API Draft Spec 17G
Subsea Well Intervention Systems HPHT considerations

January 28th 2014
BSEE MEETING
Introduction

- API RP 17G 1st edition: released 1995 for Completion/workover risers

 - Introduced the limit state design approach
 - Major updates on design requirements for pipe, connectors, material and connector qualification
 - Advanced riser design and connector qualification in the industry

- API 17G 3rd edition: (Ballot Draft) Excludes HPHT
 - Transition from RP to Spec. (Major Revision) – Advances design process for WCP, SSTT & forms the basis for emerging well intervention systems
 - Fully self contained, ensuring system and component life cycle integrity
 - Includes:
 - Well Control Package,
 - Landing String
 - Intervention Work Over Control System
API SPEC 17G ENHANCEMENTS

- **Safety Strategy**
 - Improved alignment between the End User and the Design / Performance of the Equipment and Operational Program

- **Material Integrity**
 - Chemistry
 - Prolongations
 - True Stress / Strain Curves to optimize for non Linear analysis Process
 - Charpy / Lateral Expansion

- **Design Process**
 - Static
 - Cyclic loads
 - Fatigue (SN or Fracture Mechanics methods)

- **Enhance Qualification** and Environmental Simulation process
 - Annex K, L, and I
 - Sand Slurry
 - Dynamic Closure Testing –

- **Testing Methods**
 - FAT/ EFAT & SIT
 - Crew drills
API Spec17G Safety Design Strategy

- Physical Protection (loading limiting devices)
- Safety Instrumented System
- Monitoring, Alarms, Operator intervention
- Normal control functions
- Subsea Well Intervention System
Material properties, NDT, QC requirements compatible with the static and cyclic design methodologies

Static design capacity methodology based on ASME VIII Div 2/Div 3, modified for offshore applications:

- Strain limited approach to ensure:
 - Consistent structural design margins (Structural failure mode)
 - Component functionality (functional failure mode)
 - Assure NACE limits

Look to TR8 for stress relaxation and operational aging of seals.
Comparison of codes

<table>
<thead>
<tr>
<th></th>
<th>API 17D</th>
<th>API SPEC 17G</th>
<th>ASME VIII 2</th>
<th>ASME VIII 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure limit</td>
<td>15K</td>
<td>15K</td>
<td>5K and above</td>
<td>10k and above</td>
</tr>
<tr>
<td>Analysis</td>
<td>Linear Elastic FEA</td>
<td>EP – 0.2% str/ Mod Limit Load</td>
<td>Elastic or EP + Str Hrd</td>
<td>EP + Str Hrd</td>
</tr>
<tr>
<td>Charpy V<sup>1)</sup></td>
<td>20 J</td>
<td>40 J – 65 J</td>
<td>41 J (2 in)</td>
<td>41 J</td>
</tr>
<tr>
<td>Test specimens</td>
<td>QTC or Prolongation</td>
<td>Prolongation</td>
<td>Prolongation</td>
<td>Prolongation</td>
</tr>
<tr>
<td>Yield de-rating</td>
<td>180°C</td>
<td>50°C</td>
<td>40°C</td>
<td>40°C</td>
</tr>
<tr>
<td>Accidental load</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cyclic load</td>
<td>No/Yes<sup>2</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Surface NDE</td>
<td>3/16” (5 mm)</td>
<td>“No detectable cracks (< 1/16”)” @ fatigue hot spots</td>
<td>3/16” (5 mm)</td>
<td>1/16” (1,6 mm)</td>
</tr>
</tbody>
</table>

1) 75 ksi steel, 2 in thick
2) 17D mentions “fatigue considerations” but does not specify requirements and refers to 17G

Status: Draft
Code Split between API 17G and API 17D

API 17G
- Open Water Intervention Riser System including WCP
- Landing String and Subsea Test Tree Assembly

API 17D
- XT
- TH, THRT and Wellhead System

Open Water Intervention Mode

Thru-BOP/Drilling Riser Intervention Mode
Summary

- Design method consistent to dovetail with TR8:
 - The static design method gives consistent safety margin against failure
 - Provides consistent results for complex geometries and loads
 - The use of elastic-plastic method provides knowledge of strain in components

- Fatigue failure criteria dovetails with TR8 (below WCP, SSTT where primary barrier resides) so:
 - S–N curves applicable for environmental cyclic loads (>10,000 cycles per day) and pressure cycles (1,000 cycles for total life) for riser sections
 - Use of calibrated fatigue design factors for offshore applications (i.e. high fatigue design factor to limit potential crack size)
 - Inspectable components (i.e. temporary equipment)