Framing the Issue – Connector Reliability

Joseph Levine, ETB Chief
Dr. Candi Hudson, SRS Chief
August 29, 2016
Washington DC

“To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement.”
Framing the Issue – Connector Reliability

Today’s Discussion

- Systems Reliability Section (SRS)
- Quality Control Failure Incident Team (QC-FIT)
- QC-FIT connector evaluations
- Bolt studies
- QC-FIT findings
- Areas of concern
Framing the Issue – Connector Reliability

Systems Reliability Section: QC-FIT

- The Systems Reliability Section (SRS) conducts quality control failure incident team (QC-FIT) evaluations
 - Failure of a piece of equipment or system – fitness for purpose
 - Collaboration with industry
 - Distinct from 2010 Incident Investigations or Regional panel investigations
 - District/Regional investigations can result in enforcement actions (INC’s, Civil penalties)
 - QC-FIT are fact finding evaluations
Framing the Issue – Connector Reliability

Systems Reliability Section: QC-FIT Goals

- Evaluate equipment's “life cycle” and if it is “fit for service”
- Provide an independent validation of manufacturer recommendations/specifications that impact QA/QC, performance, and reliability
- Provide recommendations
 - Changes to BSEE policies, procedures, Notice to Lessees (NTLs), regulations
 - Current/new industry standards
 - Issuance of Safety Alerts
 - Initiation of technical research studies
Framing the Issue – Connector Reliability

QC-FIT Connector Evaluations

- H4 Connector bolt failures
 - Discovered following a release of synthetic-based drilling fluids into the Gulf of Mexico during drilling operations (December 2012)

- HC Connector bolt failures
 - Discovered during between-well maintenance (July 2014)

- Blind Shear Ram (BSR) actuator bolt failures - ongoing
 - Discovered during BOP high pressure stack testing (October 2015)
Framing the Issue – Connector Reliability
Published QC-FIT Connector Evaluations

- H4 Connector Bolt Failures

- HC Connector Bolt Failures (addendum)
Framing the Issue – Connector Reliability

BSEE Funded Bolt Studies

- Lawrence Berkeley National Laboratory (LBNL)
 - Global standards evaluation/gap analysis
 - Mechanical testing
 - Coating/corrosion analysis

- National Aeronautics and Space Administration (NASA)
 - Quantitative Risk Assessments
 - Best Available Safest Technology
 - Failure analysis and testing services

- Industry Bolt JIP (Spring 2015)
 - Six industry participants and BSEE
 - Industry withdrew
Framing the Issue – Connector Reliability

BSEE Funded Proposed Bolt Study

- National Academy of Science (NAS) Bolts Root Cause Analysis (RCA) Workshop and Study (Fall 2016??)
 - Evaluate connectors currently in use for offshore oil and natural gas operations
 - Draw on bolt usage across other industries
 - Onshore oil and gas
 - Refineries
 - Pipelines
 - Civil aviation
 - Nuclear
 - Military
 - Automotive
 - Focus on industry wide and global impacts
 - Identify gaps in industry requirements, best practices, standards, and regulations
 - Suggest alternatives to BSEE and the industry
Framing the Issue – Connector Reliability

Areas of Concern

Design Standards
- Significant Gaps
- Inconsistencies
- Harmonization

Manufacturing Processes/Procedures
- Raw Material Processing
- Machining
- Heat Treatment
- Coating

Quality Control/Auditing
- Second/Third tier subcontracted vendor oversight
- Specification Compliance
- MOC

Operational Procedures
- Assembly
- Installation
- Torque
- Cathodic Protection
- In-service Inspection
Framing the Issue – Connector Reliability

QC-FIT H4 Connector Evaluation – Bolt Failures

- December 18, 2012, a lower marine riser package (LMRP) separated from the blowout preventer (BOP)
- Release of approximately 432 barrels of synthetic drilling fluids
- Approximately 11,000 connectors affected globally
- Thirty-six connector bolt failures were discovered on the H4 connector
Framing the Issue – Connector Reliability

QC-FIT H4 Connector Evaluation – Key Findings

- Environmentally-assisted cracking identified as failure mode
 - Hydrogen embrittlement, hydrogen induced stress cracking
 - Cathodic protection, coating concerns

- Material properties
 - High Material Hardness (>34 HRC), Yield Strength, Ultimate Tensile Strength

- OEM Quality Control manufacturing process concerns
 - Non-compliance to OEM manufacturing specifications
 - Quality control oversight of second and third-tier subcontracted vendors
 - No post-bake after coating
Framing the Issue – Connector Reliability

QC-FIT HC Connector Evaluation – Bolt failures

- June 30, 2014 a subsea engineer discovered a loose bolt while conducting scheduled between-well BOP maintenance

- Connectors were in service for four months

- Nine of twenty connectors failed on a LMRP hydraulic connector flange

- Considered a near miss event
Framing the Issue – Connector Reliability

QC-FIT HC Connector Evaluation – Key Findings

- Environmentally-assisted cracking identified as failure mode
 - Failure mechanism was not fully understood

- Material properties
 - High Material Hardness (>34 HRC), Yield Strength, Ultimate Tensile Strength

- OEM Quality Control manufacturing process concerns
 - Non-compliance to OEM manufacturing specifications
 - Quality control concerns of second/third-tier subcontracted vendors
 - Improper raw material casting
 - Inadequate heat treatment
 - Latest edition of ASTM B633 (2007) post bake requirements were not followed
Framing the Issue – Connector Reliability

QC-FIT Ongoing Evaluation – BSR bolt failures

- In-service connectors with high material hardness were identified

- Material property concerns

- Hydrogen embrittlement identified as possible failure mode

- OEM Quality Control manufacturing process concerns
 - Latest edition of ASTM B633 (2007) post bake requirements were not followed
Inconsistent material property requirements in industry standards
- API 6A, API 16A, API 16F, API 17A

Need harmonized requirements across industry standards for bolts used for subsea service
- Hardness, yield/tensile strength
- Coating
- Cathodic protection
Framing the Issue – Connector Reliability

Connector Manufacturing

Need for improved control of connector manufacturing and material properties for critical subsea applications
Framing the Issue – Connector Reliability
Connector Manufacturing – Reliability Impacts

- Design factors
 - Environment
 - Fatigue loading
 - Raw material selection

- Manufacture processes/procedures
 - Casting
 - Machining
 - Heat treatment
 - Coatings

- Material properties
 - Mechanical properties (Material Hardness, Yield Strength, Ultimate Tensile Strength)
 - Corrosion performance, cathodic protection
Framing the Issue – Connector Reliability

Connector Quality Control/Auditing

Quality Control
- Non-compliance with OEM manufacturing specifications
- Use of older revisions of standards containing different requirements
- Subcontracted vendor manufacturing processes
 - Heat treat
 - Coating

Quality Auditing
- Currently auditing only first-tier subcontracted vendors
- Need for improved auditing of second/third-tier subcontracted vendors
Framing the Issue – Connector Reliability

Operational Procedures

- Connector installation
 - Equipment assembly
 - Required torque
 - Torque procedure (pattern)
 - Lubricant
 - Torque gun calibration

- Connector inspection
 - Are BOP connector inspections periodic?
 - Are bolts examined and/or replaced when stack is brought to surface?

- Cathodic protection
 - Can possibly contribute to connector corrosion and degradation
Framing the Issue – Connector Reliability

Closing

Questions ???

Comments

Discussion
Framing the Issue – Connector Reliability

Contacts

◉ BSEE website
 ◆ https://www.bsee.gov/

◉ SRS page
 ◆ https://www.bsee.gov/whatwedo/regulatory-safety-programs/systems-reliability-section/goals-process

Contact

◉ joseph.levine@bsee.gov
 ◆ candi.hudson@bsee.gov
To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement.

BSEE Website: www.bsee.gov

@BSEEgov

BSEEgov

Bureau of Safety and Environmental Enforcement

BSEEgov

“To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement.”