NOTICE TO LESSEES AND OPERATORS OF FEDERAL OIL, GAS, AND SULPHUR LEASES AND PIPELINE RIGHT-OF-WAY HOLDERS IN THE OUTER CONTINENTAL SHELF, GULF OF MEXICO OCS REGION

Archaeological Resource Surveys and Reports

Authority

According to the requirements of the National Historic Preservation Act of 1966 (NHPA), as amended, and other applicable laws and regulations, the Minerals Management Service (MMS) is responsible for ensuring that archaeological resources on the Outer Continental Shelf (OCS) are not damaged or destroyed by oil, gas, and sulphur operations. Archaeological resources are any material remains of human life or activities that are at least 50 years of age and that are of archaeological interest (see 30 CFR 250.105).

This Notice to Lessees and Operators and Pipeline Right-of-way Holders (NTL) is issued pursuant to 30 CFR 250.103 and supersedes NTL No. 2002-G01, dated March 15, 2002.

Purpose

This revised NTL provides guidance on MMS regulations regarding archaeological discoveries. It clarifies when you must report discoveries to MMS, states that you are responsible for conducting discovery investigations and assessments, and reminds you of the penalties that could be assessed for non-compliance. It announces changes to deepwater survey requirements by increasing the number of archaeologically sensitive OCS blocks. It also makes numerous technical amendments and updates cited regulatory authorities.

Background

Section 106 of the NHPA (16 U.S.C. 470(f)) requires that MMS take into account the effect of a proposed project on any historic property (i.e., archaeological resource) and to afford the Advisory Council on Historic Preservation an opportunity to comment. The procedures outlined in this NTL are the means by which MMS ensures compliance with the requirements of Section 106 of the NHPA and the implementing regulations at 36 CFR part 800.

Studies conducted on behalf of MMS (completed in 1977, 1989, and 2003) have developed, for resource management purposes, predictive models of where archaeological resources are likely to occur on the OCS in the Gulf of Mexico. These resources may be of two types: (1) drowned terrestrial prehistoric sites dating to the Late Pleistocene/Early Holocene period when sea levels were substantially lower than today; and (2) historic sites such as shipwrecks or lighthouses. The MMS Gulf of Mexico OCS Region (GOMR) uses the results of these studies to determine which OCS areas have the highest potential for archaeological resources. The MMS has issued regulations at 30 CFR 250.194, 250.203(b)(15), 250.203(o), 250.204(b)(8)(v)(A), 250.204(s), and 250.1007(a)(5) that require OCS lessees and operators and pipeline right-of-way...
holders to conduct surveys within these areas of high archaeological potential and to submit the results to MMS.

The above-cited regulations require that you include archaeological resource reports with your Exploration Plans (EP), Development Operations Coordination Documents (DOCD), and pipeline applications. The purpose of these reports is to provide information for the MMS GOMR to use for determining the potential existence of archaeological resources that may be affected by proposed operations. These reports are based primarily on an assessment of data obtained from remote-sensing surveys.

MMS GOMR Notification

To determine whether you need to conduct an archaeological resource survey (as authorized by 250.203(o), 250.204(s), and 250.1007(a)(5)) and submit an archaeological resource report (as required by 250.203(b)(15), 250.204(b)(8)(v)(A), and 250.1007(a)(5)), consult the list on the MMS Internet website at:
http://www.gomr.mms.gov/homepg/regulate/environ/archaeological/surveyblocks.pdf. The website listing serves as the written notification the MMS GOMR makes according to 30 CFR 250.194(a). Conduct the survey and prepare the report if the OCS block(s) covered by your lease or pipeline right-of-way appears on the list.

On the basis of recent archaeological discoveries, the MMS GOMR has reevaluated deepwater OCS blocks on the approach to the Mississippi River and added these blocks to the list on the MMS Internet website of those OCS blocks requiring an archaeological survey and report. For those OCS blocks, this NTL serves as the written notice required by 30 CFR 250.194(a). On a case-by-case basis, the MMS GOMR will inform you by letter if we change the archaeological survey or report requirements for an OCS block because of new information.

Required Notification of the Discovery of Shipwrecks on the Seafloor (30 CFR 250.194(c) and 30 CFR 250.1010(c))

If you discover man-made debris that appears to indicate the presence of a shipwreck (e.g., a sonar image or visual confirmation of an iron, steel, or wooden hull, wooden timbers, anchors, concentrations of man-made objects such as bottles or ceramics, piles of ballast rock) within or adjacent to your lease area or pipeline right-of-way during your shallow hazard survey, diver inspection, or remotely operated vehicle (ROV) inspection, you must immediately halt operations, take steps to ensure that the site is not disturbed in any way, and contact the Regional Supervisor, Leasing and Environment, within 48 hours of its discovery. You must cease all operations within 1,000 feet (305 meters) of the site until the Regional Director instructs you on what steps you must take to assess the site’s potential historic significance and what steps you must take to protect it. **NOTE: Under section 110(g) of the National Historic Preservation Act (16 U.S.C. 470h-2[g]), MMS may charge Federal permittees for costs related to historic preservation activities.**

Archaeological Resource Surveys

Conduct archaeological resource surveys using the pattern and data acquisition instrumentation guidelines in Appendix No. 1 of this NTL. Since archaeological resource surveys are often similar to other required remote-sensing surveys (e.g., shallow hazards surveys and live-bottom surveys), the MMS GOMR encourages you to conduct these surveys concurrently. Submit your written requests under paragraphs C, D, and E below to the appropriate MMS GOMR office (refer to paragraph B under the Contacts and Mailing Addresses section below for mailing addresses).

A. If your lease was issued before December 1973, you do not need to conduct an archaeological resource survey to cover your proposed seabed-disturbing lease activities, as long as the activities will take
place within 152 meters (500 feet) of the center of a production facility installed before November 21, 1994, or
in the disturbance corridor of a lease term pipeline installed before November 21, 1994.

B. If your lease was issued after December 1973, you do not need to conduct an archaeological resource
survey to cover your proposed seabed-disturbing lease activities, including lease term pipelines, if you have
previously conducted a lease survey (see Appendix No. 1, Section III.A) for that lease under the guidelines of
the MMS GOMR NTL in place at the time you performed the survey, provided that the survey data were
collected utilizing DGPS or equivalent positioning and are of sufficient quality to provide an accurate
assessment of the seafloor.

C. If you have been directed by the MMS GOMR to conduct an archaeological resource survey, but you
believe that you can prepare an acceptable archaeological resource report based on existing survey data
(including data collected for an OCS block when it was previously leased) or other available information,
submit a written request to the MMS GOMR Plans Section (for lease or site-specific surveys) or the MMS
GOMR Pipeline Section (for pipeline surveys) for approval to use existing survey data in lieu of conducting a
new survey. In your request, include a discussion of your rationale and a copy of any existing archaeological
resource reports.

D. If you have been directed by the MMS GOMR to conduct an archaeological resource survey, but you
believe that previous seafloor disturbances in the area would severely hinder your ability to gather useful
information, submit a written request to the MMS GOMR Social Sciences Unit for approval to waive the
survey. In your waiver request, include a discussion of your rationale and an "as-built" plat of your lease or
pipeline right-of-way that depicts all existing facilities and pipelines and the location(s) of the proposed
seabed-disturbing activities. Include also a statement, prepared and signed by a professional archaeologist
(as defined in 36 CFR part 61), that supports your waiver request.

E. If you have been directed by the MMS GOMR to conduct an archaeological resource survey, but you
would like to use a survey pattern or survey data acquisition instrumentation different from that specified in
Appendix No. 1 of this NTL, submit a written request to the MMS GOMR Social Sciences Unit for approval.
In your request, include a description of the alternate pattern or instrumentation and a discussion of your
rationale. Please be advised that the MMS GOMR will not approve requests to use 3-D seismic information
as a substitute for high-resolution sidescan sonar data for archaeological surveys on OCS lease blocks.

F. If the area you plan to survey is located in water depths greater than 200 meters (656 feet), you may
perform the archaeological resource survey at 300-meter line spacing. In these water depths, you may also
forego collecting magnetometer data.

Archaeological Resource Reports

Prepare archaeological resource reports using the guidelines in Appendix No. 2 of this NTL. The MMS
GOMR encourages you to submit archaeological resource reports (when required) with shallow hazards
reports (see NTL No. 2008-G05, Shallow Hazards Program, effective May 1, 2008, at
http://www.gomr.mms.gov/homepg/regulate/regs/ntls/2008NTLs/08-g05.pdf) since these reports are
similar. Submit archaeological resource reports under paragraph A below and any written requests under
paragraphs C and D below to the appropriate MMS GOMR office (refer to paragraph B under the Contacts
and Mailing Addresses section below for mailing addresses).

A. In order to minimize possible delays in the review of your EP or DOCD by the MMS GOMR, you may
submit an archaeological resource report for a lease survey or a site-specific survey before you submit the
related EP or DOCD.
B. When you submit your archaeological resource report, provide an original hard copy report and two (2) identical copies. In lieu of submitting a hard copy report, you may prepare the report in digital format and submit three (3) separate CD-ROM's. If you do, provide two (2) full-scale paper copies of the Shallow Hazards and Archaeological Anomalies Map (see Appendix No. 2, Sections I and II.D) with the CD-ROM's. Submission of digital copies of reports and maps may expedite the review of your EP, DOCD, or pipeline application.

C. If you have been directed by the MMS GOMR to prepare an archaeological resource report, but you believe that preparation of a report is not feasible or cannot be accomplished, submit a written request to the MMS GOMR Social Sciences Unit to forego the report. In your request, include a discussion of your rationale and an "as-built" plat (drawn to a scale of 1 inch = 1,000 feet) of the subject OCS block or pipeline route that depicts all existing facilities (including pipelines) and the location of the proposed seabed-disturbing activities. As appropriate, you may combine your request with a related request to waive or alter an archaeological resource survey described in the preceding section of this NTL.

D. If an archaeological resource report was prepared under the guidelines of NTL 2002-G01 for an OCS block that was leased previously, that report may still be acceptable for activities proposed in EP's, DOCD's, and lease-term pipeline applications submitted under a new lease on the same OCS block. In this case, you may submit a written request to the MMS GOMR Plans Section that the MMS GOMR accept the archaeological resource report prepared for the expired or relinquished lease (in lieu of preparing a new report). In your request, include a clean copy of the previously prepared archaeological resource report. Make sure that you submit your request before you submit the related EP, DOCD, or lease-term pipeline application. As appropriate, you may combine your request with a related request to waive or alter an archaeological resource survey described in the preceding section of this NTL. NOTE: Because of significant differences in the required survey instrumentation, survey reports prepared for an expired lease under NTL's in effect before implementation of NTL No. 2002-G01 on March 15, 2002, most likely will not be acceptable.

Reviewing Archaeological Resource Reports

After you submit an archaeological resource report, the MMS GOMR will

A. Determine whether the archaeological resource report is adequate and complete and evaluate your geophysical interpretations and archaeological conclusions.

B. If the archaeological report is not adequate or complete, notify you in writing of the problems and identify the data or information necessary to correct or complete the report.

C. After reviewing your archaeological resource report, notify you in writing of any mitigating measures or operational restrictions that the MMS GOMR may impose on future activities.

Protecting Potential Archaeological Resources

When the MMS review of your archaeological survey and report indicates a seafloor feature that may be an archaeological resource within the immediate area of any proposed operations, you can either:

A. Avoid the feature by a minimum distance specified by the MMS GOMR; or

B. Establish, on the basis of further investigation conducted under the direction of a professional archaeologist and using such equipment and techniques the MMS GOMR Social Sciences Unit (SSU) deems
necessary, that the operations will not adversely affect the potential archaeological resource. If you choose to investigate the feature, contact the MMS GOMR SSU at least two (2) weeks before you plan to commence the field investigations. For guidance on conducting these investigations, you may consult the MMS Internet website at http://www.gomr.mms.gov/homepg/regulate/environ/archaeological/evaluation.html.

Penalties

Failure to comply with MMS regulations with respect to archaeological resources can result in civil penalties under 30 CFR 250.1404. In addition, Section 110(k) of the National Historic Preservation Act (16 U.S.C. 470h-2[k]) prohibits a Federal agency from granting a loan, loan guarantee, permit, license, or other assistance to an applicant who, with the intent to avoid the requirements of Section 106 of the Act, has intentionally, significantly, and adversely affected a historic property to which the grant would relate, or having legal power to prevent it, has allowed such adverse effect to occur, unless the agency, after consultation with the Advisory Council for Historic Preservation, determines that circumstances justify granting such assistance despite the adverse effect created or permitted by the applicant (see 36 CFR 800.9[c][1]).

Paperwork Reduction Act of 1995 (PRA) Statement

This NTL provides clarification, description, and interpretation of requirements contained in 30 CFR 250, subparts A, B, and J, regarding archaeological resource surveys and reports. The Office of Management and Budget (OMB) has approved the information collection requirements in these regulations under OMB Control Nos.1010-0114 for subpart A (expires October 31, 2007), 1010-0049 for subpart B (expires August 31, 2006), and 1010-0050 for subpart J (expires January 31, 2006. This NTL does not impose additional information collection requirements subject to the Paperwork Reduction Act of 1995.

Contacts and Mailing Addresses

A. Contacts

The following chart provides contact names, telephone numbers, and e-mail addresses if you have any questions on archaeological resource surveys or reports.

<table>
<thead>
<tr>
<th>For...</th>
<th>Contact...</th>
<th>At...</th>
<th>Or at...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeological resource reports in EP’s and DOCD’s</td>
<td>Ms. Liz Peuler</td>
<td>Elizabeth.Peuler@boemre.gov</td>
<td>(504) 736-2581</td>
</tr>
<tr>
<td>Archaeological resource reports in pipeline applications</td>
<td>Mr. Alex Alvarado</td>
<td>Alex.Alvarado@boemre.gov</td>
<td>(504) 736-2547</td>
</tr>
<tr>
<td>Conducting archaeological resource surveys or</td>
<td>Dr. Jack Irion, Mr. David Ball,</td>
<td>Jack.Irion@boemre.gov David BALL@boemre.gov Christopher.Horrell@boemre.gov</td>
<td>(504) 736-1742 (504) 736-2859 (504) 736-2796</td>
</tr>
</tbody>
</table>
B. Mailing Addresses

The following provides the mailing addresses for the respective MMS GOMR offices where you submit archaeological resource reports and any requests regarding archaeological resource surveys or reports. For...

<table>
<thead>
<tr>
<th>Office</th>
<th>Insert in (1) below</th>
<th>Insert in (2) below</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS GOMR Plans Section</td>
<td>Field Operations</td>
<td>Plans Section (MS 5230)</td>
</tr>
<tr>
<td>MMS GOMR Pipeline Section</td>
<td>Field Operations</td>
<td>Pipeline Section (MS 5232)</td>
</tr>
<tr>
<td>MMS GOMR Social Sciences Unit</td>
<td>Leasing and Environment</td>
<td>Social Sciences Unit (MS 5411)</td>
</tr>
</tbody>
</table>

U.S. Department of the Interior
Minerals Management Service
Gulf of Mexico OCS Region
Office of _____________________________(1)
Attention: ____________________________ (2)
1201 Elmwood Park Boulevard
New Orleans, Louisiana 70123-2394

[original signed]

Chris C. Oynes
Regional Director

Appendices
APPENDIX NO. 1
GUIDELINES FOR ARCHAEOLOGICAL RESOURCE FIELD SURVEYS

I. Introduction

Perform your archaeological resource field surveys using the navigation systems, line-spacing patterns, and instrumentation described below.

II. Archaeological Resource Survey Navigation

Use a state-of-the-art navigation system that can continuously determine the surface position of the survey vessel. Ensure that the precision of the navigation system is ± 5 meters for surveys in water depths less than 200 meters (656 feet) and ±15 meters for surveys in water depths 200 meters or greater. Log position fixes digitally at least every 12.5 meters (41 feet) along the vessel track and annotate them on all records at intervals no greater than 152 meters (500 feet). Show fixes on the final shot point chart at intervals no greater than 152 meters.

Use acoustic positioning of towed sensors for archaeological resource surveys conducted in water depths greater than 91 meters (300 feet) to facilitate sufficiently accurate mapping of any recorded contacts.

III. Archaeological Resource Survey Patterns

The MMS Internet website list will tell you whether to conduct the archaeological resource survey at a line spacing of no more than 50 meters (164 feet) or no more than 300 meters (984 feet). For OCS blocks that have a high probability for containing historic resources in water depths 200 meters or less, the survey line-spacing interval is no more than 50 meters. For OCS blocks that have a high probability for containing prehistoric archaeological resources, or historic resources in water depths greater than 200 meters (656 feet), the survey line-spacing interval is no more than 300 meters.

A. Lease Surveys

If it is likely that you will conduct multiple operations on a lease, it may be advantageous for you to conduct a lease survey. A lease survey covers the entire area of a lease, as well as any areas outside the lease that could be physically disturbed by your activities. The area of physical disturbances includes, but is not limited to, the area within which drilling vessel or work barge anchors may be placed, but does not include the area within which workboat anchors may be placed or the area within which similar minimal disturbances may occur. Depending upon the OCS block designation from the list on the MMS Internet website, run a lease survey along parallel primary lines spaced at a maximum of either 50 or 300 meters (164 or 984 feet) with cross-tie lines spaced at a maximum of 900 meters (2,953 feet). The MMS GOMR may direct
you to use a tighter line spacing pattern in areas of known significant or potentially significant archaeological resources. If an asterisk appears next to an OCS block on the MMS Internet website, an archaeological survey may only be necessary over a small portion of the block or an alternative survey methodology may be more effective. It is recommended that you contact the MMS GOMR Social Sciences Unit for specific guidance on how to proceed.

B. Single Drilling Site/Platform Surveys (Site-Specific Surveys)

A site-specific survey covers an area approximately 1,800 meters (5,906 feet) square centered upon a proposed drilling or platform site, as well as any areas outside this square that could be physically disturbed by your activities. The area of physical disturbances includes, but is not limited to, the area within which drilling vessel or work barge anchors may be placed, but does not include the area within which workboat anchors may be placed or the area within which similar minimal disturbances may occur. Depending upon the OCS block designation from the list on the MMS Internet website, run a lease survey along parallel primary lines spaced at a maximum of either 50 or 300 meters (164 or 984 feet), with three equidistant cross-tie lines. The MMS GOMR may direct you to use a tighter line spacing pattern in areas of known significant or potentially significant archaeological resources. You do not need to conduct a site-specific survey in any area that is sufficiently covered by an approved lease survey. If an asterisk appears next to an OCS block on the MMS Internet website, an archaeological survey may only be necessary over a small portion of the block or an alternative survey methodology may be more effective. It is recommended that you contact the MMS GOMR Social Sciences Unit for specific guidance on how to proceed.

C. Right-of-way Pipeline Surveys

The survey pattern for all right-of-way pipelines consists of a line run along the proposed pipeline route (centerline), an offset parallel line on one side of the centerline (for 300-meter line spacing surveys only) located approximately 50 meters (152 feet) from the centerline, and a minimum of two additional offset parallel lines (on either side of the centerline) spaced at a maximum of 50 or 300 meters (164 or 984 feet), depending on the designation from the list on the MMS Internet website of the OCS blocks to be traversed by the pipeline. The number of offset parallel lines must be sufficient to provide coverage of the entire area that could be physically disturbed by your pipeline construction activities. The area of physical disturbances includes, but is not limited to, the area where pipeline lay barge anchors will be placed. If an asterisk appears next to an OCS block on the MMS Internet website, an archaeological survey may only be necessary over a small portion of the block or an alternative survey methodology may be more effective. It is recommended that you contact the MMS GOMR Social Sciences Unit for specific guidance on how to proceed.

D. Lease Term Pipeline Surveys

If a previously conducted lease or site-specific survey does not cover the route of a proposed lease term pipeline, conduct a survey that covers the route of the proposed pipeline. In this case, the survey pattern is the same as the one described for right-of-way pipelines in paragraph C above.
IV. Archaeological Resource Survey Data Acquisition Instrumentation

Make sure that geophysical instrumentation for your archaeological resource field surveys is representative of the state-of-the-art in technological development and is deployed in a manner that minimizes interference among the instrumentation systems. Interface all data recorders into the navigation system to ensure proper integration of information. Ensure that all instrumentation is adequately tuned and that all recorded data are readable, accurate, and properly annotated. Poor quality data resulting from inadequate acquisition or processing technique is not acceptable and may result in a resurvey. Use the following instrumentation to conduct an archaeological resource field survey:

A. Magnetometer

For all archaeological resource surveys you conduct in water depths less than 200 meters (656 feet), use a proton precession or cesium total field magnetometer to detect ferrous and other magnetically susceptible metals. Tow the magnetometer sensor as near as possible (but no more than 6 meters (20 feet) above the seafloor) and in a way that minimizes interference from the vessel hull and the other survey instruments.

Attach a depth sensor to the magnetometer sensor and annotate each survey line with tow sensor height off seafloor and with start of the line (SOL) and end of the line (EOL) times. Ensure that magnetometer sensitivity is one gamma (\(\gamma \)) or one nanoTesla (nT) or less, and that the data sampling interval does not exceed one (1) second. Ensure also that the background noise level does not exceed a total of 3 gammas peak to peak.

Record data on a digital medium in such a way that it can be linked to the positioning data. Make sure that the recording scales are set no higher than 1,000-gamma and 100-gamma full scale, respectively. Annotate shot points and recorder speed.

B. Dual Channel Sidescan Sonar

Use a towed, dual-channel, dual-frequency, sidescan sonar system to provide continuous planimetric images of the seafloor. For archaeological resource surveys run at a line spacing of 300 meters (984 feet), use a system that operates at no less than 100 kHz to provide sufficient resolution of seafloor conditions. For archaeological resource surveys run at a line spacing of 50 meters (164 feet), use a system that operates in the 300- to 500-kHz range.

Design the line spacing and display range to ensure 100 percent of the proposed survey area in the prime survey line direction is covered. This may require running tighter survey transects than what is specified on the MMS web page. Tow the sidescan sonar sensor above the seafloor at a distance that is 10 to 20 percent of the range of the instrument. As needed, run extra lines with the sidescan sonar operating at a frequency of 500 kHz or greater for detailed inspection of seafloor contacts. Ensure that the line spacing and display range you use are appropriate for the water depth. See Section V of this Appendix for suggested coverage areas.
Display the sidescan sonar data on a graphic recorder capable of adjusting the data for slant range effects and variable speed along line to give a true plan view of the seabed conditions as the survey progresses.

Record the data digitally to allow signal processing to improve data quality further and allow export to a workstation for integrated interpretation and mapping of the data. For all right-of-way pipeline surveys, image process and output the recorded data in mosaic form. Output such mosaics as a geo-referenced digital model of the seabed for use in interpretation and reporting.

C. Subbottom Profiler

Use a very high-frequency subbottom acoustic profiler operating within the 1.5- to 4.5-kHz bandwidth to provide continuous and very high resolution information of near surface geological features within the uppermost 15 meters (50 feet) of sediment. Run the subbottom profiler system to provide penetration that exceeds the depth of disturbance (i.e., the equivalent of one-and-a-half times the spud can diameter for a jack-up rig, the maximum expected anchor penetration for an anchored rig or work barge, or the depth of a pipeline burial trench).

Make sure that the subbottom profiler system is capable of achieving a resolution of vertical bed separation of at least one (1) foot in the uppermost 15 meters (50 feet) below the mudline.

Record the data digitally to allow signal processing to improve data quality further and allow export to a workstation for integrated interpretation and mapping of the data.

D. Depth Sounder

Use a hull mounted, high-frequency, narrow beam hydrographic echo sounder to obtain bathymetric data. Display the data on a graphic recorder and log it digitally and continuously. Set up the depth sounder system to record with a sweep appropriate to the range of water depths expected in the survey area. Use a heave compensator in conjunction with the system to remove the effects of vessel movement from the data.

Calibrate water column sound velocity at the start and end of the survey by using a conductivity temperature depth (CTD) sensor or velocity probe capable of recording in the maximum water depth expected in the survey area.

E. Additional Investigations

For archaeological surveys, the MMS GOMR will not approve requests to use 3-D seismic data as a substitute for high-resolution sidescan sonar data. For EP’s and DOCD’s in deepwater lease blocks, autonomous underwater vehicle (AUV) or remotely operated vehicle (ROV) surveys may be appropriate. Contact the MMS GOMR Social Sciences Unit if you wish to discuss other survey options.
Under certain conditions, you may want to use, or the MMS GOMR may direct you to use, additional instrumentation and methods such as underwater television; still, video, or movie cameras; divers; remote or manned submersibles; coring; and additional survey lines.

V. Suggested Sidescan Sonar Coverage Areas

<table>
<thead>
<tr>
<th>Height Above Seafloor</th>
<th>Range at 10% of Fish Altitude</th>
<th>Range at 20% of Fish Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 meters</td>
<td>50 meters/channel</td>
<td>25 meters/channel</td>
</tr>
<tr>
<td>10 meters</td>
<td>100 meters/channel</td>
<td>50 meters/channel</td>
</tr>
<tr>
<td>15 meters</td>
<td>150 meters/channel</td>
<td>75 meters/channel</td>
</tr>
<tr>
<td>20 meters</td>
<td>200 meters/channel</td>
<td>100 meters/channel</td>
</tr>
</tbody>
</table>
APPENDIX NO. 2

GUIDELINES FOR ARCHAEOLOGICAL RESOURCE REPORTS

I. Introduction

Include an evaluation and synthesis of the data you gathered during the archaeological resource survey in an archaeological resource report prepared, signed, and dated by an archaeologist and a geophysicist. Ensure that these professional personnel have the credentials and experience sufficient to qualify them to perform the necessary work (qualifications for professional archaeologists can be found at 36 CFR part 61). As needed, specialists in other fields may participate in data analysis and report preparation.

If your archaeological assessment is submitted with your shallow hazards report, include this assessment as a separate appendix. If you submit your report on CD-ROM’s, ensure that they are in a separate portable document format (PDF) file and that you also prepare a digital copy of all survey maps addressed in paragraph II.D of this Appendix as DWG files oriented to the North American Datum of 1927 (NAD 27) coordinate system.

II. Contents of Archaeological Resource Reports

Include the following information in the archaeological resource report:

A. A description of the area that you surveyed, including lease number(s), block numbers(s), OCS lease area(s), and minimum and maximum water depths for each lease block covered in the report. In order to minimize possible delays in the review of your EP or DOCD by the MMS GOMR, you may submit an archaeological resource report for a lease survey or a site-specific survey before you submit the related EP or DOCD.

B. A list of the individuals involved in survey planning, fieldwork, and report preparation, and a description of their duties when you submit your archaeological resource report.

C. A discussion of the archaeological resource field survey, including the following:

1. A brief description of the navigation system, including a statement of its estimated accuracy for the area you surveyed.

2. A brief description of survey instrumentation, including scale, sensitivity settings, sampling rates, and tow heights off seafloor, as appropriate for each instrument.

3. A description of the survey vessel, including its size, sensor configuration, instrument set-backs, and navigation antennae locations.

4. Vessel speed and course changes.

5. Sea state and weather conditions.
6. A copy of the original daily survey operations log. Include sensor height off seafloor for the magnetometer and sidescan sonar for the beginning and end of each survey line.

7. A description of survey procedures, including a statement of survey and record quality, a comparison of survey line crossings, and discussion of any problems that may affect the ability of the report preparers to determine the potential for archaeological resources in the survey area.

8. An explanation of the problem(s) if you were unable to meet the survey line spacing or instrumentation guidelines in Appendix No. 1 of this NTL.

D. A navigation postplot map of the survey area at a scale of 1:12,000 showing survey lines, shot points at 152-meter (500-foot) intervals, line direction in the grid projection in which the lease is described (e.g., UTM, Lambert, or geographic coordinates) with tics placed every five inches thereon, and with geodetic graticules every 60 seconds. For each copy of the report, submit one hardcopy and two digital copies (one in PDF format and one DWG format) of this map. Orient this map, or separate maps at the same scale that also show survey lines, shot points, and line direction, to true north and delineate the following, as appropriate:

1. The horizontal and vertical extent of all relict geomorphic features having potential for associated prehistoric sites. Such areas include, but are not limited to, tidal estuaries, embayments, barrier islands, beach ridge sequences, spits, alluvial terraces, and stream channels. When relict fluvial systems are recorded, make sure that the map
 a. differentiates between generations of channeling when more than one generation is present;
 b. shows any internal channel features such as point bar deposits and terraces;
 c. delineates any channel margin features such as natural levee ridges;
 d. indicates all depths of channel banks and channel axes (thalwegs); and
 e. delineates all areas recommended by your archaeologist for avoidance for potential archaeological resources.

 Note: An isopach map of channel fill sediments is often the most efficient means of conveying the above information, but this method alone will not allow differentiation between more than one generation of channeling.

2. Bathymetry.
3. All magnetic anomalies and seafloor sidescan sonar contacts of unknown source (for magnetic anomalies use map symbol: ; for sidescan sonar contacts use map symbol: ☳). Identify these magnetic anomalies and sidescan sonar contacts using only the aforementioned symbols and a unique number keyed to the listings in the unidentified magnetic anomaly and sidescan sonar tables in the text (see paragraph F below). In congested areas with numerous unidentified magnetic anomalies, you may use a map(s) at a scale of 1:6,000 to depict the anomalies. If you do, tie this congested area map(s) into the 1:12,000 survey area map. **Plot all recommended potential archaeological avoidance areas on the survey area map.**

4. Sites of proposed oil and gas operations (e.g., well locations, platform sites, and/or pipelines), when available at the time of report preparation.

5. Sites of former oil and gas operations (e.g., abandoned well locations, platform sites, and/or pipelines).

E. An analysis of the potential for prehistoric sites within the survey area that includes:

1. A review of current literature on late Pleistocene and Holocene geology, paleogeography, and sea level change in the area; marine and coastal prehistory; and previous archaeological resource reports in the area, if available. You may obtain a list of suggested references from the MMS Internet website at: http://www.gomr.mms.gov/homepg/regulate/environ/archaeological/introduction.html

2. A discussion of relict geomorphic features and their archaeological potential that includes the type, age, and association of the mapped features; the acoustic characteristics of channels and their fill material; evidence for preservation or erosion of channel margins; evidence for more than one generation of fluvial downcutting; and the sea level curves you used in the assessment.

3. A discussion, based on the capabilities of current technology in relation to the thickness and composition of sediments overlying the area of a potential site, of the potential for identification and evaluation of buried prehistoric sites.

F. A current review of existing records for reported shipwreck locations in the survey area and adjacent areas, and the following, as appropriate:

1. A table of the unidentified magnetic anomalies with the OCS block, shot point, and survey line location (corrected for sensor offset); gamma intensity; lateral extent (duration); whether the anomaly is characterized by a dipolar, monopolar, or complex signature; the magnetometer sensor tow height off seafloor; the NAD 27 decimal degree coordinates of the center of each unidentified anomaly; and the recommended avoidance zone. A suggested format for this unidentified magnetic anomaly table is included in Section III of this Appendix;
2. A table of sidescan sonar contacts with the lease block, shot point, and survey line location (corrected for sensor offset); size; shape; height of protrusion above the seafloor; the NAD 27 decimal degree coordinates; and recommended avoidance distance of each. A suggested format for this unidentified sidescan sonar contact table is included in Section III of this Appendix;

3. A discussion of any magnetic anomalies and sidescan sonar contacts of unknown source in terms of their potential as historic shipwrecks (include an analysis of reported nearby wrecks and their potential association with these contacts on the basis of vessel size and anomaly characterization);

4. A discussion of any correlation between magnetic anomalies or sidescan sonar contacts and known or probable sources;

5. For any archaeological resources that can be positively identified from remote-sensing records, an analysis of their possible significance and recommendations for any further research or special precautions that may be necessary.

6. A discussion of the potential for shipwreck preservation in terms of bottom sediment type and thickness, and the effects of past and present marine processes in the survey area; and

7. A discussion of the potential for identification and evaluation of potential shipwrecks considering the capabilities of current technology in relation to the water depth, probable thickness and composition of sediments overlying the potential shipwreck location, and the preservation potential.

G. Representative data samples from each survey instrument to demonstrate the quality of the records. If appropriate, include the following data samples, which you may use in lieu of the representative data samples:

1. A sample of subbottom profiler data for each type of relict landform that you identify. When more than one generation of fluvial channeling is evident, include a sample that depicts each generation. Make sure that each sample is readable and includes horizontal and vertical scales. If you want to provide any interpretive highlighting or annotation of the sample data, do so on either a separate overlay or a copy of the sample data. Do not highlight original survey data.

2. Copies of all sidescan sonar data where contacts representing unidentified objects are recorded. Make sure that the copies are readable and include the scale. If you want to provide any interpretive highlighting or annotation of the sample sidescan sonar data, do so on either a separate overlay or a copy of the sample data. Do not highlight original survey data. For all right-of-way pipeline surveys, include a digital copy of the computer-generated mosaics as a geo-referenced Tagged Image Format (TIF) file.
H. A summary of conclusions and recommendations supported by the archaeological resource field survey data and archaeological analyses including:

1. A discussion of known or potential archaeological resources; and

2. Recommendations for avoidance or for further archaeological investigations.

I. A discussion of the data and results from any additional investigations (see Appendix No. 1, Section IV.E) that the MMS GOMR may have directed you to conduct.

III. Listing Unidentified Magnetic Anomalies and Sidescan Sonar Contacts

The following are suggested tables, including sample information, for listing unidentified magnetic anomalies and sidescan sonar contacts in archaeological resource reports.

A. Magnetic Anomalies

<table>
<thead>
<tr>
<th>Anomaly Number</th>
<th>Area/Block</th>
<th>Line No.</th>
<th>Shot Pt.</th>
<th>Tow Height (feet)</th>
<th>Signature</th>
<th>Intensity (gammas)</th>
<th>Duration (feet)</th>
<th>NAD 27 Coordinates (in decimal degrees)</th>
<th>Minimum Avoidance Dist. (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MP 100</td>
<td>0020</td>
<td>11.4</td>
<td>20</td>
<td>Dipole</td>
<td>15</td>
<td>75</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

B. Sidescan Sonar Contacts

<table>
<thead>
<tr>
<th>Anomaly Number</th>
<th>Area/Block</th>
<th>Magnetometer Association</th>
<th>Dimensions LxWxH (ft)</th>
<th>Shape</th>
<th>NAD 27 Coordinates (in decimal degrees)</th>
<th>Minimum Avoidance Dist. (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MP 100</td>
<td>Mag. Anomaly 1, Line 0020, Shot Point 11.4</td>
<td>100 x 50 x 5</td>
<td>Linear</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>