Dynamic Risers for Floating Production Systems API Standard 2RD Second Edition, September 2013

Paul Stanton, January 28, 2014

Introduction

- A new riser design code has been developed to supersede API RP2RD (1998)
- Originally developed as an ISO document by a joint ISO/API task group
- Completed as an API document
- New design criteria introduced, consistent with a limit state philosophy
- Several new sections in the revised document.
- Published September 2013

<u>1998</u>

API RP 2RD was first issued, with industry experience mainly from TTRs for MODUs and TLPs

<u>2003</u>

API Standardization Committee attempted "bridging document" between 1998 API RP 2RD and 2001 DNV-OS-F201

<u>2004</u>

Decision to write a new ISO code instead, based on API & DNV

Significant Changes

- Evolution from working stress design to include <u>limit state</u> design methods
- New chapters:
 - Components
 - Fabrication and Installation
 - Riser Integrity Management
- New annexes:
 - Riser worked examples (SCR, TTR)
 - Supplemental design information
- Reduced size (163 pages to 81 pages)
 - Eliminated three sections
 - Cut materials section from 33 pages to 16 pages

Significant Changes (continued)

- Addressed several key design issues that presented a challenge to designers using API RP 2RD:
 - Burst (hoop stress) criterion
 - Combined loads (4 methods), any of which can be used
 - SCR touchdown stress interpretation
 - Approach to strain-based design

- Accidental limit state (ALS)
- Ultimate limit state (ULS)
- Serviceability limit State (SLS)
- Fatigue limit state (FLS)

Based on API RP 1111 formula

 $P_b = k(S+U)\ln(D/(D-2t))$

Where

- k is equal to 0.45 for API Spec 5L or 5CT pipe
- *D* is the outside diameter of the pipe
- *t* is the nominal thickness of the pipe reduced for corrosion, wear and/or erosion as appropriate
- S is the specified minimum yield strength of the pipe
- *U* is the specified minimum ultimate strength of the pipe

$p_i - p_e \leq F_D p_b$

0.81 Production casing with tubing leek

- 0.81 Drilling riser with extreme pressure
- 0.90 Hydrostatic test0.67 Incidental pressure0.60 Design pressure

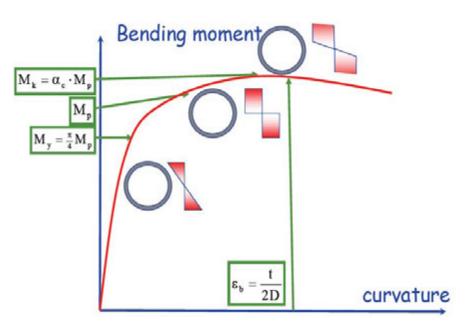
Capacity of Pipe - Collapse

$p_e - p_i \le F_D p_c$

6. SLS, ULS cold expanded pipe
7. SLS, ULS seamless or ERW pipe
1.0 ALS

Capacity of Pipe – Tension and Moment

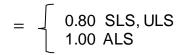
• Tension capacity

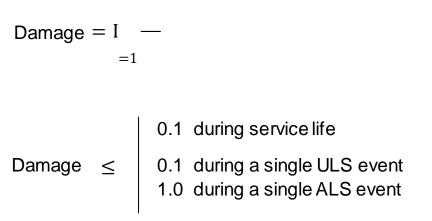

=

- where:
 - A is the pipe cross-section area
- Yield Moment

$$=$$
 (-)²

• Plastic moment capacity


 $=\frac{4}{2}$


- 1. Elastic (Working Stress) Design
 - Rearranges 1998 API RP 2RD
 - Relates cross-sectional T & M utilization to internal & external overpressure
- 2. Elastic / perfect-plastic (Limit State)
 - Approach from DNV F101 and ISO 13628-7
- 3. Plastic with Strain Hardening (Limit State)
 - > DNV F201
 - LRFD, with partial safety factors
- 4. API RP 1111 Approach
 - Limits combined stress from axial loads and pressure
 - Imposes separate limit on bending strain

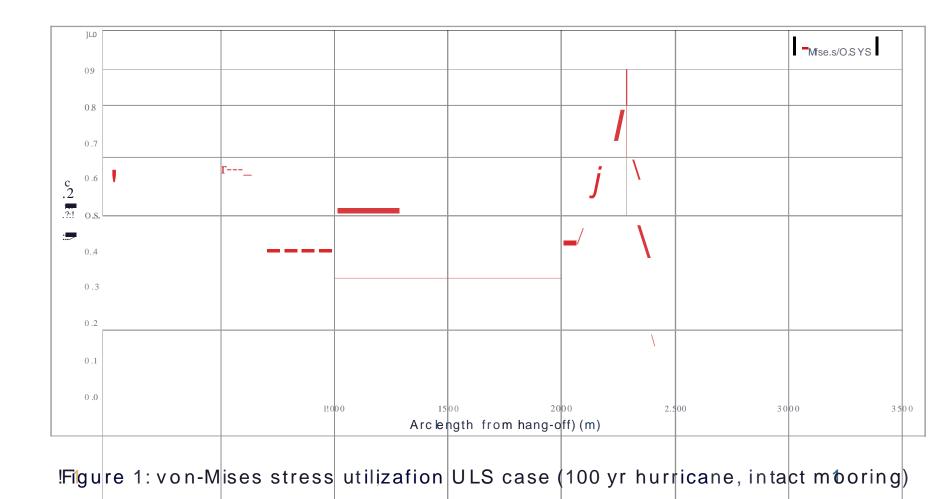
= 0.80 SLS, ULS 0.90 ALS for external overpressure >0.5 1.00 ALS otherwise

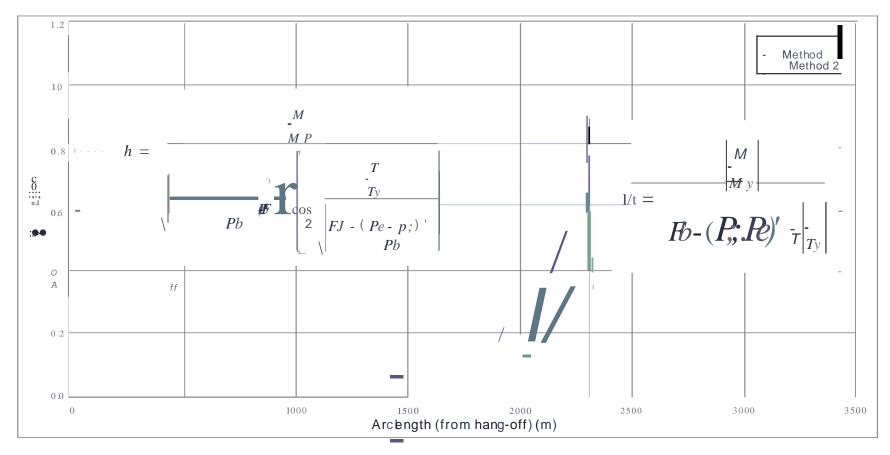
= { 0.90 SLS, ULS 1.00 ALS

Materials

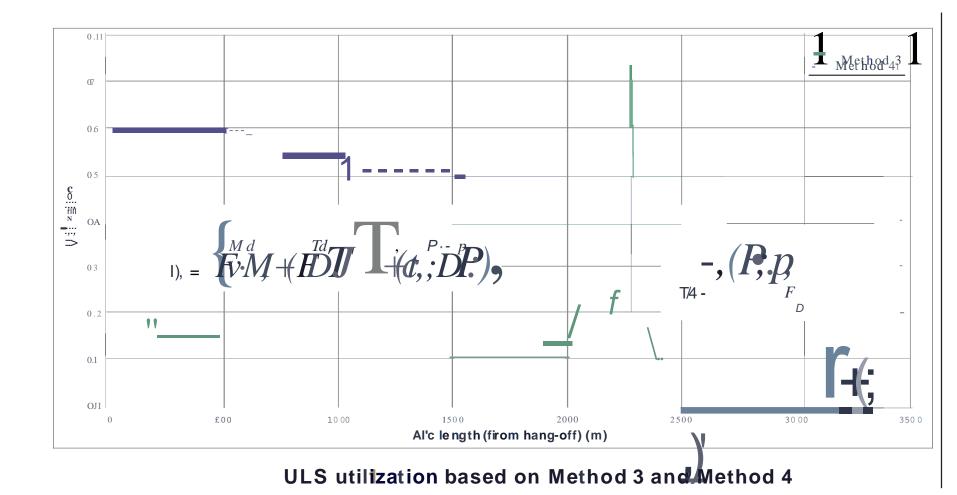
Requirements and guidelines for

- Material selection
- Manufacture
- Testing
- Corrosion protection
- Fabrication
- Inspection
- Documentation


References DNV-RP-F201 for titanium alloys



- X70 grade 18-inch oil export SCR
- Floater: Semi-submersible
- Location: GOM
- Water depth 2000 m
- Combined loading checks for ULS and ALS cases



Limit	Operational	Internal.	Mooring	Offset	Enviranmenta
state	condition	pressure at	condition	(% of	condition
		surface		water	
		(Mpa)		depth)	
ULS	Shut-down	25	11ntact	4%	
					1 00-year hurri cane
ALS	Shut-down	25	One line failled	5%.	100-year ihurrkane

ULS utilization based on Method 1 and Method 2

• Questions?

