure of a 

hardware system or when it leads to injury or death. Human error can thereby have significant safety or 

environmental consequences. HRA seeks to determine the human component of risk and, when so 

employed, to serve as the basis for preventing and mitigating human errors. 

Human Reliability Analysis (HRA): a structured approach used to identify 

potential human failure events and to systematically estimate the probability of 

those events using data, models, or expert judgment. (ASME RA-Sb-2013) 
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HRA was originally developed to support PRA for nuclear weapons assembly work in the 1960s, but 

was subsequently adapted for use in risk assessment of nuclear power facilities when it was included in 

WASH-1400, the original PRA framework for nuclear power [3-5]. Following the Three Mile Island 

meltdown, HRA was formally introduced into the nuclear regulatory framework with the appearance of 

the Technique for Human Error Rate Predication (THERP) [3-6]. HRA’s application in nuclear power 

dominated much of the development of new methods by the U.S. NRC and the Electric Power Research 

Institute (EPRI) domestically, with similar efforts internationally. Gradually, HRA methods have been 

adopted in other safety critical industries such as aerospace, rail and transportation, and oil and gas. 

The purpose of this section is to provide a general process on how to perform HRA as part of 

developing a risk model of offshore drilling facilities. In this context, HRA is the assessment of the 

reliability and risk impact of the interactions of humans on a system or a function. For situations that 

involve a large number of Human-System Interactions (HSIs), HRA becomes an important element of 

PRA to ensure a realistic assessment of the risk. HRA has its own discussion in this guide because it 

requires special treatment; quantification of individual human events is done in a manner quite different 

from quantification of hardware basic events. Moreover, dependence between human error basic events is 

potentially very important and, from a technical point of view, is a topic in itself. 

In some industries, HRA has been used for generations. By some counts [3-7], over 60 methods have 

been developed for performing HRA in those industries. Key attributes of these methods will be reviewed 

here, and general guidelines will be offered for application by analysts engaged in developing risk models 

for offshore facilities. But offshore facilities differ in important ways from the facilities for which many 

of these earlier methods were developed. In particular, operations at those other facility types are much 

more proceduralized, and their HRA methods make essential use of that fact. Modeling of human 

performance in scenarios occurring at offshore facilities is necessarily different. This will be discussed 

below. 

Examples of oil industry HSIs include drilling control centers at platforms, onshore operations control 

centers remotely linked to drilling platforms, and mechanical/electrical personnel during installation, test, 

operation, and maintenance of equipment. Each of these HSIs involves a technological system—from a 

digital console in an office environment to mechanical equipment on the platform—and a human user of 

the system. Just as there is opportunity for hardware failure, there is the opportunity that the human user 

of the system will commit an activity that causes a negative process outcome. Human reliability analysts, 

with support from systems analysts, model and quantify the impacts from these HSIs, which are then 

incorporated as human basic events in the PRA logic models. Although the term “human-system 

interaction” is generally used, the terms “human interaction,” “human action,” “human error,” and 

“human failure” have been used in the HRA literature and will also be used in this discussion, particularly 

when it comes to the quantification of the impacts of those HSIs. 

Because there are so many HRA methods, it is beyond the practical scope of this guide to provide a 

tutorial on all methods. Instead, a general framework is presented in this section, and a method-specific 

example is provided in Appendix I. 

3.3.1 Human Reliability Analysis Process 

Figure 3-6 depicts the HRA process as commonly employed in PRA, as adapted from the IEEE-1082 

HRA standard [3-8]. The terminology in the figure has been slightly modified to reflect offshore platform 

applications instead of the nuclear facilities of the original standard. While this process originally reflects 

HRA in support of nuclear PRA, it easily generalizes to other industries such as oil and gas. Below are 

explanations for each step of this process. 
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Figure 3-6. Standard process for HRA (adapted from IEEE-1082). 

1. Select and train HRA-PRA team. The analysis team may include PRA, operations, human factors, 

HRA, engineering, and other expertise. The ideal includes as many of these disciplines as possible, 

but practically it may only be possible to get one or two areas of expertise. Understanding PRA and 

HRA and understanding the operational process are the most important skills for the analysis. This 

step emphasizes the joint teaming of risk analysts in PRA with human reliability analysts. Human 

factors engineering, which is often used in the design of new systems, may reflect different expertise 

than HRA. HRA expertise is often centered on operations, which may prove more important from a 

risk standpoint than is optimizing the design of the human-machine interface. 

2. Familiarize team with facility. The team should have general knowledge of the HSI and the facility, 

as well as any details that may be unique to this facility compared to similar facilities. Familiarization 

may involve briefings with facility experts and walkdowns of the facility with its users. This 

familiarization process should be done with an eye toward understanding the potential of the human 
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to impact the safe operations of the facility. The team determines what, how, and why there is 

potential for human errors, as well as ways in which recovery is possible. 

3. Build initial facility model. If a PRA model is already in place, this stage validates that model in terms 

of human interactions. If a new PRA model is being created, this stage provides the necessary input in 

terms of the human failure event (HFE). An HFE is defined as the basic event involving the human. 

More practically, the HFE encompasses the human interactions that contribute to a component or 

system failure. 

Human Failure Event (HFE): a basic event that represents a failure or 

unavailability of a component, system, or function that is caused by human 

inaction, or an inappropriate action. (ASME RA-Sb-2013) [3-9] 

Oil and gas production spans multiple facilities and locations including offshore oil platforms, 

onshore oil drilling stations, shale gas extraction facilities, and refinery facilities. Due in large part to the 

remoteness of the facilities and locations, a number of diverse hazards can lead to personnel injury and 

fatalities, equipment damage, and environmental harm. A representative list of hazards for offshore 

facilities adapted from the Petroleum Safety Authority of Norway [3-10 and 3-11] can be found in 

Table 3-5. These hazards characterize the types of activities where the potential for HFEs should be 

considered and included in the PRA model. 

Table 3-5. Representative hazards at offshore oil and gas facilities. 

 Non-ignited hydrocarbon leak 

 Ignited hydrocarbon leak 

 Well incident/ loss of well control 

 Fire/explosion in other areas (non-hydrocarbon) 

 Ship on collision course 

 Drifting objects 

 Collision with field related vessel 

 Structural damage/stability/mooring/positioning failure 

 Leakage from subsea systems/pipelines/risers/flowlines/loading buoy/loading hose 

 Damage on subsea systems/pipelines/diving gear caused by fishery equipment 

 Evacuation (precautionary/emergency evacuation) 

 Helicopter accident 

 Man overboard 

 Serious injury 

 Serious illness/epidemic 

 Blackout 

 Non-operational control room 

 Diving accident 

 Release of hydrocarbons 

 Loss of control of radioactive source (e.g., radioactive tracer) 

 Falling objects. 

 

4. Screen human interactions. Once the PRA model includes HFEs, the HFEs should be screened for 

risk significance. Only those HFEs that have an impact on the overall system risk will receive a 
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detailed HRA in Steps 5 and 6. If the HFEs do not contribute significantly to overall risk, then they 

are simply modeled for dependence and recovery in Step 7. 

5. Characterize human interactions. This step, which may be thought of as qualitative analysis, entails 

determining the factors that may influence the outcome of the human interaction. Many HRA 

methods classify the task type of human activity that is being performed. For example, detecting an 

alarm will have a different set of error mechanisms than physically positioning a drill. Cognitive tasks 

fail in different ways than behavioral action tasks. Beyond the characteristics of particular task types, 

Performance Shaping Factors (PSFs) are used by many HRA methods to identify what may 

increase or decrease the likelihood of human error for the HFE. Both task types and PSFs help define 

the context of the human interactions, which defines what types of human errors are possible. 

Performance Shaping Factor (PSF): a factor that influences human error 

probabilities as considered in a PRA’s human reliability analysis and includes 

such items as level of training, quality/availability of procedural guidance, time 

available to perform an action, etc. (ASME RA-Sb-2013) [3-9] 

6. Quantify human interactions. HRA methods are used to estimate the Human Error Probability 

(HEP) and accompanying uncertainty. The HEP and uncertainty distribution may then be inserted 

into the overall PRA to determine the contribution of the human to the overall risk. A high HEP in 

some scenarios may serve as a cue to improve the system (e.g., introduce redundant safety systems) 

or the process (e.g., improve accident training). A high HEP does not necessarily mean a hardware 

failure, as the HFE is typically only one part of the failure opportunity for a system. There are a 

number of ways to quantify the HEP, which are overviewed in Appendix I. 

7. Account for dependence and recovery. Dependence is the relationship between two HFEs. In most 

HRA methods, it is assumed that error begets error—the first instance of human error increases the 

subsequent chances of error on the next human interaction. Therefore, HRA methods will apply a 

correction factor to increase the HEP when there is dependence. In this method, Recovery is the 

opportunity to rebound from a human error such as restoring function after a system shutdown. 

Recovery is usually treated in the modeling of the facility such as a post-error success path in the 

event tree. In general, not crediting recovery will lead to very high estimates of risk. Where this is 

true, it is important to be realistic about credit taken; excessive credit will cause the model to bury 

risk contributors that need to be more widely appreciated. 

8. Document results. Each HRA method has a specific format for documenting the qualitative and 

quantitative findings. This final step simply serves as a reminder that all assumptions should be 

clearly documented to ensure traceability and replicability. 

3.4 Expert Elicitation 

In research work, if something is currently impractical, one may declare it to be out of scope, and 

focus effort in areas where progress can be made. However, in performing a risk analysis intended to 

support an actual decision of some importance, one cannot simply abstain from analyzing certain topics, 

if the results of such analysis could affect the decisions being supported. For example, if we want to make 

a decision about siting a facility, we cannot simply choose to neglect things like earthquake risk, just 

because they are difficult to analyze. We may offer a bounding argument (for example, if we design for 

an earthquake of a specified magnitude, and can argue convincingly that earthquakes greater than or equal 

to that magnitude are extremely unlikely, then we may feel sure that earthquake risk is not significant 

compared to other risks); but we cannot simply declare earthquake risk to be “out of scope,” and neglect 

it. If we abstain from analyzing it, without furnishing some bounding argument to characterize the range 

of possibilities, then we are furnishing the decision-maker with a result of the form “Here are the results 

that we obtained, but there are risk contributors that we haven’t analyzed that could completely change 

the decision that one would make, based on results obtained so far. Sorry.” 
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“Expert elicitation” suggests itself when the development of the risk model leads to an area where not 

enough information is available for immediate purposes, and more is not attainable because of timing 

constraints or resource constraints. The point is not that the current question is unanswerable in principle, 

but rather that the only practical thing to do in the immediate term seems
g
 to be to make some use of 

experts in lieu of either a fuller analysis, or perhaps a completely impractical experimental undertaking. 

Even if expert elicitation seems to be the only practical thing to do, controversy may result from the 

application. In order to understand why, it is worth recalling the context in which some risk studies are 

undertaken. First, as stressed in the introduction to this guide, the need to perform decision analysis itself 

is driven by the magnitude of the stakes involved (financial, human safety, environmental protection, 

etc.). Moreover, in the context of regulatory decision-making, there is the need to convince not only 

oneself, but also others, of the essential validity of the risk analysis that informs the decisions. 

As with HRA, many methods are available for performing expert elicitation. Appendix G provides a 

survey of some of those methods that may be useful in the offshore oil and gas industry. 

3.5 Quantifying the Scenario Set 

3.5.1 “Point” Estimates 

Reference is frequently made to point estimates of important quantities such as top-event probability. 

The term “point estimate” refers to the use of specific numbers for the inputs to the calculation, without 

immediate regard to uncertainty or variability. (Propagation of uncertainty is discussed below.) 

Quantification of point estimates is discussed here not because point estimates should be used uncritically 

in decision-making, but rather because the point estimate is a first step toward a more-complete model 

quantification, and as such, plays a role even in scenario generation (a point discussed further in 

Section 4.2) by helping determine the truncation cutoff to be used and allowing a sanity check of the 

results. 

Given the minimal cut sets for a particular top event, presented in sum-of-products form, we can 

obtain a point estimate of top-event probability (or frequency) by: 

 Quantifying each cut set: 

- Multiplying the basic event point estimates of probability or frequency, as appropriate,  

or 

- If the events in the cut set are related in some way, performing a side calculation to quantify the 

probability of the conjunction,  

and 

- Summing over cut set results to obtain the estimate for the top event. 

This result, called the “rare-event approximation,” is (in some respects) easy to calculate, and 

provides a rigorous upper bound on top-event probability: not that the point estimate is guaranteed to be 

an upper bound on top-event probability, but rather that the exact calculation of the “point estimate” 

would be less than or equal to this estimate. This follows because, for any two events X and Y (which 

could be basic events, cut sets, or complex functional failures),  

𝑃(𝑋 + 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) − 𝑃(𝑋 ∗ 𝑌). (3-15) 

So: 

                                                      

g. In some of the commentary excerpted in Appendix G, an NRC-sponsored analysis was taken to task for 

resorting to expert opinion when alternatives were arguably available. 
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𝑃(𝑋) + 𝑃(𝑌) ≥ 𝑃(𝑋 + 𝑌). (3-16) 

The term P(X*Y) is small in many applications (hence the “rare event” nomenclature), and in those 

cases, neglect of it is reasonable; moreover, it is often straightforward to check on the magnitude of its 

effect. In other words, summing the cut set probabilities overestimates the top event, but is frequently 

reasonable. 

A somewhat more involved calculation is the “min cut upper bound,” obtained as: 

P(TOP) ~ 1- sum product (1-p(xi)). (3-17) 

3.5.2 Propagating Uncertainty through the Scenario Set 

Given a way of calculating a point estimate for any setting of the basic event model parameters, we 

can propagate parameter uncertainty through the model in the same way that we can propagate parameter 

uncertainty through any model to obtain an uncertainty distribution on its output: we can sample from the 

joint distribution of the inputs, compute the result of that sample, iterate until the result is deemed to have 

converged to the point where key metrics can be evaluated (mean, median, mode, key percentiles). In 

addition to convergence, appropriate correlation of variables and avoidance of distributions with a tail 

with values greater than 1.0 used for probabilities is important as discussed below. 

 Correlating Variables. The above statement referred to sampling from the joint distribution 3.5.2.1
of all of the variables. If some of the variables are correlated epistemically, it is necessary to reflect this in 

the calculation. Consider the example of two essentially identical valves in series that are required to 

close under a certain challenge. They are of common manufacture and are assumed to see the same 

operating conditions, including test and maintenance practices. Arguably they should have the same 

failure probability. Since they are in series, and are required to close, failure of this function entails failure 

of both valves; so the top-event probability will contain a contribution that is proportional to p(X*X), 

where “X*X” means “failure of both identical valves.” Treating this as if it were equal to p(X)*p(X) 

underestimates the contribution for possibly several reasons. Temporarily setting aside the issue of CCF, 

there is an epistemic issue: in general, for any quantity Z, 

< 𝑍2 > ≥< 𝑍 >2, (3-18) 

so failure to acknowledge this epistemic coupling tends by itself to underestimate the result. 

Suppose that the valve failure probabilities in the above example are lognormally distributed, each 

with an identical mean of 1E-3 and error factor of 5.0. Table 3.6 provides means and error factors for both 

the case where they are treated independently, and the case where they are correlated. 
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Table 3-6. Result of correlated and uncorrelated events under an AND gate. 

Statistic Correlated Uncorrelated 

Mean 2.7 E-6 1.0E-6 

Error Factor 25.1 9.2 

 

The uncorrelated product results in a much smaller mean and error factor. 

 Truncated Distributions. Consider an event X that is lognormally distributed with a mean 3.5.2.2
of 0.5 and an error factor of 5.0. Clearly this is a large mean and there is a high probability of sampling 

values greater than one. This is a problem when the samples represent probabilities that are constrained to 

be between zero and one. In a situation like this, the sampling software will typically either remove 

samples greater than one or truncate the distribution, effectively cutting the tail off the distribution and 

renormalizing it (see Figure 3-7). The two methods of truncation appear to be different but are in fact 

mathematically equivalent. 

 

Figure 3-7. Truncated lognormal distribution. 

Sampling from X and rejecting the values greater than one yields a mean of 0.33, which is noticeably 

lower than the input mean of 0.50. This is because the larger values are rejected. 

Truncating the distribution also yields a mean of 0.33. This is not surprising since this method is 

mathematically equivalent to the rejection method. 

To sample from a right-truncated lognormal distribution at location 0b   [3-11]: 

  , , , ,x Loginv Lognorm b Mean EF U Mean EF 
 (3-18) 

where Loginv is the inverse of the lognormal distribution, Lognorm is the cumulative lognormal 

distribution, and U is a random number between zero and one. In the example above the truncation point 

is 1.0, the mean is 0.50, and the error factor is 5.0. 

Right-truncating a distribution will result in a lower mean than the non-truncated distribution. 

However, in general it is not good practice to model probabilities with a distribution that will require 

truncation. 
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4. RESULTS: PRESENTATION AND INTERPRETATION 

4.1 Risk Analysis Support to a Notional Safety Case 

Figure 4-1 shows a notional “claims tree:” a hierarchy of the claims that might be made in a safety 

case presented to a regulator. The regulation of facilities by the Bureau of Safety and Environmental 

Enforcement is beyond the scope of this document, but it is nevertheless useful to organize the discussion 

of certain topics around a figure like this. 

In many venues of application of risk models, the models are developed by parties associated with the 

(proposed) facilities, even though the model results are to be applied in assurance cases put before 

regulatory decision-makers who are accountable to different parties for different considerations 

(e.g., regulators may be more accountable for public safety than for facility economics). 

The technical content of the present guidance is trying to be useful both to applicants and to 

regulators. The facility operators (and investors) need to ensure that the facilities are (or will be) safe; the 

regulator needs assurance that the facility is (or will be) safe. The needs of the two are distinct. The 

claims tree is aimed specifically at promoting a successful dialogue between applicants and regulators. 

The premise of the figure is that a finding has to be made regarding the safety of a specific facility, 

and this finding needs to be based in part on an analysis. The analysis needs to address certain figures of 

merit (such as risk metrics) and, potentially, to show that certain other requirements are met (such as 

requirements on barrier availability and performance). The four major sections of the figure are: 

1. Design characterization 

2. Analysis of risk (and possibly other metrics), conditional on a particular baseline allocation of 

performance (e.g., reliability) 

- The analysis satisfies certain process requirements 

- The analysis provides sensitivity and uncertainty information 

- A process exists for identifying, and dealing with, unresolved safety questions. 

3. [Optional] A process has been carried out to substantiate a claim that the facility is as safe as 

reasonably practicable. 

Note: This figure can be specialized to refer to “Best Available and Safest Technology” (BAST) 

rather than “Risk Is as Low As Reasonably Practicable.” In either case, process-based arguments to 

support the respective conclusions are called for. 

4. The performance allocation credited in the analysis is, in fact, feasible. The items considered critical, 

the associated levels of performance, and the activities needed to make the risk analysis “come true” 

have been identified and committed to. This includes making reliability allocations come true, barrier 

availabilities come true, etc., and includes a commitment to analysis of operating experience, looking 

for deficiencies in the model. Ordinarily, the model used for Item 2 above is also a starting point for 

this item. 

Portions of Items 2 and 4 of the above list are within the scope of the present document. Item 2 

notionally covers the safety analysis, and the results that need to be presented, including sensitivity and 

uncertainty information. Item 4 captures the claims that tie the analysis results to reality, including 

commitments to scrutinize operating experience as part of an effort aimed at model improvement. Certain 

aspects of Item 4 are beyond the scope of this document, but an emphasis of this document is that the 

numbers on which PRA results are based are engineering accomplishments, not constants of nature; 

submittal of a PRA to a regulator needs to be tied to commitments to make those numbers come true, 

including identification of model inadequacies revealed by operating experience. This is part of Item 4. 
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Figure 4-1. Claims tree. 

 

We characterize the design intent in terms of 

design reference missions and other 

requirements to be satisfied. The design itself is 

characterized at a level of detail appropriate to 

the current life cycle phase.

We present the results of analysis, conditional on an explicitly 

characterized baseline allocation of levels of performance, risk-

informed requirements, and operating experience. We have a process 

for identifying departures from this baseline and/or addressing future 

emergent issues that are not addressed by this baseline. 

We have demonstrated that no further 

improvements to the design or 

operations are currently net-beneficial 

(risk is as low as reasonably 

practicable).

TOP-LEVEL CLAIM 
This is “how safe” we are (or will be),* how we know it, and what we are doing to make sure that it comes true (or remains true).*
This is our technical basis for the claim: 
V Evidence, including operating experience, testing, associated engineering analysis, and a comprehensive, integrated, scenario-based  

design and safety analysis 
V A credible set of performance commitments , deterministic requirements, and implementation measures.

We understand the implementation 

aspects needed to achieve the level of 

safety claimed, and commit to the 

necessary measures.

We characterize the design 

and mission intent.*

We specify the design for the 

current life cycle phase 

(including requirements and 

controls).*

We	have	performed	our	analyses		
and	established	the	following	
results:

V Aggregate	risk	results

V Dominant	accident	scenarios	

V Comparison	with	threshold/
goal

V Established	baseline	for	
precursor	analysis

V …..

We	have	formulated	hazard	controls,	derived	requirements,	and	fault	
protection	approaches	in	a	risk-informed	manner

We	have	a	process	for	
addressing	unresolved	and	
non-quantified	safety	issues	

(issues	invalidating	the	
baseline	case)

We	recognize	the	limits	of	our	safety	models:	we	have	evaluated	
the	caliber	of	evidence	used	in	models,	and	have	performed	
uncertainty	and	sensitivity	analyses.	To	the	extent	practicable,	we	
have	addressed	the	completeness	issue,	and	have	developed	a	
thorough	understanding	of	key	phenomenology	and	assumptions	

V Safety Performance Measures

V Safety Performance Requirements 

(including Goal and Threshold)

V Engineering Requirements

V Process Requirements

V Concept of Operation

V Design Reference 

Missions

V Operation Environments

V Historically Informed 

Elements

We carried out a process to identify 

significant safety improvements, but 

no candidate measures have been 

identified

We have confirmed that allocated 

performance is feasible

We understand how to monitor and 

assure ongoing satisfaction of 

allocated performance levels, and 

there are commitments to implement 

these measures

We have identified and prioritized 

risks in the risk management 

program

We continue to evaluate operational 

experience for the presence of 

accident precursors 

In	addition	to	reviewing	existing	information	sources	and	
operating	experience,	we	have	applied	the	best	processes	known	

to	us	for	identifying	previously	unrecognized	safety	hazards

*
The nature and specificity of the claim, and the character  of the underlying evidence, depend on the life cycle phase at which the safety case is being applied. 

We have determined that further 

improvements in safety would 

unacceptably affect schedule

We have determined that further 

improvements in safety would incur 

excessive performance penalties

We have determined that further 

improvements in safety would incur 

excessive cost

We understand what is 

credited

We understand the nominal 

performance and dynamic 

response in design reference 

phases

We understand the 

performance allocation

We have provided some 

defense against currently  

unrecognized safety issues 

(safety margin)

1	 2	 3	 4	
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4.2 Quantifying the Model 

Quantification of a PRA model is a simple process; however, steps must be taken to ensure that the 

output is relatively complete and accurate. The term “relatively” is used here with “complete” because 

PRA models can have millions of scenarios, and often many are of such a low probability that they do not 

need to be considered. A PRA model can take a long time to run and produce a very large amount of data, 

so determining the right level for quantification is an important step to ensure the necessary results are 

obtained while still being manageable. This applies to both the classical event-tree/ fault-tree models and 

the discrete event models as discussed below. 

4.2.1 Event-Tree/ Fault-Tree Model Quantification 

Quantifying an event-tree/ fault-tree model typically involves choosing different options for 

performing the quantification. Three of the most important are discussed below. It should be noted that 

the model quantification and results discussed in this section is a simplified example for illustrating the 

results of PRA, and not an actual analysis of a real facility. 

 Truncation Cutoff. The truncation cutoff used in quantifying an event tree is used to stop the 4.2.1.1
quantification of scenarios (i.e., minimal cut sets) below a user selected value. A large PRA model can 

have millions or tens of millions of minimal cut sets; evaluating all of them can take a long time to run the 

model, and result in an excessively large amount output that is hard to manipulate to display results. 

Typically, lower probability scenarios may be many orders of magnitude lower than the overall result; 

such scenarios are not significant risk contributors. Most PRA software implements a user-supplied 

truncation value, discarding cut sets whose probability is below that truncation value. In principle, this is 

an uncontrolled approximation, but is frequently the practical thing to do, provided that steps are 

undertaken to understand the effects of the truncation. 

The process to determine what the best truncation cutoff is should start at a level the analyst expects 

would be consistent with the result (this is essentially a guess based on construction of the model), and 

then vary the truncation cutoff by reducing it an order of magnitude until the results at least converge to a 

value less with less than a 1% difference between two successive quantifications. 

Using the example developed in Section 2 (Figure 2-13), it is possible to see the effect the truncation 

limit has on the results in Table 4-1 when the end states with releases are assessed. 

Table 4-1. Effect of truncation limit on event-tree quantification. 

Truncation Cutoff 

Number of Cut 

Sets Overall Likelihood End States 

1.0E-4 1 3.70E-4 LIMITEDRELEASE 

1.0E_5 2 4.07E_4 
LIMITEDRELEASE, 

CAPPINGSTACKCONTAIN 

1.0E-6 4 4.17E-4 

LIMITEDRELEASE, 

CAPPINGSTACKCONTAIN, 

RELIEFWELLSEAL 

1.0E-7 8 4.19E-4 

LIMITEDRELEASE, 

ROVCONTAIN, 

CAPPINGSTACKCONTAIN, 

RELIEFWELLSEAL  

1.0E-8 28 4.199E-4 Same as 1.0E-7 truncation cutoff 

1.0E-9 53 4.20e-4 Same as 1.0E-7 truncation cutoff 

1.0E-10 120 4.20E-4 Same as 1.0E-7 truncation cutoff 

1.0E-12 872 4.20E-4 Same as 1.0E-7 truncation cutoff 

1.0E-15 10551 4.20E-4 Same as 1.0E-7 truncation cutoff 



 

4-4  

When reviewing the results in Table 4-1, two effects can be seen as the truncation cutoff is varied. 

First, when the truncation value has been reduced to 1.0E-8, the overall likelihood has converged to 

several decimal places, and the number of cut sets is 28 at that level. When the truncation cutoff is set to 

1.0E-15, the model produces 10551 cut sets, and from the table, the majority of them are below 1.0E-12 

so do not affect the overall result. 

A second consideration should also be given to the end states found in the results. As seen in 

Table 4-1, the initial quantification of the model only resulted in one of the four end states being 

evaluated. If the goal of the analysis is based on the overall risk and major contributors, whether end 

states show up in the result may not make a difference if they do not significantly contribute, but if end 

states are to be evaluated separately for dominant contributors, the truncation cutoff should also be 

selected to get representative cut sets from each end state. This is particularly significant if importance 

measures are evaluated. 

 Solution Method. A second quantification option that can have a significant impact on 4.2.1.2
results is the solution method that is used when results for different pivotal-event fault trees are combined 

in the event tree sequences. The success path on an event tree can be treated in different ways. Linked 

fault-tree software typically defaults to a solution that uses a “delete term” function. The delete term 

function removes invalid cut sets from sequential top events with common basic events. An example of 

an invalid cut set would arise if, in a particular sequence expression, failure of System A is combined with 

success of System B, and some of the “failure” cut sets for System A are inconsistent with success of 

System B. This condition cannot exist, so the cut set is deleted from that sequence expression. 

Using “delete term” is reasonable, but it is an approximation: the success of System B is set to a 

probability of 1.0. Because PRA analyses usually are evaluating rare events, the top-event probabilities 

are small most of the time, and the approximation of a success path to 1.0 is acceptable. In some cases, a 

top event may have a relatively large probability (> 0.01), and in this case, choosing a solution method 

that accounts for the proper success path probability may be required for a sufficiently accurate 

calculation. 

 Uncertainty. Quantifying the model to obtain the uncertainty distribution is similar to the 4.2.1.3
truncation cutoff issue in that enough iterations of the model must be performed to ensure the mean value 

has converged. PRA software generally runs quickly so the number of iterations needed to converge is 

usually not an issue. 

In some cases, the mean will actually differ from the point estimate, because in general, basic event 

distributions are correlated. Correlation of basic events results if the same uncertainty distribution is used 

for a number of basic events. Each sampling in the uncertainty calculation for the basic events that are 

correlated uses the same value from the common distribution. This has a tendency to increase the mean 

value if an AND gate is used as the sampling from the extreme ends of the distribution compound and to 

stretch the distribution, resulting in a mean value higher than the point estimate.
h
 

4.2.2 Discrete Event Simulation Model Quantification 

For analyses using discrete event simulation, as discussed in Section 2.3.3, the main option for 

quantification that must be considered is the number of replications (i.e., the number of passes through the 

model). Determining a sufficient number of replications is an iterative process that should start by 

reviewing the paths through the model along with the inputs to estimate the expected number of 

replications that result in a particular end state. For example, if a review of the model inputs shows that 

the output should occur with a frequency of about 1E-4, then the number of replications needed to get a 

single hit on that path would be, on average, 1/1E-4, or 10,000. Because the mean will not have 

                                                      

h. In general, <x2> is greater than or equal to <x>2. 
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converged with a single hit (or a small number of hits), for this example, a reasonable starting point would 

be 100,000 replications, or 10 times the average needed to get a single hit. Ideally, a sufficient number of 

replications will be run to obtain a mean within acceptable convergence bounds. If an initial number of 

replications is not sufficient to establish convergence, then additional replications are required. At some 

point, time constraints might limit the number of replications, so that the desired convergence is not met. 

In these cases, the uncertainty due to the limited number of replications should be specified. This 

uncertainty is often presented as 90% confidence bounds about the mean. 

Table 4-2 shows output from the model shown in Section 2.3.3 based on 100, 2,500, and 

25,000 replications. 

Table 4-2. Discrete model simulation results for different numbers of replications. 

Event Count Probability 

Barrels Leaked Time to Effect (Hours) 

Min Mean Max Min Mean Max 

Cap, Vertical 77 7.70E-01 82,534 257,276 599,490 49 225 470 

Relief Well 12 1.20E-01 2,074,500 3,490,658 6,112,600 2,050 2,883 4,496 

Cap, Non-Vertical 6 6.00E-02 237,400 614,642 906,370 164 453 564 

ROV 4 4.00E-02 2,460 13,162 25,931 2 12 22 

Cap, Well Head 1 1.00E-02 562,800 562,800 562,800 475 475 475 

Replications 100        

Event Count Probability 

Barrels Leaked Time to Effect (Hours) 

Min Mean Max Min Mean Max 

Cap, Vertical 1,962 7.85E-01 46,472 277,137 1,062,000 49 225 479 

Relief Well 223 8.92E-02 1,683,500 3,668,681 8,168,500 2,015 2,960 6,182 

Cap, Non-Vertical 214 8.56E-02 136,480 591,123 1,545,200 107 470 959 

ROV 76 3.04E-02 1,886 22,706 104,660 2 17 55 

Cap, Well Head 25 1.00E-02 562,800 1,055,688 1,967,600 475 811 1,221 

Replications 2,500        

Event Count Probability 

Barrels Leaked Time to Effect (Hours) 

Min Mean Max Min Mean Max 

Cap, Vertical 19,654 7.86E-01 38,148 279,500 1,062,000 48 227 480 

Relief Well 2,246 8.98E-02 1,546,500 3,685,098 13,719,000 2,001 3,007 6,918 

Cap, Non-Vertical 2,041 8.16E-02 87,312 577,038 2,037,600 97 467 959 

ROV 839 3.36E-02 1,826 26,186 126,050 2 21 62 

Cap, Well Head 220 8.80E-03 316,640 1,039,565 2,101,300 321 838 1,313 

Replications 25,000        
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4.3 Reviewing the Results 

The PRA model is typically developed to answer a specific question or questions regarding the risk of 

a facility or operation, and a range of results are produced and may be reviewed at a variety of different 

levels (e.g., from system reliabilities to magnitudes of oil released to the environment). Common results 

evaluated as outputs from a PRA include: 

 Total likelihood
i
 of various end states 

 The relative ranking of each scenario to the total end state likelihood or total risk 

 Estimates of scenario consequences (environmental release, damage to property, number of injuries 

or fatalities, dollar loss, etc.) 

 Importance measures 

 Display of uncertainties associated with various estimates 

 System level reliabilities. 

Each of these types of results are discussed in more detail in the following sections with examples 

based on the environmental release model developed in Section 2. 

4.3.1 Overall End State Likelihood and Relative Risk Ranking 

The overall objective of performing a PRA is typically to evaluate a design or operation with respect 

to the risk involved. The purpose could be to ensure the design or process is acceptably safe relative to 

safety goals or requirements, or to understand if there are any driving vulnerabilities that can be 
addressed further. The first metrics assessed are usually the overall risk and a relative risk ranking of 

scenarios. Sample output from the simplified model developed in Section 2 is shown in Tables 4-3 and 

4-4. 

Table 4-3. End state frequencies for hydrocarbon release events. 

Name 

Point 

Estimate 

Cut Set 

Count 

Total 4.20E-04 10551 

LIMITEDRELEASE 3.70E-04 571 

CAPPINGSTACKCONTAIN 4.39E-05 5055 

RELIEFWELLSEAL 4.39E-06 2152 

ROVCONTAIN 1.64E-06 2773 

 

  

                                                      

i. In this section, the term “likelihood” is used to refer either to probability, frequency, or both. 
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Table 4-4. Sample PRA model output. 

# Prob/ Freq Total % Cut Set Description 

Total 4.19E-04 100 Displaying 10 Cut Sets. (10551 

Original) 

 

1 3.70E-04 88.23   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

  End State LIMITEDRELEASE  

2 3.70E-05 8.82   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

  End State CAPPINGSTACKCONTAIN  

3 5.92E-06 1.41   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe 

properly before activating BSR 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State CAPPINGSTACKCONTAIN  

4 3.70E-06 0.88   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 1.00E-01  CAP_STACK_FAILS Capping Stack unsuccessful 

  End State RELIEFWELLSEAL  

5 9.00E-07 0.21   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 2.43E-03  BOP-PRG-FLO-I02 Subsea manifold pressure regulator 

I02 fails low (Yellow) 

  End State ROVCONTAIN  



Table 4-4. (continued). 
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# Prob/ Freq Total % Cut Set Description 

6 5.92E-07 0.14   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe 

properly before activating BSR 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 1.00E-01  CAP_STACK_FAILS Capping Stack unsuccessful 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State RELIEFWELLSEAL  

7 2.22E-07 0.05   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe 

properly before activating BSR 

 1.60E-01  BOP_HUM_ERR_IBOP1 Human error - failure to install IBOP 

 8.66E-05  BOP_SCV_FTC_FLTVLV1 Float Valve Fails To Close 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State CAPPINGSTACKCONTAIN  

8 1.81E-07 0.04   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 4.90E-04  BOP-HUM-ERR-EMERGDIS Operator fails to initiate emergency 

disconnect successfully 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

  End State ROVCONTAIN  

9 1.74E-07 0.04   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 4.70E-04  BOP-SHV-LKE-A13 BSR Lock shuttle valve A13 

catastrophic leakage 

  End State CAPPINGSTACKCONTAIN  

10 1.74E-07 0.04   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 4.70E-04  BOP-SHV-LKE-A12 BSR Lock shuttle valve A12 

catastrophic leakage 

  End State CAPPINGSTACKCONTAIN  

 

Table 4-3 shows an overall probability of approximately 4.2E-4/kick, or about 1 in 2400 kicks, for 

having an environmental release of hydrocarbons during drilling. By examining the different end states, it 
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is shown that by far the highest probability event is a limited release. The long-duration releases 

represented by the other three end states have a frequency of approximately 5E-5. Of those three, the 

capping stack represents the highest frequency. Since the ROV is the first chance at intervention and 

containing the well, one could look at the results and ask why isn’t the ROV successful more often? 

Table 4-4 lists the Top 10 cut sets that can be individually reviewed for all release end states. For this 

simplified model, the results show several things that could be of interest. The top two cut sets account 

for over 95% of the risk, and would be a focus of improvement if the overall risk was considered to be too 

high (implying that improvement is needed). Both of the first two cut sets include failure to detect the 

kick or act before the lick reaches the BOP. Further inspection shows that the Cut Set 1 end state is 

LIMITEDRELEASE while Cut Set 2 is CAPPINGSTACKCONTAIN with potentially significantly 

higher consequences. 

In practice, PRA results are often more “flat” than shown in the results from the simplified model 

used in this guide, partly because models are developed at a finer level of resolution, so that no single cut 

set contributes a significant percentage to the total. There may be hundreds or even thousands of cut sets 

that make up 95% or more of the high-level risk number. In this case, the results may be put in a 

spreadsheet and manipulated by grouping cut sets related to a particular end state, component, or system 

to develop insights. 

4.3.2 Estimates of Consequences 

While the discussion in Section 4.3.1 focused on the frequency of end states, also of interest is the 

magnitude of the adverse consequences assigned to the various end state(s). Classical PRA models using 

event trees and fault trees have end states that are subjectively defined (Limited Release, Large Release, 

etc.). By manipulating the cut sets in the previous section, the frequencies of these end states may be 

estimated. For many applications, this approach may be acceptable as it shows that frequency of the end 

state and any scenarios that are major contributors. This information allows actions to be identified that 

may reduce risk. 

In some applications, the actual magnitude of end states may be needed or desired. For instance, there 

may be governmental requirements on the expected casualty rate from a particular facility or operation. In 

this case the model must estimate the number of deaths for individual scenarios to develop that result. A 

discrete event simulation model as discussed in Section 2.3.3 is a method that can be used to perform that 

analysis. The output from a discrete event simulation is the results related to each replication of the model 

and can be very large. Table 4-5 shows a sample of typical results. 

Table 4-5. Sample results from a discrete event simulation model. 

Replication Event Time Barrels 

1 CAP_V_LOC Value 223 199,660 

2 Relief_LOC Value 3,089 2,474,100 

3 CAP_V_LOC Value 260 211,600 

4 CAP_NONV_LOC Value 519 906,370 

5 CAP_V_LOC Value 183 313,090 

6 CAP_V_LOC Value 176 157,030 

7 CAP_NONV_LOC Value 367 619,310 

 

The results are then manipulated to be useable by developing plots. Because the inputs are based on 

distributions (e.g., flow rates), the results must be binned into logical ranges to show results. Figure 4-2 

shows the output from the example developed in Section 2.3.3 in terms of probability versus magnitude 

of release. 
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Figure 4-2. Example output from discrete event simulation. 

The bins (e.g., 0–100, 100–1000) are chosen after reviewing the results to determine logical 

groupings. 

A special type of graph called an F-N curve can be a valuable tool if the probability of exceeding a 

particular magnitude of consequence is of interest. This type of plot displays the magnitude of the end 

state on the x axis and the probability of exceeding it on the y axis. 

Table 4-6 shows the data needed to construct an F-N curve. The magnitude is developed by the 

analyst subjectively based on reviewing the results and assigning the output to bins. Note that each bin 

has a “greater than” designation. The number of replications assigned to each bin is obtained from the 

results and then divided by the total number of replications, in this case 25,000. This gives the frequency 

of exceedance for each bin. The result is a graph as shown in Figure 4-3. 
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Table 4-6. Frequency of exceedance calculation. 

Magnitude 

(Barrels 

released) Replications 

Frequency of 

Exceedance 

>0 25000 4.99E-05 

>5000 24929 4.98E-05 

>10000 24770 4.95E-05 

>20000 24558 4.91E-05 

>50000 24252 4.84E-05 

>100000 23758 4.75E-05 

>200000 18979 3.79E-05 

>500000 4579 9.15E-06 

>10000000 2496 4.99E-06 

>50000000 337 6.73E-07 

 

 

Figure 4-3. Example frequency of exceedance curve. 

The frequency-of-exceedance curves are typically plotted on a log-log scale because the data can span 

orders of magnitude. Looking at the curve from right to left, flat frequency-of-exceedance curves indicate 

that the failures occurring between points are having a minimal effect on the overall magnitude of the 

consequence. When the curve has a high slope, and the frequency drops very significantly, this means that 

it is difficult or impossible (highly infrequent) to exceed the corresponding magnitude of release. 
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4.3.3 Importance Measures 

Ranking of risk scenarios based on their frequencies as discussed in Section 4.3.1 provides limited 

insight regarding the contribution of individual events such as component failures to the total risk. 

Scenario ranking provides insights on importance of group of failures, not failure of individual events. An 

event (say, “component x failure”) can appear in the structure of many low frequency scenarios, yet it 

may be absent from the definitions of the dominant risk scenarios. If the contribution of low-frequency 

scenarios to the total risk is comparable to that of a few dominant risk scenarios, then scenario ranking 

will not capture the risk importance of component x. In order to address this issue and to provide 

perspective on importance of individual events or parameters of the PRA model, several quantitative 

importance measures are calculated. 

Once the importance measures are calculated, the events or parameters of the risk model can be 

ranked according to the relative value of the importance measure. This provides some insight into what is, 

or could be, influencing actual risk. This insight can inform risk-informed decision-making 

(e.g., allocating resources), or point to the need for risk mitigation efforts, such as redesign of hardware 

components, the addition of redundancy, etc. However, this sort of insight should not be a sole basis for 

decision-making. 

The quantitative importance measures typically found in PRA software include: 

 Fussell-Vesely (F-V) 

 Risk achievement worth (RAW) 

 Risk reduction worth (RRW) 

 Birnbaum. 

Another measure, the “Differential” importance measure, is discussed in Appendix J; it reflects the 

fractional change of a risk metric due to a particular basic event, given a change in a basic event 

probability. This metric is not typically found in PRA software. 

All of the above importance measures are formulated in failure space: they are focused on sets of 

minimal cut sets that involve a specific event or model parameter. An importance measure based on 

success space (i.e., path sets), Prevention Worth (PW), is a single-event measure that can provide insights 

that are different from those provided by the failure-space measures. 

The three most commonly used importance measures (F-V, RAW, and RRW) are discussed below 

with examples. Detailed information on the derivation of the failure-space-based importance measures are 

included in Appendix J. Prevention Worth, based in success space, is explained in Appendix K, along 

with a more comprehensive way of looking at model results, “Prevention analysis.” Instead of looking at 

basic events one at a time, Prevention analysis answers the question “what combinations of basic events 

should I undertake to prevent, in order to reduce risk in the most cost-effective way?” 

 Fussell-Vesely Importance. The most frequently used importance measure is the F-V 4.3.3.1
importance of basic events. The F-V importance of a given basic event is the fraction of overall risk 

contributed by the cut sets containing that basic event. This is similar to the scenario risk ranking in 

Section 4.3.1, but performed at a basic event level. A basic event may show up in many cut sets that are 

lower frequency than the top scenarios, but the summation of the lower frequency cut sets for that 

component may show that basic event to be a significant risk because it is included in many scenarios. 

Since most cut sets are made up of multiple basic events, and the cut set frequency is counted for each 

basic event F-V importance value, the F-V contributions summed over all basic events will normally be 

greater than 1.0. 

Table 4-7 displays the Top 5 cut sets for hydrocarbon releases from the example model developed in 

Section 2. The basic events INIT-EV_DRILLING and BOP-HUM-ERR-KICKDET occur in all of the cut 
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sets, and therefore have a F-V importance of 1.0. The Subsea manifold pressure regulator I02 that fails 

low (BOP-PRG-FLO-I02) is only found in Cut Set 5, which has a cut set value of 9.0E-7. The F-V 

importance for this event is calculated simply by dividing 9.0E-7 by the total risk, 4.18E-4. The result is 

0.22%, which is the same as the cut set contribution, because this basic event is only included in that 

single cut set. The basic event BOP-CYL-JAM-BSRDP is found in Cut Sets 2 and 4 with cut set values of 

approximately 3.7E-5 and 3.7E-6, respectively. In this case, the cut set values are added (4.07E-5) and 

divided by the total risk for a F-V importance of 9.76%. Table 4-8 shows the F-V importance for each of 

the failure events in Table 4-7. 

Table 4-7. Top 5 minimal cut sets example for importance measures, all releases. 

# Prob/Freq Total % Cut Set Description 

Total 4.18E-04 100 
Displaying 5 Cut Sets. 

(10551 Original)  

1 3.70E-04 88.6   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

  End State LIMITEDRELEASE  

2 3.70E-05 8.86   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

  End State CAPPINGSTACKCONTAIN  

3 5.92E-06 1.42   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe 

properly before activating BSR 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State CAPPINGSTACKCONTAIN  

4 3.70E-06 0.89   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 1.00E-01  CAP_STACK_FAILS Capping Stack unsuccessful 

  End State RELIEFWELLSEAL  



Table 4-7. (continued). 
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# Prob/Freq Total % Cut Set Description 

5 9.00E-07 0.22   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely 

action 

 2.43E-03  BOP-PRG-FLO-I02 Subsea manifold pressure regulator 

I02 fails low (Yellow) 

  End State ROVCONTAIN  

 

Table 4-8. F-V importance calculation example. 

Basic Event Description 

Cut sets with 

Basic Event 

Total Cut set 

Value 

F-V 

Importance 

INIT-EV_DRILLING Well Kick While Drilling 1, 2, 3, 4, 5 4.18E-04 1.00E+00 

BOP-HUM-ERR-KICKDET 

Operator fails to realize a 

kick has occurred or does 

not take timely action 

1, 2, 3, 4, 5 4.18E-04 1.00E+00 

BOP-CYL-JAM-BSRDP  

BSRs fail to close and seal 

when drill string is in the 

hole  

2, 4 4.07E-05 9.67E-02 

BOP-HUM-ERR-HANGOFF  

Driller fails to position drill 

pipe properly before 

activating BSR  

3 3.70E-06 8.86E-03 

DP_TOOLJOINT_PRESENT  
Drill Pipe Tool Joint is 

Present  
3 3.70E-06 8.86E-03 

CAP_STACK_FAILS Capping Stack unsuccessful 4 3.70E-6 8.86E-03 

BOP-PRG-FLO-I02  

Subsea manifold pressure 

regulator I02 fails low 

(Yellow) 

5 9.00E-07 2.16E-03 

 

The F-V importance is based on basic event contributions. When common cause of a component is 

modeled using separate common-cause basic events, the F-V importance for the common-cause events is 

treated separately from the independent failure basic event. The independent failures and CCFs cannot 

appear in the same cut set since a component cannot fail twice, so the cut sets they represent are mutually 

exclusive. In this case, the F-V values from the common-cause cut set and the independent-failure cut set 

must be added to obtain the total for that particular component. The same would be true if there were 

independent failures of a component with different conditional probabilities, such as the BSR failing with 

nothing across the BOP, and the BSR failing with drill pipe across the BOP. There may be a different 

probability (a basic event) for each condition, so the total F-V for the BSR would be calculated based on 

contributions from all of the cut sets containing one or the other of these basic events. In this case, this 

can be calculated as the sum of the F-V’s of the two basic events, since no cut set contains both events, 

and adding the F-Vs will therefore not double-count any contributions. However, in general, the F-V is 

not “additive” in this way; if we wish to compute a F-V measure for a collection of basic events that can 

appear together in cut sets, we need to separate out the cut sets containing any of those basic events, and 

compute the F-V of the group, based on the contribution to the top event from all those cut sets.  

In the example above, cut sets related to any kind of release were used to obtain the F-V importance. 

Because of the way in which F-V is defined, it can be referred to any end state or combination of end 
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states; in particular, the F-V importance will change if specific end states are used. Table 4-9 shows the 

Top 5 cut sets for the CAPPINGSTACKCONTAIN end state. The basic event for the BSR failing to 

close (BOP-CYL-JAM-BSRDP) is only in Cut Set 1, which gives it a F-V importance for this end state of 

85.1%. This is in contrast to the 9.67% in the example where all end states were evaluated together. Both 

answers are correct, but the context is different. 

Table 4-9. Top 5 minimal cut sets example for importance measures, CAPPINGSTACKCONTAIN End 

State. 

# Prob/Freq Total % Cut Set Description 

Total 4.35E-05 100 Displaying 5 Cut Sets.   

1 3.70E-05 85.1   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

  End State CAPPINGSTACKCONTAIN  

2 5.92E-06 13.6   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe properly 

before activating BSR 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State CAPPINGSTACKCONTAIN  

3 2.22E-07 0.51   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe properly 

before activating BSR 

 1.60E-01  BOP_HUM_ERR_IBOP1 Human error - failure to install IBOP 

 8.66E-05  BOP_SCV_FTC_FLTVLV1 Float Valve Fails To Close 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State CAPPINGSTACKCONTAIN  

4 1.74E-07 0.4   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

 4.70E-04  BOP-SHV-LKE-A13 BSR Lock shuttle valve A13 catastrophic 

leakage 

  End State CAPPINGSTACKCONTAIN  

5 1.74E-07 0.4   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

 4.70E-04  BOP-SHV-LKE-A12 BSR Lock shuttle valve A12 catastrophic 

leakage 

  End State CAPPINGSTACKCONTAIN  
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These examples only use the first five cut sets from the results. In order to get accurate F-V results, all 

of the cut sets must be used at the truncation cutoff where the risk has converged. 

 Risk Achievement Worth (RAW). The F-V importance shows the relative contributions of 4.3.3.2
components and basic events to the overall risk, given the probability numbers put into the model. But it 

cannot be concluded that components and basic events that do not show large contributions are 

unimportant. It may simply be that as a result of their low presumed failure probabilities, the components 

and basic events do not contribute much to top-event likelihood. Another way to review results is to use 

the RAW importance measure. The RAW basically executes a drastic sensitivity study: it assumes the 

basic event is failed by substituting a value of 1.0 for the basic event probability in all cut sets containing 

the event, and then recalculating the total risk.
j
 The new total risk is divided by the total risk before the 

substitution to establish a ratio of how much the risk would increase if the basic event were failed. 

Using the sample data from Table 4-10 for “Drill pipe tool joint present” (basic event 

DP_TOOLJOINT_PRESENT), if a value of 1.0 is substituted for the nominal value of 1.0E-1 (in Cut 

Set 3), the new total risk estimate is 4.71E-4; dividing by the original estimate (4.18E-04) gives a RAW 

of 1.13, meaning that this condition multiplies baseline risk by 1.13. 

The RAW is a particularly good measure for identifying single failure points in the model. An 

example in Table 4-10 is the driller failing to detect a kick in all five cut sets. If a 1.0 is substituted for 

that basic event (BOP-HUM-ERR-KICKDET), the RAW is about 2392, which is the inverse of the 

original total risk estimate (4.18E-4). In other words, failure to detect a kick before it reaches the BOP 

guarantees some kind of release, whether limited or large depending on what happens as the scenario 

progresses. 

The same caution on the significance of F-V when common cause is present also applies to the RAW. 

If a component has independent and common-cause failure basic events, the basic event RAW only 

applies to that type of failure for that basic event. Caution should also be applied to the RAW when 

selecting a truncation cutoff, because some PRA software calculates RAW based on the cut sets that 

survive truncation. If the truncation cutoff is set too high, some basic events may not appear in the results, 

and would have erroneous RAW values. For example, if Table 4-10 was cut off to the first four cut sets, 

the basic event for the subsea manifold pressure regulator failing (BOP-PRG-FLO-I02) would not be 

present. With no F-V and no RAW tabulated, one might get the false impression that the regulator has no 

risk value. If all five cut sets are used, the F-V is small, but the RAW is 1.88, meaning that the risk nearly 

doubles if the regulator has failed. This would have been missed if a reasonable truncation cutoff was not 

used. 

  

                                                      

j. Ideally, a value of “TRUE” is substituted in the logic model, the top event Boolean expression is re-evaluated and only then 

requantified. 
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Table 4-10. RAW examples. 

# Prob/Freq Total % Cut Set Description 

Total 4.18E-04 100 Displaying 5 Cut Sets. 

(10551 Original) 

 

1 3.70E-04 88.6   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

  End State LIMITEDRELEASE  

2 3.70E-05 8.86   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

  End State CAPPINGSTACKCONTAIN  

3 5.92E-06 1.42   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe properly 

before activating BSR 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

  End State CAPPINGSTACKCONTAIN  

4 3.70E-06 0.89   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill 

string is in the hole 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

 1.00E-01  CAP_STACK_FAILS Capping Stack unsuccessful 

  End State RELIEFWELLSEAL  

5 9.00E-07 0.22   

 1.00E+00  INIT-EV_DRILLING Well Kick While Drilling 

 3.70E-04  BOP-HUM-ERR-KICKDET Operator fails to realize a kick has 

occurred or does not take timely action 

 2.43E-03  BOP-PRG-FLO-I02 Subsea Manifold Pressure Regulator I02 

fails low (Yellow) 

  End State ROVCONTAIN  

 

 Risk Reduction Worth (RRW). RRW is closely related to the F-V importance. Where the 4.3.3.3
F-V importance shows the fractional contribution of a basic event to the total risk, the RRW is a ratio of 

the total risk if the basic event failure probability is set to 0.0 to the nominal total risk. An easy method 

for calculating the RRW is: 

1.0 / (1.0-F-V importance) 

The resulting ratio is the factor by which the risk would be reduced if the failure probability of the 

basic event was set to 0.0. 
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4.3.4 Uncertainty 

The failure data inputs to a PRA are typically distributions describing the uncertainty around each 

event being analyzed. These individual uncertainties are used to estimate the uncertainty around the end 

state(s) of interest in the PRA model. The output from PRA software is typically displayed in two ways: 

as a probability density curve (Figure 4-4), or a cumulative distribution (Figure 4-5). The probability 

density represents the relative likelihood (y-axis) for a given probability value (x-axis). The cumulative 

distribution shows the probability (y-axis) that the end state or event will be less than or equal to the 

probability value (x-axis). 

 

Figure 4-4. Example probability density function. 

 

Figure 4-5. Example cumulative probability distribution. 
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The probability density and cumulative distributions are good for describing the uncertainty of a 

single end state or event. When one is comparing distributions, a chart like that shown in Figure 4-6 can 

be used that readily displays a comparison of where the mean values lie, as well as the distribution around 

the means for each point. 

 

Figure 4-6. Example comparison of end state distributions. 

4.3.5 System Level Reliability 

A PRA is typically done on a facility with emphasis on a particular end state or states. In developing 

the model, many systems or functions are analyzed and may be isolated to give insights specifically for 

those systems and functions. For instance, in the model developed in Section 2, if the analyst wanted to 

review the causes and contributions to failure of the blind shear to close with drill string across the BOP, 

the fault-tree results could be used to provide those insights. These are shown in Table 4-11 for the fault 

tree BLIND_SHEAR_RAM_DR. When reviewing system or function level results from the PRA model, 

it is important to note the context for which the fault tree was developed. The PRA will have a specific 

focus and the system analysis may not include all failures of the system. 
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Table 4-11. Sample fault-tree results for blind shear ram with drill pipe. 

# Prob/Freq Total % Cut Set Description 

Total 1.17E-01 100 Displaying 10 Cut Sets. (1348 

Original) 

 

1 1.00E-01 85.77   

 1.00E-01  BOP-CYL-JAM-BSRDP BSRs fail to close and seal when drill string 

is in the hole 

2 1.60E-02 13.72   

 1.60E-01  BOP-HUM-ERR-HANGOFF Driller fails to position drill pipe properly 

before activating BSR 

 1.00E-01  DP_TOOLJOINT_PRESENT Drill Pipe Tool Joint is Present 

3 4.70E-04 0.4   

 4.70E-04  BOP-SHV-LKE-A02 BSR High-pressure close shuttle valve A02 

catastrophic leak 

4 4.70E-04 0.4   

 4.70E-04  BOP-SHV-LKE-A01 BSR High-pressure close shuttle vlave A01 

catastrophic leak 

5 4.70E-04 0.4   

 4.70E-04  BOP-SHV-LKE-A13 BSR Lock shuttle valve A13 catastrophic 

leakage 

6 4.70E-04 0.4   

 4.70E-04  BOP-SHV-LKE-A12 BSR Lock shuttle valve A12 catastrophic 

leakage 

7 4.54E-04 0.39   

 4.54E-04  BOP-CYL-JAM-BSL1 Blind shear lock fails to lock or stay locked 

8 1.22E-04 0.1   

 1.22E-04  BOP-PRG-FLO-I0102CCF CCF of subsea manifold pressure regulators 

I02 and I01 

9 1.31E-05 0.01   

 1.31E-05  BOP-SVL-FTO-C1213CCF BSR Lock Solenoid operated valves C12 

and C13 CCF to open on demand 

10 1.31E-05 0.01   

 1.31E-05  BOP-SVL-FTO-C0102CCF BSR High Pressure close Solenoid valves 

CO1 and CO2 CCF to open on demand 

 

The results in the table are read similar to the end states, except the contributions and importance 

measures are related to top-event failure instead of an end state. 

4.3.6 Sanity Checks of the Results 

When the model quantification is completed and results are obtained, the analyst must perform a 

sanity check to ensure inputs and outputs are appropriate. On a large model, small errors in inputs can 

make a difference in results. 
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 Basic Event Input. A basic check on the input data should be performed at the time of first 4.3.6.1
quantification. A quick review of a basic event listing will reveal any data that has not been input or has a 

value of 1.0 or 0.0 that was not intended to be. These should be adjusted as necessary. 

 Fault-Tree Linking. Once cut sets are obtained from the first quantification, a review of the 4.3.6.2
basic event names included should be performed to ensure that the correct fault-tree results are being used 

and the fault trees are linked correctly. Improper fault-tree linking may yield cut sets with fault tree names 

instead of basic event names. In some PRA software, this can occur when fault trees are used by the event 

trees at the top-event level instead of using the basic events. 

 Reviewing Results. With the basic event input and fault-tree linking verified, the results 4.3.6.3
should be reviewed to determine if other problems exist. This is a subjective review, based on the 

analyst’s knowledge from building the model. Questions to ask are: 

 Does the overall risk make sense? 

 Do the top scenarios make sense? 

 Are any scenarios that were expected to be risk drivers missing? 

 Are the expected symmetries seen (i.e., If two of three pumps are needed for success, are all 

combinations of two found in the results?)? 

If the answer to any of these is less than adequate, the analyst may have to trace through specific 

scenarios to determine why the expected result is not showing up or higher than expected. The answer 

may be reasonable, if not, troubleshooting is required to make the appropriate fixes to the model. 

 Sensitivity Studies on Assumptions. When information is lacking, heavy reliance is 4.3.6.4
placed on the analyst’s judgment. For example, assumptions made regarding success requirements for 

pivotal events and for accident progression can significantly affect the PRA results. The effect of such 

assumptions needs to be investigated by sensitivity analyses. The results of sensitivity analyses should be 

reported in tabular form and it should include the base-case assumption (the basis for the nominal PRA 

results), the alternative assumption and its basis, and the change in the numerical results between the base 

case and the alternative case. 

4.4 Can the Model Support the Decision Being Made? 

A risk model cannot be perfect; complex risk models contain too many idealizations and abstractions 

to be literally correct at a high level of detail, even without uncertainties; and in many cases, the 

uncertainties are significant as well. Is the model good enough to be used in the present decision 

situation? Or should we do additional work on the model? If the model’s results point to one decision 

alternative with a high degree of confidence – and if the model results are believed – then the work is 

done. On the other hand, if: 

 There is sufficient uncertainty about the model’s results to limit our confidence in the present 

decision, and 

 There is a way to reduce that uncertainty, and 

 The decision stakes are high enough to justify the additional effort, 

then more should be done. However, it is necessary first to understand gain a better understanding of what 

the risk model is saying. 

Risk analysis must accomplish the following: 

 Identification of accident scenarios 

 Estimation of the likelihood of each scenario 

 Evaluation of the consequences of each scenario. 



 

4-22  

Once this is done, it is necessary to integrate the results into an assurance case, suitable for use by 

decision-maker(s). 

1. The integration includes, among other things, development of best estimates for frequencies and 

consequences, development of distributions reflecting the uncertainty associated with those estimates, 

propagation of the uncertainties to obtain final results, and development of appropriate displays to 

communicate the results with their associated uncertainties. Documentation related to PRA models 

whose analysis results are used to make critical decisions regarding design, development, 

manufacturing, and operations that may impact human safety or environmental damage should be 

reviewed. Specific methods and procedures should be used for assessing and communicating the 

credibility of PRA model analysis results based on factors such as peer review, input pedigree, 

uncertainty analysis, results robustness, use history, qualifications of the analysts, and so on. 

2. To provide focus for the presentation of results, the results should include identification of system 

features that are the most important contributors to risk. Insights into relative importance of various 

features of the system, and the relative importance of various modeling assumptions, may be 

developed from uncertainty and sensitivity analyses. A discussion of these insights is required to 

provide the proper interpretation of the “bottom line” conclusions. Such insights should include an 

appreciation of the overall degree of uncertainty about the results and an understanding of which 

sources of uncertainty are critical to those results and which are not. In general, many of the insights 

gained are not strongly affected by the uncertainties. The numerical results need only be accurate 

enough to allow the decision-maker to distinguish risk-significant elements from those of lesser 

importance. The level of detail and the style of presentation of risk results depend on the risk 

assessment objectives. The results section must communicate the project’s motivations and objectives 

and should be done in a way that clearly establishes the appropriateness of the generated results in 

meeting the risk assessment objective. For example, if the risk assessment is intended for evaluation 

of alternative design features as in risk-informed decision-making, the results should be presented in a 

structure that allows comparison of various design options according to an appropriate ranking 

scheme. 

3. Ultimately the question must be asked: Are the results robust enough to support a decision? If not, 

what are the soft spots in the analysis (e.g., dominant uncertainties), and what can be done about 

them? 
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Appendix A 
 

Example Basic Event Naming Conventions 
for Fault Trees 

As discussed in Section 2.2.5.3, a consistent naming convention for fault-tree basic events is 

necessary for several reasons. Ultimately, a good naming convention helps in reading and parsing model 

results in an efficient manner; but even more importantly, the Boolean processing function requires that a 

given basic event be named consistently in all of the logic models in which it occurs. Serious errors can 

result if this is not done correctly. If a model development is being carried out by more than one 

individual, enforcement of this condition and similar conditions is a priority. 

Usually the naming convention is in a form similar to: 

XXX-YYY-ZZZ-DDDDD 

where XXX, YYY, etc. represent identifying attributes to the component and failure mode that may 

include (as previously discussed): 

 The operation being performed (e.g., drilling) 

 The system the component belongs to (blow out preventer) 

 The subsystem the component belongs to (e.g., yellow pod) 

 The component (e.g., shuttle valve) 

 The failure mode (e.g., fails to transfer) 

 A unique identifier for the valve (usually from a drawing) (e.g., SV837). 

The system, component, failure mode, and unique identifier should be included as a minimum, and 

other fields may be added based on the analysis and the character limitations of the probabilistic risk 

assessment software being used. Table A-1 and Table A-2 show typical naming conventions for failure 

modes and components. A three-letter identifier was used for each, but that can vary depending on the 

analyst’s choice. The number of characters should be related to the number of items to be accounted for in 

the field. For instance, if the operations being analyzed are drilling, tripping, running casing, and an 

empty hole, an identifier for operation may only be one letter since only four operations are being 

considered. Failure modes and components typically have many variations, so allocating three letters 

allows flexibility for those items as shown in the examples in Tables A-1 and Table A-2. Unique 

identifiers from drawings or other documents may be variable, so as the last field in the name, it may be 

desirable to not specify the number of characters for that field. 
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Table A-1. Example basic event naming convention for failure modes. 

Description Code Description Code 

Fails to close on demand FTC Plugged PLG 

Fails to open on demand FTO Short circuit SHT 

Fails to reseat FRS Structural failure STR 

Fails to run FTR Transfer closed XFC 

Fails to start on demand FTS Transfer open XFO 

Fails to transfer on demand FTT Fails low FLO 

Jammed JAM Degraded DEG 

External leakage LKE Fails to operate FOP 

Internal leakage LKI Spurious operation SPO 

 

Table A-2. Example basic event naming convention for components. 

Hydraulic/ Pneumatic Components Code Instrumentation Code 

Safety relief valve SRV Wind sensor WIS 

Hydraulic/ pneumatic cylinder CYL Hydroacoustic sensor HYS 

Shuttle valve SHV GPS antenna GPS 

Pilot-operated valve PVL Gyro compass GYC 

Solenoid-operated valve SVL Temperature sensor TMS 

Check valve SCV Flow switch FSW 

Accumulator ACC Pressure switch PSW 

Reservoir RES Level switch LSW 

Pump PMP Fluid System Components
1 
 Code 

Filter FLT Manual valve VLV 

Manual valve MVL Motor-operated valve MOV 

Pressure reducer PRD Air-operated valve AOV 

Pressure regulator PRG Safety relief valve SRV 

Orifice ORF Accumulator  ACC 

Other Code Reservoir RES 

Human error HUM Pump PMP 

Electrical Components Code Filter FLT 

Circuit breaker CBR Heat exchanger HEX 

Electric power bus BUS Orifice ORF 

Relay RLY Hydraulic-operated valve HOV 

Battery BAT Mechanical Components  Code 

Computer COM Diesel generator DGN 

Joystick JOY Thruster THR 

Switchboard SWB Compressor CMP 
1
 Such as seawater, freshwater, fuel, not hydraulic/pneumatic. 
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Appendix B 
 

Fault-Tree Gate Logic and Quantification 

The primary logic gates used in fault-tree modeling are the OR gate, AND gate, and the 

COMBINATION gate shown in Figure B-1. 

 

Figure B-1. Common fault-tree logic gates. 

B-1. OR GATES 

The OR gate is used for situations where, if any event under the gate is true (has occurred), then the 

OR gate will be true (or occur). For instance, if a well kick occurs, the driller has to recognize the well 

kick and close the annular preventer. For a fault tree, which is developed in failure space, the top event 

would be “failure to close the annular preventer after a well kick.” Since both actions have to occur for 

success, either one failing (driller failing to recognize the kick, or annular preventer failing to close) 

would result in the top event being true. The simple OR gate is shown in Figure B-2. 

 

Figure B-2. Simple OR gate. 
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The OR gate ANNULAR-FTC is true if either basic event BOP-HUM-ERR-001 OR 

BOP-ANP-FTC-001 is true. 

The output from the OR gate would result in the following cut sets: 

BOP-HUM-ERR-001 

BOP-ANL-FTC-001. 

In Boolean logic, the equation for the results becomes: 

ANNULAR-FTC = BOP-HUM-ERR-001  BOP-ANL-FTC-001 

The events in a fault tree are generally considered to be independent (with the exception of common 

cause). That is, the occurrence of one event does not affect the likelihood of another. Figure B-3 shows a 

representation of how the events in Figure B-2 are viewed in a Venn diagram if they are independent. As 

shown in the Venn diagram, if the events are truly independent, either one of them could occur; or, some 

percentage of the time, both could be true, as represented by the overlap of the two events (labeled “A”). 

In reality, both would never occur because if the driller fails, the annular preventer will not have a chance 

to fail, even if a latent failure is present. 

 

Figure B-3. Venn diagram for fault-tree independent events. 

Quantification of the OR gate is performed once probabilities are assigned to the basic events. The 

possibility of the two events being true concurrently must be accounted for if the values of the 

probabilities are relatively large (i.e., greater than 0.01). In order to do this, the intersection of the two 

events (“A”) is subtracted from the total in the form: 

ANNULAR-FTC = BOP-HUM-ERR-001 + BOP-ANL-FTC-001 - BOP-HUM-ERR-001 * 

BOP-ANL-FTC-001. 
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Assigning the probabilities below: 

BOP-HUM-ERR-001 = 0.001 

BOP-ANL-FTC-001 = 0.001 

gives the equation: 

ANNULAR-FTC = 0.001 + 0.001 – 0.001 * 0.001 

ANNULAR-FTC = 1.999E-3 (B-1) 

In this case, the probabilities are small, so the intersection term does not affect the answer 

significantly. In these cases, the rare event approximation, leaving off the last intersection term, may 

provide a reasonable answer. If the probabilities were significantly higher, for example 0.5, the equation 

becomes: 

ANNULAR-FTC = 0.5 + 0.5 – 0.5 * 0.5 

ANNULAR-FTC = 0.75 (B-2) 

In this case, with large probabilities, the answer is significantly affected due to the event 

independence (the probability of ANNULAR-FTC would be calculated as 1 if it were not corrected for 

the intersection term). 

OR gates may have many inputs, including other gates. 

B-2. AND GATES 

The AND gate is used for situations where all events under the gate must be true in order for the 

AND gate to have the value “TRUE.” For instance, if a BOP has three pipe rams and closure of any one 

would stop the well from flowing, the top event for functional failure would be “Failure to close a pipe 

ram after a well kick.” Since any one of the three pipe rams suffices for success, they all must be failed 

for the top event to be true. The simple AND gate for this situation is shown in Figure B-4. 

 

Figure B-4. Simple AND gate. 

The AND gate PIPERAM-FTC is true if basic events BOP-PRA-FTC-001 AND BOP-PRA-FTC-002 

AND BOP-PRA-FTC-003 are true. 

The output from the AND gate would result in the single cut set: 

BOP-PRA-FTC-001* BOP-PRA-FTC-002 * BOP-PRA-FTC-003 

In Boolean logic the equation for the results becomes: 

PIPERAM-FTC = BOP-PRA-FTC-001  BOP-PRA-FTC-002  BOP-PRA-FTC-003 (B-3) 

PIPERAM-FTC

All 3 pipe rams fail to close 

after a well kick

1.0000E+00BOP-PRA-FTC-001

Lower pipe ram fails to close

1.0000E+00BOP-PRA-FTC-002

Middle pipe ram fails to close

1.0000E+00BOP-PRA-FTC-003

Upper pipe ram fails to close
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Figure B-5 shows a representation of how the events in Figure B-4 are viewed in a Venn diagram if 

they are independent. In the previous case of the OR gate, the area representing failure of the top event 

was the total shaded area. For the AND gate, the area that satisfies the top-event condition is that where 

all shaded areas overlap (i.e., intersect), labeled “A” in Figure B-5. Anywhere outside of the area labeled 

“A,” at least one pipe ram has not failed. 

 

Figure B-5. Venn diagram for three independent events. 

Quantification of the AND gate is performed once probabilities are assigned to the basic events. The 

equation formed to calculate the probability of area “A” in Figure B-5 is: 

PIPERAM-FTC = BOP-PRA-FTC-001 * BOP-PRA-FTC-002 * BOP-PRA-FTC-003 (B-4) 

Assigning the probabilities below: 

BOP-PRA-FTC-001 = 0.001 

BOP-PRA-FTC-002 = 0.001 

BOP-PRA-FTC-003 = 0.001 

gives the equation: 

PIPERAM-FTC = 0.001 * 0.001 * 0.001 

ANNULAR-FTC = 1.0E-9 (B-5) 

B-3. COMBINATION GATES 

The COMBINATION gate is used for situations where M (at least three) events are under the gate 

and N events (where N is at least two but less than M) must be true in order for the COMBINATION gate 

to be true or occur. For instance, if a MODU has three thrusters (three is used for simplicity in this 

example) for station-keeping, and any two operating is enough to maintain position, the top event would 

be “at least two thrusters fail and station-keeping is lost.” Since two of the three thrusters must be 

operating, if two of the three fail, then the top event will be true. The simple COMBINATION gate for 

this situation is shown in Figure B-6. 
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Figure B-6. Simple COMBINATION Gate. 

The COMBINATION gate, THRUSTER-FTO is true if any two of the basic events 

DPS-THR-FTR-001, DPS-THR-FTR-002, and DPS-THR-FTR-003 are true. 

The output from the COMBINATION gate would result in the three cut sets: 

DPS-THR-FTR-001 * DPS-THR-FTR-002 

DPS-THR-FTR-002 * DPS-THR-FTR-003 

DPS-THR-FTR-001 * DPS-THR-FTR-003. 

In Boolean logic the equation for the results becomes: 

THRUSTER-FTO = DPS-THR-FTR-001  DPS-THR-FTR-002  DPS-THR-FTR-001  

DPS-THR-FTR-003  DPS-THR-FTR-002  DPS-THR-FTR-003. (B-6) 

Figure B-7 shows a representation of how the events in Figure B-6 are viewed in a Venn diagram if 

they are independent. For the COMBINATION gate, the area that satisfies the top-event condition is that 

where at least two shaded areas overlap. These areas are labeled “A,” “B,” “C,” and “D” in Figure B-6. 

Areas “A,” “B,” and “C” are overlaps between two thrusters, and represent the probabilities that each 

specific combination of two will fail. Area “D” is the overlap of all three thrusters and represents the 

probability that all three thrusters fail. This area will also satisfy the top event of at least two thrusters 

failing. 

 

Figure B-7. Venn diagram for three independent events. 

THRUSTER-FTR

2 3

At least 2 of 3 thrusters fail 

and station-keeping is lost

1.0000E+00DPS-THR-FTR-001

Thruster 001 fails to run

1.0000E+00DPS-THR-FTR-002

Thruster 002 fails to run

1.0000E+00DPS-THR-FTR-003

Thruster 003 fails to run



 

B-6  

Quantification of the COMBINATION gate is performed once probabilities are assigned to the basic 

events. The equation formed to calculate the probability of Areas “A,” “B,” “C,” and “D” in Figure B-7 

is: 

THRUSTER-FTO = (DPS-THR-FTR-001 * DPS-THR-FTR-002) + (DPS-THR-FTR-001 * 

DPS-THR-FTR-003) + (DPS-THR-FTR-002 * DPS-THR-FTR-003) – (2 * DPS-THR-FTR-001 * 

DPS-THR-FTR-002 * DPS-THR-FTR-003)  (B-7) 

The first three terms in parentheses in the above equation represent the intersection of each pair of 

thrusters (Areas “A”,” B”, and “C” in Figure B-7). The Area “D” is included in each intersection term, 

and would therefore be counted three times if the intersection terms were simply added. The last term in 

the equation is a correction to account for this over-counting. In this case, the correction is small because 

the probabilities are small. 

Assigning the probabilities below: 

DPS-THR-FTR-001 = 0.001 

DPS-THR-FTR-002 = 0.001 

DPS-THR-FTR-003 = 0.001 

gives the equation: 

THRUSTER-FTO = 0.001 * 0.001 + 0.001 * 0.001 + 0.001 * 0.001 – 2 * 0.001 * 0.001 * 0.001 

THRUSTER-FTO = 2.998E-6 (B-8) 
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Appendix C 
 

Calculating Frequency, Reliability, and 
Availability Metrics 

This appendix provides a simplified discussion of the basics of quantifying reliability, availability, 

and frequency of failure metrics for components and systems. It does so using conventional Markov 

model graphics. This is done in order to clarify how most PRA software uses the component performance 

information that must be entered in order to quantify the model. Most PRA software does not actually use 

Markov models, but the standard Markov model representation is a useful reminder of what sort of thing 

the subject calculations actually do, whether they are based on simulation, solution of Markov models, or 

hand calculations. 

For present purposes, it is assumed that the functions of systems and components are well defined, the 

failure modes of components and their effects have been identified, the rates of occurrence of these failure 

modes are quantified in some way, and the system configurations that would be considered “successful” 

have been defined. For a system having redundancy (more than one way to succeed, despite failed 

components), this would mean that the number of trains or divisions needed for “success” has been 

defined; and it is additionally recognized that for different kinds of functional demands, different 

definitions of “success” might apply. 

At any given time, a component that is capable of doing its job is “available” (i.e., it is not out for test 

or maintenance) and in a “good” state. A very simplified state diagram for a single component is shown in 

Figure C-1. 

 

Figure C-1. Simple state diagram for component A. 
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The circles represent component states, and the arcs represent transitions between states. The arc 

labeled  is a “failure”: a transition from “good” to “failed.” This occurs at the failure rate , which has 

the units of “events per unit time.” Analogously, the arc labeled  corresponds to restoration of the 

component to “good” status, occurring at the repair rate . Within the model underlying this figure, a 

component is either “good” or “failed,” and the probabilities of these states must therefore sum to 1. If we 

treat  and  as stochastic and constant in time, we can write the following equations for the time rate of 

change of the probabilities of “up” and “down”: 

𝑑(𝑢𝑝)

𝑑𝑡
= −𝜆 ∗ 𝑝(𝑢𝑝) + 𝜇 ∗ 𝑝(𝑑𝑜𝑤𝑛), 

𝑑(𝑑𝑜𝑤𝑛)

𝑑𝑡
= 𝜆 ∗ 𝑝(𝑢𝑝) − 𝜇 ∗ 𝑝(𝑑𝑜𝑤𝑛), 

𝑝(𝑢𝑝) + 𝑝(𝑑𝑜𝑤𝑛) = 1. (C-1) 

This is an extremely simple example of a class of models called “Markov.” A distinguishing feature 

of these models is that what happens at any given instant depends only on the state of the system at that 

instant: a Markov model has no memory of what went before. The modeling of “repair” as a purely 

stochastic phenomenon, occurring independently of how long a component has been down, is a drastic 

and unrealistic approximation. But it makes this set of equations trivial to solve, and, for some purposes, 

is a useful starting point. We can do a better job of modeling things like this in discrete event simulation, 

which is discussed in Section 2.3. 

One can solve the above equations straightforwardly. Typically, the initial condition is: at time 0, 

p(up)=1 and p(down)=0. 

This simple model has the property that over sufficient time, it will converge to a condition in which 

< 𝑝(𝑢𝑝) >=
𝜇

𝜇+𝜆
 𝑎𝑛𝑑 < 𝑝(𝑑𝑜𝑤𝑛) >=

𝜆

𝜇+𝜆
. (C-2) 

 

This follows from setting the time derivatives to zero, and solving for <p(up)> and <p(down)> using 

simple algebra. If we were reasoning intuitively, we might argue that the occupancy of the down state is 

given by the frequency of entering that state (), multiplied by the average dwell time in that state (1/). 

This slight difference between this result (1) and the above formula results from the need to correct for 

the availability, discussed below. 

Convergence to the steady state is seen in Figure C-2, for illustrative values of  and . The system 

evolves from its initial condition (p(up)=1) to the steady state given by the above formulas, for the values 

of  and  given on the figure. 
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Figure C-2. Steady-state diagram for Component A. 

For many components, typical failure rates are on the order of one per many thousands of hours, and 

typical repair rates are on the order of one per some tens of hours, or less; putting these numbers into the 

formulae for <p(up)> and <p(down)> yields a number close to 1 for time-averaged availability (<p(up)>), 

and a small number (equal to 1-availability) for time-averaged unavailability (<p(down)>). 

The rate of failure events actually experienced is not given simply by ; the component must be “up” 

in order to be able to fail. The rate of failures actually experienced is therefore *p(up). If p(up) is close 

to unity, then equating the expected rate of failures to  is a reasonable approximation; but in checking 

computer calculations, the difference between  and the observed rate of failures may be observable, if 

unavailabilities are on the order of a few percent, which can easily be the case. 

This point generalizes: the rate at which any arc is traversed is the product of the rate associated with 

that arc, multiplied by the occupancy (the probability) of the state from which the arc originates. 

If a component is known to be “good” at time = 0, then the probability that it is failed at 

time T is ~ *T, for T<<1/. Averaged over this interval, the probability of being in a failed state is 

(1/2)**T. 

Figure C-3 makes a slightly different point. In Figure C-1, a component was either “good” or “in 

repair.” In some systems, failure will not immediately be detected, and we need more than a “repair rate” 

concept to build a model. In Figure C-3, a failed component is placed into repair only when the failure is 

detected, which could occur either as a result of an actual demand on the system, or as a result of a 

scheduled test, carried out for the very purpose of detecting a failed state. 
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Figure C-3. Slightly more complicated state diagram for Component A. 

These figures begin to illustrate a general principle underlying the calculation of complex “rates” 

(accident frequencies, functional failure frequencies, …). Figure C-4 shows a two-component system with 

a one-out-of-two success criterion: if the system is demanded and either component works, the system 

succeeds; if both components are down, the system fails. The accident rate is the rate of demands 

multiplied by the probability of both components being down. As modeled in Figure C-4, that latter 

probability depends on the underlying failure rates and repair rates; but as mentioned above, we need a 

way of detecting component failures (as in Figure C-3) before we initiate repair. 
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Figure C-4. Simplified state diagram for system containing redundant Components A and B. 

If, for some reason, we are interested in the rate of system failure, we obtain this by summing the 

rates of traversing the two arcs into the “both down” state: that is, 

 p(A failed, B still good) +  p(B failed, A still good). 

In all of this, we have assumed that: 

 There is no causal linkage between the failures of A and B 

 There is no causal linkage between the rate of demands and the failure rates 

 All of the rates are constant in time (even the repair rate, and even though this is unlikely to be a 

realistic description). 



 

C-6  

 “Failure on Demand” 

The Reactor Safety Study [C-1] defines “demand probabilities” as: 

… the probability that the device will fail to operate upon demand for those 

components that are required to start, change state, or function at the time of the 

accident [sic]. The demand probabilities, denoted by Qd, incorporate 

contributions from failure at demand, failure before demand, as well as failure to 

continue operation for a sufficient period of time for successful response to the 

need. When pertinent, the demand data Qd can be associated with standard cyclic 

data or can be interpreted as a general unavailability. Human error data can 

also be associated with demand probabilities (i.e., per action) as discussed in the 

human evaluation section. 

Not all communities of practice make use of all aspects of this definition. Some argue that if a 

component is “good” in the instant before a demand, it will (by definition) function during the demand; 

within this concept, “failures” are either failures in standby, or failures to run, and the occupancies of 

failed states are quantified accordingly (i.e., in terms of a standby failure rate or a rate of failure to run). 

Others argue that owing to variability in the stresses imposed by a particular demand, there is a nonzero 

probability that a nominally “good” component will fail upon the arrival of a demand. Still others would 

argue for modeling a state between “good” and “bad” (i.e., “degraded”) having a probability of failure on 

demand that is significant but still less than unity. This is a modeling decision to be evaluated on a 

case-by-case basis; the present point is that operationally, Qd is simply the state probability that one 

multiplies by a “demand” arc to get the frequency of accidents or functional failures, as the case may be. 

Although it may seem simple and convenient to lump all causes of component non-performance 

together, it is conventional to split out maintenance unavailability contributions from actual component 

failures, because in some applications, operational rules proscribe having multiple components out for 

maintenance, and the logic model needs to reflect that point: the model should not generate system failure 

cut sets in which everything is out for maintenance, unless that can, in fact, occur. Sometimes it is 

necessary to split out failure to start from failure to run, because the consequences are different, or 

perhaps because common-cause failure considerations are different for the two failure modes, and so on. 

C-1. REFERENCES 

C-1 “Reactor Safety Study: An Assessment of Accident Risks in U. S. Commercial Nuclear Power 

Plants,” WASH-1400 (NUREG 75/014), U.S. Nuclear Regulatory Commission, October 1975). 
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Appendix D 
 

Sources of Failure Rate and Event Data 

D-1. BACKGROUND 

A fundamental requirement to quantify a risk assessment model is the basic equipment failure rate 

data. These data are comprised of numerical estimates of failure rate and event data that are used in the 

model and best represent the failure rate characteristics of the facility. There are several categories of 

failure that are included in a risk model. These include: 

 Loss of containment (leaking or rupture) of equipment that belong to the hydrocarbon containment 

envelope 

 Failure on demand of a component within a safeguard system when required 

 External event rate of occurrence for events that challenge the facility to maintain critical safety and 

environmental integrity functions. 

Ideally, parameters of probabilistic risk assessment (PRA) models of a specific system should be 

estimated based on operational data of that system. The next most representative data is that from the fleet 

of similar facilities operated by the same entity. 

Often, however, the analysis has to rely on a number of sources and types of information if the 

quantity or availability of system-specific data are insufficient. In such cases surrogate data, generic 

information, or expert judgment are used directly or in combination with (limited) system-specific data. 

According to the nature and degree of relevance, data sources may be classified by the following types: 

 Historical performance of successes and failures of an identical piece of equipment under identical 

environmental conditions and stresses that are being analyzed (e.g., direct operational experience). 

 Historical performance of successes and failures of an identical piece of equipment under conditions 

other than those being analyzed (e.g., test data). 

 Historical performance of successes and failures of a similar piece of equipment or similar category 

of equipment under conditions that may or may not be those under analysis (e.g., another program’s 

test data, or data from handbooks or compilations). General engineering or scientific knowledge about 

the design, manufacture, and operation of the equipment, or an expert’s experience with the 

equipment. 

D-2. GENERIC DATA SOURCES 

Generic data is surrogate or non-specific information related to a class of parts, components, 

subsystems, or systems. Most generic data sources cover hardware failure rates. All other data categories, 

particularly human and software failure probabilities, tend to be much more mission-specific, 

system-specific, or context dependent. As such, generic data either do not exist or need to be significantly 

modified for use in a PRA. 

The international offshore industry has performed risk and reliability assessments for a variety of 

facilities for over 30 years. Each of these quantitative evaluations tends to increase the general collection 

of risk and reliability information when this information is stored or published for later use. In addition to 

the individual quantitative evaluations, various industry entities also manage failure data and incident 

reporting systems. A selection of offshore industry data collection systems includes: 
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 Guidelines for Process Equipment Reliability Data with Data Tables [D-1] 

 Process Equipment Reliability Database (PERD) 

 Failure Rate and Event Data for Use within Risk Assessments (HSE PCAG) 

 Failure Frequency Guidance Process Equipment Leak Frequency Data for Use in QRA 

 Lees’ Loss Prevention in the Process Industries (Third Edition) 

 OGP Risk Assessment Data Directory 

 OIR/12 

 Offshore Reliability Data 

 Pipeline and Riser Loss of Containment (PARLOC) Report 

 WellMaster Reliability Management System 

 Worldwide Offshore Accident Database. 

These data sources are presented in this guideline along with content descriptions. These sources are 

commonly utilized in PRAs conducted for offshore facilities. This list is not exhaustive nor endorsed for 

use, but simply a compilation of frequently used sources. They are presented in alphabetical order in 

Tables D-1 through D-11. 

Table D-1. Guidelines for Process Equipment Reliability Data with Data Tables. 

Name Description 

Sponsor/Author Center for Chemical Process Safety of the American Institute of Chemical 

Engineers 

Data Types The level three taxonomy contains 50 component types under the following 

groups: 

 Electrical equipment 

 Instrumentation 

 Process equipment 

 Protection Systems. 

Description Failure rate data handbook, multi-industry sources 

Number and Type of 

Records 

Book 

300 pages, 75 individual failure rate estimate pages 

Frequency of Update None 

Time Frame Prior to 1989 

Data Access Commercial publication 

Notes The PERD handbook is a compilation of data tables based on literature review of 

estimates from many industries and from proprietary files of previously analyzed 

and selected information. There is no clear relationship to analysis of individual 

failure events although the format resembles other handbooks that are based on 

estimates derived from analysis of event data from equipment populations. 

The intent of the data is for use in the chemical process industry. 

Failure rate estimates are given as lower, mean, and upper bound as failure rates 

or demand failure probabilities, by failure mode. 

Reference ISBN 0-8169-0422-7 
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Table D-2. PERD. 

Name Description 

Sponsor/Author Center for Chemical Process Safety of the American Institute of Chemical 

Engineers 

Data Types Relief devices 

Description Event failure database 

Number and Type of 

Records 

2,000 relief valve inventory records and over 5,000 proof test event records 

Frequency of Update 0 

Time Frame 2001–2013 

Data Access Tiered membership scheme. Access to raw event data to allow statistical data 

analysis for contributing members. 

Notes The PERD database is based on taxonomies developed within the PERD 

project and is an extension of [D-1]. Relief devices were selected to collect 

event and test data and implement the database. 

Reference http://www.aiche.org/ccps/resources/process-equipment-reliability- 

database-perd 

 

Table D-3. Failure Rate and Event Data for Use within Risk Assessments (HSE PCAG). 

Name Description 

Sponsor/Author UK Health and Safety Executive, Hazardous Installations Directorate 

Data Types Categories include mechanical, electrical, bulk transport, and moveable storage. 

Specific types include vessels, reactors, valves, pumps, hoses and couplings, 

flanges and gaskets, pipelines, and compressors. 

Description Non-mandatory reference compiled by the agency for assisting their risk 

assessments 

Number and Type of 

Records 

A compilation of many references ranging from proprietary study reports to 

textbooks comprising 96 pages of data tables and background information 

Frequency of Update 0 

Time Frame 1972–2012 

Data Access Publication available from HSE website. 

Notes HID CI5 has an established set of failure rates that have been in use for several 

years in quantitative risk assessments (QRAs) submitted for land use planning 

cases. The estimates “do not necessarily take account of all factors that could be 

relevant and significant at particular installations.” However, in the absence of 

site-specific data, the values given here may serve as a starting point for safety 

reports. 

Reference http://www.hse.gov.uk/landuseplanning/failure-rates.pdf 

 

Table D-4. Failure Frequency Guidance Process Equipment Leak Frequency Data for Use in QRA. 

Name Description 

Sponsor/Author DNVGL 

Data Types  Compressors centrifugal and reciprocating 

 Filters 

http://www.aiche.org/ccps/resources/processequipmentreliabilitydatabaseperd
http://www.aiche.org/ccps/resources/processequipmentreliabilitydatabaseperd
http://www.hse.gov.uk/landuseplanning/failure-rates.pdf
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 Flanges 

 Heat exchangers (air cooled, plate, shell, and tube) 

 Pig traps 

 Process piping 

 Pumps (centrifugal and reciprocating) 

 Instruments 

 Valves (actuated and manual) 

 Pressurized process vessels 

 Atmospheric storage tanks 

Description A proprietary publication containing guidance and data on process equipment 

leak frequency for use in a QRA. In this document, a detailed review and 

comparison is made between the Det Norske Veritas taxonomy and frequency 

values and the UK HSE Hydrocarbon Release Database taxonomy and 

frequency values. Additional comparisons are made to guidance developed by 

Flemish and Dutch governments for the same purpose. 

Number and Type of 

Records 

The guide is 40 pages, with 20 pages of data tables presenting leak frequency 

by equivalent hole size for each equipment type 

Frequency of Update Continuously 

Time Frame 2005–2012 

Data Access Proprietary publication available for purchase from DNVGL 

Notes The leak frequency data contained in the guidance document was generated by 

the LEAK software, which is an application that contains a continuously 

updated database of leak frequency data and a structured computational 

capability for leak frequency calculations. 

Reference https://www.dnvgl.com/services/calculate-leak-frequency-data-leak-1759  

 

Table D-5. Lees’ Loss Prevention in the Process Industries (Third Edition). 

Name Description 

Sponsor/Author Texas A&M University, Department of Chemical Engineering 

Data Types  Vessels and tanks 

 Pipework 

 Heat exchangers 

 Rotating machinery 

 Valves 

 Instruments 

 Process computers 

 Relief systems 

 Fire and gas detection systems 

 Fire protection systems 

 Emergency shutdown systems 

 Utility systems 

 LNG plants 

 Leaks 

 Ignition 

 Explosion following ignition 

 Fires 

 Explosion 

 Transport 

https://www.dnvgl.com/services/calculate-leak-frequency-data-leak-1759
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 External events 

Description A well-known, seminal reference three-volume text compiling the wide range 

of topics relevant to process safety  

Number and Type of 

Records 

Appendix 14 of this reference is titled Failure and Event Data. It compiles 38 

pages of reference failure rate data  

Frequency of Update 3rd Ed (2005), 2nd Ed (1994), 1st Ed (1979) 

Time Frame Cited references range from 1960–2004 

Data Access Commercial publication 

Notes Failure rate data contained in the book are compilations of many failure rate 

publications from numerous industries. Failure rate estimates are reproduced 

from cited publications. 

Reference ISBN 0-7506-7589-3 

 

Table D-6. OGP Risk Assessment Data Directory. 

Name Description 

Sponsor/Author International Association of Oil and Gas Producers 

Data Types  Major accidents 

 Occupational risk 

 Land transport accident statistics 

 Aviation transport accident statistics 

 Water transport accident statistics 

 Construction risk for offshore units 

 Process release frequencies 

 Risers and pipeline release frequencies 

 Storage incident frequencies 

 Blowout frequencies 

 Mechanical lifting failures 

 Ship/installation collisions 

 Ignition probabilities 

 Consequence modelling 

 Structural risk for offshore installations 

 Guide to finding and using reliability data for QRA 

 Vulnerability of humans 

 Vulnerability of plant/structure 

 Escape, evacuation and rescue 

 Human factors in QRA 

Description The Risk Assessment Data Directory is a series of guidance documents that 

provide data and information for use to improve the quality and consistency of 

risk assessments with readily available benchmark data. The directory includes 

references for common incidents analyzed in upstream production operations.  

Number and Type of 

Records 

20 individual documents (datasheets) 

Frequency of Update 1
st
 Ed (1997), 2

nd
 Ed (2009) 

Time Frame Prior to 2009 

Data Access Commercial publication 

Notes This series of documents was commissioned with the specific goal of defining 
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generic data for use in QRAs 

Reference http://www.iogp.org/pubs 

 

Table D-7. OIR/12. 

Name Description 

Sponsor/Author UK Health and Safety Executive 

Data Types Hydrocarbon release event database compiled by the UK Health and Safety 

Executive, with periodic publications of the analysis of these data in publically 

available report format. 

Description Event data are required to be submitted under the Reporting of Injuries, 

Diseases and Dangerous Occurrences Regulations 1995 - (RIDDOR 95). 

OIR/12 addresses offshore hydrocarbon release events. 

Number and Type of 

Records 

585 event records 

Frequency of Update Continuous 

Time Frame 2001–2008, previous data deemed inconsistent with current analysis taxonomy 

and analysis requirements 

Data Access Publication available online 

Notes Data are analyzed by time trend, platform type, platform age, release 

magnitude, system, cause. Data prior to 2001 are presented with disclaimer. 

Reference http://www.hse.gov.uk/research/rrpdf/rr672.pdf  

 

Table D-8. Offshore Reliability Data. 

Name Description 

Sponsor/Author OREDA, managed, produced and distributed by Veritec, followed by 

Sintef/Det Norske Veritas 

Data Types Comprehensive topsides and subsea production equipment, safety equipment, 

and limited onshore exploration and production equipment 

Description OREDA is a project organization sponsored by eight oil and gas companies 

with worldwide operations. OREDA’s main purpose is to collect and exchange 

reliability data among the participating companies and act as the forum for 

co-ordination and management of reliability data collection within the oil and 

gas industry.  

Number and Type of 

Records 

Event records from 278 installations, 17,000 equipment items with 39,000 

failure and 73,000 maintenance records. The database also includes subsea 

fields with over 2,000 years operating experience.  

Frequency of Update 6th Ed (2015), 5th Ed (2009) 4
th
 Ed (2002), 3

rd
 Ed (1997), 2

nd
 Ed (1992), 1

st
 Ed 

(1984) 

Time Frame Corresponding with updates 

Data Access Tiered membership scheme. Access to raw event data to allow statistical data 

analysis for contributing members. Handbook available for purchase. 

Notes All estimates in these handbooks are derived from statistical analysis of event 

data.  

Reference https://www.oreda.com/  

http://www.iogp.org/pubs
http://www.hse.gov.uk/research/rrpdf/rr672.pdf
https://www.oreda.com/
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Table D-9. PARLOC Report. 

Name Description 

Sponsor/Author Oil and Gas UK 

Data Types Pipeline and riser 

Description The PARLOC Report is a source of risk assessment data for generic loss of 

containment frequencies and covers pipelines and risers in the offshore oil and 

gas industry.  

Number and Type of 

Records 

206 incident events, loss of containment and near miss. 10,000 km-yr pipeline, 

4,000 riser-yr from the UK sector of North Sea, eastern Irish Sea, West of 

Shetland 

Frequency of Update 1990, 1992, 1994, 1996, 2001 online in 2006/07Hard copy update commenced 

2013 

Time Frame 1988–current 

Data Access Commercial publication 

Notes Most complete and homogeneous dataset of subsea pipeline and riser incident 

event data 

Reference http://oilandgasuk.co.uk/parloc.cfm 

 

Table D-10. WellMaster Reliability Management System. 

Name Description 

Sponsor/Author Seven member companies, managed by Exprosoft 

Data Types Subsea (subsurface) equipment types, limited subsea (seabed) equipment, e.g., 

X-mas Trees. 

Description The world’s largest database of reliability data for well and subsea equipment 

Number and Type of 

Records 

6,000 wells/40,000 well years 

Frequency of Update Continuous 

Time Frame 1986–2016 

Data Access Online access available commercially 

Notes All estimates are derived from statistical analysis of event data using the online 

application 

Reference https://wellmaster.exprosoft.com 

 

Table D-11. Worldwide Offshore Accident Database. 

Name Description 

Sponsor/Author DNVGL 

Data Types Accident events from global population 

Description Event data including name, type, and operation mode of the unit involved in 

the accident, date, geographical location, chain of events, causes and 

consequences, and evacuation details 

Number and Type of 

Records 

6,451 accidents occurring among 3,795 operating units 

http://oilandgasuk.co.uk/parloc.cfm
https://wellmaster.exprosoft.com/
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Frequency of Update Continuous 

Time Frame 1986–2016 

Data Access Purchase of data search consultancy or a database subscription. The program is 

a web application. 

Notes Comprehensive database of offshore accident event data 

Reference https://www.dnvgl.com/services/world-offshore-accident-database-woad-1747 

 

It is important to recognize the perspective of the risk modeler in order to establish requirements on 

the quality of failure rate and event data to be used in a risk model. Once a complete risk model is 

constructed and quantified, it is often the case that a large number of individual failure rate and event data 

input values do not strongly influence the overall calculated level of risk or contribute to insights provided 

by analyzing risk contributors. This being the case, the requirements for high-fidelity and representative 

failure rate and event data should vary corresponding to the significance to the calculated risk results. In 

short, if the failure rate and event data do not significantly influence the results, then we can use lower 

quality estimates. 

D-3. SYSTEM-SPECIFIC DATA COLLECTION AND CLASSIFICATION 

System-specific data can be collected from sources such as: 

 Maintenance logs 

 Test logs 

 Operation records. 

In the majority of cases, system-specific data are gathered from operation and test records in their 

“raw” form (i.e., in the form that cannot be directly used in a statistical analysis). Even when data have 

already been processed (e.g., reduced to counts of failure), care must be exercised to ensure that the data 

reduction and processing are consistent with QRA modeling requirements, such as having a consistent 

failure mode classification, and correct count of the total number of tests or actual demands on the 

system). 

In collecting and classifying hardware failure, a systematic method of classification and failure 

taxonomy is essential. A key element of such taxonomies is a classification of the functional state of 

components. One such classification system has been offered in D-2. Using a taxonomy implies a 

knowledge structure used to describe a parent-child relationship (i.e., a hierarchy). Under the guidelines 

for evaluation of risk and reliability-related data, the taxonomy provides the structure by which data and 

information elements provide meaning to analysts. Within the risk and reliability community, a variety of 

taxonomies and associated definitions are used. ISO 14224 [D-3] provides a taxonomy for collecting and 

processing of equipment failure data in the petroleum industry. 

When concerned about the physical causes of failures, a set of physics-based causal factors would be 

required. However, this low level of information is not necessary if the inference being made for a 

specific component or system is concerned with—in general—failures or successes. If, instead, we 

wished to infer the probability of failure conditional upon a specific failure mechanism, we would need to 

have information related to the nature of failure (e.g., the physical causal mechanisms related to specific 

failures). 

In other words, this classification can take place via a failure modes and effects analysis, similar to 

the functional failure modes and effects analysis. Kumamoto and Henley [D-4] carried this idea one step 

further when they proposed a formal cause-consequences structure to be stored in an electronic database. 

In their approach, specific keywords, called modifiers, would be assigned to equipment failures. For 

https://www.dnvgl.com/services/world-offshore-accident-database-woad-1747
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example, modifiers for on-off operation included: close, open, on, off, stop, restart, push, pull, and switch. 

Alternative hierarchy related to system/component/failure modes may look like: 

System 

└ Component 

└ Failure Mode 

└ Affected Item 

└ Failure Mechanism 

└ Failure Cause 

With regard to the intended function and in reference to a given performance criterion, a component 

can be in two states: available or unavailable. The unavailable state includes two distinct substates: failed 

and functionally unavailable, depending on whether the cause of the unavailability is damage to the 

component or lack of necessary support such as motive power. The state classification also recognizes 

that even when a component may be capable of performing its function (i.e., it is available), an incipient 

or degraded condition could exist in that component, or in a supporting component. These failure 

situations are termed potentially failed and potentially functionally unavailable, respectively. These 

concepts have proven useful in many PRA data applications. 

Another aspect of reliability data classification is the identification of the failure cause. In the context 

of the present discussion, the cause of a failure event is a condition or combination of conditions to which 

a change in the state of a component can be attributed. It is recognized that the description of a failure in 

terms of a single cause is often too simplistic. A method of classifying causes of failure events is to 

progressively unravel the layers of contributing factors to identify how and why the failure occurred. The 

result is a chain of causal factors and symptoms. 

A hierarchy of parts or items that make up a component is first recognized, and the functional failure 

mode of the component is attributed to the failure or functional unavailability of a subset of such parts or 

items. Next the physical sign or mechanism of failure (or functional unavailability) of the affected part(s) 

or item(s) are listed. Next the root cause of the failure mechanism is identified. Root cause is defined as 

the most basic reason or reasons for the failure mechanism, which if corrected, would prevent 

reoccurrence. The root cause could be any causal factor, or a combination of various types of causal 

factors. 
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Appendix E 
 

Further Discussion of Bayesian Updating 

E-1. SIMPLE EXAMPLES 

E-1.1 Updating of Prior for a Poisson Example 

In this example, the goal is to estimate an hourly failure rate for a component, assuming that the 

failures obey a Poisson distribution. We choose a lognormal distribution for the prior, and a Poisson 

distribution for the likelihood model.
k
 The operational data for the component category indicate two 

failures in 10,000 hours. 

Since the prior distribution is lognormal, and the likelihood function is Poisson, and these two are not 

“conjugate,” the posterior distribution must be derived numerically. The prior and posterior distributions 

are shown in Figure E-1, along with the “maximum likelihood estimate” (MLE). The MLE, the value of 

the parameter for which the likelihood function P(E|parameter) is maximum, is 2E-4 in this case 

(failures/hours). Note that the probability density functions are plotted as a function of log frequency. 

The posterior distribution is shifted from the prior distribution towards the MLE. This is typical. 

 

Figure E-1. The prior distribution distributions for the failure rate example. 

                                                      

k. These distributions are discussed in Section 2.2.1.6.2. 
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E-1.2 Updating Distribution of Failure-on-Demand Probability 

In this example, the goal is to estimate a failure-on-demand probability. We have chosen the prior 

distribution of a particular component failure probability on demand to be a Beta distribution with 

mean equal to 1E-4 failures per demand, and standard deviation equal to 7E-5. The operational data for 

the component category are one failure in 2,000 demands. Our chosen likelihood model is the Binomial 

distribution, which is conjugate to the Beta prior. Therefore, the posterior distribution is also a Beta 

distribution. The prior and posterior distributions are shown in Figure E-2, along with the MLE 

(1/2000=5E-4). 

 

Figure E-2. The prior and posterior distributions for the failure-on-demand example. 

Once again, we see the posterior distribution shifted towards the MLE. In this example, however, we 

also see something else: the MLE is quite unexpected, given the prior. This situation should give us 

pause, and is discussed in Section E-2. 

E-1.3 Sequential Updating 

Bayes’ Theorem provides a mechanism for updating the state of knowledge when the information is 

accumulated in pieces. The updating process can be performed sequentially and in stages corresponding 

to the stages in which various pieces of information become available. If the total amount of information 

is equivalent to the “sum” of the pieces, then the end result (posterior distribution) is the same regardless 

of whether it has been obtained in stages (by applying Bayes’ Theorem in steps) or in one step (by 

applying Bayes’ Theorem to all the evidence at once). 

Example—Updating Failure Rate for a Poisson Process. A component is tested for 1000 hours in 

one test and 4000 hours in another. During the first test the component does not fail, while in the second 

test one failure is observed. We are interested in an updated estimate of the component failure rate 

assuming a Gamma prior distribution with parameters = 1,  = 500. 

MLE=5E-4	
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Approach 1: Sequential. We first start with prior (Gamma distribution): (x|=1, =500). We also 

use Poisson as the likelihood function: Pr(k1=0|T1=1000, ), representing the first data set (k1 = 0 in 

T1 = 1000 hours). The parameters of the resulting Gamma posterior distribution are ’=+k1=1+0=1, and 

’=+T1=500+1000=1500 (ref. Section 2.2.6 for a general discussion of the update process). 

Next, we use this posterior as the prior distribution in for a new update, using the second data set. The 

prior is ’(l|’=1, ’=1500) and the likelihood is again Poisson: Pr(k2=1|T2=4000, l). The parameters of 

the posterior after the second update are ’’=’+k2=1+1=2, and ’’=’+T2=1500+4000=5500. The 

posterior mean is given by: 

�̅� =
𝛼′′

𝛽′′
=

2

5500
= 3.6𝐸 − 4 failures/hour (E-1) 

Approach 2: Use all the data at once. The total evidence on the failure history of the component in 

question is k=k1+k2=0+1=1, and T=T1 +T2 =1000+4000=5000. Starting with our prior distribution with 

parameters  = 1, b = 500, the above cumulative evidence can be used in one application of Bayes’ 

Theorem with Poisson likelihood: Pr(k=1|T2 =5000, l). The parameters of the resulting Gamma posterior 

distribution are ’=+k=1+1=2, ’=+T=500+5000, and 

�̅� =
𝛼′

𝛽′
=

2

5500
= 3.6𝐸 − 4 failures/ hour, (E-2) 

as for Approach 1. In this case, the equivalence of the two approaches is clear from the functional form: 

the numerator of the mean is given by the sum of the prior  and the total failures, and similarly for the 

denominator. But the principle holds generally. Note that the validity of the result depends on the trials all 

being exchangeable; this point is discussed in Section E-2. 

E-2. PRIOR DISTRIBUTIONS, LIKELIHOOD MODELS, AND DATA 
APPLICABILITY 

It is difficult to avoid making choices in the assessment of uncertainty. This section discusses what 

needs to be considered when those choices are made, taking as a point of departure the situation noted in 

the demand failure probability update illustrated above. 

E-2.1 All Prior Distributions Contain Information 

The amount of information that a prior distribution contains can be quantified (in various ways), and 

the distributions that contain the least amount of information can be found and used if so desired; but 

there is no such thing as a prior that contains no information. This is not necessarily a bad thing: none of 

the questions to which Bayesian analysis is applied, even the simplest, can be answered without some 

information. Classical methods avoid this need by answering different questions, which may or may not 

be similar enough to the questions we ask for the answers to be useful to us. 

Take the simple example of determining whether a coin is fair or two-headed. If we flip a coin and it 

comes up heads six times in a row, we have collected some evidence against the coin being fair. But we 

must use our prior belief about the coin to reach a conclusion about whether we believe this coin is fair. If 

we just obtained the coin at the bank, where it is extremely unlikely to find a forged or misprinted coin 

mixed in amongst thousands of real coins, we should not be in a hurry to assume the coin is two-headed 

even after ten consecutive flips. On the other hand, if we found the coin on the floor of a magic shop, we 

should seriously consider the possibility that someone dropped a joke coin. Without prior probabilities we 

cannot answer the question “how likely is this to be a fair coin?” All we can say is that it is 64 times 

easier for a two-headed coin to generate the data we collected than for a fair coin to generate it. A 
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classical statistician would say “there is less than a 5% chance that a fair coin will come up heads six 

times in a row,” but he will say nothing about the chance that we are holding a two-headed coin in our 

hands now. A blind devotee of non-informative priors will assign a prior probability one-half to the fair 

and two-headed possibilities, calculate posterior probabilities of 1/65 for fair, 64/65 for two-headed—and 

probably make a lot of false accusations of two-headed coins. A reasonable Bayesian will assign a prior 

probability somewhere between 1/1000 and 1/1000000 to the two-headed possibility if he is at the bank 

(and not suspicious at all of a coin that comes up heads six times), and something closer to 1/100 if he is 

at a magic shop (and start seriously considering the possibility of a two-headed coin after several heads in 

a row come up). 

Proper choices of model form and prior should encapsulate all available information that we had 

about a problem before we started collecting data. This is an easy task if we have a small set of 

alternatives and easily quantifiable information, but it can be a very hard task for real-world problems—

often impossible to do perfectly. The better of a job we do at choosing the prior, the better our final 

answer will be. 

The importance of choosing the correct model—choosing the correct family of distributions to try to 

fit one’s data to—is often downplayed, but the success of the whole model-fitting enterprise depends on 

the reasonableness of this model. This is also a convenient and effective way to encapsulate information 

about the allowable range of the data. 

For example, consider the distribution of times between failures of some component (or times 

between eruptions of a volcano, or some similar problem). If failure appears to be a completely random 

process, perhaps controlled by some external process, then a constant hazard rate, and exponential 

distribution of failure times, may be appropriate. If components accumulate damage through use, or 

pressure builds up during the interval between eruptions, then the hazard function increases with time, 

and the underlying distribution has a thinner-than-exponential tail. The Weibull distribution is popularly 

used to model component lifespans because it has a polynomial hazard function, convenient to model 

rapidly increasing risk of failure as the component exceeds its design lifespan. An nth degree polynomial 

hazard function corresponds to a distribution with tail thickness proportional to (𝑒−(𝑥(𝑛+1)). 

On the other hand, consider the length of time a car sits in a parking lot. One’s natural reaction to 

seeing the car sit there for a full day is not “surely the owner is going to be back any second now!” but 

rather “while originally I thought that car would only be there for a few minutes or hours, I should now 

entertain the possibility that it will be left here all week or all month”—a situation modeled by a 

distribution with decreasing hazard function and a very long (decaying more slowly than exponential) tail, 

such as a lognormal or power-law distribution. 

If the variable of interest takes on values only in a certain range, then it usually makes good sense to 

choose a prior that covers only that same range. When the data are confined to [0,1], the Beta prior is a 

common choice; when the data are confined to positive numbers, the Gamma, Weibull, and lognormal are 

common choices. If there is a theoretical reason to expect the data to take a certain form, the model 

should usually be chosen to match that form: if you are trying to estimate the size of a 100-year flood 

from annual peak discharges of a river, fitting a Gumbel distribution to the data is probably a better 

choice than fitting some general-purpose distribution. 

Modelers should be wary of choosing a prior that is at odds with the real world. In particular, 

remember that the normal distribution has support from -∞ to +∞, and if one models lengths, or times, or 

some other variable that is nonnegative by a normal distribution, the resulting posterior will always assign 

a nonzero probability to negative values (maybe very small, but still nonzero). The normal distribution is 

also very thin-tailed: it is extremely hard to make the posterior mean be more than a few standard 

deviations from the prior mean. This is a feature for some applications like modeling measurement errors 

that are known to be small compared to the quantity being measured; but this can be a significant flaw if a 

diffuse prior is desired. 
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A similar problem arises if one uses a lognormal distribution to model the probability of a rare event, 

as is commonly done in human reliability analysis. The lognormal is an excellent choice when a prior 

distribution spanning several orders of magnitude is needed (as when you do not know whether a rare 

event has probability 0.001 or 0.00001) but the lognormal has support on [0, ∞], not just [0,1], so care 

must be taken to handle the case when the posterior has substantial mass beyond 1. Truncation (treating 

all mass beyond 1 as if it were concentrated at 1) is only reasonable if very little mass is beyond 1. 

E-2.2 How Much Information does a Prior Contain? 

Sometimes it is easy to directly interpret how much information the prior contains relative to the data 

set. The simplest example is the Beta-Binomial model: a Beta(a,b) prior can be interpreted as providing 

“the same amount of information as if we had obtained a successes and b failures already.” The same kind 

of interpretation can be applied to a Gamma-Poisson model for failure rates. 

A popular intuitive assessment of how much information the prior contains relative to the data is 

obtained by inspecting the posterior mean: the posterior mean always lies between the prior mean and the 

mean of the data. For many Bayesian models, the posterior mean can be thought of as a weighted average 

of these two means. If the posterior mean is, say, three-fourths of the way from the prior mean to the 

mean of the data, one interprets the data as containing three times as much information as the prior 

contained. The example of Section E-1.2 is a case where the prior contained more information. 

For several of the most popular Bayesian models that use conjugate priors, including the 

Beta-Binomial, Gamma-Poisson, and normal-normal, the intuitive interpretations in the two paragraphs 

coincide with each other and can be made rigorous. 

Even so-called “non-informative” priors contain information. Three popular families of priors—

maximum entropy priors, Jeffreys priors, and reference priors—seek to minimize the information content 

of the prior, for three different technical definitions of ‘information.’ The first maximizes the 

information-theoretic entropy of the prior, subject to some given constraints; the second creates a 

distribution of the shape of which is invariance under any change of variables; the last maximizes the 

expected Kullback-Leibler divergence (“information gain”) between prior and posterior, given some 

assumptions about the posterior. Jeffreys and reference priors coincide in one dimension but differ in 

multidimensional problems. 

Revisiting our coin that came up heads six times in a row at the beginning of the section, suppose we 

start with a Beta(10,10) prior—a fairly strong belief the coin is approximately fair. Our posterior is a 

Beta(16,10) distribution. Our prior has a mean 1/2, our data have mean 1, our posterior has mean 16/26 

(approximately 0.615). The posterior mean moved 23% of the way—6/26ths—from 1/2 toward 1, in 

agreement with the intuitive assessment that our prior contained 10+10=20 coinflips worth of 

information, to which we add six more with our new data. 

Had we done the same experiment with a Jeffreys or reference prior, Beta(1/2,1/2), our posterior 

would be a Beta(6 1/2, 1/2) distribution with mean 6.5/7 (approximately 0.929). The posterior mean 

moved 6/7ths of the way toward the mean of the data, in agreement with the interpretation that a Jeffreys 

prior provided “as much information as one coinflip, one-half heads and one-half tails.” 

The situation one might intuitively think of as a “no-information prior”—Beta(0,0)—is in fact a very 

strange improper prior, with all its mass concentrated at p=0 and p=1. 
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E-2.3 Bias 

MLEs are the “gold standard” of classical statistical estimation because of their desirable properties. 

Chief among these are that MLEs are asymptotically unbiased and efficient (no other asymptotically 

unbiased estimate has a smaller variance). Note that being asymptotically unbiased does not guarantee 

that an MLE based on finite sample size is unbiased. Some MLEs (like �̅�/𝑛 for the mean of a normal 

distribution) are always unbiased, but others -- like the MLE for the variance of a normal distribution, 

∑(𝑥𝑖 − �̅�)2/𝑛, are biased. In this last case it is easy to compute a bias correction -- this is why the usual 

formula for sample variance is ∑(𝑥𝑖 − �̅�)2/(𝑛 − 1) -- but in many other cases it is not a trivial task to 

remove the bias. When computing MLEs for complicated models using small data sets, the bias problem 

may be severe. 

MLEs are a special case of a Bayesian point estimate, with a uniform (possibly improper) prior. 

Bayesian point estimates are almost always biased as a result of the choice of prior: for a Binomial 

distribution with a uniform (Beta(1,1)) or Jeffreys (Beta(1/2,1/2)) prior, observing x successes in n trials 

results in a point estimate of (x+1)/(n+2) (uniform) or (x+1/2)/(n+1) (Jeffreys), in contrast to the 

unbiased x/n. Generally speaking, the more information in the prior, the more strongly the Bayesian 

estimate is biased. In a well understood problem, this may be considered a feature, not a flaw: when we 

have strong prior knowledge we may want our posterior estimate to be only slightly different, and even 

without strong prior knowledge, we may want to prevent the estimate of a Binomial probability from 

being unreasonably close to 0 or 1, for instance. 

It is important to remember that a Bayesian update never “fails”: it always returns an answer. If you 

ask a question about which you have collected little or no data, the answer it gives is driven entirely by 

the prior. Especially in cases where it is not obvious how much information the prior contains, or an 

experimenter uses a standard non-informative prior without thinking about how that will affect his 

answer, this can lead to surprisingly bad, or at least unexpected, answers. 

This is simply a limitation of having sparse data. Careful choice of prior can mitigate this issue but 

not avoid it entirely. Consider a rare type of accident that is only expected to occur once in 1000 

site-years of exposure. No one site is going to have sufficient local experience to independently estimate 

its accident rate; instead, each site is going to use the nationwide average rate as a prior for a 

Gamma-Poisson model, and update it with its local experience. How strong of a prior should each plant 

use? 

Suppose one takes a very strong prior like Gamma(10,10000). A plant that has no accidents in 

10 years will update this to a Gamma(10,10010) posterior. A plant with two accidents in 10 years—

wildly unlikely, if that site’s true accident rate is close to once in 1000 years of exposure—updates this to 

a Gamma(12,10010) prior, and claims that its site-specific accident rate is around once in 800 years. 

Using too strong of a prior distribution means that grossly underperforming sites are not called to 

account for their poor performance. 

Now suppose one takes a very weak prior like Gamma(0.01,10). Now the plant with two accidents in 

10 years has a Gamma(2.01,30) posterior, estimates a site-specific accident rate of once in 15 years, and 

is forced to take corrective action. But a site with no accidents in 10 years has a Gamma(0.01,20) 

posterior, and, on the basis of only 10 years of experience containing almost no real information—we 

EXPECT not to see a once-in-1000-years accident in any given 10-year period—now claims its 

site-specific accident rate has improved to once in 2000 years. 

There is no prior that can completely avoid both of these two flaws. Any scheme that ensures poorly 

performing sites are “properly punished” will also “improperly reward” well-performing (or just lucky) 

sites. 
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The non-informative priors for the Gamma-Poisson model have shape parameters near 0.5—the 

intuitive interpretation is “pretend 0.5 accidents happened at each site, in addition to however many were 

really observed”—as a compromise so that sites with one or more accidents see some kind of significant 

increase in site-specific estimated rate, while sites with zero accidents do not calculate impossibly rare 

site-specific rates. 

E-2.4 Bayesian Analysis Assumes a Static Underlying Process 

Bayesian modeling is rooted in the notion that the observed data are exchangeable. Many classical 

methods are based on the similar but stronger idea that all of the observations are independently and 

identically distributed. This constitutes an assumption that the order in which the data were collected does 

not matter. If one flips a coin 10 times today, and flips the same coin 10 more times tomorrow, these can 

be pooled into a set of 20 equally important observations. 

This assumption breaks down if the underlying process has changed over the observation period. 

Estimating the value of real estate based on last year’s (or last decade’s) sales prices gives poor results if 

economic conditions have changed. Similarly, using the failure rate of brand-new pumps to estimate the 

failure rate of broken-in and well-maintained pumps, or using well-maintained pumps to estimate the 

failure rate of worn-out pumps, has that same issue. 

When data are sparse, the temptation to pool data over an unreasonably long time period is strong. 

Sometimes it is justified: if one is averaging over thousands of pumps nationwide, perhaps it is fair to 

assume that pumps are constantly wearing out and being replaced, such that the overall distribution of 

pump ages remains static, even though any one individual pump’s behavior may be different next year 

than last year. This is a difficult assumption to defend. Conditions nationwide may change—in an 

economic downturn, facilities across the nation may defer maintenance, or a new law may be passed 

mandating replacement at a certain age—or maybe a large proportion of units entered service at the same 

time: look at what happened to Social Security when it assumed the ratio of earners to retirees would stay 

approximately constant forever. 

For convenience, we often use models that we know are an over-simplification of the real world. 

Using several years of old data to create a prior distribution for what we expect to see next year is a very 

common practice. It is important, when doing so, not to just directly use the distribution of past 

observations as one’s prior, but rather to use a more diffuse prior that takes into account the possibility 

that conditions are the same now as they were in the past. 

E-2.5 Assessing Goodness of Fit 

Assessing whether new data are consistent with a proposed model is an important task, but it is not a 

task for which a single universal method exists. One (extreme) perspective is that if the prior has properly 

encapsulated everything we know, the posterior should always be correct: that is, one of things the 

posterior tells us is exactly how much we should change our belief after collecting surprising data. In 

principle this is true, but in practice, people commonly use less-than-perfect priors, either for 

mathematical convenience or due to lack of information that would have been desirable while choosing a 

prior. 

Classical tests exist for determining whether a data set appears to have been drawn from a particular 

distribution, and for determining whether two data sets appear to be drawn from the same distribution or 

not. These tests, or their Bayesian adaptations, may be suitable for answering some questions of this type. 

One particularly valuable classical test consists of fitting two models to the same data, with one 

model (the “reduced model”) a special case of the other (the “full model”). If the larger family of 

distributions fits the data significantly better than the smaller, embedded, family of distributions does, this 

is evidence that the reduced model is inadequate for the task at hand. 
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This is typically done when one wishes to argue for the more complicated model. When a study 

reports that it has found that family income has a significant effect on academic success “after controlling 

for gender and race,” it means that it fit a model that explains success by income, gender, and race, and 

shown that that model is significantly better than a model that explains success only by income. 

One might, for instance, assess whether a linear trend is a good fit to a scatter plot, by fitting a 

quadratic or cubic model to the same data set, and conclude that if the quadratic term of the larger model 

is statistically significant, then the simple linear model is a poor explanation of the data. Note that a 

non-significant result does not prove the simple model is correct, but it is evidence in favor of that claim. 

This type of test can be adapted to almost any problem of interest. The question of data seemingly 

inconsistent with a prior might be approached in this way by, for instance, fitting both a simple Poisson 

model with Gamma prior to a set of count data, and an over dispersed Poisson model. If the later model 

fits much better than the former, one has a basis for arguing that there is something wrong with the first 

model: either you needed a more complicated model all along, or the prior and the data were not 

consistent, or something else. 

E-2.6 Surprise 

An alternative to formally testing goodness of fit (or lack thereof) is assessing whether the data are 

“surprising,” without considering any particular alternative. This is useful, as a sanity check and to get a 

feel for one’s data; but developing a firm rule for how surprising data must be before saying “our model is 

wrong” is not possible without bringing in some outside information (such as showing that another model 

fits the data better.) 

Various people have proposed formal definitions of the notion of ‘surprise’. No one definition has 

achieved universal acceptance. Bayarri and Berger [E-1] review the options that have been used in the 

past. The classical p-value has sometimes been interpreted as a measure of surprise [E-2]. Two more 

recent alternatives are the “s-value” [E-3] and the Kullback-Leibler divergence from the prior to the 

posterior, which is being vigorously promoted as a “formal Bayesian theory of surprise” [E-4]. 

This last proposal, grounded in the same mathematics that underlies the reference prior, may be the 

most likely of these to stand up to the test of time, though the emotionally charged notion of “surprise” is 

not likely to remain attached to it. The Kullback-Leibler divergence is more often described in drier terms 

like “bits of information gained” (in the formal Shannon-information sense, not the informal “information 

contained in n observations” terms used earlier in this appendix). 

Returning one last time to our coinflip example, suppose we have a Beta(10,10) prior, and we flip a 

coin six times. We would be not surprised at all to see three heads and three tails, or 4-2 or 2-4; we might 

be mildly surprised to see six heads in a row. If we flipped the coin 10 times, we would not be surprised 

by anything between say 8-2 and 2-8; 9 heads out of 10 would be about as surprising as 6 out of 6; 10 out 

of 10, more surprising still—about one bit of information more surprising, seeing something that was 

supposed to be a 50-50 proposition happen an additional time. 
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If we calculate the Kullback-Leibler divergence between prior p(x) and posterior q(x) 

∫ 𝑞(𝑥) log2
𝑞(𝑥)

𝑝(𝑥)
𝑑𝑥 (E-3) 

we see that the divergence between Beta(10,10) and Beta(13,13) is 0.024 bits—almost no surprise at all; 

between Beta(10,10) and Beta(14,12) is 0.112 bits; between Beta(10,10) and Beta(15,11) is 0.379 bits; 

and between Beta(10,10) and Beta(16,10) is 0.837 bits. The Kullback-Leibler divergence between 

Beta(10,10) and Beta(15,15) is 0.054 bits; between Beta(10,10) and Beta(18, 12) is 0.654 bits; between 

Beta(10,10) and Beta(19,11) is 1.14 bits; and between Beta(10,10) and Beta(20,10) is 1.79 bits. 

The question “how surprising is surprising enough to cause us to doubt that we chose an appropriate 

prior?” still lacks a rigorous answer. 
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Appendix F 
 

Population Variability Modeling 

Population variability modeling solves the problem of how best to estimate facility-specific 

risk-model parameters, given that facility-specific data are limited but industry data are more plentiful, 

albeit most likely inhomogeneous. From a broader perspective, it is also of interest to understand just how 

variable certain parameters are, and the values over which those parameters can reasonably be expected to 

range, in a given population of facilities. 

Population variability modeling was introduced by Kaplan [F-1] in the 1980s and applied to modeling 

the frequency of loss of offsite power (LOOP) at nuclear power plants. Most plants lose power very 

seldom, but the fleet as a whole has several such events per year; the rate varies quite significantly from 

one plant to another, and plant risk is sensitive to this parameter, so we do not wish to use a generic value 

derived by pooling all the losses and dividing by the total exposure time. In Kaplan’s original work, the 

population variability distribution (PVD) portrayed the relative fraction of plants having a given LOOP 

frequency. In plant-specific analysis, this PVD was then used as a prior distribution for LOOP frequency, 

and updated with plant-specific data, the resulting posterior being then used in probabilistic risk 

assessment (PRA) as the state-of-knowledge distribution of LOOP frequency for that plant. Note the 

assumptions being used here: that it makes sense to draw a PVD in the first place for the population that 

we are trying to work with, that the facility we are interested in can be viewed as a member of this 

population, recognizing that it is characterized by variation in LOOP frequency, and so on. If we accept 

the basic ideas, then in using this framework, we end up imputing to our plant a distribution for this 

parameter that reflects our experience as well as the experience of the operating fleet, in both the central 

tendency of that parameter for our plant and the epistemic distribution of likely values of that parameter 

for our plant. If we have very little plant-specific data, our state-of-knowledge curve will look like the 

PVD curve describing the whole plant population. 

Therefore, when presented with a set of data of component performance, the most pressing question 

that arises is can we pool the data, and if not, can we find a curve that fits the variability of the data 

sufficiently to quantify a prior distribution that adequately represents the performance of the component 

population. 

F-1. POPULATION ANALYSIS STEPS 

Figure F-1 represents the basic steps used for population analysis. 
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Figure F-1. Population analysis steps. 

It is always best to use a pooled data set if the data set fits a pooled goodness-of-fit test. The first 

analysis is to take the full population and perform a quantitative pooling test. If the goodness-of-fit test 

passes for the distribution inferred by the pooled data, then the prior fitting the population is found and 

can be used to update with the facility component data. 

If the pooled data test fails, then a PVD is constructed for the entire population. Hierarchical Bayes is 

used in this analysis, with the prior parameters used as the first hierarchy (hyperpriors). These hyperprior 

parameters are started as flat or completely diffuse, ideally chosen to spread out along the entire realm of 

possibility. Generally, a Markov Chain Monte Carlo (MCMC) program is used with initial guesses for the 

starting points of the parameters to run the inference until the parameters converge to values that are used 

as the parameters in the PVD. The parameters may not converge to an answer depending on the degree of 

variability within the full population data set. If the PVD parameters converge to values, then the results 

for the PVD inference are used to compare to replicated values for the individual data sets in the same 

manner as for the pooling test and a goodness-of-fit score is produced. If the goodness-of-fit test passes 

for this PVD, then the prior fitting the population is found and this PVD can be used to update with the 

facility component data. 

If the full population PVD test fails to find converged values or fails the goodness-of-fit test, then a 

data source grouping analysis must be performed. This consists of both qualitative and a quantitative 

analysis. In a qualitative manner, as much information about the data set is determined as possible beyond 

just the number of failures over time or demands. If data sources are known to be from one manufacturer 

of component, for instance, that is noted. The same holds for any other pertinent information such as 

environment used, application, etc. The quantitative part of the analysis is to use a machine learning data 

mining algorithm to cluster the data into groups by these attributes identified in the qualitative analysis. 
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The cluster analysis can work on as little as two points of information (covariates) such as failures and 

time or failures and demands, however, the more covariates that can be provided, the more information 

can be gleaned from the cluster analysis. 

Using the clusters obtained from the grouping analysis an individual PVD analysis is performed on 

each cluster. If a cluster cannot be fitted with a PVD, then the grouping process can be re-performed with 

different parameters for the algorithm or by changing the number of covariates (increase or decrease). If 

clusters are marked as outliers and a PVD cannot be fitted, then a simple Bayesian update on the 

individual data sources with a Jeffrey’s prior will suffice. Once all clusters have a PVD, then they are 

weighted using a mixture prior for use in updating facility component data. The weights are equivalent to 

their percentage of the population. 

F-1.1 Markov Chain Monte Carlo Sampling 

The use of Markov Chain Monte Carlo (MCMC) programs greatly simplifies the calculation of the 

problems encountered in population variability analysis. Bayesian inference typically involves several 

integrals in the denominator of the equation and MCMC avoids the need to empirically solve the 

multidimensional integral. The basic process of MCMC uses a random number to sample directly from 

the posterior distribution. It then has one “answer.” Another random sample is taken, and another, and so 

forth until an entire set of samples can be used to determine a numerical distribution that represents the 

posterior distribution. 

The basic premise of a Markov chain is that it is constructed such that the chain converges to a joint 

posterior distribution. The chain uses a sequence of random variables X0, X1, X2, … to sample and create 

the posterior distribution. The distribution of Xn+1 only depends on Xn, which is a property of Markov 

chains. The chain “forgets” its initial state and the next sample builds on the resulting distribution of the 

prior sample. The Markov function, f(xn+1|xn), is known as a “transition kernel.” Once the distribution is 

stable from sample to sample (known as “stationary”), samples can be taken to estimate the parameters of 

interest. Various methods exist to construct the transition kernel. Gibbs sampling, Slice Sampling, and 

Metropolis-Hastings are a few of the most popular. 

F-1.1.1 OpenBUGS and JAGS 

OpenBUGS (Open-source Bayesian Updating Using Gibbs Sampling) and JAGS (Just Another Gibbs 

Sampler), two Bayesian inference MCMC programs, are vetted open-source programs that are good to 

use for these types of problems. Both programs use the BUGS language and are nearly identical. Any 

MCMC program capable of Bayesian inference can be used, however, these programs were used for the 

sample analyses presented here. 

The publicly available NASA publication NASA/SP-2009-569, [F-2] Appendix C, provides a tutorial 

in the basic use of OpenBUGS. 

F-1.2 Pooled Data Analysis 

The pooled data test uses a non-informative prior to infer parameters over the entire data set. Each 

data source is duplicated using the pooled data distribution parameters, and compared to the results 

obtained by updating individually with the non-informed prior. A goodness-of-fit such as a Chi-squared 

test is applied to determine if the replicated data matches the data using the pooled data distribution. 

The Bayesian update rule for a single degree of freedom can be expressed as: 

𝜋1(𝜃|𝐸) =
𝐿(𝐸|𝜃)𝜋0(𝜃)

∫ 𝐿(𝐸|𝜃)𝜋0(𝜃)𝑑𝜃
 (F-1) 

where: 
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E is the evidence 

θ is the parameter of interest 

𝜋0(𝜃) is the prior distribution 

𝐿(𝐸|𝜃) is the likelihood function 

𝜋1(𝜃|𝐸) is the posterior distribution (the updated estimate). 

The parameter of interest in a pooled data update is the prior distribution 𝜋0(𝜃) and how well it 

replicates the posterior distributions of each data source. 

Figure F-2 displays the directed acyclic graph of a pooled Bayesian inference of Poisson distributed 

data (failures over time). 

 

Figure F-2. Bayesian inference for a pooled analysis of failures versus time Poisson analysis. 

Parameters α and β are parameters of a Gamma distribution, which is represented by the solid arrows 

leading to λ. This Gamma distribution starts as a non-informative prior; the Jeffreys prior is commonly 

used. Updating this model for each data source starting with the Jeffreys prior until the entire population 

is updated gives a posterior numerical distribution prediction for the entire population. Each data source 

uses this update to replicate its number of failures. If the replication is nearly or exactly equivalent to the 

number of failures for the data set, then the goodness-of-fit test passes. If this is the case, then a 

distribution is fitted to the properties of the numerical distribution (such as mean, percentiles, or standard 

deviation) and used to update with facility component performance data. 

F-1.3 Population Variability Distribution Analysis 

It is preferable to pool data when it is appropriate to do so; however, if goodness-of-fit tests prove that 

the data cannot be pooled, then an attempt is made to model the variability in the sources of the data 

within the data set. A viable PVD represents the variability from source to source of component data. 

Unfortunately, there may not exist a simple-looking PVD: the data themselves may belie a simple picture. 

However, constructing an honest variability distribution is preferable to pooling data that are patently 

inhomogeneous. 

A PVD is a distribution that adequately represents the variance in the data sources of the data set. 

This is the top level of the hierarchical Bayesian inference required for this type of problem. The PVD 

distribution is on the input data at one level and the likelihood distribution for individual source outcomes 

in on a second level, which describes the hierarchy. Recall that the update rule for a single degree of 

freedom is shown in Equation (F-1).  
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Another integral is added to the denominator for each degree of freedom, whether that be a second 

parameter in the likelihood function or a second level of hierarchy. 

A Poisson distribution is commonly used when one is examining a rate-based problem (failures 

experienced over an operating time). The distribution requires inputs for failures (x) and time (t) and will 

produce a rate (λ). Simply the Poisson is described as “x is distributed as (~) the Poisson of μ,” which is 

equal to λt. 

𝑥~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇), 𝑤ℎ𝑒𝑟𝑒 𝜇 = 𝜆𝑡 (F-3) 

Figure F-3 displays the directed acyclic graph of a hierarchical Bayesian inference using Poisson 

parameters. 

 

Figure F-3. Hierarchical Bayesian inference using the Poisson parameters. 

The hyperpriors, α and β, are parameters of a Gamma distribution, which is represented by the solid 

arrows leading to λ. This Gamma distribution is the PVD and defines λ for the first hierarchy. The second 

hierarchy is the Poisson distribution, which provides the posterior for each data source. 

Generally, in hierarchical Bayes, if the parameter of interest is denoted as π(θ), then the prior 

distribution is written as: 

𝜋(𝜃) = ∫ 𝜋1(𝜃|𝜑) 𝜋2(𝜑)𝑑𝜑 (F-4) 

where 𝜋1(𝜃|𝜑) is the first stage prior that represents the population variability in θ for a given value of φ, 

which is the vector (α, β)
T
. 

Further broken down into terms of α and β, the first stage prior is defined as: 

𝜋1(𝜆) = ∬ 𝜋0(𝜆|𝛼, 𝛽) 𝜋0(𝛼, 𝛽)𝑑𝛼𝑑𝛽 (F-5) 

The hyperpriors, α and β, are not defined as discrete values in the non-pooled inference model. 

Instead, they are defined as diffuse, or flat values over the breadth of possible values. A Gamma 

distribution with α and β both equal to zero is a good example of a diffuse prior for use in hierarchical 

Bayes. Using MCMC, α and β are given starting points and samples are taken until the values converge to 

the Gamma parameters of the prior for use in the PVD. 

F-1.4 Data Source Grouping Analysis 

A quantitative tool to help in identifying groups within a population data set is called cluster analysis. 

Many algorithms have been developed for use in the area of data mining. One such algorithm proposed 
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for use in heterogeneous populations is Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) [F-3]. DBSCAN uses the data points in a matrix to determine the groups that are closely 

packed together (points that have many nearby neighbors) [F-4]. 

Two parameters are used in DBSCAN, the first is called the Epsilon Neighborhood of a point. This 

specifies the distance at which to determine if two data points representing a set of covariates are within 

the same neighborhood. 

𝑁𝐸𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠} (F-6) 

The second parameter is the Minimum Points, which is the minimum number or points to lie within a 

neighborhood to determine if the points are within a group. 

𝑝 ∈ 𝑁𝐸𝑝𝑠(𝑞) 

|𝑁𝐸𝑝𝑠(𝑞)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 (F-7) 

The concept of direct density reachability in the DBSCAN algorithm states that the two points, p and 

q, are in the same Epsilon Neighborhood and there are a specified number of points within that 

neighborhood to call it a cluster. Further, a third point, o, is also density reachable with respect to NEps and 

MinPts. For more information, see [F-3] and [F-4]. 

DBSCAN is available via many statistical analysis program packages, including the open source and 

free program R. The data is set into a matrix of covariates. This can be as simple as failures and time or 

failures and demands. It can also include more covariates such as environmental parameters such as 

temperature, humidity, manufacturer, etc. However, the data matrix must be entered numerically. 

The clusters that DBSCAN provides can be further analyzed in a qualitative manner to determine 

what caused the data to cluster in that way. Was it an environmental difference? Was it a manufacturer? 

Was the component used in a different manner? Can data sources be discarded as outliers? These are all 

questions that cluster analysis can help answer. 

An output graph showing the grouped points and outliers is presented in Figure F-4. The data set 

grouped here consisted of only two covariates, time (years in y-axis) and failures (x-axis). Listing the 

indices from the matrix for the groups then allows a PVD analysis to be performed for each group and a 

mixture prior set up for use in updating facility data. 

 

Figure F-4. Convex cluster hulls. 
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F-1.5 Mixture Priors 

A mixture prior uses all the information from the data set in a weighted manner. The prior in the 

Bayesian inference formula (𝜋0) is a sum of the component parts that are PVDs of the groups found 

through cluster analysis. 

𝜋1(𝜃|𝐸) =
𝐿(𝐸|𝜃)𝜋0(𝜃)

∫ 𝐿(𝐸|𝜃)𝜋0(𝜃)𝑑𝜃
 (F-8) 

𝜋0 = ∑ 𝑤𝑖𝜋𝑖 + 𝑤𝑖+1𝜋𝑖+1 + ⋯ 𝑤𝑛𝜋𝑛
𝑖=1
𝑛  (F-9) 

∑ 𝑤𝑖 +𝑖=1
𝑛 𝑤𝑖+1 + ⋯ 𝑤𝑛 = 1.0 (F-10) 

where: 

w  is the weight of the group as a ratio of the entire population. If 10 indices of the matrix out of 100 

are in the group, then the weight will be 0.10. Weights must sum to 1.0. 

𝜋0  is the mixture prior distribution for use in the Bayesian inference formula to find the posterior 

update of the facility component performance. 

F-2. EXAMPLES OF POPULATION ANALYSIS 

The following examples use rate-based data based on time used and failures experienced. Following 

these examples are another set of examples using demand-based data. 

F-2.1 Example of a Population Pooling Test 

Data for a component based on time used and failures experienced are presented in Table F-1. This could 

be any failure mode for any component. This particular data set is from a textbook example in [F-5]. 

Table F-1. Component failure rate data. 

Source Failures 

Exposure Time 

(years) 

1 2 15.986 

2 1 16.878 

3 1 18.146 

4 1 18.636 

5 2 18.792 

6 0 18.979 

7 12 18.522 

8 5 19.040 

9 0 18.784 

10 3 18.868 

11 0 19.232 

 

This example uses the data presented in Table F-1 and is for a set of data with failure counts over 

time. It uses OpenBUGS as the analysis tool. The OpenBUGS script is shown in Figure F-5. 

Key parameters in this model are: 
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 x: Failures for each source listed in the data 

 time: Time in years for each source listed in the data 

 mean: The Poisson parameter = lambda * time 

 lambda: The rate in failures per year 

 lambda.constant: The defined rate which is inferred upon the lambda for each data set in the pooled 

test 

 x.rep: The replicated Poisson result for x for each source to use in the Chi-squared comparison. 

 

Figure F-5. OpenBUGS model to check for poolability of rate-based data. 

The results of running the model with 2,000 samples to “burn-in” and converge, with 100,000 

samples taken for results are shown in Figure F-6. 
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Figure F-6. Rate-based pooled model results. 

Note that the individual sources are using the constant lambda (lambda.constant) that has defined 

values for its Gamma distribution based on the Jeffreys prior. The lambda.constant is set with an initial 

value of 0.001 in the MCMC in order toto initialize the model, but it converges to the 0.1361 per year 

value based on the inference from the data set. The replicated Poisson result from each source is 

compared to the pooled result to determine the P-value (p.value), which is the measure of model fit to the 

data. A perfect P-value would be 0.5, with values closer to zero or one indicating a poor fit. In this case, 

the P-value of 2.3E-04 (on the bottom left of Figure F-6) indicates that the pooled model is not a good fit 

to the data. 

F-2.2 Example of Full Population Variability Distribution Estimation 

For the data set in Table F-1, the pooling test indicates that the data should not be pooled. The next 

step is to see if a PVD can be fit to the data by using a hyperprior distribution to represent the variation of 

data sources as discussed above. 

A hyperprior that is commonly used with Poisson distributed data is a Gamma distribution. Other 

distributions can be utilized, such as lognormal. The reader is directed to [F-2] and [F-5] for further 

guidance. A Gamma distribution was used for this analysis. 

The hyperprior should not influence the model; rather, the model should drive the parameters of the 

hyperprior distribution to the values that fit the data. For this reason, the parameters of the Gamma 

distribution are in turn represented hyperpriors of diffuse Gamma values that produce as flat a distribution 

over the realm of values as possible, given an initial starting point, and then the MCMC uses the Bayesian 

inference to drive the Gamma parameters to converged values. This example uses the data presented in 

Table F-1 and is for a set of data with failure counts over time. It uses OpenBUGS as the analysis tool. 

The OpenBUGS script is presented in Figure F-7. 

Key parameters in this model are: 

 x: Failures for each source listed in the data 

 time: Time in years for each source listed in the data 

 mean: The Poisson parameter = lambda * time 

 lambda: The rate in failures per year 

 lambda.constant: The defined rate which is inferred upon the lambda for each data set in the pooled 

test 

 x.rep: The replicated Poisson result for x for each source to use in the Chi-squared comparison. 
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Figure F-7. Hierarchical Bayes BUGS Language Model for source population variability in rate-based 

data. 

F-2.2.1 Checking the Model for Convergence 

Any MCMC program must converge before having confidence in the samples taken for results. 

Qualitative checks for convergence include looking at a graph of the histories of the key parameters. 

Running this model with two initial values for alpha and beta allows the check of convergence in these 

parameters so that there is confidence in the samples taken for results. In addition to the qualitative 

checks, a more quantitative test for convergence used in the OpenBUGS program is the 

Brooks-Gelman-Rubin statistic (BGR). Convergence is represented graphically in BGR by an R-value 

that is consistently at 1.0 and a B-value and W-value that are equivalent values to each other. 
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Figure F-8 shows the BGR test results for alpha and beta parameters in the model. Note that the 

number of iterations is half the numbers of samples since there are two chains compiled in the model. 

Alpha and beta R-values appear to settle solidly at 1 by 30,000 iterations with the other two parameters 

tracking together. This particular example takes longer to converge for a “picky” analyst than most do. 

For models that do not converge, the R-value will typically not settle on 1.0, and will wander significantly 

away from this value. 

 

Figure F-8. BGR diagnostic test for convergence of gamma parameters. 

To use as samples for the results, 100,000 iterations are run beyond the 60,000 burn-ins. A quick 

check of the BGR diagnostic for the duration of the sampling, shown in Figure F-9, does not show any 

significant events to question the validity of the calculations. 

 

Figure F-9. BGR diagnostic for full sampling of gamma parameters. 

F-2.2.2 Results of the Rate-Based Population Variability Analysis 

Results of the analysis shown in Figure F-10 provide the following insights: 

 The Chi-Square Bayesian P-value goodness-of-fit parameter is at 0.44, which is close to the ideal 

value of 0.5 and indicates high confidence in the predicted posterior results. 

 The predicted posterior distribution that would be used for the PRA failure distribution for this 

component is a Gamma with alpha = 1.00 and beta = 7.76. Its mean is 1.56E-01 per year with a 5
th
 

percentile value of 8.95E-04 and a 95
th
 percentile value of 5.38E-01. The Gamma(1.00, 7.76) 

distribution would be valid for use to update facility component performance until the next overall 

population update is performed. 

 This prior, used in the Poisson model, provides the estimations of the lambda for the mean, 5
th
 

percentile and 95
th
 percentile for each source and a predicted lambda as well. 
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Figure F-10. Rate-based results with gamma hyperprior. 

A comparison of the lambdas and the predicted lambda as presented in Figure F-11 shows where the 

predicted value lies within the 5
th
 to 95

th
 percentile ranges of the sources. 

 

Figure F-11. Comparison of rate-based data source results. 

F-2.3 Cluster Analysis Example 

Data for a cluster analysis are presented in Table F-2. This failure rate data is from nuclear power 

plant loss of offsite power (LOOP) records, and deals with a population in which the parameters alpha 

and beta present difficulty converging to values. 
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Table F-2. Component failure rate data for a cluster analysis. 

Source Failures 

Time 

(years) 

1 1 13.054 

2 1 12.77 

3 1 7.22 

4 1 3.944 

5 1 10.548 

6 0 10.704 

7 0 24.0 

8 1 8.76 

9 3 11.79 

10 2 17.5 

11 0 20.03 

12 0 13.39 

13 5 21.5 

14 0 10.075 

15 0 26.32 

16 1 12.54 

17 3 17.5 

18 1 14.3 

19 3 10.89 

20 3 12.5 

21 0 21.38 

22 2 19.65 

23 0 11.34 

 

There are multiple references online for using DBSCAN via R. The first step is to use the k-Nearest 

Neighbor distance plot to determine the knee in the graph. This is generally the best starting point for the 

Epsilon (Eps) parameter. It can be seen from Figure F-12 that the knee is approximately at 2.3 NN 

distance. 
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Figure F-12. k-nearest neighbor distance plot. 

The next step is to run DBSCAN using the Eps and the Minimum Points (MinPts) parameters. 

Determining the MinPts parameter is less of a science than the Eps parameter. If one chooses too high of 

a value for MinPts, the algorithm will not find any clusters; too low of a value and it will find too many 

clusters. The default for MinPts is 5. For this data set, there are only 23 sources, and using a MinPts of 5 

only generates one cluster of 14 and 9 outliers. Using a MinPts value of 3 produces two clusters and 4 

outliers: 14 in Cluster 1 and 5 in Cluster 2. This is shown graphically in Figure F-13, with the two clusters 

and points in the clusters. The x-axis is the failures covariate and the y-axis is the time covariate. 
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Figure F-13. Convex cluster hulls. 

The indices of the data set that belong in each cluster can be extracted in R through the where() 

command. These are the source numbers in Table F-3. 

Table F-3. Clusters with corresponding sources. 

Cluster Data Set Index (Source, from Table G-4) 

0 (outliers) 4, 7, 13, 15 

1 1, 2, 3, 5, 6, 8, 9, 12, 14, 16, 18, 19, 20, 23 

2 10, 11, 17, 21, 22 

 

The clusters can now be run through a PVD analysis to fit individual distributions. If the outliers fail 

to find a PVD as a group, then they can be re-ran as a cluster analysis as their own data set of four or find 

an update with a Jeffreys prior to use as individual distributions in the mixture prior. 

F-2.4 Use of Mixture Prior Example 

This example will use the data presented and grouped by the previous cluster analysis. There are three 

clusters identified in the cluster analysis, however, one of the clusters is identified as an outlier. Outliers 

are not related to each other and become their own group when setting up mixture priors. So in essence, 

there are six clusters to use in setting up the mixture prior. 

A weight must be assigned for each cluster. The weight is equivalent to the proportion of the sources 

in the group to the overall number of sources in the population. Table F-4 summarizes the information. 

Table F-4. Cluster weighting for mixture prior example. 

Cluster Weight Source Failures 

Time 

(years) 

A 0.0435 4 1 3.944 

B 0.0435 7 0 24.0 
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C 0.0435 13 5 21.5 

D 0.0435 15 0 26.32 

E 0.6090 1 1 13.054 

  2 1 12.77 

  3 1 7.22 

  5 1 10.548 

  6 0 10.704 

  8 1 8.76 

  9 3 11.79 

  12 0 13.39 

  14 0 10.075 

  16 1 12.54 

  18 1 14.3 

  19 3 10.89 

  20 3 12.5 

  23 0 11.34 

F 0.2170 10 2 17.5 

  11 0 20.03 

  17 3 17.5 

  21 0 21.38 

  22 2 19.65 

 

The next step is to see if the individual clusters are poolable. If they are not, then tighter set of 

parameters are required when using the data mining in order to produce smaller clusters. 

The poolability OpenBUGS model for rate-based data is used as previously described. 

The results of the p.values for this analysis as shown in Figure F-14 show that it is reasonable to pool 

the data for each cluster since neither Cluster E nor Cluster F have a p-value that is close to zero or 1 as 

was the case when testing the entire population in the prior rate example. Ideal fit would be 0.5, however, 

the range between 0.2 and 0.8 can be considered acceptable. 

 

 

Figure F-14. Pooling result with P values for mixture prior example. 
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The next step is to pool the data in the clusters with multiple sources by summing the failures and 

time components. The mixture prior data now consists of that shown in Table F-5. 

Table F-5. Clusters with corresponding sources for mixture prior example. 

Cluster Weight Source Failures 

Time 

(years) 

A 0.0435 4 1 3.944 

B 0.0435 7 0 24.0 

C 0.0435 13 5 21.5 

D 0.0435 15 0 26.32 

E 0.6090 1, 2, 3, 5, 6, 8, 9, 12, 

14, 16, 18, 19, 20, 23 

16 159.881 

F 0.2170 10, 11, 17, 21, 22 7 96.06 

 

The model shown in Figure F-15 uses the mixture priors by weighting each cluster’s data input 

through the use of a categorical distribution, of which all components (weights) of the distribution must 

sum to one. 

 

Figure F-15. Mixture prior example. 

Note the lack of a requirement to use initial values to start the MCMC. In the case where each 

sub-population (cluster) is poolable, the program can usually generate its own initial values and burn-in 

quickly. For this example, 1,000 samples were used. 

The results are shown in Figure F-16. Lambda[1] through lambda[6] are the results for each of the 

clusters. The node “lambda.avg” is a multi-modal distribution of which its mean, percentiles, and/or 

standard deviation would be used to fit a traditional distribution for use in industry failure data. 
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Figure F-16. Convergence test result for mixture prior example. 

F-2.5 Demand-Based Component Population Variability Example 

Data for a component based on demands and failures experienced are presented in Table F-6. This 

could be any failure mode for any component and differences in manufacturer or operating conditions 

should be kept in mind in case the set cannot be pooled and a PVD cannot be fit. This particular data is 

from a textbook example in [F-5]. 
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Table F-6. Component demand-based failure data. 

Source Failures Demands 

1 0 140 

2 0 130 

3 0 130 

4 1 130 

5 2 100 

6 3 185 

7 3 175 

8 4 167 

9 5 151 

10 10 150 

 

F-2.5.1 Testing for Pool-ability of the Data 

A first qualitative look at the data shows what appears to be an outlier in Source 10. This is good to 

note in case the data cannot be pooled or a PVD cannot be applied. 

The first quantitative analysis should be to see if the data can be pooled. An OpenBUGS model to 

check for pooling applicability is presented in Figure F-17. Note that any MCMC program capable of 

Bayesian inference will work and that OpenBUGS is used here as an example. The goodness of fit test in 

this model is a Chi-squared test of the constant probabilities for each source determined by the model 

versus the replicated results using the posterior predictive distribution which in this case is a Jeffreys prior 

which adds minimal influence on the data. 

Key parameters in this model are: 

 x: Failures for each source listed in the data 

 n: Number of demands for each source listed in the data 

 N: Number of sources 

 p: The probability of failure per demand 

 x.rep: The replicated Binomial result for x from the posterior predictive distribution. 
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Figure F-17. OpenBUGS model to check for poolability of demand-based data. 

The results of running the model with 2,000 samples to “burn-in” and converge, with 100,000 

samples taken for results are shown in Figure F-18. 

 

Figure F-18. Pooling result with P values for demand-based example. 

Note that the individual sources are using the constant probability which has defined values for its Beta 

distribution based on the Jeffreys prior. The p.constant does not require an initial set value in this 

particular model because OpenBUGS is able to generate the initial value on its own. The p.constant 

converges to the 1.95E-02 failures/demand based on the inference from the data set. The replicated 
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Binomial result from each source is compared to the pooled result to determine the P-value (p.value) as 

with the previous rate-based example. The P-value of 6.22E-03 indicates that the pooled model is not a 

good fit to the data. 

F-2.5.2 Demand-Based Heirarchical Bayes for a Population Variability Distribution 
Estimation 

Now that it is determined that the data set cannot be pooled, the next step is to use a hyperprior to 

represent the variability of the data from source to source and check to see if this model can fit the data. 

A hyperprior is selected to attempt to fit the data source variability. The most common hyperprior 

distributions used for a Binomial model are the Beta, but other distributions such as the Lognormal can be 

used. A Beta distribution is used in this example. The hyperprior should not influence the model; rather 

the model should drive the parameters of the hyperprior distribution to the values that fit the data. For this 

reason, the parameters of the Beta distribution are in turn represented by diffuse values, given an initial 

starting point and then the MCMC uses Bayesian inference to drive the Beta parameters to converged 

values. 

The model in Figure F-19 uses the Beta prior to infer upon the probability in the Binomial 

distribution in a similar manner that the fixed distribution of the Jeffreys Beta prior was used to test for 

poolability of the data. The Gamma hyperprior representing the Beta parameters are the PVD that helps to 

fit the data. Predicted performance from the population is given by the posterior Beta distribution (p.pred) 

with the parameters alpha and beta. Note that the prior being used here allows the parameters to vary 

based upon the distributions they are defined by so the MCMC will have to run enough samples to 

converge both the alpha and the beta parameters. 
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Figure F-19. Hierarchical Bayes model for source population variability in demand-based data. 

F-2.5.3 Convergence of the Hyperprior Parameters 

The BGR diagnostic for the alpha and beta parameters in Figure F-20 shows some wild fluctuations 

prior to approximately 40,000 iterations (80,000 samples) at which point the R-value settles along the 

1.0 line and the other two measures track with each other. Another BGR is performed to make sure that 

nothing out of the ordinary happened during the sampling for analysis. Figure F-21 shows slight bumps 

away from exactly 1.0, as viewed around 60,000 iterations of each parameter. This is not out of the 

ordinary and does not indicate divergence. An example of divergence would be continued behavior such 

as noted prior to 35,000 iterations. 
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Figure F-20. BGR diagnostic for convergence of beta parameters. 

 

Figure F-21. BGR diagnostic for full sampling of beta parameters. 

F-2.5.4 Results of the Demand-based Population Variability Analysis 

Results of the analysis are shown in Figure F-22 and provide the following insights: 

 The predicted posterior distribution that would be used for PRA failure data for this component is a 

Beta with alpha = 2.225 and beta = 118.6. Its mean is 2.11E-02 per demand, with a 5
th
 percentile 

value of 3.68E-04 and a 95
th
 percentile value of 6.38E-02. 

 This prior, used in the Binomial model, provides the estimations of the probability of failure per 

demand for the mean, 5
th
 percentile and 95

th
 percentile for each source and a predicted probability. 

 The P-value goodness-of-fit parameter is at 0.43, which is close to the ideal value of 0.5 and indicates 

high confidence in the predicted posterior distribution results. 
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Figure F-22. Demand-based results with beta prior. 

A comparison of the probabilities (p) and the predicted probability presented in Figure F-23 shows 

where the predicted value lies within the 5
th
 to 95

th
 percentile ranges of the sources. 

 

Figure F-23. Comparison of demand-based source results. 

F-2.5.5 Pitfalls of MCMC and Selection of Hyperpriors 

Convergence Issues 

In the detailed demand-based data example used above, the alpha and beta variables in the Beta 

distribution were slow to converge. Generally, it is best to run as many samples as required to attain 

converged samples for measure. However, if the variables continue to refuse to converge it sometimes 

helps to reparameterize the distribution in terms such as mean and variance. If secondary parameters are 
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used, then take the samples for measure after they converge and use the secondary parameters to attain the 

primary ones for use in the PVD. For more information on this topic, see [F-6]. If running more samples 

and reparameterization does not work, then group analysis must be performed on the population using 

DBSCAN or another cluster algorithm, individual PVD analysis performed for each group, and a mixture 

prior set up for use as the current state of knowledge. 

Choosing Adequate Hyperpriors 

MCMC programs use random “picks” of a simulation across the breadth of the posterior distribution. 

For distributions with long tails this can present problems where the mean can be in the tail, sometimes 

even beyond the 95
th
 percentile. Care must be taken by the analyst to choose a prior that will not only 

cause the posterior to fit the data, but will also produce logical results. An example using the rate-based 

data set follows. 

Another prior that is popular to use with Poisson data is the lognormal. An OpenBUGS script using 

the lognormal as the hyperprior along with the sample data from Table F-1 is shown in Figure F-24. 
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Figure F-24. Poisson model with lognormal prior. 

This model’s parameters for the lognormal PVD converge much more quickly. By 10,000 iterations 

the BGR R-value is solidly at 1.0 and the other two are tracking each other. Running the model for an 

additional 100,000 iterations gives us 200,000 samples, the same number as was used in the Gamma 

distribution hyperprior. This produces the results shown in Figure F-25. 



 

F-27  

 

Figure F-25. Rate-based results with lognormal hyperprior. 

The Bayesian P-value of 0.45 shows that this model replicates the data as well as the Gamma 

hyperprior model did. A review of the lambdas for the data set shows that the means are close to the ones 

calculated for the Gamma model. However, a study of the PVD (lambda.pred) shows that the result for 

the mean (88.36 failures/year) is extreme and well beyond the 95
th
 percentile of 0.93 failures/year. The 

mean lies in the heavy tail due to the MCMC picking some extreme values in the tail. 

This is an anomaly where the goodness-of-fit measure says that the lognormal model replicates the 

data just as well as the Gamma model, yet the predictive posterior distribution’s mean is not logical based 

on the most extreme case in the data set (lambda[7]) having a 95
th
 percentile result of 0.90 failures/year. 

This is also intuitively a “wrong” answer because a qualitative look at the data tells us that there is very 

little chance of 88 failures in a year. Figure F-26 displays the full probability density function and the 

section near zero using just the predicted μ and σ. This illustrates a sharp peak very close to zero and a 

long tail.  

  

Figure F-26. Probability density function with lognormal hyperprior example. 
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Further analysis of the two priors can be performed by truncating the Gamma and lognormal priors 

using the OpenBUGS interval command of “I(x,y)” where x is the lower number and y is the highest 

number in the results to consider. The OpenBUGS script used for comparison of the two hyperpriors is 

shown in Figure F-27. Note that the interval command is placed inline and behind the distribution text. 

The use of “#” comments out the hyperprior not currently in use. 
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Figure F-27. Hyperprior comparison model. 

This script was run for truncations from (0,1) to (0,5) to discover the behavior of each of these 

hyperpriors as more of their complete distribution is used in predicting the rate of the varied population. A 

chart of the results is presented in Figure F-28. 



 

F-30  

A few insights from the results: 

 The 95
th
 percentile diverges, which shows the effect of the much larger tail of the lognormal. 

 The 50
th
 percentile (median) is flat for both, with a small difference between the two. This explains 

the equally good replication of the data in the Bayesian Chi-squared test. 

 The lognormal mean starts correlated with the median in relationship to the Gamma at truncation 

(0,1), but then it is affected by the tail as the truncation increases, eventually reaching the 88.36 

prediction at full use of the distribution. 

 The Gamma mean has very little movement between the (0,5) truncation and the use of the full 

distribution. 

The take-away is that even though both hyperpriors “fit” the data in the Bayesian P-value replication 

of the model, this sort of analysis points out the better of the two priors to use for this particular set of 

data when used as a PVD for predicting future performance since its mean converges to its full 

distribution value within an intuitively reasonable numbers of failures per year truncation. 

 

Figure F-28. Hyperpriors comparison. 

F-3. PRECISION LIMITATIONS OF NUMERICAL PROGRAMS 

Returning to the rate-based example, let us assume that a prediction for hourly failure rates is 

required, rather than the yearly one. One could simply divide the results by 8760 since that is how many 

hours there are in a year; however, another analyst might want to perform the MCMC calculations using 

the yearly data first converted to hourly data. However, beware the precision limits of the MCMC 

program when performing this sort of analysis (note this limitation holds for many software programs that 

have to treat small numbers). 
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The issue here comes from how the mean is attained through the Poisson model: 

𝑃(𝑥)~𝑚𝑒𝑎𝑛𝑥∗𝑒(−𝑚𝑒𝑎𝑛) 

𝑚𝑒𝑎𝑛 = 𝑙𝑎𝑚𝑏𝑑𝑎 ∗ 𝑡 

𝑃(𝑥)~(𝑙𝑎𝑚𝑏𝑑𝑎 ∗ 𝑡)𝑥𝑒(−𝑙𝑎𝑚𝑏𝑑𝑎∗𝑡) (F-11) 

As parameter “t” becomes larger it is multiplied by the diffuse Gamma in the model and the 

numerical precision of the MCMC program comes into play. 

A comparative analysis was performed using the Gamma prior with yearly data versus using hourly 

data. The results of these are presented in Figure F-29. The difference (delta) between the two shows up 

most significantly in the lower tails of zero failure data sources, where the extremely low values for the 

2.5
th
 percentile in the E-08 range indicate an issue with the analysis. However, there is approximately a 

100% delta across the board between using yearly data versus hourly data. A look at the hourly 

lambda.pred of 3.904E-05/h (not in the figure) multiplied by 8760 h/y results in a mean of 0.342/y rate, 

which is 219% greater than the rate determined by using yearly data. 

In cases where yearly data are given and an hourly rate is desired, it is best to use the yearly data and 

convert the results to hourly for use in PRA. If hourly data are given, be aware of limitations of the 

MCMC program in use and possibly convert the hourly data to yearly for the analysis. 
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Figure F-29. Comparison of using yearly data versus hourly data in Poisson model. 

F-4. REFERENCES 

F-1. Kaplan, S., 1983, On a “two-stage” Bayesian Procedure for Determining Failure rates From 

Experimental Data, IEEE Transactions on Power Apparatus and Systems, PAS-102, 1983. 

F-2. Dezfuli, H., D. Kelly, C. Smith, K. Vedros, and W. Galyean, 2009, Bayesian Inference for 

Probabilistic Risk and Reliability Analysis, NASA/SP-2009-569, June 2009. 

F-3. Modarres, C., E. Droguett, and M. Fuge, 2016, A Novel Clustering Based Methodology for 

Overcoming Heterogeneous Populations for Reliability Prediction, Wiley-Manuscripts, 2016. 



 

F-33  

F-4. Ester, M., H. P Kriegel, J. Sander, and X. Xu, 1996, A Density-Based Algorithm for Discovering 

Clusters in Large Spatial Databases with Noise, Proceedings of Second International Conference 

on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, 1996. 

F-5. Kelly, D. and C. Smith, 2011, Bayesian Inference for Probabilistic Risk Assessment- A 

Practitioners Guidebook, Springer, 2011. 

F-6. Kelly, D. and C. Atwood, 2008, Bayesian Modeling of Population Variability – Practical Guidance 

and Pitfalls, PSAM-9, INL/CON-08-14208, May 2008. 



 

G-1  

Appendix G 
 

Expert Elicitation 

G-1. OVERVIEW 

G-1.1 Background: Why Ever “Elicit” “Expert Opinion?” 

Below, a cursory survey is provided of the evolution of thinking about expert elicitation. The purpose 

of the survey is to illustrate to analysts how it is possible to go wrong, or to appear to go wrong, and how 

this experience has shaped the methods for “expert elicitation” that currently seem best. Following that, 

selected methods are discussed in slightly more detail, illustrating some of the current thinking. 

Use of “expert elicitation” will probably always have its detractors, including advocates of methods 

that are not highlighted in this brief appendix; but the purpose of this appendix is to help investigators 

who are responsible for risk analyses, not to provide a cookbook that will preclude all controversy. That 

said, the methods discussed at the end have evolved from some of the misadventures of the 1980s and 

1990s, which are worth understanding, even if some newer method arises. 

Regardless of the discussions and recommendations offered in this appendix, the risk analysts are 

responsible for their results, and the decision-makers are accountable for their decisions. The experts are 

not there to take the blame for bad decisions. 

G-1.2 Summary of Recommendations 

Expert elicitation is a very large subject, and a comprehensive survey would be much longer than this 

appendix. The brief historical survey provided below identifies issues that have arisen in expert 

elicitations, and shows how elicitation methods have evolved to respond to those issues. The methods 

surveyed range from simple polls to studies involving committees of experts working for months. 

Considering the need for objectivity and some rigor, balanced against the availability of resources 

(time and money), two approaches to expert elicitation that presently suggest themselves for a typical 

offshore risk analysis are the: 

 Cooke method, using performance-based weighting 

 Kaplan “expert evidence” method (“weigh evidence, not experts”). 

The survey provided below is intended to show why those methods proceed in the way that they do. 

G-2. SURVEY OF METHODS 

In the interest of accuracy, and to try to convey the evolution of the thinking in this area, much of the 

following is directly quoted from the original sources. Verbatim excerpts from material cited are indented. 

As usual, ellipses … in quoted material denote areas where material has been left out; material in brackets 

in quoted material [thus] is not in the original, except where the original is using them to cite references, 

but has been added here to emphasize some particular point. 
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The survey is not exhaustive, but is generally chronological. Over the time period covered in the 

survey, we see an evolution from a largely subjectivist Bayesian posture to a posture that goes to much 

greater lengths to achieve “objectivity.” Any method that can be called “Bayesian” aims at furnishing 

evidence-driven results, and no method so far works without the involvement of human analysts at some 

level; but in recent times, much effort has been spent devising methods that reduce the effects of certain 

limitations of human analysts. The two methods recommended at the end of this appendix are formulated 

with this in mind. 

G-2.1 The Delphi Method 

An interesting recent survey by Ayyub [G-1] cites very early work on the “Delphi” method for 

assessing model parameter values by asking experts for their opinions. The Delphi method somewhat 

resembles some later methods, in treating expert opinions as if they were experimental observations of the 

parameter being quantified; but it differs markedly in how those opinions are obtained. 

According to Ayyub: 

The purpose and steps of the Delphi method depend on the nature of use. 

Primarily the uses can be categorized into (1) technological forecasting, and (2) 

policy analysis. The technological forecasting relies on a group of experts on a 

subject matter of interest. The experts should be the most knowledgeable about 

issues or questions of concern. The issues and/or questions need to be stated by 

the study facilitators or analysts or a monitoring team, and high degree of 

consensus is sought from the experts. On the other hand, the policy analysis 

Delphi method seeks to incorporate the opinions and views of the entire spectrum 

of stakeholders, and seeks to communicate the spread of opinions to 

decision-makers. In engineering, we are generally interested in the former type 

of consensus opinion. 

The present concern is “engineering,” but as will be seen later, the methods surveyed here seek to 

communicate the spread of opinions to decision-makers. In fact, consideration of uncertainty is key to a 

reasonable decision-making process. 

Excerpt from Dalkey [G-2]: 

Selection of a single advisor in “soft” areas is clearly fraught with danger; 

on the other hand, committees have certain drawbacks which have been 

dramatized by a large number of investigations by psychologists and small-group 

sociologists over the last two decades (1). One major drawback is the influence 

of the dominant individual. A quite convincing group of studies have shown that 

the group opinion is likely to be highly influenced, if not determined, by the views 

of the member of the group who does the most talking, and that there is no 

significant correlation between success in influencing the group and competence 

in the problem being discussed. [!!!!] Another difficulty which has not received 

as much attention in the literature is “noise” – irrelevant or redundant material 

that obscures the directly relevant material offered by participants. A third 

difficulty is group pressure that puts a premium on compromise. 

2.  DELPHI PROCEDURES 

The Delphi procedures have been designed to reduce the effects of these 

undesirable aspects of group interaction. The procedure has three distinctive 

characteristics: 

1. Anonymity. 
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2. Controlled feedback. 

3. Statistical “group response.” 

By “group response,” Dalkey means what others would refer to as the “aggregation” of opinion. 

Interestingly, Dalkey says that where a number is required, the median of the individual members’ 

estimates is the best of the indices tried in his work. Later, we will see a case where the mean was used, 

and implicitly criticized; and neither index is used in either of the two methods recommended above and 

in [G-3]. 

The Delphi method is mentioned here because it is a very early example of method in this area, and 

because it is still occasionally cited. However, context is also important. Dalkey was working at RAND 

when the method was formulated. The intended application was “prognostication.” This has something in 

common with regulatory decision-making, or safety decision-making by facility operators, but it also has 

features that differ. Among the noteworthy differences is the matter of “agency” (who is deciding what on 

behalf of whom). Prognostication for essentially private applications is not subject to the sort of scrutiny 

that takes place in debates over facility safety. The analysis must convince not only oneself, but others. 

Dalkey was seriously concerned about issues with “committee” dynamics. Methods surveyed later in 

this appendix take an opposing view, promoting interaction rather than preventing it, and trying to solve 

“dominant personality” issues by other means. It can also be argued that if you view expert opinions as 

being analogous to experimental data, as the early workers in this field apparently did, then you want your 

“measurements” to be “independent.” The change in thinking about this over the last half-century is 

significant. 

G-2.2 IEEE/ANS PROBABILISTIC RISK ASSESSMENT PROCEDURES 
GUIDE TREATMENT OF EXPERT ELICITATION 

The first probabilistic risk assessment (PRA) procedures guide, NUREG/CR-2300, [G-3] illustrates 

the state of practice that was obtained in the early 1980s in nuclear PRA. 

Annotated excerpts: 

5.5.2.2.5 Using Expert Opinion 

Expert opinion is often used for a prior probability distribution when other 

information is inadequate. If neither physical nor theoretical models are 

available and relative frequency is unavailable as well, subjective assessment is 

the only alternative for obtaining a probability. The practical feasibility of this 

alternative is supported not only by theoretical foundations that show judgments 

about uncertain events can be expressed as probabilities but also by practical 

assessment procedures. Holloway (1979) reviews the basis for these procedures 

and gives examples for several assessment approaches. The following summary 

of assessment procedures draws on his book. After this summary, well-known 

cautions and guidelines for interpreting and reviewing expert opinions are 

presented to highlight the care and caveats that must accompany the quantitative 

assessment. However, the user of this guide should be cautioned against the 

indiscrete [sic] use of the methods described in this section. These techniques 

and results are not necessarily applicable to PRAs, which often treat extremely 

small probabilities of various events. More research is needed to determine the 

direct applicability of these methods and findings to PRAs. The user should be 

aware that the subjective estimates frequently used in PRAs can have large 

biases and errors. 
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Note the caution expressed in the above guidance. At that time, the authors still found it necessary to 

cite arguments to the effect that opinions can be processed using the mathematics of probability. They 

also alluded indirectly to the point that people are not generally good at assessing small probabilities, 

especially ones associated with events that are beyond common experience. That caution is repeatedly 

stressed in the rest of the discussion as well, and appears to have influenced the formulation of the Kaplan 

method, discussed later. 

… 

Assessment Procedures 

Two approaches to subjective probability assessment are in practical use, 

either the direct approach or the indirect approach. With the direct approach, 

the expert is asked to declare the probability number associated with the feeling 

of uncertainty for the occurrence of an event. With the indirect approach, an 

expert is asked to choose between a reference assessment lottery and the 

uncertain feeling (the degree of belief) in an opinion or judgment. Until an 

expert has shown an ability both to form a knowledgeable opinion and to 

assess, unaided, a probability for the degree of belief associated with that 

opinion, the indirect approach is preferred. The well-known difficulties in 

obtaining useful subjective probability assessments are summarized below in 

the section entitled “Validity of Expert Opinion.” These difficulties are 

magnified by inexperienced, unaided direct assessments. The references in that 

section give some experience comparing the two approaches. [Emphasis added] 

The direct approach has the expert state a number that represents the 

assessment of the probability. Some studies have shown it possible for people to 

become better at assessing their own feelings of uncertainty as probabilities (see 

for example, Stael von Holstein, 1970; Lichtenstein et al. 1977). This 

improvement in direct assessment comes from specific training and guided 

practiced discipline rather than by trial and error. A good direct assessment 

comes from one who is both an experienced expert in what is known about a 

technical area (as well as how much is not known) and an experienced expert 

on how to express that judgment with little cognitive bias. This is an 

uncommon combination of expertise. 

Assessment lotteries are used in the indirect approach to disclose the 

subjective probability. This external reference is used as a scale to measure the 

internal degree of belief an expert holds toward an opinion. Dividing between the 

expert and the assessors the responsibility to provide both a well-founded, 

knowledgeable judgment and an accurate representation of that judgment as a 

probability allows the use of expert opinion in PRAs. Most technical experts are 

not practiced, good probability assessors of themselves. Using the indirect 

approach improves the quality of expert opinion over that obtained by unaided, 

inexperienced direct assessment. Fischhoff et al. (1981) have shown that people 

qualified as technical experts are by no means qualified as probability assessors 

of that expertise. 

Following are summary observations on the guidance in NUREG/CR-2300: 

 Throughout, the PRA Procedures Guide is relatively non-prescriptive, but it is arguably especially 

non-prescriptive in its discussion of expert elicitation. It even offers commentary (excerpted above) to 

the effect that the applicability of “these methods” to “PRAs” is still (at the time of its writing, early 

1980s) a research topic. If, in fact, research activity in this area has died down by now (2017), it is 

arguably not because all of the issues have been settled. 
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 The point is repeatedly stressed that domain expertise in a particular subject area does not translate 

into competent assessment of probabilities. We do not see this reflected in the implementation of 

Delphi, but with the passage of time, the methods use more and more formal process for many 

reasons, including this issue. 

G-2.3 Expert Elicitation in NUREG-1150 

WASH-1400 [G-4] (ca. 1975; begun under the auspices of the Atomic Energy Commission, and 

finished under the auspices of the Nuclear Regulatory Commission) is generally considered to be the first 

plant-scale PRA to have been done. Industry subsequently performed full-scope PRAs, and others 

performed PRA-like activities; but the next real NRC-sponsored “PRA” was NUREG-1150 [G-5], 

performed in the late 1980s. This was, among other things, a kind of update to WASH-1400. The 

relevance of NUREG-1150 to this appendix is that NUREG-1150 invested very significantly in elicitation 

of expert opinion; results in DRAFT NUREG-1150 were controversial, and were revised in response to 

comments. Certain essentials of these issues are of present interest, because the methods discussed in 

more detail later in this appendix are, in part, a reaction to these issues. Accordingly, review commentary 

on NUREG-1150 is excerpted below; interested readers can still find most of the original NUREG-1150 

material online. 

From NUREG-1420 [G-6]: 

3.2.3 Elicitation of Expert Opinion 

One of the distinctive features of NUREG-1150 was the extensive use of 

structured, formalized elicitation of expert opinion. … The process was used to 

generate input values and distributions for many of the parameters in the study 

where reliable models and values were not available, e.g., due to the complexity 

of the phenomena. The procedure to elicit expert opinion used for the first draft 

of NUREG-1150 and the results obtained with it were extensively criticized by 

the peer reviews; the entire process was restructured and elicitation was redone 

for the second draft. … 

The elicitation of expert opinion was such an important part of the 

NUREG-1150 methodology that it is discussed at length in Section 4.4 of this 

report [NUREG-1420]. 

… 

4.4 Expert Opinion 

One of the distinctive features of NUREG-1150 was the extensive use of 

structured, formalized elicitation of expert opinion. This process provided input 

values and distributions for many of the parameters in the study for which values 

were not otherwise available or where the available results were incomplete, 

highly uncertain, or internally discrepant. … 

The expert opinion process involved several steps: 

 Selection of the expert panels. Several expert panels were assembled. An 

attempt was made to include technical judgments from national 

laboratories, government, universities, and industry, endeavoring to 

include a wide range of views. This did not always succeed. 

 Training. Professionals in the elicitation of expert opinion trained the 

panel members in that discipline. … [Recall the commentary in 

NUREG/CR-2300 regarding training of experts.] 
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 Technical Presentations and Discussions. The objective was to provide 

the experts with the information and relevant technical literature 

available on the subjects, and, consequently, to bring all the experts on a 

panel up to approximately the same technical background and level of 

understanding. 

 Elicitation Process. After the training sessions, the experts were given 

several weeks to review the material, continue discussions, consult other 

experts, and make additional supporting analyses of their own. In some 

cases, the groups were reassembled for additional discussions and 

presentations. Each expert provided his/her opinion on an individual 

basis in a private session with an individual trained in the elicitation 

process. The experts were also required to provide detailed 

documentation of the rationale for their opinions. 

 Results. The values or distribution functions from the experts were 

averaged [!!!!] to provide those used in the analysis. 

Expert opinion was selected for the initial draft of NUREG-1150 but this was 

not the formal, professionally guided process described above, and most of the 

reviewers of the initial draft were critical of this first attempt at elicitation. 

Therefore, the elicitation was repeated using this more structured process. … 

Expert opinion elicitation is technically less satisfactory than the use of 

detailed, validated analytical procedures, or experimental data. … 

 Formal, professionally structured expert opinion is preferable to the 

current alternative, according to which the individual PSA analysts make 

informal judgements which are not always well-documented. … The 

reproducibility of the results of expert opinion is a concern. 

… 

 There is always a question as to who is an expert on a given issue. … 

 The training of the experts and their subsequent discussions were 

valuable in clarifying the focus on the important issues. 

… 

 Expert opinion may have been relied upon too heavily in some instances. 

… It may have been thought that the analysis would have been too 

time-consuming. It would have been appropriate if possible to have 

developed these analyses and then to have subjected them to critical 

review to which expert opinion could have been directed. 

… 

 The study assigned equal weight factors to the opinions of all experts. 

[!!!!] Some other methods, which might develop unequal weight factors, 

were not used. 

Key points from the above are as follows: 

 The above discussion still reflects the idea that expert opinions are to be treated as if they are 

somehow themselves “data.” For example, it is remarked that in at least some cases, the expert 

opinions were “averaged.” The commentary excerpted above does not take exception to the idea that 

expert opinions are “data”; it merely notes that “unequal weight factors” might have been used 
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instead of the unweighted averaging process. The methods recommended later in this appendix do not 

use “averaging.” One of the methods pays a great deal of attention to methodically developing 

“unequal weight factors”; the other does not even ask experts for the answer to the subject question, 

but rather asks what evidence informs their answer to the subject question, and tries to get the group 

of experts to agree on the body of evidence that informs the range of opinions in the group. 

 The NUREG-1420 commentary favors explicit process, and documentation. 

 NUREG-1150 appears to have tried to address the commentary quoted previously from 

NUREG/CR-2300, to the effect that domain experts are not good at assessing probabilities, and that 

“training” is important. 

 It is observed that analysts make judgments all the time, generally within a less formal process than 

the process used for big-ticket “elicitations.” The big-ticket elicitations draw attention, while 

numerous smaller instances of analyst judgment slip under the radar. 

 Even the improved version of NUREG-1150 is criticized for having resorted prematurely to the use of 

expert opinion. 

G-2.4 EPRI/ LLNL Studies of Seismic Hazard 

In the late 1980s, the conduct of two studies of seismic hazard, described below, led to a 

methodological fork in the road. Commentary from NUREG-2117, Rev.1 [G-7]: 

Perhaps the most dramatic and important revelations regarding the 

significance of expert assessment methodologies emerged when parallel regional 

Probabilistic Seismic Hazard Analyses (PSHAs) were conducted for central and 

eastern U.S. nuclear power plant sites. The Electric Power Research 

Institute-Seismicity Owners Group (EPRI-SOG, 1988, 1989) and Lawrence 

Livermore National Laboratory (LLNL) (Bernreuter et al., 1989) studies were 

both conducted using multiple experts, and both studies were conducted mindful 

of the importance of uncertainties. However, the processes used to conduct the 

studies were quite different. 

… 

Although the methodological differences used in the two studies were known 

at the time the studies were conducted, no procedural guidance existed and there 

was little indication that the differences would have a significant effect on the 

results. However, a comparison of the calculated hazard results at the 56 

common sites in the central and eastern United States (CEUS) showed significant 

differences between the two studies (summarized in USNRC 2010, NUREG-0933, 

Generic Issue 194). The DOE and NRC looked into the issue and found that an 

important contributor to the difference was the seismicity experts’ input related 

to lack of correlation between the recurrence parameter “a” and “b” values. 

This issue was the driving force behind NRC formal updating of the LLNL results 

as documented in NUREG-1488 (Sobel, 1994). NUREG-1488 both compares the 

studies and provides an updated model. Another key concern on the part of the 

LLNL study was the fact that a single ground motion expert provided assessments 

that were well outside of the range of assessments provided by the other four 

ground motion experts on the panel. The “outlier” expert’s assessments had a 

significant impact on the mean estimate that was calculated based on input 

provided across the panel. The concern regarding the unbalanced impact of 

outliers on assessments was largely addressed in a followup study by LLNL that 

took a different approach to uncertainty characterization by developing a 
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composite ground motion model (Savy et al., 1993). However, the differences 

between the LLNL and EPRI-SOG hazard estimates remained—particularly in 

the range of annual frequencies of t10
-4

 to 10
-6

 , which is the range of seismic 

hazard that typically has the most contribution to seismic risk for nuclear power 

plants (USNRC 2010, NUREG-0933, Generic Issue 194). Within this range, the 

LLNL mean hazard results were systematically higher than the EPRI-SOG 

results. 

This episode was quite well known at the time. Two studies [G-8, G-9] of more or less the same thing 

got very different results, because the opinions were being treated as data, and because one of the studies 

included an expert whose opinion was very different from the opinions of the other experts. The fact that 

the two studies differed was already noteworthy, but even without this difference, it was noteworthy that 

because of the aggregation method, and the fact that uncertainties in seismic hazard are enormous, one 

expert’s opinion effectively determined one of the studies’ outcomes, even though other experts had also 

participated. 

This helped to fuel the development of the Senior Seismic Hazard Analysis Committee (SSHAC) 

guidelines [G-10], presently considered by many authorities to be a sort of gold standard in the area of 

expert elicitation. In the interest of chronology, we will next discuss Cooke’s approach to 

performance-based weighting [G-11], followed by Kaplan’s “Expert Evidence” idea [G-12], and then 

briefly describe the SSHAC approach. 

G-2.5 Performance-based Weighting 

The Cooke method is described perhaps most accessibly in [G-11]. 

In a sense, the Cooke approach treats the experts as “data,” but instead of directly pooling the experts’ 

responses, the assessor uses those data in a much more thoughtful way. Cooke’s name for this is 

“performance-based weighting.” In Cooke’s parlance, good “performance” of an expert means that in 

response to calibration questions asking the expert to quantify parameters whose values are unknown to 

the expert but known to the assessor, that expert usually quotes intervals that (a) contain the right answer, 

and (b) are narrow enough for the expert to be considered “informative.” An expert whose intervals 

seldom contain the right answer, or whose bounds are so wide that the response is uninformative, scores 

low in the calibration exercise. So Cooke’s approach proceeds through a calibration stage, posing 

calibration questions whose answers are known to the assessor, and then moves on to questions whose 

answers are unknown but needed. Cooke’s algorithm processes the responses to the unknown questions 

based on experts’ performance on the calibration questions. At the end of the process, it may well be the 

case that a large pool of experts (say, several tens of experts) has been distilled down to two or three 

experts whose answers to the questions about the unknown should be given significant weight. 

Besides being affected by the choice of experts, this approach is obviously affected by the 

formulation of the calibration questions. The questions could range over a very wide technical area, and 

still be useful for sorting out who understands his/her own limitations; but the questions arguably should 

relate somewhat to the subject domain of the elicitation. This requires some preparatory work by the 

elicitors. 
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G-2.6 “Expert Evidence vs. Expert Opinions” 

For a simple introduction to the idea, it is difficult to improve on Kaplan’s original abstract [G-12], 

provided below. 

‘Expert information’ versus ‘expert opinions.’ 

Another approach to the problem of eliciting/ combining/using 

expert knowledge in PRA 

Stan Kaplan 

In the traditional approach to eliciting expert knowledge for use in risk 

assessment and decision analysis, the [i
th
] expert is asked for his opinion about, 

say, the numerical value of some unknown parameter . This opinion is then 

expressed as a point estimate, i, or a probabilistic estimate, pi(). Much 

attention and debate is then given, in the traditional approach, to methods of 

weighing and combining the opinions from the individual experts. 

The present paper advocates another approach in which we ask each expert, 

instead, for his body of evidence, Ei, relevant to the value of . In this way, the 

approach first arrives at a consensual body of evidence, E- {Ei}, and second, at a 

consensual curve p(|E) that expresses our knowledge about  based on that 

body of evidence. 

The essential difference between this ‘expert information’ approach and the 

traditional ‘expert opinion’ approaches may be captured in the slogan: ‘Weigh 

evidence, not experts!’ 

In a sense, this idea goes back to the long-recognized, but not always realized, point that domain 

experts are not necessarily good at the probabilistic aspects of the assessment. According to Kaplan’s 

summary: 

The emphasis is on getting a very clear written statement of a ‘total body of 

evidence’, ET, which contains the evidence from each expert, and which has been 

talked over and clarified to the extent that all the experts are willing to agree that 

ET constitutes the total evidence of the group relevant to the value of . 

ET must, therefore, be the basis for any decision in which the value of  plays 

a role. 

What remains, then, is to translate ET into a probability curve, pc(|ET), 

against . The PRA analyst should take the lead in this translation since that is 

his business [not the business of the domain experts], but all the experts should 

agree that this curve expresses the consensus state of knowledge of the group. 

This means that an individual expert may have a different curve, but, 

nevertheless, he agrees that the consensus curve is the one that should go to the 

decision maker with the statement that this represents the combined knowledge of 

the expert group. 

This latter idea strongly influenced the formulation of the SSHAC process. 

This idea was developed well after NUREG/CR-2300, and was designed specifically to avoid the 

opinion-pooling process. Kaplan calls this idea “expert evidence,” as contrasted with “expert opinion.” 

Instead of asking experts for their answers, one first asks the experts what evidence informs their 

opinions, and aggregates that evidence. In Kaplan’s own words: 
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With regard to the difficult question: “How should we combine probability 

distributions from different experts?” my suggestion is that we bypass it. We can 

bypass it by not asking the experts for their probability distributions. Instead, we 

ask each expert independently what evidence, information, and experience he/she 

has, relevant to the question at hand. We write these items of evidence down very 

carefully, and collect them in a combined list. Then, using the experts as a group, 

we work over these items, clarifying, coalescing, refining, adding new items that 

come to mind, and all the time being sure to distinguish the actual evidence (i.e., 

“what happened”) from the experts’ interpretation of what happened. At the end 

of this process we should have a single, agreed upon “consensus body of 

evidence.” Then, together with the group, we process this combined body of 

evidence, item by item, through Bayes’ theorem to arrive finally at a posterior 

probability curve that expresses our joint state of knowledge about the parameter 

of interest. 

Kaplan’s idea was used by the SSHAC work, described later in this appendix. As indicated earlier, 

the SSHAC work was initiated as the result of a pair of seismic hazard assessments that used different 

experts and came up with essentially irreconcilable results, and in which the traditional processes of 

pooling of expert opinions was deemed to have failed: one of the assessment results was dominated by the 

input from a single expert, whose opinion was an outlier from the perspective of the group as a whole. 

The application of the Kaplan idea in the SSHAC process results in a body of evidence that the 

technically-informed community collectively agrees is the body of evidence that the technically-informed 

community collectively relies upon. This does not mean that every expert believes the same thing or relies 

in the same way on the various bits of evidence, but rather that the group agrees that the indicated body of 

evidence is relied on by the group. 

Note that the general discussion given above does not tell the prospective user how to formulate the 

likelihood model based on all that evidence. It is the “business” of the “PRA analyst” to know how to do 

that. Eliciting evidence in the way described above could lead to gathering of a collection of evidence of 

disparate types and varying applicability, and accommodating all this inhomogeneity is a challenging and 

important task. 

G-2.7 Comparison of Kaplan’s “Expert Evidence” Idea with Cooke’s 
Performance-Weighting Approach 

Similarities: Both are quintessentially Bayesian. Both acknowledge (as do many, many others) that in 

real applications, situations often arise in which there is no practical alternative to doing what is called 

“expert elicitation” (though Kaplan advocates eliciting “expert evidence” rather than answers). 

Differences: Cooke describes a method for getting answers out of the experts; the method has an 

interesting and extensive technical basis, involving calibration of the experts and subsequent weighting of 

their inputs, based on their informativeness and on their understanding of their own uncertainty. 

Superficially, in asking experts what they believe, Cooke’s method resembles certain of the classical 

opinion-pooling methods, to which Cooke compares the properties of his method. But Cooke’s method 

spends a significant amount of effort deciding whom to pay attention to: in other words, to the 

development of what earlier subsections in this appendix called “unequal weights.” This is done not by 

having some sort of super-analyst judgmentally assess the “experts,” but rather by measuring their 

performance in the course of a calibration process. 
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The Kaplan work cited here specifically suggests NOT asking experts for the answer(s) directly; 

instead, he advocates an exercise culminating in the collection and assessment of a body of evidence 

bearing on the answers, which the decision-maker/ analyst then processes with Bayesian methods to get 

the answers. The “processing” that is required of the decision-maker/analyst eventually entails writing 

down a likelihood function that needs to be based on a relevant model, which may need to be developed. 

Besides a model of likelihood, relating the evidence to the various competing hypotheses, one needs a 

prior distribution. As discussed elsewhere in this guide, at this writing, consensus is still lacking on this 

matter. Much of the work of Kaplan and his collaborators relies on the idea that using a suitably diffuse 

prior is the best that one can do, but a large and growing body of opinion takes exception to the idea that 

even diffuse priors are ultimately satisfactory. 

The present authors do not know of a real application of Kaplan’s idea, other than the seismic 

application cited earlier and discussed below (SSHAC). There have apparently been many applications of 

the Cooke method. It would have been interesting to apply Cooke’s performance-weighting approach to 

the experts in the seismic studies whose irreconcilability catalyzed the development of the SSHAC. 

G-2.8 Senior Seismic Hazard Analysis Committee (SSHAC) Process 

Unlike the other methods surveyed here, the SSHAC process was developed with a specific 

application in mind: probabilistic seismic hazard analysis. However, methodologically, it is a high-end 

approach to the use of experts, and is not inherently limited to seismic hazard analysis. For that reason, it 

merits inclusion for present purposes. 

SSHAC makes use of a group of experts, but does not initially ask them for the answer: it asks them 

for their evidence, conceptually along the lines given by Kaplan. Ultimately, the “skillful user” turns all 

that into a body of results, but the significance of that body of results is still grounded in what that body 

of results means to the group of experts: 

Regardless of the scale of the PSHA study, the goal remains the same: to 

represent the center, the body, and the range of technical interpretations that the 

larger informed technical community would have if they were to conduct the 

study. 

The SSHAC process can be applied at any of several levels of rigor, and much of the discussion of 

SSHAC revolves around “Level 4,” the most rigorous. Kaplan’s suggestion was nowhere near as 

elaborate as SSHAC Level 4. 

As mentioned earlier, the SSHAC process [G-10] was developed to address a need that had been 

highlighted by an unsatisfactory result from a very significant body of elicitation work done along 

traditional lines. 

Level 4 SSHAC is extremely resource-intensive. To understand why the costs may be justified, 

consider its context. Assessment of seismic hazard for nuclear plants is important to get right at an early 

stage of design, and the results have to be convincing to a very diverse spectrum of stakeholders: offsite 

populations, regulators, plant operators, and insurers. An overly conservative assessment of hazard may 

imply very large up-front costs; but an imprudent assessment may leave the facility exposed to an 

excessive risk. Once the facility is built, it may no longer be practical to change the facility based on new 

information. Unfortunately, site-specific seismic hazard is not practical to assess actuarially; if “risk” is to 

be considered at all, there is no real alternative to some use of experts. Nor is it practical to devise a risk 

management scheme relying on performance trending to prevent disaster. 
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Level 4 SSHAC has been mentioned here not because it is foreseen that an exactly comparable 

process will be widely used in risk assessment for drilling, but rather to illustrate a high-end 

methodology. Methodological recommendations are furnished later in this appendix. The excerpt below is 

from Volume 1 of [G-10]: 

Seven-Step Process 

… 

Based on their NUREG- 1150 experience, Keeney & von Winterfeldt (1991) 

describe a seven-step process: 

Step 1 Identification and selection of the technical questions 

Step 2 Identification and selection of the experts 

Step 3 Discussion and refinement of the issues 

Step 4 Training for elicitation 

Step 5 Group interaction and individual elicitation 

Step 6 Analysis, aggregation, and resolution of disagreements 

Step 7 Documentation and communication 

… 

Most of the discussion in the literature on multiple-expert applications, e.g., 

in Otway and von Winterfeldt (1992); Meyer and Booker (1991) and Cooke 

(1991), can be accommodated by this list of seven steps. In a project similar in 

spirit to the SSHAC project, DeWispelare and others (DeWispelare, Herre, 

Miklas and Clemen 1993) implemented an analogous formal expert elicitation 

process in their Yucca Mountain future-climate study. 

Executive Summary, NUREG-2117: 

Because adopting a Level 3 or a Level 4 process to conduct a PSHA results 

in a significant increase in the cost and duration of the study over that required 

to conduct a Level 1 or Level 2 project, it is important to highlight the potential 

benefits to be gained by moving to these higher levels. These benefits are 

associated with the greater levels of regulatory assurance in Level 3 and 4 

studies. We define regulatory assurance to mean confidence on the part of the 

NRC (or other regulator or reviewer) that the data, models, and methods of the 

larger technical community have been properly considered and that the center, 

body, and range of technically defensible interpretations have been appropriately 

represented and documented. In other words, it is increased confidence that the 

basic objectives of a SSHAC process have been met. We do not use the term 

“reasonable assurance” because it has a specific definition within the NRC’s 

regulatory framework related to compliance with regulations. Rather, regulatory 

assurance is a qualitative term that is specific to the confidence that is 

engendered by the proper execution of a SSHAC process. 
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G-3. DISCUSSION 

 The term “expert elicitation” dates from several generations ago, when the governing idea was that 

expert opinions were analogous to experimental “data” (as if asking an expert is something like doing 

an experiment, with noise affecting the results), and the PRA task was to “elicit” those opinions. 

Arguably because early studies were not deemed to be sufficiently convincing, the term “elicit” also 

came to refer to an increasingly formal process, without which an expert elicitation study may not be 

deemed to be convincing. Kammerer and Ake [G-8] argue that although the term “elicit” is used in 

the SSHAC reports, the way in which experts are actually used in SSHAC is fundamentally different 

from the way in which they are used in most previous processes. 

 Sometimes, the only practical thing to do is use expert “elicitation.” That said, users of risk analysis 

results also need to be aware that risk analysis involves many choices made by analysts, choices that 

are not necessarily subjected to quite the same level of process rigor as that entailed by formal 

elicitation. 

 Use of experts in lieu of experiment or more exhaustive analysis should be considered a last resort. 

“Expert judgment should only be used to identify and quantify the uncertainty that remains after 

appropriate data collection and analysis activities have been completed.” Executive Summary, 

NUREG-2117 

 In general, formal, documented expert elicitation is expensive. It appears that the level of effort 

implied by the methods surveyed has tended to increase, as the methodological guidance has gone 

into more detail, and mandated more iteration among the experts. Every time a large group of experts 

is brought together for a meeting, the costs are significant, and some of the methods surveyed entail 

multiple meetings. 

 From a purely formal point of view, the Level 4 SSHAC process has much to recommend it; it is as 

data-driven as it can be, given that it is administered by humans, and given that humans then execute 

the analysis based on the body of evidence identified. But it will likely prove to be too expensive, and 

too time-consuming, for many analyses of drilling operations. 

G-4. RECOMMENDATIONS 

 If use of expert judgment is even being considered to deal with a particular issue, this should be 

because: 

- There is sufficient uncertainty in the analysis team’s current state of knowledge of the issue that a 

robust decision cannot presently be supported 

- There is no other practicable way to deal with the subject issue. 

 The intended use of the risk analysis needs to inform both the selection of method, and the level of 

rigor involved in the execution of the method. The analysis needs to be carried out in a manner that 

will be convincing to the affected stakeholders. If the stakeholders are all stockholders, one level of 

rigor is implied; if the set of stakeholders comprises not only stockholders but also the operating crew 

(safety) and regulatory authorities, who are generally making risk acceptance decisions on behalf of 

the general public, a higher level of rigor is implied. 

 Use of expert judgment has been a research topic for many years, but the field has not settled on a 

single approach. Two approaches that presently suggest themselves for a typical offshore risk analysis 

are: 

- the Cooke method, using performance-based weighting 



 

G-14  

- the Kaplan “expert evidence” method. (It is assumed that a full SSHAC Level 4 assessment will 

be too expensive for a facility-specific risk analysis, unless both the stakes and the uncertainties 

associated with the decision are extremely high.) 

 Essentially all “elicitation” processes surveyed here, with the possible exception of the Delphi 

method, need to be carried out (led) by persons having significant normative expertise (expertise in 

the business of eliciting and using these judgments). This emphatically includes both of the above 

processes. 

 Each of these two approaches deals with the “equal weight” issue that plagued some early 

applications of expert judgment. The Kaplan method is explicitly evidence-driven, and leads to a 

group statement about the group’s views of the evidence; the Cooke method is implicitly 

evidence-driven, in the sense that more evidence-driven experts will tend to have greater weight. Both 

methods characterize the team’s state of knowledge, giving not only an “answer,” but also 

characterizing uncertainty. 

 Both methods require resources, both to acquire the services of the experts and to support preparation 

on the part of the analysts. The Kaplan method requires at least one meeting. But either can be 

executed more easily than a SSHAC Level 4 can be executed. 

 The availability of methods such as the above is not a license to go through the steps listed for each 

method, and use the results uncritically in an important analysis. The decision-maker needs to “own” 

the residual uncertainties, and if they are still substantial enough to be worth reducing, the 

decision-maker needs to consider doing more to reduce them. 
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Appendix H 
 

Common-Cause Failure 

The objective of the detailed common-cause analysis is to identify the potential vulnerabilities of the 

system being analyzed to the various common-cause failures (CCFs) that can occur, and to incorporate 

their impact into the system models. This appendix focuses on a detailed approach, called the alpha-factor 

method, which is commonly used in other industries. 

As a first step, the analyst should extend the scope of the qualitative screening analysis and conduct a 

more thorough qualitative assessment of the system vulnerabilities to CCF events. This detailed analysis 

focuses on obtaining considerably more system-specific information and can provide the basis and 

justification for engineering decisions regarding system reliability improvements. In addition, the 

detailed evaluation of system CCF vulnerabilities provides essential information for a realistic evaluation 

of operating experience and system-specific data analysis as part of the detailed quantitative analysis. It 

is assumed that the analyst has already conducted a screening analysis, is armed with the basic 

understanding of the analysis boundary conditions, and has a preliminary list of the important 

common-cause component groups. 

An effective detailed qualitative analysis involves the following activities: 

 Review of operating experience (generic and system-specific) 

 Review of system design and operating practices 

 Identification of possible causes and coupling factors and applicable system defenses. 

The key products of this phase of analysis include a final list of common-cause component groups 

supported by documented engineering evaluation. This evaluation may be summarized in the form of a 

set of cause-defense and coupling factor-defense matrices (see [D-1]) developed for each of the 

common-cause component groups identified in the screening phase. These detailed matrices explicitly 

account for system-specific defenses, including design features and operational and maintenance 

policies in place to reduce the likelihood of failure occurrences. The results of the detailed qualitative 

analysis provide insights about safety improvements that can be pursued to improve the effectiveness of 

these defenses and reduce the likelihood of CCF events. 

Given the results of the screening analyses, a detailed quantitative analysis can be performed even 

if a detailed qualitative analysis has not been conducted. However, as will be seen later, some of the 

steps in the detailed quantitative phase, particularly those related to analysis and classification of 

failure events for CCF probability estimation can benefit significantly from the insights and 

information obtained as a result of a detailed qualitative analysis. 

A detailed quantitative analysis can be achieved through the following steps: 

4. Identification of common-cause basic events 

5. Development of probabilistic models of common-cause basic events 

6. Estimation of common-cause basic event probabilities 

7. Incorporation of common-cause basic events into the system fault tree. 

The first three steps are discussed in the following sections. The last step, incorporation into the system 

fault tree, is discussed in Section 2. 
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H-1. IDENTIFICATION OF COMMON-CAUSE BASIC EVENTS 

This step provides the means for accounting for the entire spectrum of CCF impacts in an explicit 

manner in the logic model. It will also facilitate the fault-tree quantification to obtain top event 

(system failure) probability. 

A common-cause basic event is an event involving failure of a specific set of components due to a 

common cause. For instance, in a system of three redundant components A, B, and C, the 

common-cause basic events are CAB, CAC, CBC , and CABC. The first event is the common-cause event 

involving components A and B, and the fourth is a CCF event involving all three components. Note 

that the common-cause basic events are only identified by the impact they have on specific sets of 

components within the common-cause component groups. Impact in this context is limited to “failed” 

or “not failed.” 

The complete set of basic events, including common-cause basic events, involving component A in 

the three component system is: 
 

AI = Single independent failure of component A. (a basic event) 

CAB = Failure of components A and B (and not C) from common causes 

CAC = Failure of components A and C (and not B) from common causes 

CABC = Failure of components A, B, and C from common causes. 

 

Component A fails if any of the above events occur. The equivalent Boolean representation of total 

failure of component A is: 

AT = AI + CAB + CAC + CABC (H-1) 

H-2. DEVELOPMENT OF PROBABILISTIC MODELS OF 
COMMON-CAUSE BASIC EVENTS 

With the CCF events identified, this section describes the probabilistic models that are commonly 

used for common-cause basic events. This is done first by utilizing a three-component system example, 

where two component failures result in the system failing. 

Using the rare event approximation, the system failure probability of the two-out-of-three system is 

given by: 

Pr(S ) Pr(AI ) Pr(BI ) Pr(AI ) Pr(CI ) Pr(BI ) Pr(CI ) Pr(CAB ) + Pr(CAC ) Pr(CBC ) Pr(CABC ) (H-2) 

It is common practice in risk and reliability analysis to assume that the probabilities of similar 

events involving similar components are the same. This approach takes advantage of the physical 

symmetries associated with identically redundant components in reducing the number of parameters 

that need to be quantified. For example, in the above equation it is assumed that: 

Pr( AI ) Pr(BI ) Pr(CI ) QI (H-3) 

Pr(CAB ) Pr(CAC ) Pr(CBC ) Q2 (H-4) 

Pr(CABC ) Q3 (H-5) 
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In other words, the probability of occurrence of any basic event within a given common-cause 

component group is assumed to depend only on the number and not on the specific components in that 

basic event. 

With the symmetry assumption, and using the notation just introduced, the system failure probability 

can be written as: 

Qs 3(Q1 )
2
3Q 2 Q3 (H-6) 

Generalizing, for a system with m components, 

𝑄𝑘
𝑚 ≡ probability of a common-cause basic event involving k specific components in a 

common-cause component group of size m ( 1 ≤k ≤m ). 

The model that uses 𝑄𝑘
𝑚 s to calculate system failure probability is called the basic parameter 

model [D-1]. 

H-3. ALPHA-FACTOR MODEL 

For several practical reasons, it is often more convenient to rewrite 𝑄𝑘
𝑚s in terms of other more 

easily quantifiable parameters. For this purpose, a parametric model known as the alphafactor model is 

recommended [H-1]. Reasons for this choice are that the alpha-factor model: 

 Is a multi-parameter model which can handle any redundancy level 

 Is based on ratios of failure rates, which makes the assessment of its parameters easier when no 

statistical data are available 

 Has a simpler statistical model 

 Produces more accurate point estimates as well as uncertainty distributions compared to other 

parametric models that have the above properties (e.g., the multiple-Greek-letter model). 

The alpha-factor model develops CCF frequencies from a set of failure ratios and the total component 

failure rate. The parameters of the model are: 

Qt total failure frequency of each component due to all independent and common- cause events.

k  fraction of the total frequency of failure events that occur in the system and involve failure of k 

components due to a common cause. 

Using these parameters, depending on the assumption regarding the way the redundant components of 

the systems in the database are tested (as part of the data collection effort), the frequency of a 

common-cause basic event involving failure of k components in a system of m components is given by: 

 For a staggered testing scheme, in which components are tested one at a time in fixed intervals: 

𝑄𝑘
𝑚 =

1

(𝑚−1
𝑘−1 )

𝛼𝑘𝑄𝑡 

 For a non-staggered testing scheme, in which components in a group are tested simultaneously: 

𝑄𝑘
𝑚 =

𝑘

(𝑚−1
𝑘−1 )

𝛼𝑘

𝛼𝑡
𝑄𝑡 (H-8) 

where the binomial coefficient is given by: 

(𝑚−1
𝑘−1

) =
(𝑚−1)!

(𝑘−1)!(𝑚−𝑘)!
 (H-9) 
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and 

𝛼𝑡 = ∑ 𝑘𝛼𝑖
𝑚
𝑖=1  (H-10) 

As an example, the probabilities of the basic events of the example three-component system are 

written as (assuming staggered testing): 

𝑄1
3 = 𝛼1𝑄𝑡 (H-11) 

𝑄2
3 =

1

2
𝛼2𝑄𝑡 (H-12) 

𝑄3
3 = 𝛼3𝑄𝑡 (H-13) 

Therefore, the system unavailability can now be written as: 

𝑄𝑠 = 3(𝛼1𝑄𝑡)2 +
3

2
𝛼2𝑄𝑡 + 𝛼3𝑄𝑡 (H-14) 

Note that the staggered versus non-staggered assumptions are applicable for parameter estimation as 

part of the data collection activities. During modeling activities, the typical CCF model to be used will be 

that of non-staggered testing. 

H-4. ESTIMATION OF COMMON-CAUSE-BASIC EVENT 
PROBABILITIES 

The objective of this step is to estimate the common-cause basic event probabilities or parameters of 

the model used to express these probabilities. Ideally, parameter values are estimated based on actual field 

experience. The most relevant type of data would be the system-specific data. However, due to the rarity 

of system-specific common-cause events a search will usually not produce statistically significant data. In 

almost all cases, parameter estimation will have to include experience from other systems, i.e., generic 

data. In some cases even the generic data may be unavailable or insufficient. Data might be obtained from 

various sources including: 

 Industry-based generic data 

 System-specific data records 

 Generically classified CCF event data and parameter estimates (reports and computerized databases). 

Only a few industries have developed databases for CCF events. These include nuclear power and, to a 

lesser extent, aerospace. 

The problem of data scarcity can be addressed at least in part by applying a method for extracting 

information from partially relevant data based on using the impact-vector method and Bayesian techniques 

[H-1]. This is done through a two-step process: 

8. Generic Analysis: Analysis of occurrences of CCFs in various systems in terms of their causes, 

coupling factors, as well as the level of impact (i.e., the number and nature of component failures 

observed). 

9. System-Specific Analysis: Re-evaluation of the generic data for applicability and relevance to the 

specific system of interest. 

The specific techniques are described in [H-1]. In the following it is assumed that the statistical data 

needed for the estimation of CCF model parameters are developed by following the referenced procedure 

or a similar one. 
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Once the impact vectors for all the events in the database are assessed for the system being analyzed, 

the number of events in each impact category can be calculated by adding the corresponding elements of 

the impact vectors. The process results in: 

nk = total number of basic events involving failure of k similar components, k=1,…,m 

Event statistics, nk , are used to develop estimates of CCF model parameters. For example, the 

parameters of the alpha-factor model can be estimated using the following maximum likelihood 

estimator (MLE): 

�̂�𝑘 =
𝑛𝑘

∑ 𝑛𝑗
𝑚
𝑗=1

 (H-15) 

For example, consider a case where the analysis of failure data for a particular two-out-of-three 

system reveals that of a total of 89 failure events, there were 85 single failures, 3 double failures, and 

1 triple failure, due to common cause. Therefore, the statistical data base is {n1 = 85, n2 = 3, n3 = 1}. 

Based on the equation for the MLE: 

𝛼1 =
𝑛1

𝑛1+𝑛2+𝑛3
=

85

89
= 0.955 (H-16) 

𝛼2 =
𝑛2

𝑛1+𝑛2+𝑛3
=

3

89
= 0.034 (H-17) 

𝛼3 =
𝑛3

𝑛1+𝑛2+𝑛3
=

1

89
= 0.011 (H-18) 

Table H-1 provides a set of estimators. The estimators presented in Table H-1 are the MLEs and are 

presented here for their simplicity. The mean values obtained from probability distribution characterizing 

uncertainty in the estimated values are more appropriate for point value quantification of system 

unavailability. Bayesian procedures for developing such uncertainty distributions are presented in [H-1, 

H-2]. 

Table H-1 displays two sets of estimators developed based on assuming different testing schemes. 

Depending on how a given set of redundant components in a system is tested (demanded) in staggered or 

non-staggered fashion, the total number of challenges that various combinations of components are 

subjected to is different. This needs to be taken into account in the exposure (or success) part of the 

statistics used, affecting the form of the estimators. The details of why and how the estimators are 

affected by testing schedule are provided in [H-1]. 

Table H-1. Simple point estimators for various CCF parametric models. 

Method Non-Staggered Testing
a
 Staggered Testing

a
 Remarks 

Basic parameter 𝑄𝑘
𝑚 =

𝑛𝑘

(𝑚
𝑘

) 𝑁𝐷

  

𝑘 = 1, … 𝑚 

𝑄𝑘
𝑚 =

𝑛𝑘

𝑚(𝑚
𝑘

) 𝑁𝐷

  

𝑘 = 1, … 𝑚

For time-based 

m failure rates, replace 

system demands (ND) with 

total system exposure time T. 

Alpha-factor 𝛼𝑘
𝑚 =

𝑛𝑘

∑ 𝑛𝑗
𝑚
𝑗=1

  

𝑘 = 1, … 𝑚 

Same as non-staggered 

case — 

a. ND is the total number of tests or demands on a system of m components. 
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H-5. GENERIC PARAMETER ESTIMATES 

For cases where no data are available to estimate CCF model parameters, generic estimates based on 

parameter values developed for other components, systems, and applications may be used as screening 

values. The average value of these data points is Β=0.1 (corresponding to an alpha-factor of 0.05 for a 

two-component system). However, values for specific components range about this mean by a factor of 

approximately 2. 

These values are in fact quite typical and are also observed in CCF data collection efforts in some 

other industries 

H-6. TREATMENT OF UNCERTAINTIES 

Estimation of model parameters involves uncertainties that need to be identified and quantified. A 

broad classification of the types and sources of uncertainty and potential variabilities in the parameter 

estimates is as follows: 

10. Uncertainty in statistical inference based on limited sample size. 

11. Uncertainty due to estimation model assumptions. Some of the most important assumptions are: 

A. Assumption about applicable testing scheme (i.e., staggered versus non-staggered testing methods). 

B. Assumption of homogeneity of the data generated through specializing generic data to a specific 

system. 

12. Uncertainty in data gathering and database development. These include: 

A. Uncertainty because of lack of sufficient information in the event reports, including 

incompleteness of data sources with respect to number of failure events, number of system 

demands, and operating hours. 

B. Uncertainty in translating event characteristics to numerical parameters for impact vector 

assessment (creation of generic database). 

C. Uncertainty in determining the applicability of an event to a specific system design and 

operational characteristics (specializing generic database for system-specific application). 

The role of uncertainty analysis is to produce an epistemic probability distribution of the CCF 

frequency of interest in a particular application, covering all relevant sources of uncertainty from the 

above list. Clearly, some of the sources or types of uncertainty may be inapplicable, depending on the 

intended use of the CCF parameter and the form and content of the available database. Also, methods for 

handling various types of uncertainty vary in complexity and accuracy. A comprehensive coverage of the 

methods for assessing uncertainty distribution for the parameters of various CCF models is provided 

in [D-1]. 
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Appendix I 
 

Human Reliability 

I-1. HUMAN RELIABILITY ANALYSIS METHODS 

I-1.1 General Overview of Quantification Approaches 

Human reliability analysis (HRA) methods serve the twofold purpose: to classify the sources of errors 

qualitatively, and to estimate the human error probability (HEP). Error classification serves as the basis 

for quantification. Of the roughly 60 HRA methods created, most are centered on quantification [I-1]. 

Boring [I-2] proposed the following ways of classifying HRA quantification methods: 

 Scenario Matching Methods: This approach, used by the original HRA method, the technique for 

human error rate prediction (THERP) [I-3], entails matching the human failure event (HFE) to the 

best fitting example scenario in a lookup table and using the HEP associated with that template event 

as the basis for quantification. See Table I-1(a). 

 Decision-Tree Methods: Methods like the cause-based decision tree (CBDT) [I-4] follow a decision 

tree (similar to an event tree), which guides the quantification along a number of predefined analysis 

decision points. See Table I-1(b). 

 Performance Shaping Factor (PSF) Adjustment Methods: In these methods, exemplified by 

approaches like the standardized plant analysis risk-HRA (SPAR-H) method [I-5], the PSFs serve as 

multipliers on nominal error rates. For example, a PSF with a negative influence would serve to 

increase the HEP over a nominal or default error rate. A list of PSFs and associated multipliers is 

provided by the method. See Table I-1(c). 

 Expert Estimation Methods: In these approaches, subject matter experts including risk analysts will 

estimate the likelihood of the HFEs. A technique for human error analysis (ATHEANA) [I-6] uses a 

structured expert estimation approach to arrive at HEPs. Such approaches often provide anchor values 

for quantification to assist subject matter experts in producing the relevant HEP, but the specific 

method used to derive the HEP and the factors that may influence the quantification are largely left to 

the subject matter experts. Because expert estimation methods typically do not specify how to 

decompose the factors shaping the quantification but rather look at the HFE as a whole, they are often 

referred to as holistic approaches [I-7]. See Table I-1(d). 

The wide availability of HRA methods may leave the analyst overwhelmed at which methods to 

select for which applications. Recent method comparisons exist for nuclear (e.g., [I-1, I-8, I-9]), and they 

provide helpful benchmarks in considering the advantages and disadvantages of each method. For 

example, the National Aeronautics and Space Administration’s (NASA’s) method [I-9] serves as a helpful 

template for downselecting HRA methods. Across multiple selection criteria, NASA selected four 

primary HRA methods to be used individually or in combination. Table I-2 lists the four methods selected 

by NASA and a summary of their primary strengths and weaknesses in a generalized form (e.g., without 

consideration of specific NASA domain applications). While this downselection is helpful, it does not 

necessarily represent optimal methods with respect to offshore oil applications. 

Table I-1. Examples of common HRA quantification approaches. 

(a) Scenario matching lookup table from THERP 

[I-3], which provides the HEP and the error factor 

(EF) for uncertainty. 

(b) Decision tree from CBDT [I-4] provides HEPs 

for the event-tree end states. 
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(c) Example PSF multipliers on the nominal HEP 

(0.001) for diagnosis tasks in SPAR-H [I-5]. 

(d) Example anchor HEPs for expert elicitation in 

ATHEANA [I-6]. 

 

 
 

Table I-2. The four HRA methods selected for NASA use. 

Method Approach Strengths Weaknesses 

THERP Lookup table Widely used original HRA 

method. THERP specifies a 

complete process model for 

HRA. It has good coverage of 

errors related to human actions. 

Little coverage of cognitive 

factors. Method may have limited 

generalizability beyond the 

nuclear-specific human 

interactions in the lookup tables. 

CREAM
a
 Task types (lookup 

table) and PSF 

Good coverage of cognitive 

factors and detailed task 

Method is complex in practice 

(e.g., involving many steps for 

3-77

This is first done by having the experts try to imagine how many times they would expect crews (or an

individual operator if that is more appropriate for the action of interest) to commit the HFE/UA (such as in

a simulation of the scenario and its context) as a reflection of the level of difficulty or challenge that has

been previously expressed.  The following table often proves helpful in these initial evaluations, until the

experts begin to develop a sense of the meaning of the probability values.  While it is sometimes

recommended that experts be limited to a few specific choices, we have found that they quickly begin to

demand more flexibility in their assignments, which is encouraged.  Table 3.8-2 provides a suggestion for

this initial calibration.

Table 3.8-2.  Suggested Set of Initial Calibration Points for the Experts

Circumstance Probability Meaning

The operator(s) is “Certain” to fail 1.0 Failure is ensured.  All

crews/operators would not

perform the desired action

correctly and on time.

The operator(s) is “Likely” to fail ~ 0.5 5 out of 10 would fail.  The

level of difficulty is

sufficiently high that we

should see many failures if

all the crews/operators were

to experience this scenario.

The operator(s) would “Infrequently” fail ~ 0.1 1 out of 10 would fail.  The

level of difficulty is

moderately high, such that

we should see an occasional

failure if all of the

crews/operators were to

experience this scenario.

The operator(s) is “Unlikely” to fail ~ 0.01 1 out of 100 would fail.  The

level of difficulty is quite low

and we should not see any

failures if all the

crews/operators were to

experience this scenario.

The operator(s) is “Extremely Unlikely” to fail ~ 0.001 1 out of 1000 would fail. 

This desired action is so easy

that it is almost

inconceivable that any

crew/operator would fail to

perform the desired action

correctly and on time.
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multipliers decomposition approach for 

qualitative insights into errors. 

basic quantification) and tends to 

produce similar HEPs. 

NARA
b
 Task types (lookup 

table) and PSF 

multipliers 

Good use of human factors 

literature as data source to 

validate HEPs for task types. 

The task types are aligned to 

nuclear power plant operations, 

and specialized variants need to 

be developed for air traffic 

control and rail domains. The 

method remains proprietary. 

SPAR-H PSF multipliers Simplified method that can be 

used without extensive HRA 

background. PSFs allow 

generalizability beyond 

predefined task types. 

Quantification-only approach that 

assumes HFEs defined in the 

probabilistic risk assessment 

(PRA). PSF multipliers are not 

calibrated to non-nuclear 

techniques. 

a. Cognitive reliability error analysis method [I-10] 

b. Nuclear action reliability assessment [I-11] 

 

I-1.2 HRA Methods for Oil and Gas 

Two HRA methods have been developed specifically for oil and gas, and they are briefly noted 

below. 

I-1.2.1 Barrier and Operational Risk Analysis 

Despite information suggesting major accident sequences may be attributed to several risk 

influencing factors classified as technical, human, operational and organizational, the majority of 

quantitative risk analyses of offshore oil and gas production platforms has been directed at technical 

safety systems. The barrier and operational risk analysis (BORA) of hydrocarbon releases 

(BORA-Release) is a method for carrying out the qualitative and quantitative risk analysis of platform 

specific hydrocarbon release frequency. In finer detail, the method assesses the effect of risk reducing 

measures and risk increasing changes within operations. BORA affords the ability to analyze both the 

effect of safety barriers put in place to impede the release of hydrocarbons as well as how platform 

specific conditions such as the aforementioned technical, human, operational and organizational factors 

influence the performance of the barrier [I-12]. Analysis of hydrocarbon release risk via the BORA 

method is executed with the use of barrier block diagram/event trees, fault trees, and risk influence 

diagrams. 

The BORA-Release method is made up of eight steps: 

1. Development of a basic risk model including release scenarios 

2. Modeling for the performance of safety barriers 

3. Assignment of industry average probabilities/frequencies and risk quantification based on these 

probabilities/frequencies 

4. Development of risk influence diagrams 

5. Scoring of risk influencing factors 

6. Weighting of risk influencing factors 

7. Adjustment of industry average probabilities/frequencies 
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8. Recalculation of the risk in order to determine the platform specific risk related to hydrocarbon 

release. 

Many of these steps overlap the basic HRA process model described previously. BORA focuses on 

the breakdown of barriers designed as part of defense in depth to prevent accidents in oil and gas 

production facilities. These barriers, however, may omit many of the HFEs that can precipitate accidents 

at the facility. HRAs centered on barriers may overlook important precursors to many types of accidents. 

Additionally, BORA’s emphasis on prevention of accidents may limit some of its application as a risk 

analytic tool for as-built systems and processes. 

I-1.2.2 Petro-HRA 

The Norwegian Research Council and that Norwegian state oil company, Statoil, have recently 

sponsored development of an HRA method to aid human factors analysts in completing HRAs for oil and 

gas applications. The approach, named the Petro-HRA method [I-13], features seven steps that mirror 

much of what is outlined in [I-14]: 

1. Scenario definition 

2. Qualitative data collection 

3. Task analysis 

4. Human error identification 

5. Human error modeling 

6. Human error quantification 

7. Human error reduction. 

Quantification in the Petro-HRA method is SPAR-H, offering some refinement to PSFs and 

multipliers to make them more oil and gas industry specific. SPAR-H was selected as the basis method 

because other HRA methods that had been used were found to generate unreasonably high HEPs or have 

low interrater reliability [I-15]. Because SPAR-H is primarily a quantification approach, additional 

guidance was developed to aid analysts in completing the qualitative portion of HRA, including 

translating a task analysis to HFEs when they are not already defined by a PRA. Because HRAs are 

performed to support the safety evaluation of new technologies in the Norwegian oil industry, guidance is 

provided to improve the system design or operations process to minimize human errors. 

I-2. EXAMPLE HUMAN RELIABILITY ANALYSIS FOR WELL KICK 

I-2.1 Example SPAR-H Analysis 

Here, we demonstrate SPAR-H as a simplified method to help understand how to quantify an HFE. 

This example should not imply endorsement of SPAR-H over any other method. An important aspect of 

the HRA should, in fact, be the selection of a particular HRA method. SPAR-H is demonstrated here 

because it lends itself to a brief description and because it is the basis of the Petro-HRA method. 

A SPAR-H quantification requires several steps: 

9. Define the HFE 

10. Determine the appropriate SPAR-H worksheet 

11. Determine the appropriate SPAR-H nominal HEP 

12. Evaluate the PSFs 



 

I-5  

13. Calculate the product of the nominal HEP and the PSF multipliers 

14. Apply correction factor for dependence. 

These steps are walked through in separate subsections below. 

I-2.1.1 Define the HFE 

SPAR-H assumes the HFE has been defined in the PRA. For the present purposes, we have 

characterized two HFEs related to well kick (also Figure I-1 for a simple graphical depiction): 

 HFE1: Detection of well kick 

 HFE2: Recovery activities after well kick. 

 

Figure I-1. Example HFEs in sequence. 

In reality, the recovery activities after the well kick might consist of many separate HFEs. However, 

the general context as represented by the PSFs for each of those post well kick activities largely remains 

the same. Additionally, if there is a failure to detect the well kick, there is obviously little opportunity for 

recovery actions nor the need to model a second HFE. 

I-2.1.2 Determine the Appropriate SPAR-H Worksheet 

SPAR-H contains two types of analysis worksheets: 

 At power (NUREG/CR-6883, Appendix A) 

 Low power and shutdown (NUREG/CR-6883, Appendix B). 

The origin of SPAR-H as an HRA method for nuclear power applications is clear here. The basic 

difference between these two worksheets involves whether the plant is producing electricity (i.e., at 

power) or in maintenance or refueling mode (i.e., low power and shutdown). It is assumed that there is 

more opportunity for high consequence events and tighter time windows to take recovery actions during 

at-power operations. An offshore analogy for at power would be during drilling activities. 

For the well kick scenarios, we assume the SPAR-H at-power worksheets are applicable. 

I-2.1.3 Determine the Appropriate SPAR-H Nominal HEP 

The SPAR-H worksheets for at-power and low-power-and-shutdown each have two task types that 

are modeled. The task types determine the nominal or default HEP for the HFE: 

 Diagnosis: This HFE primarily involves cognitive activities such as monitoring or decision-making. 

The nominal HEP for diagnosis HFEs is 1E-2 (0.01). 

 Action: This HFE primarily involves carrying out physical activities such as manipulating equipment. 

The nominal HEP for action HFEs is 1E-3 (0.001). 

Because an HFE may involve a series of activities by the human involved, it is not uncommon for the 

HFE to be classified as both diagnosis and action. In that case, the joint HFE can logically be thought to 

occur due to diagnosis OR action errors. Mathematically, this means that the nominal HEPs for diagnosis 

and action are added together. 
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In our well kick example, both HFEs involve diagnosis and action components, since they require 

cognitive monitoring and decision-making and interaction with equipment. 

I-2.1.4 Evaluate the PSFs 

SPAR-H uses nominal HEPs to represent basic diagnosis and action tasks performed within the HFE. 

These nominal HEPs are then modified using multipliers corresponding to different levels of influence of 

the PSFs. SPAR-H makes use of eight PSFs, encompassing: 

 Available time to complete the task (which is independent of any time pressure the personnel may 

experience) 

 Internal stress and external stressors 

 The complexity of the task and scenario 

 The experience and training of the personnel completing the tasks under analysis 

 The procedures—either written or oral—to guide the personnel in completing the task 

 The ergonomics of the system being used and the human-machine interfaces available to the 

personnel 

 The fitness for duty—including degraded fitness due to fatigue of long-duration events—of the 

personnel completing the task 

 Work processes, including organizational factors, command and control, and communications 

Generally, the SPAR-H PSFs can have three types of effects: 

15. Negative: A negative effect means that the PSF decreases human reliability. For example, to denote 

the negative effect of available time would mean to suggest that there was inadequate time available 

to complete the task. 

16. Nominal: A nominal effect means that the default applies. Nominal time, for example, suggests that 

there’s adequate time to complete the task without undue time pressure or extra time. 

17. Positive: A positive effect means that the PSF increases human reliability. Positive available time 

means that there is extra time over what is needed to accomplish the task. 

In the absence of information to inform the assignment, the analyst would denote “inadequate 

information,” which simply assigns a nominal value. 

To assign SPAR-H PSFs, it is useful for the human reliability analyst to consult with an operations 

specialist to answer the following questions: 

 Which personnel are involved in this task? 

 What indicators are available for the task? 

 What are the timing constraints? 

 Are personnel trained/ do they have experience on the task? 

 What’s needed to perform this task successfully? 

 What can go wrong? 

 What could influence personnel performance in terms of actions or decision-making? 

For our two example HFEs, the following PSF effects could be noted: 
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 For detection of the well kick (HFE1), the time available will vary from situation to situation, but once 

a kick occurs, there is a limited window of time before the formation fluid reaches the blowout 

preventer. As the available time erodes, and the ability of the drilling crew to respond decreases 

proportionately to the decreasing time window. It may be assumed that, the available time to detect 

will adversely affect the HEP. The clock is ticking, so to speak, which can only operate negatively on 

the outcome of the event. All other PSFs are assumed to be nominal. 

 The detection of a well kick triggers a change: response actions are needed in order to prevent a 

blowout (HFE2). This operational shift will generally result in multiple elevated negative PSFs 

relative to nominal or normal operations. The time window is closing, but there may also be elevated 

negative stress and complexity, potentially diminished levels of experience for this type of situation, 

and potentially poor to incomplete procedures. Underlying the situation, negative work processes 

such as breakdowns in communication, coordination, or command and control may also manifest. 

While detection of the well kick (HFE1) can be seen as a mostly nominal influence of the PSFs, the 

transition to emergency operations to prevent blowout (HFE2) will likely invoke multiple negative PSFs. 

I-2.1.5 Calculate the Product of the Nominal HEP and the PSF Multipliers 

When negative, nominal, or positive effects of PSFs have been determined, these are matched to the 

appropriate level in the SPAR-H PSF multiplier tables. If there is a negative or positive effect of a PSF, 

this phase involves determining the degree of that effect, which corresponds to a multiplier. A summary 

of SPAR-H multiplier assignments for the well kick detection and response HFEs is found in Table I-3. 

For the response HFE, three slightly negative PSFs—available time, stress, and complexity—are 

assumed. 

Table I-3. SPAR-H table showing possible multiplier assignments for a generic well kick detection and 

response. 

PSFs PSF Levels 

HFE1: Generic Well Kick 

Detection HFE2: Generic Response 

Multiplier for 

Diagnosis 

Multiplier for 

Action 

Multiplier for 

Diagnosis 

Multiplier for 

Action 

Available time Inadequate time P(failure) = 1.0 P(failure) = 1.0 P(failure) = 1.0 P(failure) = 1.0 

Barely adequate time 10 10 10 10 

Nominal time 1 1 1 1 

Extra time 0.1 0.1 0.1 0.1 

Expansive time 0.01 0.01 0.1 to 0.01 0.01 

Insufficient information 1 1 1 1 

Stress/stressors Extreme 5 5 5 5 

High 2 2 2 2 

Nominal 1 1 1 1 

Insufficient information 1 1 1 1 

Complexity Highly complex 5 5 5 5 

Moderately complex 2 2 2 2 

Nominal 1 1 1 1 

Obvious diagnosis 0.1 N/A 0.1 N/A 

Insufficient information 1 1 1 1 

Experience/ 

training 

Low 10 3 10 3 

Nominal 1 1 1 1 
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High 0.5 0.5 0.5 0.5 

Insufficient information 1 1 1 1 

Procedures Not available 50 50 50 50 

Incomplete 20 20 20 20 

Available, but poor 5 5 5 5 

Nominal 1 1 1 1 

Diagnostic/symptom 

oriented 

0.5 N/A 0.5 N/A 

Insufficient information 1 1 1 1 

Ergonomics/ 

HMI 

Missing/ misleading 50 50 50 50 

Poor 10 10 10 10 

Nominal 1 1 1 1 

Good 0.5 0.5 0.5 0.5 

Insufficient information 1 1 1 1 

Fitness for duty Unfit P(failure) = 1.0 P(failure) = 1.0 P(failure) = 1.0 P(failure) = 1.0 

Degraded fitness 5 5 5 5 

Nominal 1 1 1 1 

Insufficient information 1 1 1 1 

Work processes Poor 2 5 2 5 

Nominal 1 1 1 1 

Good 0.8 0.5 0.8 0.5 

Insufficient information 1 1 1 1 

 

The basic HEP is defined in SPAR-H as the nominal HEP multiplied by the product of all PSF 

multipliers: 

Basic HEP = Nominal HEP × ∏ PSF Multipliers 

For HFE1 related to well kick detection, the PSF is calculated separately for diagnosis and action: 

HFE1 Diagnosis Basic HEP = 1E-2 × 10 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 1E-1 = 0.1 

HFE1 Action Basic HEP = 1E-3 × 10 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 1E-2 = 0.01 

The joint basic HEP is simply the sum of the diagnosis and action basic HEPs: 

HFE1 Joint Basic HEP = Diagnosis Basic HEP + Action Basic HEP 

= 1E-1 + 1E-2 = 1.1E-1 = 0.11 

The same equation applies to HFE2 related to the response to the well kick, but with one exception. 

Because it is possible to have a resultant HEP greater than 1.0 when there are more than three negative 

HEPs, SPAR-H prescribes a correction factor: 

Corrected Basic HEP = 
Nominal HEP × Π PSF Multipliers

Nominal HEP × (Π PSF Multipliers   1) + 1
 

Thus, we first calculate the product of the PSF multipliers, which in this case is identical for the 

diagnosis and action tasks: 
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∏ PSF Multipliers = 10 × 2 × 2 × 1 × 1 × 1 × 1 × 1 = 40 

This product is then applied in the corrected basic HEP equation for diagnosis and action: 

HFE2 Corrected Diagnosis Basic HEP = 
1E-2 × 40

1E-2 × (40 - 1) + 1
 = 0.288 

HFE2 Corrected Action Basic HEP = 
1E-3 × 40

1E-3 × (40 - 1) + 1
 = 0.0385 

The joint basic HEP for HFE2 is calculated by adding the two basic HEPs: 

HFE2 Joint Basic HEP = 0.288 + 0.0385 = 0.326 

There is nearly a threefold increase in the basic HEP between HFE1 and HFE2 due to the increased 

effects of negative PSFs for stress and complexity between well kick detection and response. 

I-2.1.6 Apply Correction Factor for Dependence 

In the final stage of SPAR-H quantification, a correction factor is applied for dependence. 

Dependence in SPAR-H means that the second or subsequent HFE in sequence may result in greater 

likelihood of human error. If appropriate, a correction factor is applied to the basic HEP. 

For sequences of two or more HFEs, SPAR-H considers four factors that influence dependence: 

18. Same (s) or different (d) crew between the HFEs 

19. Close (c) in time or not close (nc) in time between the HFEs 

20. Same (s) or different (d) location between the HFEs 

21. Additional (a) or no additional (na) cues (i.e., information) between the HFEs. 

The more the HFEs share crew, time, location, and cues, the more likely there is to be dependence 

between them. SPAR-H uses a dependency condition table (see Table I-4) to classify dependence along a 

scale from Zero, Low, Moderate, High, to Complete. 
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Table I-4. SPAR-H dependence table. 

 

 

HFE1 is the first HFE in the sequence and by definition does not have dependence. We assume HFE2 

to have somewhat different crew responding to the well kick. HFE2 follows closely in time, has the same 

location, but has additional cues. The resultant dependence level as traced (d-c-s-a) in Table I-4 is 

moderate dependence. 

The conditional HEP is the basic HEP corrected for dependence. SPAR-H features the following 

equations for levels of the conditional HEP: 

 Zero Dependence: Conditional HEP = Basic HEP 

 Low Dependence: Conditional HEP = (1 + 19 × Basic HEP) / 20 

 Moderate Dependence: Conditional HEP = (1 + 6 × Basic HEP) / 7 

 High Dependence: Conditional HEP = (1 + Basic HEP) / 2 

 Complete Dependence: Conditional HEP = 1.0. 

For HFE2, assuming moderate dependence, we have: 

HFE2 Conditional HEP = (1 + 6 × 0.326) / 7 = 0.422 

Moderate dependence resulted in the HEP for HFE2 increasing by nearly 0.1 in our example. 

Using the SPAR-H method, we quantified the HEPs for the two HFEs, arriving at: 

 Detect well kick: HEPHFE1 = 0.11 

 Respond to well kick: HEPHFE2 = 0.422. 

More specific information, such as the accident report related to the Macondo accident, would allow 

greater precision of the PSF assignments beyond the general assignments made here. 

As noted, the SPAR-H approach employed here is almost identical to the quantification step in the 

Petro-HRA method, and a similar result can be expected. 
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A final note on SPAR-H is that it only provides the HEP, not a measure of uncertainty. The HEP is 

calculated using the constrained noninformative prior, a method for calculating uncertainty parameters 

assuming a single input parameter on a gamma distribution. Some PRA software feature the ability to 

calculate the uncertainty in SPAR-H if required by the analyst. 
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Appendix J 
 

Failure-Space-Based Importance Measures 

It will be convenient in the following to refer to a formula for the risk metric (e.g., top-event 

probability) with respect to which the measures are being calculated: 

R = f(x1,x2 ,..., xi ,xj ,..., xn ) 

where xk is the k
th
 basic event, having probability pk , and R0 means “R evaluated with all p’s set to their 

nominal values.” It is an aid to understanding the following formulas to bear in mind that the reduced 

Boolean expression for the minimal cut sets maps simply into an arithmetic expression for the rare event 

approximation to top-event probability, and the same idea applies to any subset of the minimal cut sets. 

The notation “|” means “given”: A|B means “A given B.” 

J-1. FUSSELL-VESELY AND RISK REDUCTION WORTH 
IMPORTANCE MEASURES 

The Fussell-Vesely (F-V) importance measure is used to determine the importance of individual 

minimal cut sets containing basic event xi to the risk. F-V of event xi is given by: 

𝐼𝑥𝑖
𝐹𝑉 =

𝑃𝑟 (⋃ 𝑀𝐶𝑆𝑗
𝑥𝑖

𝑗 )

𝑃𝑟(⋃ 𝑀𝐶𝑆𝑗𝑗 )
=

𝑃𝑟(⋃ 𝑀𝐶𝑆𝑗𝑗 )

𝑅0
 

where 

I 
FV 

is the F-V importance for event 𝑥𝑖, 

𝑃𝑟(⋃ 𝑀𝐶𝑆𝑗
𝑥𝑖

𝑗 ) is probability of the union of the minimal cut sets containing event xi ; 

𝑃𝑟(⋃ 𝑀𝐶𝑆𝑗𝑗 ) = 𝑅0 (the probability of the union of ALL of the minimal cut sets) is the baseline risk. 

The simple interpretation of the FV is that it is the fraction of total risk involving xi. Corollary 

interpretations are (1) that the FV is the conditional probability that at least one minimal cut set 

containing event xi will occur, given that the system has failed, or (2) the fraction by which risk would 

decrease if Pr(xi) were reduced to zero. The latter interpretation points to another way of calculating FV: 

𝐼𝑥𝑖
𝐹𝑉 =

𝑅0 − 𝑅|𝑃𝑟(𝑥𝑖) = 0

𝑅0
 

where 𝑅|𝑃𝑟(𝑥𝑖) = 0 is the value of the risk metric when the probability of event xi is set to zero. In this 

calculation, in the numerator, we are subtracting off the contribution from minimal cut sets that do NOT 

contain xi, leaving the minimal cut sets that DO contain xi. 
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The closely related risk reduction worth (RRW) is a measure of the change in risk when a basic event 

probability (e.g., unavailability of a hardware device) is set to zero. It measures the amount by which risk 

would decrease if the event would never occur. The RRW measure is calculated as the ratiol
 
of the 

baseline expected risk to the conditional expected risk when the probability of event xi is set to zero 

(assuming that the hardware device is “perfect”): 

𝐼𝑥𝑖
𝑅𝑅𝑊 =

𝑅0

𝑅|𝑃𝑟(𝑥𝑖) = 0
 

where 𝐼𝑥𝑖
𝑅𝑅𝑊 is the risk reduction worth for event xi . 

It should be clear that FV and RRW will produce essentially the same ranking: event lists ordered by 

decreasing FV and decreasing RRW are the same. In fact, it is straightforward to show that: 

𝐼𝑥𝑖
𝐹𝑉 = 1 −

1

𝐼𝑥𝑖
𝑅𝑅𝑊. 

J-2. BIRNBAUM (B) AND RISK ACHIEVEMENT WORTH (RAW) 

The B is the rate of change of the expected risk as a result of the change in the probability of an 

individual event. Mathematically, the B importance of event xi is: 

𝐼𝑥𝑖
𝐵 =

𝜕𝑅

𝜕𝑥𝑖
. 

In many cases, B can be calculated as: 

𝐼𝑥𝑖
𝐵 = (𝑅|𝑃𝑟(𝑥𝑖) = 1) − (𝑅|𝑃𝑟(𝑥𝑖) = 0) 

where 𝑅| Pr(𝑥𝑖) = 1 (0) is the risk metric calculated with Pr(xi) set to 1 (0). 

In general, the B of a basic event xi does not depend on the probability of xi; it depends on the 

probabilities of the other basic events in the cut sets in which xi appears. 

Risk Achievement Worth (RAW) is a measure of the change in risk when the probability of a basic 

event (e.g., unavailability of a component) is set to unity. Analogously to RRW, the calculation is 

typically done as a ratio: 

𝐼𝑥𝑖
𝑅𝐴𝑊 =

𝑅|𝑃𝑟(𝑥𝑖) = 1

𝑅0
. 

Again analogously to RRW, some probabilistic risk assessment (PRA) codes calculate an interval 

measure corresponding to RAW, the “risk increase interval,” which is the difference between the 

conditional expected risk when event xi is set to unity, and the baseline risk. 

                                                      

l. Instead of ratio, some PRA codes calculate “Risk Decrease Interval,” which is the difference between baseline risk and the 

conditional risk when event xi is set to zero. 
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Both RAW and RRW correspond to drastic sensitivity studies, displaying how much difference it 

makes when a basic event probability is maximized (RAW) or minimized (RRW). This kind of 

information points to properties of the model, and perhaps the system; for example, a high RAW can 

result from a component for which there is relatively little backup, such as a single item that is required to 

succeed regardless of whether anything else succeeds or fails. But as discussed in [I-1], measures such as 

RAW are difficult to use in quantitative reasoning processes. 

J-3. COMPUTING B, FV, RAW, RRW 

It is straightforward to compute FV and RRW within the rare event approximation, given a Boolean 

expression for the top event in properly reduced form. If the basic event names are replaced by their 

probability values, AND by multiplication symbols, and OR by addition symbols, one has an expression 

for top event probability (again, within the rare event approximation). If a more precise answer is 

required, better approximations can be applied (such as the min cut upper bound). 

Strictly speaking, evaluating RAW calls for actually restructuring the expression. Computing the 

RAW of a basic event calls for setting that event to “TRUE” (typically, the corresponding component to 

“failed” or perhaps “unavailable”) and re-reducing the top-event expression. Consider computing the 

numerator of the RAW of event A in an expression including: 

A*B*C + X*B*C + … . 

If we simply set A to a value of 1, we will still include the contribution of X*B*C, which, strictly 

speaking, we should not. Setting A to “TRUE” and re-reducing leaves us with: 

B*C + … , the “X*B*C” having been absorbed. 

However, computing B(A) gives us: 

R(A=1)-R(A=0) =[B*C + X*B*C + …] – [X*B*C + …] = B*C (plus perhaps other terms). 

J-4. DIFFERENTIAL IMPORTANCE MEASURE FOR BASIC EVENTS 
AND PARAMETERS 

The importance measures discussed previously are defined to deal with basic event probabilities one 

event at a time, and, as formulated, they do not reflect the influence of the underlying parameters in the 

models of event probability: they do not measure the importance of changes that affect component 

properties or failure modes. They also lack an additive property that some analysts consider desirable. For 

these reasons, the “differential importance measure (DIM) was introduced. 

J-4.1 Definition of DIM 

Let R be the risk metric of interest expressed as a function of basic events or fundamental parameters 

of the PRA model as shown below: 

R= f(x1,x2 ,..., xi ,xj ,..., xn ) where x i is the generic parameter such as basic event probability of a 

component xi or the failure rate of a component xi . 

The differential importance measure of xi is defined as: 

𝐼𝑥𝑖
𝐷𝐼𝑀 =

𝑑𝑅𝑥𝑖

𝑑𝑅
=

𝜕𝑅
𝜕𝑥𝑖

𝑑𝑥𝑖

∑
𝜕𝑅
𝜕𝑥𝑗

𝑗 𝑑𝑥𝑗

 



 

J-4  

DIM reflects the fraction of the total change in R due to a change in parameter x i. It can be shown 

that DIM is additive, that is, 

𝐼𝑥𝑖 ⋃ 𝑥𝑗… ⋃ 𝑥𝑘

𝐷𝐼𝑀 = 𝐼𝑥𝑖
𝐷𝐼𝑀 + 𝐼𝑥𝑗

𝐷𝐼𝑀 + ⋯ + 𝐼𝑥𝑘
𝐷𝐼𝑀 

J-4.2 Calculations of DIM 

With respect to calculation of DIM for a parameter of the PRA model, there are two computational 

inconveniences: 

22. The DIM can be calculated only if the expression for the risk is in parametric form, which is not a 

standard output form generated by the PRA codes. 

23. There is no available computer program for use. 

However, one can compute DIM for basic events using the F-V and RAW importance measures. The 

latter measures are often generated by standard PRA codes by applying formulas developed in the 

previous subsection. 

As noted, calculation of DIM deals with change in R (its differential). Since the change depends on 

how the values assigned to a parameters are varied, DIM can be calculated in different ways. Two 

possibilities are: 

24. Assume a uniform change for all parameters (i.e., 𝛿𝑥𝑖 = 𝛿𝑥𝑗 = 𝛿𝑥𝑘 … ). Under this operation, 

parameters are ranked according to the effect they produce on R when they undergo small changes 

that are the same for all. This has meaning when parameters of the model have the same dimensions 

(e.g., the risk metric is expressed in terms of basic event probabilities only). DIM for parameter xi is 

calculated as follows: 

𝐼𝑥𝑖
𝐷𝐼𝑀 =

𝜕𝑅
𝜕𝑥𝑖

𝑑𝑥𝑖

∑
𝜕𝑅
𝜕𝑥𝑗

𝑗 𝑑𝑥𝑗

=

𝜕𝑅
𝜕𝑥𝑖

∑
𝜕𝑅
𝜕𝑥𝑗

𝑗

 

25. Assume a uniform percentage change for all parameters (
𝛿𝑥𝑖

𝑥𝑖
=

𝛿𝑥𝑗

𝑥𝑗
=

𝛿𝑥𝑘

𝑥𝑘
… ). Under this operation, 

PRA parameters are ranked according to the effect they produce on R when they are changed by the 

same fraction from their nominal values. This ranking scheme, which is applicable to all analysis 

conditions, can be calculated from: 

𝐼𝑥𝑖
𝐷𝐼𝑀 =

𝜕𝑅
𝜕𝑥𝑖

𝑑𝑥𝑖

∑
𝜕𝑅
𝜕𝑥𝑗

𝑗 𝑑𝑥𝑗

=

𝜕𝑅
𝜕𝑥𝑖

𝑑𝑥𝑖
𝑥𝑖

𝑥𝑖

∑
𝜕𝑅
𝜕𝑥𝑗

𝑑𝑥𝑗

𝑥𝑗
𝑥𝑗𝑗

=

𝜕𝑅
𝜕𝑥𝑖

𝑥𝑖

∑
𝜕𝑅
𝜕𝑥𝑗

𝑗 𝑥𝑗

 

The relation between DIM and F-V, RAW, and BM are shown in Table J-1. These relationships hold 

only when the risk metric is (1) linear, and (2) expressed in terms of basic events only. 

Table J-1. Relation between DIM and F-V, RAW, and Birnbaum Importance Measures. 

 

Relation between DIM and … 

F-V RAW B 



 

J-5  

Constant Increment: 

𝐼𝑥𝑖
𝐷𝐼𝑀 = 

𝐼𝑥𝑖
𝐹−𝑉

𝑃𝑟(𝑥𝑖)

∑
𝐼𝑥𝑘

𝐹−𝑉

𝑃𝑟(𝑥𝑘)𝑘

 

𝐼𝑥𝑖
𝑅𝐴𝑊 − 1

1 − 𝑃𝑟(𝑥𝑖)

∑
𝐼𝑥𝑘

𝑅𝐴𝑊 − 1

1 − 𝑃𝑟(𝑥𝑘)𝑘

 
𝐼𝑥𝑖

𝐵

∑ 𝐼𝑥𝑘
𝐵

𝑘

 

Constant Percentage 

Increment: 

𝐼𝑥𝑖
𝐷𝐼𝑀 = 𝐼𝑥𝑖

𝐹−𝑉

∑ 𝐼𝑥𝑘
𝐹−𝑉

𝑘

 

𝐼𝑥𝑖
𝑅𝐴𝑊 − 1
1

𝑃𝑟(𝑥𝑖)
− 1

∑
𝐼𝑥𝑘

𝑅𝐴𝑊 − 1
1

𝑃𝑟(𝑥𝑘)
− 1

𝑘

 
𝐼𝑥𝑖

𝐵 𝑃𝑟(𝑥𝑖)

∑ 𝐼𝑥𝑘
𝐵 𝑃𝑟(𝑥𝑘)𝑘
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Appendix K 
 

Prevention Worth / Prevention Analysis 

K-1. TOP-EVENT PREVENTION WORTH 

The measures of “basic event” importance are not really about just the basic events; each basic event 

measure reflects properties of the union of cut sets that contain the designated basic event. So the 

“importance” of a basic event is really an attribute of the cut sets (the failure scenarios) in which that 

event appears. All of the measures previously introduced are couched in failure space: they reflect 

contributions to risk, or the sensitivity of risk to changes in basic event characteristics. Analogous 

measures can be defined in success space: we can examine the properties of the union of path sets 

containing a designated component. One such measure is “Prevention Worth (PW),” defined as: 

𝑃𝑊𝑖 = 𝑃 (⋃ 𝑀𝑃𝑆𝑗
𝑖

𝑗

), 

where i indexes basic events, and 𝑀𝑃𝑆𝑗
𝑖 are the minimal path sets containing basic event i. This is a bit 

like the numerator of the Fussell-Vesely (F-V) measure, substituting path sets for cut sets; but since 

success path probabilities are generally of order unity, the rare event approximation cannot be used to 

calculate the probability associated with a union of success paths. However, in many cases, we can 

approximate the right-hand side by computing the probability of failure of that union of path sets, and 

subtracting it from unity: 

𝑃𝑊𝑖 ≅ 1 − 𝑃 (⋃ 𝑀𝑃𝑆𝑗
𝑖

𝑗

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

Finally, for ease of interpretation, it is useful to introduce the “NINES” index, which, for a given PW, 

is calculated as: 

𝑁𝐼𝑁𝐸𝑆(𝑃𝑊) = − log(1 − 𝑃𝑊). 

This says how many “nines” of reliability are afforded by the union of path sets considered: for 

example, a reliability of 0.999 is said to provide three nines of reliability. 

Table K-1 shows the results for the case of the simple problem shown later to introduce prevention 

analysis. 

Table K-1. Comparison of PW with risk achievement worth (RAW) and F-V. 

Importance Measure Element (From Figure K-1) 

 N2 A B C D 

F-V 1.0 ~1 0.001 0.001 0.001 

RAW 10
4 

10
3 

1.1 1.1 1.1 

NINES 4 2.9996 1.9586 1.9586 1.9586 

 

For a given element, this measure reflects the safety significance of the success paths containing that 

element. Put another way: each element potentiates the success paths that contain it, and its PW is 
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measured by the worth of the totality of those success paths. N2 has the highest PW: for the numbers 

assumed, the path that contains N2 is “worth” more than all of the other success paths put together. This 

is true because all of those other success paths contain A, whose failure probability (success probability) 

is greater (less) than that of N2. 

Other insights are available from the table. N2 has a F-V of 1, independently of its failure probability, 

because it appears in every minimal cut set. But all of the other measures tabulated depend, to some 

extent, on the nominal failure probabilities assigned to the associated basic events. 

PW was formulated originally for the purpose of illustrating the benefits of thinking both in success 

space and in failure space, rather than focusing exclusively on failure space. However, although the 

measure arguably provides an interesting perspective on the role played by events in the model, as far as 

the authors are aware, no commercial probabilistic risk assessment software computes PW. 

Unfortunately, for realistic problems, the calculations are rather difficult; one needs first to parse out the 

success paths containing the element(s) of interest, and then (to use the above approximation to compute 

PW) evaluate the complement of that expression in order to approximate PW. 

K-2. TOP-EVENT PREVENTION ANALYSIS 

Consider the problem of determining the allocation of resources to activities aimed at maintaining and 

verifying the performance and reliability of safety equipment (“special treatment,” as it is called in the 

nuclear industry). This is important both to facility operators and to their regulators. To see why basic 

event importance measures are not necessarily a reliable guide to solving this problem, consider the 

example presented in Figure K-1. The system shown is supposed to supply compressed nitrogen (or air) 

to another system downstream. In order to succeed, we need either to supply air from one of the 

compressors via the receivers and the air dryers shown in Figure K-1, or to supply compressed nitrogen 

from the tanks shown in the upper portion of the figure. A simplified fault tree is shown on the left, 

showing that the top event is an AND of the failure of these two options (“Air” and “N2”). For simplicity, 

the compressed-nitrogen option is modeled as a single event “N2.” All components in that leg are 

logically in series, so no information is lost by this, unless there is some linkage between components in 

that segment and components in functionally redundant segments. In a real system, this is a real 

possibility, but the present illustration does not require us to address it. Similarly, the Air Dryer segment 

is modeled as a unit, and each compressor-receiver pair is modeled as a unit. Again, shared dependency of 

the compressors (e.g., of power supply) is a real possibility, but the present illustration does not require us 

to address it. 

There are two minimal cut sets of the fault tree shown: N2 * A and N2 * B * C * D. Notional basic 

event probabilities are assigned on the fault-tree figure itself, and based on these, the F-V and RAW are 

tabulated below the system diagram. One sees that N2 and the Air Dryer have large values for both RAW 

and F-V, while the compressors do not. This is a result of the compressors being mutually redundant: if B 

fails, you still probably have C and D; if C fails, you still probably have B and D; and if D fails, you still 

probably have B and C. This is an example of the “portfolio” effect mentioned above. It would be 

inappropriate (but not unprecedented) to conclude from these F-V and RAW values that the compressors 

are not “important.” This example is simple enough to see through without much machinery, but not all 

applications have that property. 

Instead of trying to determine “special treatment” from importance measures, consider a different 

approach, called “Top Event Prevention.” Within extant versions of this approach, one first formulates a 

prevention criterion to be satisfied by the complement of equipment to be considered “special.” A simple 

example is to require single-failure tolerance in the complement of credited equipment: require the 

function(s) to succeed despite any single failure. Next, one applies an algorithm to identify subsets of the 

equipment potentially available, each subset having the property of satisfying the prevention criterion. In 

the lower left portion of the figure, we see the mechanics and the results of applying the single-failure 
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criterion to the problem given. Start with the minimal cut sets given in the lower left of the figure (under 

“Top Event”). Evidently, any subset satisfying the single-failure criterion must contain both N2 and A; if 

a subset contains only A, and not N2, then the single failure of A fails the function, and vice versa. The 

second cut set requires us to work out some combinations: any single-failure-tolerant subset of the 

elements in a cut set must contain at least two of the elements in each cut set, and the logic expression for 

the six possibilities for the second cut set is shown. Since we need to “prevent” all of the cut sets, in order 

to obtain the prevention sets for the system, we “AND” together the prevention sets for each minimal cut 

set, and reduce the resulting expression. The resulting “minimal prevention sets” (the sets of events that 

collectively satisfy the prevention criterion) are shown in the lower right. It is straightforward to verify by 

inspection that each prevention set satisfies the prevention criterion. 

A noteworthy feature of these prevention sets is that they all contain at least one compressor, a result 

that the importance-measure-based heuristic does not achieve. In general, prevention analysis always 

yields solutions that comprise unions of complete success paths, a result that is not to be expected from 

importance-measure-based reasoning. 

 

Figure K-1. Top-event prevention (simple example) (after [K-1, K-2]). 
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Each prevention set satisfies the prevention criterion, without credit for any other elements. As shown 

in the figure, the method has given us three options. In a real application, one could simply choose any 

one of the options, and assure that sufficient resources are allocated to every component in that set to 

achieve a good quantitative outcome (for example, test the active components at some regular interval). 

The importance-measure-based heuristic does not, in general, point to unions of complete path sets. 

This is not to say that importance measures are “wrong”; they provide information about what the model 

is saying. But they do not always answer questions that need to be addressed at the portfolio level. 

It is straightforward to extend the calculations illustrated above to address prevention criteria that call 

for quantitative reliability estimates, rather than essentially barrier-counting, although that form of the 

algorithm is not a true global reliability optimizer. However, it illustrates the more general process of 

choosing not only what items of equipment (operator actions, instrumentation, …) need to be credited, but 

also what assumptions, initial conditions, and so on need to be assured (and perhaps monitored during the 

operational phase) to provide reasonable assurance of the claims presented in the claims tree of 

Figure 4-1. This iterative process of self-consistently determining this portfolio of items is illustrated in 

Figure K-2. 

 

Figure K-2. Process for confirming overall performance based on items credited in the assurance case. 

K-3. REFERENCES 

1. Brinsfield, W. and J. Voskuli, “Focusing the Scope of Fire PRA Human Reliability Analysis Using 

Top Event Prevention (TEP),” PSA 2015, 2015. 

2. Blanchard, D. P. and R. W. Youngblood, “Risk-Informed Safety Margin Characterization Case 

Study: Use of Prevention Analysis in the Selection of Electrical Equipment to Be Subjected to 

Environmental Qualification,” PSAM 12, 2014. 


