Appendix J: Risk Register for the Macondo Well | | | | | Risk | k Register for Project: | Macondo | | Last Updated: | 20-Jun-09 | 8 | | | | | | | | | | | | |-------|------|------|----------|--------|--|--|---------------------|---------------|-----------|------------|-----------|-------------|--------------|----------|---------------|--------|-------------|--------------|----------|--------|---| | | | | | Meta | Mark Continue Date | General | | | | Last U | adata | Dea | -Response | | ř š | | | Post-Respons | | - | | | O D | ata | Risk | o. Ct | heck | Opp. | Cate | gory : | Risk/Opportunity Name | Event Description / Impact | Owner | Risk Status | Actions | Ву | Date | Impact Type | Impact Level | Prob. | Manageability | Rating | Impact Type | Impact Level | Prob. | Rating | Notes | | 1 6 | ок | T | ND8 | v | Well Control | Potential well control problem, risk of loaing the wellbore in a
uncontrolled situation | Mark Hafe | Accepted | 0 | Mark Haffe | 17-Jun-09 | Cost | Medium | Moderate | High | Mod. | Cost | Medium | Moderate | Mad | Casing program design to mitigal
seques. | | 2 6 | ок | T. | ND8 | e | Complex overburden | Multiple shallow water flow units, faults & potential gas. | Craig
Scherochel | Accepted | | Mark Hafe | 27-Apr-09 | Cost | Medium | Low | Medium | Low | Cost | Medium | Very Low | V. Low | Picked the best location to mitig | | 3 6 | ок | 7 | ND8 | P | PP/FG uncertainty | stuck pipe which lead to possible loss of hole section end/or | Marty Albertin | Accepted | | Mark Hafle | 27-Apr-09 | Cost | Medium | Moderate | High | Mod. | Cost | Medjum | Low | Low | Name : | | 4 0 | ок | 7 | NDS | v | Wellbore stability | eeti. Kicka identified in the offsets. Drilling through any self/sediment interface may encountee problems with shales sloughing/silumping into the well bone. | Mark Hafe | Dormant | | Mark Haffe | 27-Apr-06 | Cost | Low | Low | Medium | N. Low | | | | | Primarily a risk with set exit. We chose a location without set. EPTG welfore stability study to determine if minimum MW will cause welfore breakout. | | 5 (| СК | Ť | NOS | 7 | Tight folk, stuck pipe | Offset well (Rigel) encountered problems with stuck jobs at 8500° | Mark Haffe | Accepted | | Mark Hefe | 27-Apr-09 | Cost | Medium | Low | Medium | Low | Cost | * Nedlem | Low | Line | Instability. We are every of it and will more the situation while drilling. This entails sidetecking the well. Conditioning the well or unning onesing. Weight vs. depti will be monitored to help decision in pulling casing. Decision these on way for | | | OH. | Ť | NDS. | N | dass Transport Deposits (MTD) | Can be shallow water flow units when buried deeper than about 500 ft in deepwater settings, may be over pressured. Way here quite variable and propriets. Not deal shrink to set casing store. Evaluate the setting deepth of rag shoes with respect to the deepth of MTDs deepfind geophysicity and in offset wells. Here pump and dump much ready to ME SWF white differs, increase. | Binh Van
Nguyen | Accepted | | Mark Hefe | 13-May-05 | Cost | Low | Low | Medium | V. Low | Cost | Low | Low | V. Low | identified them and are owere. | | 7 0 | OK. | T: | NDS: | R | leduced wireline program | Loss of data or limited data collection as a result of well
problems or borehola environmental conditions. | Team. | Accepted | | Team | 13-May-00 | Schedule | Medium | Low | High | Low | | | | | Talking just about the M56. | | | ok. | Ť | ND8 | ı | and Circulation | Lost circulation indentified in the offsets. Risk to time and cost. | Mark Hafe | Active | | Mark Hafe | 17-Jun-09 | Cost | Low | Moderate | Medium | Lów | | | | | Loss circulation is possible with
narrow PPFG window. Keep mu-
weight on the light side and have
robust loss circulation contingen-
plan in place. | | 9 (| ok. | Ť | ND8 | N | serrow PPFG window | habele had a narrow PPPG windows (Miscene): If must weight and hole conditions are not mentioned carefully the series begin to experience substantial losses to the formation of the well may flow back. | Marty Albertin | Accepted | | Mark Hefte | 17-Jun-09 | Cost | Medium | Moderate | Hah | Mod | Cost | Medium | Moderate | Mod | Keep MW as close to PP as
possible. Two confingency shin-
ers available if necessary, 9-3/8"
liner, use LWD tool
possible to get real time pressure
samples. | | | OR . | | | | | Humbares and storms often exceed folerances, and the rig | 100000 | | | | | | 07-470-014 | | | | | | | | Have a Humbara plan which is
updated daily during Humbara
season with T-times and other | | 31 0 | OK . | 10 | NDS . | 8 | turricane | must unlatch and move to safer conditions Loop and eddy conditions occur almost throughout the year i | Team | Accepted | | Mark Hafle | 20-May-00 | Schedule | Medium | Moderate | Low | Mod. | Schedule | Medium. | Moderate | Mod | requirements needed to secure
the well. Suspending before pee
hurricans season. | | 12 6 | OK. | * | ND8 | 1. | crop and Eddy currents | many CoM deep water areas. Delays caused by high current velocities can be very costly. | Team | Accepted | | Mark Haffe | 20-May-06 | Schedule | Medium | Moderate | Low | Mod. | Schedule | Medium | Low | Low | Our location is further North | | 13 (| OK. | Ť. | ND8 | | rydrate buildup on weithead /
connector | Potential for hydrate buildup around connectors preventing
unlatching | Mark Hafe | Accepted | | Mark Hafle | 20-May-00 | Schedule | Low | Low | High | V. Low | Schedule | Low | Low | V.Low | Several mitigations in place sho
the event occur | | 14 (| ок | Ť | NOS | | Shallow wateriges flows | Uncontrolled shallow water and gas flows prior to riser installation could undermine and crafter the difficenties. See company overburden. | Mark Hafe | Accepted | | Mark Hafie | 20-Jun-06 | Cost | High | Low | High | Mod | Cost | Migh | Low | Wod | Sec 25" for isolation, gain farmation integrity to allow Fast titll process through 22" section Sec 22" casing above notices it said package to have SOP rippied up prar to crossing serveth SOF potential. 25" and 22" will be found conented. | | 15 (| OH. | T | ND8 | . 1 | ost arili centerrespud | Welfheed Subsidence, attack pipe, surface fracture, TOS rubble zone: potential risk for collegs/sequesting of all | Mark Hade | Accepted | | Mark Haffe | 17-Jun-09 | Cost | High | Low | High | Mod | Cost | High | Very Low | Low | 28" for added support. | | 18 6 | ОК | 1 | ND8 | 8 | Jamos Atlack | conductors
Cumbo due to pump end dump | Mark Hafe | Accepted | | Mark Haffe | 17-Jun-09 | Cost | Low | Moderate | High | Low | Cost | Low | Moderate | Low | Chonto in the offsets | | | OK | Ť | NDS | | Shallow deplation | | Marty Albertin | Accepted | | Mark Haffe | 20-May-00 | Cost | Medium | Low | Medium | Low | Cost | Medium | Low | Low | Monitor pressures. Spot Stress
Cage meterial prior to running
casino. Have 16° essino patch | | 18 (| ок | Ť | Planning | 2 B | OP Issue | Potential for the BCP stack to cause NPT on the well. | Trent Fleece | Accepted | | Twen | 17-Jun-09 | Schedule | High | Love | Medium | Mod. | Schedule | High | Low | Mod | contingency evelopie. Doing some PM's while the Bolion the surface. Good get some new equipment vesus refurbish if things go long. Numerous simulations show | | 19 (| OK. | * | Planning | 2 | formal favolation | Risk of a good carriest job on the 0-78° Production String | Mark Hafe | Active | | Tearn | 17-Jun-09 | Cost | Medium | Moderate | Mah | Mod | | | | | Numerous simulations show
expendable is only option. The
sands will be attess caged and,
for purpose censerting design is
to used with low circulating rate
will be used to keep ECD's belo
fracture pressure. | | 20 0 | OK. | * | Planning | 8 | shock & Vibration | Risk of down hole tool fallures due to shock and vioration. | Mark Haffe | Accepted | | Team | 17-Jun-09 | Cost | Medium | Low | High | Low | Cust | Medium | Very Low | V. Low | Fit for purpose BHA's designed
each hole section incorporating
DW GoM SPU lessons learned | | 21 0 | OK: | Ţ | Planning | A | Course Pressure Build-up | Risk of cealing feiture during the production phase of the well. | Mark Hafe | Accepted | | Mark Hefte | 17-Jun-09 | Production | High | Low | Medium | Mod. | Cust | High | Low | Mod | Rich Miller in EPTG did a well
specific design to mitigate APB
saues. This well design
incorporates three 16" rupture d
subs. | | 22 0 | OK: | T: | Planning | | Compection | Cesting feiture late in life due to reservoir compaction. | Mark Hafe | Active | | Mark Hafle | 17-Jun-09 | Production | Low | Very Low | Low | V. Low | | | | 1 | Steve Wison does not see any
compaction risk at the tabele
location. Any compaction would
late in the due to reservoir | | 25 0 | OK: | T- | Planning | E | xpendable issues | Risk of tubular exspansion faiture. | Mark Hafe | Accepted | | Mark Hefte | 17-Jun-09 | Cost | Medium | Low | Medium | Low | Cost | Medium | Low | Low | drawdown. | | 24 6 | OK | | - | | | | | | | | | | | | | | | - | | | | Risk Rating Matrix - customize the matrix in the SETUP worksheet | | Type of Impact | | | | | | | | | | | | |--------|---|--|--|---|---|------------|---------------------|--|--|--------------------------------|--|-----------| | | Health & Safety | Environment:
Threats | Environment:
Opportunities | Reputation:
Threats | Reputation:
Opportunities | Cost | Schedule | Production | Reserves | NPV | | | | | One or more fatalities | Damage long-
term and/or
extensive | ::=: | Outrage.
Prosecution.
Possible loss of
operating license | Commended by
NGO at
international
level. Global
recognition | > 10 SM | > 12.75 days | > 0.1 of Project
Production* | > 0.15 of
Project
Reserves* | > 0.1 of Project
NPV* | | Very High | | Level | Serious injury or
DAFWC.
HiPo | Short-term
damage within
facility boundary | Long-term and/or
extensive
improvement | Involvement of regulator | Commended by
NGO at national
level. Recognition
within country | 3 - 10 \$M | 3.4 - 12.75
days | 0.03 - 0.1 of
Project
Production* | 0.04 - 0.15 of
Project
Reserves* | 0.03 - 0.1 of
Project NPV* | | High | | Impact | Recordable
injury, first aid,
serious
occurrence | Rapid on-site
clean-up | Short-term
improvement
within facility
boundary | Complaints from local community | Commended by
NGO at local
level. Recognition
within area | 1 - 2 SM | 0.85 - 3.4 days | 0.01 - 0.03 of
Project
Production* | 0.01 - 0.04 of
Project
Reserves* | 0.01 - 0.03 of
Project NPV* | | Medium | | | No impact | No impact | Minor
enhancement | Minimal impact | recognised
positive
contribution within
BP | < 1 \$M | < 0.85 days | < 0.01 of
Project
Production* | < 0.01 of
Project
Reserves* | < 0.01 of
Project NPV* | | Low | | Pr | | | | | |----|--|--|--|--| | | | | | | | Very Low | Could only occur as the result of multiple, independent system or control failures.
Future occurrence is thought most unlikely.
No comparable occurrence is known. | |----------|---| | Low | Could result from a plausible combination of system or control failures. Would probably occur if the system were to be operated for long enough. Comparable events are known to have occurred in the past. | | Moderate | Could result from the failure of a single system or control. Could be expected to occur if this operation were repeated regularly. Comparable events are within the team's direct experience. | | High | Uncontrolled. Will occur whenever circumstances are unfavorable. Comparable events are frequent. | | | manage at 1 | | Probability | / Frequency | | |--------------|-------------|------------------|---------------|---------------------|------------| | Prob-In | pact Grid | Very Low
< 1% | Low
1 - 5% | Moderate
5 - 25% | High > 25% | | | Very High | Mod. | High | V. High | V. High | | Level | High | Low | Mod. | High | V. High | | Impact Level | Medium | V. Low | Low | Mod. | High | | | Low | V. Low | V. Low | Low | Mod. | Manageability | Low | Project Management Team can only influence impact. Risk reduction measures are unlikely to be cost-effective. | |--------|--| | Medium | Project Management Team can influence probability and / or impact. Risk reduction measures will be roughly cost-neutral. | | High | Project Management Team can control probability and / or impact. Risk reduction measures will be highly cost-effective |