Chemical Characteristics of An Oil and the Relationship to Dispersant Effectiveness

Merv Fingas, Zhendi Wang, Ben Fieldhouse and Paula Smith Emergencies Science and Technology Division Environment Canada Environmental Technology Centre Ottawa, Canada

Abstract

Sufficient data now exist to enable correlation of oil properties to effectiveness results. This correlation will be very important to estimate the effectiveness of dispersion, even where it is not measured. Further, such correlation could point to areas where dispersion could be improved by dealing with negative influences such as the content of asphaltenes, etc.

The dispersant effectiveness data on 15 oils as well as their chemical and physical properties were measured for this study. In additional, data existed to make a total of 295 data points, although full data existed for the 15 oils. A total of 29 properties were correlated with the Corexit 9500 dispersability in Environment Canada's swirling flask apparatus. The highest correlation parameters were achieved with the content of nC12, naphthalenes, inversely with C26, the PAHs and the sum of C12 to C18 hydrocarbons. This is highly indicative that the smaller aliphatic hydrocarbons up to C18 and the PAHs are the most dispersible components of oil. Further, aliphatic hydrocarbons greater than C20 correlate inversely with the dispersant effectiveness indicating that these hydrocarbons suppress dispersion. The correlations provide a unique insight into dispersant effectiveness.

Thirteen models were constructed to predict the chemical dispersibility of oils. Models are based on commonly-available physical data and chemical analytical parameters. The simplest and best model is:

Corexit 9500 dispersibility (%) = $-11.1 - 3.19(\ln(/C12 \text{ content}) + 0.00361(\text{naphthalene} \text{ content in ppm}) - 7.62(PAH \text{ content squared}) + 0.115(C12 \text{ to } C18 \text{ content squared}) + 0.785(\% \text{fraction oil boiling below } 250 \,^{\circ}\text{C})$

Models ranged from simple predictors involving only two parameters such as viscosity and density to 14-parameter models. The models developed were analyzed statistically and the dispersant effectiveness for several dispersants calculated. The more sophisticated models are able to predict dispersant effectiveness with high accuracy.

1.0 Introduction

Dispersant effectiveness is defined as the amount of oil that the dispersant puts into the water column versus that which remains on the surface. There are many factors that influence dispersant effectiveness: sea energy (or energy in the test apparatus), oil composition, state of oil weathering, rate of dispersant application, dispersant type, temperature, salinity of the water, etc. The most important factor for dispersant effectiveness is the composition of the oil, followed very closely by sea energy and amount of dispersant applied (Fingas *et al.*, 1997; Fingas 2000a, b).

Certain oil components such as resins, asphaltenes and larger aromatics or waxes are

barely dispersable, if at all (NRC, 1989). Oils that contain mostly the latter components will disperse poorly even with dispersant application. On the other hand, oils that contain mostly saturates, such as diesel fuel, disperse both naturally and with the addition of dispersant. The additional amount of diesel dispersed using dispersants, over that naturally dispersed, depends primarily on the amount of sea energy present, however dispersant will often be unnecessary. Laboratory studies have found a trade-off interrelationship between the two factors of amount of dispersant applied (dose) and the sea energy. That is, less sea energy implies that a higher dose of dispersant is needed to yield the same amount of dispersion. There are other interrelationships as well, such as with salinity and temperature.

Effectiveness of dispersants are relatively easy to measure in the laboratory, however, there are many nuances in testing procedures (NRC, 1989). One concern is that these tests are representative of real conditions. Since it is impossible to mimic all conditions directly, it is important to both consider the important factors such as sea energy and salinity while considering the laboratory tests as a form of screening or representative value, rather than a direct representation of what can be obtained in the field. Field 'measurements' of dispersant effectiveness are also fraught with difficulty because it is very difficult to measure the concentration of oil in the water column over wide distances in appreciably small times, because there are no commonly-available oil slick thickness measures with which to assess the amount of oil remaining on the surface and because of the fact that the sub-surface oil often moves differently than the surface slick. Any field measurement at this time, is best viewed as an estimate. Actual dispersant effectiveness is very difficult to assess for the same reasons.

While effectiveness is easy to measure in the laboratory, it would be highly useful to be able to correlate oil chemical composition to effectiveness. This would improve the understanding of oil dispersibility, but also give one the ability to predict dispersibility.

In the past, it was thought that viscosity was the only quality of an oil that influenced the effectiveness of a dispersant. It soon became apparent, however, that the chemical constituents of oil had a major influence on the effectiveness of dispersants. Studies correlating effectiveness and oil composition revealed that the most important factor was the amount of saturates in the oil. It was also found that the effectiveness of dispersants decreases with increasing amounts of resins and asphaltenes in the oil. Furthermore, it was found that effectiveness could be predicted, albeit very crudely, using a simple model of saturates, less the other components of the oil, including resins, asphaltenes, and aromatics. This simple model may be useful only in that it shows that the components of oil are relevant in predicting dispersibility.

2.0 **Previous Attempts at Modeling Dispersion**

The first published attempt to model oil spill dispersion was by Mackay et al. (1984). They proposed a model:

 $F = 1 - expt(-K_eK_oK_dR)$

(1)

Where: F is the fraction of oil dispersed

R = an effective dispersant to oil ratio

 $K_e = a$ constant determined by the turbulence conditions

 K_{0} = a constant related to the oil, most viscosity

 $K_d = a$ constant determined by the dispersant

The data are all based on initial testing of the new (at that time) Mackay apparatus. The values were set at K_0 is 1, dispersants were set at values to correspond to results with Corexit

9527 being 0.77 and K_e set to the pressure drop in the apparatus, typically 100. Initial tests of these against 13 data points showed good correlation between the model and the results. Comparison to other test results required changing of the constants to achieve reasonable correlation. It should be noted that there was no specific oil composition data input to this model.

Subsequently Mackay (1985) published another model with a completely different basis. This new model presumed that a fraction oil is dispersed by the dispersant according to the ratio applied and then some of this rises depending on the droplet size produced. There is no input for oil type or composition. Three steps were defined. The first was the statement of the dispersant dosage to the thick and sheen sections of the oil slick. It is assumed that the dispersant dose to the sheen has little effect, but that the dispersant applied to the thick oil would disperse oil completely by dosage. This was based on observations during a dispersant application which had taken place at sea during that time. The second step of the model process was to calculate the oil initially dispersed into the water and this was calculated only on the bases of the first step information and the turbulence and oil slick thickness. An oil factor was noted, but appears not to have been used. The third step was to calculate the resurfacing rate of the dispersion. This was based on Stokes law and the estimated droplet size of the dispersion calculated in step 2. The final output then is the amount that remains in the water column, presuming a given time (not specified) has passed.

This newer Mackay model (1985) was published along with the code for the model. It did not include specific oil composition data and was not used extensively in the literature.

Fingas (2000a) proposed that a simple model using the amount of saturates less the amount of asphaltenes and resins would produce an estimate of dispersant effectiveness. In the past, it was thought that viscosity was the only quality of an oil that influenced the effectiveness of a dispersant. It soon became apparent, however, that the chemical constituents of oil had a major influence on the effectiveness of dispersants. Studies correlating effectiveness and oil composition revealed that the most important factor was the amount of saturates in the oil. It was also found that the effectiveness of dispersants decreases with increasing amounts of resins and asphaltenes in the oil. Furthermore, it was found that effectiveness could be predicted using a simple model of saturates, less the other components of the oil, including resins, asphaltenes, and aromatics. This simple model had a poor fit to the data, however, and additional information was thought to be required to accurately describe dispersant effectiveness as a function of the composition of the oil. The effort, however, shows that the composition of the oil is an important factor in the effectiveness of a dispersant.

Reed (2002) included a model of dispersion in the OSCAR spill model: $dm/dt = m(1=0.5^{\Delta t/t}) f.(W^2/W_{ref}^2)$

(2)

where: m is the mass of the oil in the slick,

 Δt is the time step

 $t_{1/2}$ is the half time for survival of fully treated slicks at the reference wind speed f is the ratio of dispersant to oil achieved

W is the wind speed

 W_{ref} is the reference wind speed which is set to the 7 m/sec time.

All parameters are based on the Haltenbanken experiments, field experiments conducted off the Norwegian coast in 1985. Newer data sets have been since included (Daling et al., in press). The application of the dispersant is also considered through the factor 'f', the actual

application achieved. The model presumes 100% efficiency at full treatment and that effectiveness is based on dispersant dosage. Energy is accounted for in the wind speed parameter.

Canevari and coworkers (2001) correlated the dispersant effectiveness of 14 heavy oils with various parameters and concluded that only viscosity correlated and that saturate content did not. It should be pointed out that all fuel oils were IFO fuel oil types of nearly identical composition.

This literature review points out that an extensive correlation of oil properties and dispersant effectiveness has not been conducted to date. This report will present the correlation of 18 properties or composition factors with the Corexit 9500 dispersabilities and the Corexit 9527 and Enersperse 700 dispersabilities, for 295 oils or oil weathered states.

3.0 Analytical Methodologies for Dispersibility

The dispersant effectiveness methodology reported in a recent paper was used without modification to study the oils (Fingas *et al.*, 2000a). This same method is now an American Society for Testing and Materials, ASTM, standard (F 2059-00).

The physical properties of the oils were also measured using standard procedures (Jokuty et al., 1999).

3.1 Summary of Test Method

Dispersant is pre-mixed with oil, placed on water in a test vessel. The test vessel is agitated on moving table shaker. At the end of the shaking period, a settling period is specified and then a sample of water taken. The oil in the water column is extracted from the water using a pentane/dichloromethane mixture and analyzed using gas chromatography.

The extract is analyzed for oil using a gas chromatograph equipped with a flame ionization detector (GC-FID). Quantification is by means of comparison to an internal standard. Effectiveness values are derived by calculation from calibration runs.

3.2 Reagents and Equipment

Water purified by reverse osmosis or equivalent means is used for the test water. Dichloromethane is distilled-in glass grade. Pentane is distilled- in-glass grade. Fine granular salt, non-iodized, is used for making the salt water. The chemical dispersant is used as supplied by the manufacturer. Oil is used as received.

A modified 120 mL Erlenmeyer flask is used as the test vessel. A side spout is added to enable taking the water sample with minimal disturbance of re-surfaced oil.

The shaker is a moving-table shaker with an orbital motion of 1 inch and fitted with flask holders. Ideally such shakers should be operated inside environmentally-controlled chambers, thereby increasing temperature control. If such an enclosed chamber is not used, the measurement should be conducted inside temperature-controlled rooms. (The New Brunswick Environmental Shaker model G27 (New Brunswick Scientific, Edison, NJ) is one enclosed shaker that meets these specifications.)

Analysis is accomplished using a gas chromatograph equipped with a flame ionization detector. The Hewlett Packard 5890 GC/FID with Chemstation software package is an equivalent unit. The column is a fused silica DB5ms column (J & W Scientific, Folsom, CA or equivalent).

3.3 Procedures

The bulk oil is mechanically mixed for 24 hours prior to obtaining a working sample. Working samples are stored in 2 L high-density polyethylene bottles with polypropylene screw closures. The working sample is mechanically shaken for 30 minutes prior to removing a sub-sample for testing. When not in use, all samples should be stored in a temperature controlled room at 5 °C. The dispersant is manually shaken, vigorously, prior to sampling.

A small amount of oil is weighed into a 5 mL amber vial with Teflon lined cap (approx. 1.0 mL). Approximately 100 mg of dispersant is added to the oil. Oil is added until a 1:25 ratio of dispersant to oil is achieved (approx. 2.5 mL oil is added). The sample is well mixed by manual shaking or stirring.

Granular salt is weighed and added to water from reverse osmosis (RO) filtration to obtain a 3.3% (w/v) solution. The water temperature is brought to 20 °C before use.

The 120 mL of salt water is placed into a 125 mL modified Erlenmeyer flask. The flask is inserted into the flask holders on the oscillating table of the shaker. A 100 μ L volume of premix solution is carefully applied onto the surface of the water using a positive displacement pipette. The tip of the pipette is applied to the water surface and the dispersant/oil mixture gently expelled. Extreme care should be taken when applying the oil to the surface such that mixing does not occur. The oil should gently glide across the water to form a slick. If the oil streams out into the water, the agitation can disperse the oil, increasing the amount of oil dispersed and erroneously raising the final dispersion result. Herding of the oil and some creeping of the mixture up the vessel wall is normal.

The flask and contents are mechanically mixed on the shaker in a temperature controlled chamber at 20 °C, immediately after applying the oil to the surface of the water. A rotation speed of 150 RPM and a mixing time of 20 minutes are used to agitate the samples followed by a 10 minute settling period. The flasks should be removed from the table-mounted holders prior to the settling period to limit the agitation between settling and sampling.

After the settling time is complete, 3 mL of the oil-in-water phase from the spout of the flask are drained to waste to dispose of any oil plugs and obtain a representative sample. A 30 mL aliquot of the dispersed oil in water sample is collected in a graduated cylinder and transferred to a 125 mL separatory funnel. The oil is extracted with 3 portions of 5 mL of a 70:30 dichloromethane:pentane solvent mixture, collected in a 25 mL graduated mixing cylinder. The final extraction volume is adjusted to 15 mL. Care is taken to ensure that water is not taken along with the solvent. During extraction, vigorous shaking is required to achieve full extraction. It is best to shake each separatory funnel individually to achieve consistent results.

Analysis consists of gas chromatographic analysis using a flame ionization detector (GC/FID) to determine the concentration of oil in solvent. A 900.0 μ L portion of the 15 mL solvent extract and a 100.0 μ L volume of internal standard (200 ppm 5- α -Androstane in hexane) are combined in a 12mm x 32mm crimp-style vial with aluminium/Teflon seals and shaken well. Petroleum hydrocarbon content is quantified by the internal standard method, with the average hydrocarbon relative response factor (RRF) determined over the entire analytical range in a separate run. The petroleum content is determined by integrating the resolved peak area by the following equation:

$$RPH = A_{total}/A_{is} X 1/RRF X 20 (\mu g) X 15/0.9 X 120/30$$
(1)
which simplifies to:

$$RPH = A_{total} / A_{is} X 1330 / RRF(\mu g)$$
(2)

Where:

RPH is the Resolved Petroleum Hydrocarbon amount in μg A_{total} is the total area of resolved peaks in counts A_{is} is the area of the internal standard RRF is the Relative Response Factor which in turn is given by $RRF = A/A_{is} X C_{is}/C$, where A is the area, C is the concentration of the compound of interest.

3.4 Calibration Standards

A series of 6 oil-in-solvent standards are prepared for evaluating the efficiency of the dispersant for each dispersant/oil combination. The volume of premixed dispersant/oil solution for each standard is selected to represent a percentage efficiency of the dispersed oil, eg. 50 μ L = 50% efficiency (see Step 4.10 below for method of choosing calibration standard volumes). The dispersant/oil mixture is then accurately measured and applied to the water surface, and treated in the same manner as the samples (see Step 4.4 and 4.5 above). At this point, the entire volume of water is transferred to a 250 mL separatory funnel and extracted with 3 portions of 20 mL of a solvent mixture of 70:30 dichloromethane:pentane. All oil is extracted, including the oil slick and oil on the walls of the swirling flask test vessel, using the volume of extraction solvent to rinse the flask of remaining oil before adding to the separatory funnel. The extracts are combined in a graduated cylinder and topped up to a total volume of 60 mL. Chromatographic analysis is then performed to determine the petroleum content by integrating the resolved peak area by the following equations:

 $RPH = A_{total} / A_{is} X 1 / RRF X 20 (\mu g) X 60 / 0.9 X 120 / 120$ (3) which simplifies to: $RPH = A_{total} / A_{is} X 1330 / RRF (\mu g)$ (4)

Where:

RPH is the Resolved Petroleum Hydrocarbon amount in μ g A_{total} is the total integrated area A_{is} is the area of the internal standard RRF is the Relative Response Factor which in turn is given by RRF = A/A_{is} X C_{is}/C, where A is the area, C is the concentration of the compound of interest.

The volumes of the six calibration standards are chosen such that the RPH determined for each of the six samples of each dispersant/oil combination fall within the RPH range of the standards. The following guide is used to determine the range of standards for each type of oil being dispersed:

Heavy Oil - 10, 15, 20, 25, 30, 35% Medium Oil - 10, 20, 30, 40, 50, 60% Light Oil - 30, 40, 50, 60, 70, 80% The percentage of dispersion was calculated by creating a calibration curve of effectiveness versus RPH from the standards and then taking the RPH of the experimental value and setting the appropriate effectiveness value.

At least six measurements of the RPH and effectiveness were measured. The standard deviation is determined and reported. A standard deviation of more than 10 (absolute value) indicates poor reproducability and the experiments should be repeated.

Low RPH values that fall below the range of the lowest calibration value should be reported as less than the value of that calibration standard. This last calibration standard is also the detection limit of the test.

The test was applied to a variety of crude oils taken from stock at Environment Canada's Laboratories. The properties of these oils are given in Jokuty *et al.* (1999).

4.0 Results of Testing of Crude Oils and Weathered Crude Oils

Several oils were tested for effectiveness with the dispersant Corexit 9500. Test results are given in Table 1. These data will be used in the subsequent correlation. Additional data were taken from the oil properties catalogue (Jokuty et al, 1999) and included in the analysis. This included data on 299 oils including the oils that were completed in this study. All data were measured under standard conditions and procedures as described in Jokuty et al. (1999). These data are given in Appendix A Table A1.

5.0 Correlation Procedure and Results

The procedure for development of the models was a two-step process. First, the available data were correlated, one at a time, with dispersant effectiveness to assess the relationship and the form of the relationship if any. Second, the data that correlated were fitted in a series of multiple correlation steps to yield the models here. The output parameters of the best fit equation constitute the model. The quality of fit of these models can be judged by examining the multiple R^2 . A value of 0.9 and higher is a very good fit, and one about 0.7, a poorer fit. The adjusted multiple R^2 , as presented in this project as R^2 is calculated on the basis of fit but also incorporates factors relating to the number of input parameters. The quality of the models can also be judged by comparing the predicted values versus the input values and the statistics such as the standard deviation of these predictions from the starting values.

The entire data set as shown in Table A1 were test for correlation to the Corexit 9500 dispersibility data. This data was used as it is the most extensive and the most recent, hence probably the most accurate. Each property or data listed in Table A1 was tested using the software TableCurve (SPSS Inc.). The correlations achieved and the relationships used in later regression are shown in Table 2. The correlation coefficient is the regression coefficient or R^2 and is the mathematical expression of the relationship between the Corexit 9500 dispersibility and the parameter noted. The closer the number is to 1, the closer the relationship predicted.

It should be noted from Table 2, that the parameters that correlate most highly with the suite of parameters are those composition parameters that relate to smaller compounds in the oil. These include n-C12, naphthalenes, and the sum of the C12 to C16 components. Those that relate to the large compounds in the oil relate negatively to the dispersibility, including C26, and resins. This will be discussed in greater detail later, however is indicative that dispersion largely affects only the smaller components of the oil.

The highest correlation was achieved with the n-C-12 component as noted in Table 2 and

illustrated in Figure 1. The regression coefficient was 0.79 and this indicates that C12 is highly dispersable. It should be noted that only about 15 of the 299 values in Table 1, which were correlated, had data for C-12 and some of the other specific component data. The next highest correlation coefficient was 0.76 for the Naphthalene content as illustrated in Figure 2. This also indicates a high dispersibility for Naphthalene. The third highest correlation is for n-C26 and this is an inverse correlation as shown in Figure 3. This indicates that the more n-C26, the less dispersion. This also indicates that components of the size of C26 and greater are not dispersed and in fact inhibit dispersion. The fourth highest correlation is the PAH content and this correlates positively, namely that the higher the PAH content, the higher the dispersion as shown in Figure 5. This is somewhat surprising since the PAH content, especially the larger PAHs such as Phenanthrene and Chrysene, were not thought to be dispersable. This high correlation indicates that most of the PAHs are dispersable. The fifth highest correlation is that of the sum of the C12, C14, C16 and C18 components as shown in Figure 5. This correlation is highly indicative that alkanes up to C18 are the prime components dispersed along with the PAHs. The fact that C12 correlates the highest of these n-alkanes and that this correlation rapid drops off to C18 with no useable correlation for C20, indicates that only hydrocarbons up to C18 disperse and that past C20, compounds actually suppress dispersion.

Figure 6 shows the correlation of viscosity ($R^2 = 0.64$) with Corexit 9500 dispersibility. Viscosity correlates somewhat, however, would not be a good predictor by itself. As can be seen by Figure 6, viscosity has a tendency to be a logarithmic parameter and higher viscosity oils over about 5000 mPa.s have no dispersability. The problem with using viscosity alone is that some of the oils in any test set can have viscosity as much as 4 orders-of- magnitude above that which would still achieve dispersant effectiveness. This results in lack of continuity in dispersant effectiveness over the typical viscosity range.

Figure 7 shows the correlation of the oil fraction that boils below 250 °C. The correlation coefficient of 0.62 shows that this component of the oil is strongly dispersed using a chemical dispersant. This fraction (BP < 250 °C) is also the fraction that evaporates with the first few hours after a spill. In fact, some algorithms match this fraction with the percent that would evaporate in 2 days. This fact then indicates that chemical dispersion is strongly competitive to evaporation in that the same fraction is subject to either process.

The n-alkane 14 and 16 correlation with Corexit 9500 dispersion are illustrated in Figures 8 and 9. The correlation coefficient of 0.61 and 0.56 shows that these component of the oil are preferentially dispersed using a chemical dispersant. It should be noted the correlation coefficient declines progressively from C12 to C20 and then rises inversely to C26. This will be discussed later.

Figure 10 shows the correlation of the oil density with chemical dispersability yield a correlation coefficient of 0.54. This correlation may be quite useful since the density of the oil is usually known and since the correlation is relatively good and continuous throughout the density range. This correlation can be used when little else is known about the oil.

Figure 11 shows the correlation of the resin content with the Corexit 9500 dispersibility. The resins are the highest of the SARA (Saturates, Aromatics, Resins, Asphaltenes) to correlate. It was thought that the SARA analysis would yield a good simple prediction system (Fingas, 2000b), however this study shows that the SARA fraction actually is a poor predictor of dispersibility. Similarly the correlation of the Saturates, Aromatics and Asphaltene components are shown in Figures 12, 13 1nd 14, respectively. The correlation coefficients are 0.36, 0.18 and

0.24, respectively. These latter three components display an even greater scatter than the resins with the corresponding low correlation coefficients. The reason for the poor fit of the SARA components, particularly the saturates and aromatics is that compounds grouped in these categories have variable dispersibility. For example, the C12-C18 group as described above are saturates and are highly dispersible. On the other hand the C20 fraction and above is not dispersible as noted above, but are also saturates. The same situation exists for the aromatics group.

Figure 15 illustrates the correlation of the fraction of the oil that boils below 200 °C, $R^2 = 0.44$. It is noted that the correlation of the 250 °C fraction is much higher at 0.63. It is suspected that the 250 °C component contains less compounds that are simply lost by evaporation and more compounds that are dispersed. Figure 16 shows the correlation of pour point with Corexit 9500 dispersibility, $R^2 = 0.25$. This latter correlation is poor and is not useful for prediction. Pour point is not a truly continuous function and thus becomes a poor predictor of physical behaviour.

Figure 17 shows the correlation of the effectiveness of Corexit 9537 with Corexit 9500, Figure 18, that of the effectiveness of Dasic LTS and Figure 19, the effectiveness of Enersperse 700. The correlation coefficients are 0.45, 0.43 and 0.31 respectively. There is a significant amount of scatter in these correlation plots. This may be due to the fact that many of the measurements of the dispersant effectiveness values other than Corexit 9500 may be older and may have more error associated with them.

Figure 20 shows the correlation of sulphur content ($R^2 = .23$) with Corexit 9500 dispersibility. The sulphur content does not show any relationship to dispersibility, as might be expected and most sulphur values cluster around the 0 to 10% sulphur content.

Figure 21 shows the total VOC and Figure 22 the C18 content. The correlation coefficients are 0.33 and 0.32 respectively. The total VOC content displays a large scatter with dispersibility. This is probably the result of rapid loss of some of the VOC components before dispersion. The C18 content is the largest n-alkane factor to show a correlation with the dispersion. This indicates that C18 is probably the largest n-alkane to undergo chemical dispersion. The next member chosen, C20 shows no useful correlation.

The factors that were correlated and show little correlation include the Reid vapour pressure, flash point, waxes and surface tension (and interfacial tension with water). There is no reason to believe that any of these have a relationship to chemical dispersibility.

It should be noted that Figures 1 to 22 were plotted using the best, simple equation using TableCurve. The curve fit has no significance to the discussion at hand and therefor is not presented.

6.0 Development of Correlation Models

The data in section 5.0 above was used to develop specific equations. The correlation resulting from each parameter, as listed in Table 2, was correlated in a series of models using DataFit (Oakdale Engineering) which calculates linear models. The two step process is necessary as DataFit, nor any other one, are able to calculate the correct function with more than 2 variables. Thus, the function, eg. linear, square, log, were calculated using a two-way regression and these functions were in turn, used in developing a predictor model for dispersion. Thirteen models were developed and these will be discussed and characterized below. The models are presented in Table 13, along with the parameters and relevant statistics. The statistics given are the R^2 or regression coefficient. The higher this value, the higher the predicted value relates to

the actual data. Other statistics such as average standard deviation and maximum standard deviation are also very relevant and are illustrated in Figures 23 and 24. Figure 23 shows the relationship between the standard deviation values and Figure 24 shows the values for each model set. The other test that is given in Table 3 is the Prob(t) or probability associated with the t-test. This value gives the importance of the particular variable in the model at hand. The higher the value of the Prob(t), the greater the probability that the variable could be eliminated from the model with minimal loss to its prediction capability.

The predicted values for Corexit 9500 dispersibility for the measured set of data are shown in Table 4 and for all data are given in Table A2.

Model 1 uses the four highest correlating parameters of C12, Naphthalene, PAHs, C12 to C18 and the fraction that boils at less than 250 °C. The regression coefficient achieved was 0.98. The model is:

Corexit 9500 dispersibility (%) = $-11.1 - 3.19(\ln C12 \text{ content}) + 0.00361(\text{Naphthalene}) + 0.782(\text{PAH content squared}) + 0.115(C12 \text{ to } C18 \text{ content squared}) + 0.785(\% \text{fraction oil boiling below } 250 \,^{\circ}\text{C})$ (7)

The Prob(t) shows that all factors are very relevant and are needed to form the reliable prediction. It should be noted that only 15 oils have the full data set to form this prediction set.

Model 2 uses the six highest correlating parameters of C12, Naphthalene, PAHs, C12 to C18, the C26 fraction (negative correlation) and the fraction that boils at less than 250 °C. The regression coefficient achieved was 0.98.

The model is:

Corexit 9500 dispersibility (%) = $-10.7 - 2.75(\ln C12 \text{ content}) + 0.00354(\text{Naphthalene} \text{ content in ppm}) + 0.113(1/C26 \text{ content}) - 7.48(PAH \text{ content squared}) + 0.0107(C12 \text{ to } C18 \text{ content squared}) + 0.761(% \text{fraction oil boiling below } 250 \,^{\circ}\text{C})$ (8) The Prob(t) shows that all factors are relevant and are needed to form the reliable prediction. This prediction set is very similar to model 1 and the predictions are similar, but slightly more accurate.

Model 3 uses the 5 highest correlating parameters of C12, Naphthalene, PAHs, C12 to C18, the C26 fraction (negative correlation) and the viscosity of the oil rather than fraction that boils at less than 250 °C. The regression coefficient achieved was 0.94. The model is:

Corexit 9500 dispersibility (%) = $-2.93 - 1.29(\ln C12 \text{ content}) + 0.00368(\text{Naphthalene} \text{ content in ppm}) - 0.0185(1/C26 \text{ content}) - 8.65(PAH \text{ content squared}) + 0.0144(C12 \text{ to } C18 \text{ content squared}) + 100(1/\text{viscosity})$ (9)

The Prob(t) shows that there may be redundancy in the values of C12 and C26. This prediction set is very similar to model 2 and the predictions are similar, but less accurate as viscosity is not as good a predictor as the values associated with the fraction boiling below 250 °C.

Model 4 is a simple 2-parameter predictor using only density and viscosity. The regression coefficient is 0.71. The model is:

Corexit 9500 dispersibility $(\%) = -77.6 + 214e^{-density} + 60/viscosity^{0.5}$ (10) This model produces a poorer prediction than most, however requires very little input data and this data, the density and viscosity, are readily available. The overall standard deviation is 4.6 as an average, but the maximum standard deviation is 32.

Model 5 is also a simple 2-parameter predictor using only density and the fraction boiling below 250 °C. The regression coefficient is 0.7. The model is:

Corexit 9500 dispersibility (%) =
$$-68.8 + 67.4/\text{density}^{1.5} + 0.787\text{BP}^{1.5}$$
 (11)

This model produces a poorer prediction similar to model 4 above, however requires very little input data and this data, the density and fraction that boils at less than 250 °C, are commonly available. The overall average standard deviation is 5, and the maximum standard deviation is 30. Both the accuracy and other features of model 5 are similar to model 4, however the maximum deviations with model 5 are less. It should be noted that as many as 295 data points were used to generate both models 4 and 5.

Model 6 uses the SARA parameters of saturates, aromatics, resins, asphaltenes and the viscosity of the oil. The regression coefficient achieved was 0.68. The model is:

Corexit 9500 dispersibility (%) = -7.78 + 0.315(saturate content) + 3.44(square root of aromatic content in percent) - 4.32(ln resin content) - 1.81(ln asphaltene content) + 58.9(1/viscosity) (12)

The Prob(t) shows that there is little redundancy. As noted above, it was thought that the SARA analysis would yield a good simple prediction system (Fingas, 2000b), however this study shows that the SARA fraction actually is a poor predictor of dispersibility. The reason for the poor correlation achieved with SARA components, particularly the saturates and aromatics is that compounds grouped in these categories have variable dispersibility. For example, the C12-C18 group as described above are saturates and are highly dispersible. On the other hand the C20 fraction and above is not dispersible as noted above, but are also saturates. The same situation exists for the aromatics group. Model 6 does not show good predictability as shown in Table 4 and Table A2. Model 6 has the second poorest correlation coefficient of all of the 13 models described in this study.

Model 7 uses the SARA parameters of saturates, aromatics, resins, asphaltenes and the sum of the C12 to C18 components. The regression coefficient achieved was 0.95. The model is:

Corexit 9500 dispersibility (%) = 296 - 1.86(saturate content) - 18.2(square root of aromatic content in percent) - 33.6(ln resin content) - 9.03(ln asphaltene content) + 0.0065(square of the C12 to C18 content in ppm) (13)

The Prob(t) shows that there is little redundancy in any input parameter. This model is very much better in terms of fit and accuracy than the very similar model 6. This is because the C12 to C18 component provides the information to the model as to what is being dispersed. In model 6 this term was that of viscosity which is much less powerful.

Model 8 is similar and uses the SARA parameters of saturates, aromatics, resins, asphaltenes and the VOCs. The regression coefficient achieved was 0.71. The model is:

Corexit 9500 dispersibility (%) = 73.4 - 0.0298(saturate content) - 2.24(square root of aromatic content in percent) - 12.2(ln resin content) - 4.873(ln asphaltene content) + 0.000681(VOC content in ppm) (14)

The Prob(t) shows that there is little redundancy in any input parameter. Model 8 does not show good predictability as shown in Table 4 and Table A2. The VOC content does not substitute for the high predictability of the C12 to C18 content as used in model 7.

Model 9 uses only the SARA parameters of saturates, aromatics, resins, and asphaltenes. The regression coefficient achieved was 0.68, the poorest of the 13 models described in this study. The model is:

Corexit 9500 dispersibility (%) = 62.7 - 0.103(saturate content) - 0.678(square root of aromatic content in percent) - 13.3(ln resin content) - 4.38(ln asphaltene content) (15) The Prob(t) shows that there is little redundancy in input parameters except somewhat for the saturate component. Model 9 shows the SARA component does not provide good information

upon which to build a dispersibility model.

Model 10 is a larger model and uses all the composition components for which data had been collected the SARA parameters of saturates, aromatics, resins, asphaltenes and the VOCs, the C12 to C18 component, the C12, C14, C16, C18, C26 Naphthalene and PAH components. The regression coefficient achieved was 0.998. This is the second-best model developed in this study. The model is:

Corexit 9500 dispersibility (%) = 368 - 2.25(saturate content) - 15.4(square root of aromatic content in percent) - 42.6(ln resin content) - 14(ln asphaltene content) + 0.000472(VOC content in ppm) + 0.074(C12 to C18 content squared) - $1.71(\ln(C12 \text{ content}) - 8.34(\ln C14 \text{ content}) - 17(C16 \text{ content}) + <math>8.87(C18 \text{ content}) + 0.821(1/C26 \text{ content}) + 0.00156$ (naphthalene content in ppm) - 1.36(PAH content squared) (16) The Prob(t) shows that there is redundancy in all parameters, especially the C12 and C14 parameters. Model 10 shows good predictability as shown in Table 4.

Model 11 is the largest model described in this study and uses many of the composition components including the SARA parameters of saturates, aromatics, resins, asphaltenes and the VOCs, the C12 to C18 component, the C12, C14, C26 Naphthalene, but physical components were substituted for those component parameters which showed high redundancy in model 10. The physical components added were density, viscosity, and the fraction that boils at less than 250 °C and less than 200 °C. The regression coefficient achieved was 0.998. This is the best model developed in this study, however the fit is only marginally better than model 10. The model is:

Corexit 9500 dispersibility (%) = $855(1/\text{density}) - 250(1/\text{viscosity}) - 7.09(\text{saturate content}) - 72.6(\text{square root of aromatic content in percent}) - 69.7(\ln resin content}) - 11.6(\ln \text{asphaltene content}) + 0.00045(VOC content in ppm) - 6.82(% fraction oil boiling below 200 °C) + 4.96(% fraction oil boiling below 250 °C) - 0.0226(C12 to C18 content squared) + 11.4(\ln(C12 \text{ content}) + 2.8(\ln C14 \text{ content}) + 0.299(1/C26 \text{ content}) - 0.00414(\text{naphthalene content in ppm}(17))$ The Prob(t) shows that there is redundancy in all parameters, especially the C12, C14 and C26 parameters. Model 11 shows good predictability as shown in Table 4.

Model 12 is based on physical measurements. The physical components used were density, viscosity, and the fraction that boils at less than 250 °C and less than 200 °C. The regression coefficient achieved was 0.71. The model is:

Corexit 9500 dispersibility (%) = -95.6 + 90(1/density) + 22.9(1/viscosity - 0.443(%fraction oil boiling below 200 °C) + 0.855(%fraction oil boiling below 250 °C) (18) The Prob(t) shows that there is little redundancy in input parameters.

Model 13 is based on physical measurements as model 12, however pour point was added. The physical components used were density, pour point, viscosity, and the fraction that boils at less than 250 °C and less than 200 °C. The regression coefficient achieved was 0.69. The model is:

Corexit 9500 dispersibility (%) = -124 + 121(1/density) - 0.00071(pour point squared) + 15.3(1/viscosity - 0.488(% fraction oil boiling below 200 °C) + 0.732(% fraction oil boiling below 250 °C) (19)

The Prob(t) shows that there is little redundancy in input parameters. The model is poorer than model 12 which includes the same parameters without pour point. This shows that the addition of pour point actually decreases the accuracy of the model. As discussed above, pour point is a very poor predictor and is not a continuous variable.

The work presented above used the dispersibility with Corexit 9500 as the prime parameter. This was carried out as the Corexit 9500 data was the newest and most accurate. Using the program TableCurve and the data in Table A1, predictor equations were developed for the dispersability of other dispersants with the various oils.

The equation for the prediction of Corexit 9527 dispersability is: Corexit 9527 dispersibility (%) = -0.35 + 0.80(Corexit 9500 dispersibility) (20) The equation for the prediction of Dasic LTS dispersability is:

Dasic LTS dispersibility (%) = 1.5 + 0.42 (Corexit 9500 dispersibility) (21) The equation for the prediction of Energy 700 dispersability is:

Enersperse 700 dispersibility (%) = 1.9 + 0.55 (Corexit 9500 dispersibility) (22)

The regression coefficients for the three models are 0.45, 0.42, and 0.27, respectively. The predicted values and actual values for the three dispersants shown above are given in Table 5.

7. Conclusions

Thirteen models for the prediction of chemical dispersibility have been developed. The models range widely in terms of input parameters and also in statistical quality. These are described in Section 6 above. These models can be used to predict the chemical dispersibility of oils given the required input parameters.

The development of these models also reveals essentials of chemical dispersion. The results clearly show that small n-alkanes are prone to dispersion and that this ends at about C20 and hydrocarbons as large as C26 actually suppress dispersion. This is illustrated in Figure 25 in which the regression coefficients (R^2) are plotted against the n-alkane carbon number. It can be seen that there is a steady progression downwards beginning at C12 and crossing 0 at about the C20 carbon number. The aromatic component may show a similar tendency, however sufficient data were not available to provide details. The naphthalene component showed a high regression coefficient ($R^2 = 0.76$) and the total PAHs were also relatively high ($R^2 = 0.67$). This indicates that the PAHs are relatively dispersible and that the smaller ones (naphthalenes) are highly dispersible.

The development of the model shows that certain parameters are very good predictors of chemical dispersibility. These include the specific chemical composition indicators such as the n-alkane values of C12, C14, naphthalenes, etc. The group composition indicators such as SARA, are poor predictors. The physical properties are also poor predictors of chemical dispersibility. This is illustrated in Figure 26 in which the average correlation coefficient is plotted for each group. There are some properties which have no or very little dispersibility prediction indication and these include: wax content, interfacial tension, and flash point.

The study also reveals some facts about the interrelationship of the data used. The properties and composition parameters were inter-correlated. Results are shown in Table 6. The values that correlate at regression coefficients higher than 0.7 are highlighted in bold. If the values correlate inversely, this is indicated with a negative value. This table shows that many of the values are unique and do not relate to other values, however many composition values show an interrelationship.

8. Acknowledgements

This was a joint research project funded by Environment Canada and the United States Minerals Management Service. Sharon Buffington was the US MMS project manager for this study. The authors thank the many persons who contributed to this research project. Paula Smith is acknowledged for compiling the initial data table. Lise Sigouin performed many of the older dispersant measurements.

9. References

Canevari, G.P., P. Calcavecchio, R.R. Lessard, K.W. Becker and R.J. Fiocco, "Key Parameters Affecting the Dispersion of Viscous Oil", in *Proceedings of the 2001 International Oil Spill Conference*, American Petroleum Institute, Washington, D.C., pp 479-483, 2001.

Daling, P., I. Singsaas, M. Reed, and O. Hansen, "Experiences in Dispersant Treatment of Experimental Oil Spills", *Spill Science and Technology Bulletin*, Vol. 7, in press.

Fingas, M.F., E. Huang, B. Fieldhouse, L. Wang and J.V. Mullin, "The Effect of Energy, Settling Time and Shaking Time on the Swirling Flask Dispersant Apparatus", in *Proceedings of the Twentieth Arctic and Marine Oil Spill Program Technical Seminar*, Environment Canada, Ottawa, Ontario, pp. 541-550, 1997.

Fingas, M.F., B. Fieldhouse, Z. Wang, L. Sigouin, M. Landriault and J.V. Mullin, "Recent Results from Dispersant Testing", in *Proceedings of the Twenty-Third Arctic and Marine Oil Spill Program Technical Seminar*, Environment Canada, Ottawa, Ontario, pp. 681-695, 2000a.

Fingas, M.F., "Use of Surfactants for Environmental Applications", in *Surfactants: Fundamentals and Applications to the Petroleum Industry*, Laurier L. Schramm, (ed.), Chapter 12, Cambridge University Press, pp 461-539, 2000b.

Jokuty, P., S. Whiticar, Z. Wang, M.F. Fingas, B. Fieldhouse, P. Lambert and J. Mullin, *Properties of Crude Oils and Oil Products*, (Volume 1, A-K; Volume 2, L-Z), Environment Canada Manuscript Report Number EE-165, Ottawa, Ontario, 1999.

Mackay, D., A. Chau, K. Hossain and M. Bobra, "Measurement and Prediction of the Effectiveness of Oil Spill Chemical Dispersants", in *Oil Spill Chemical Dispersants: Research, Experience and Recommendations*, Ed T.E. Allen, STP 840, American Society For Testing and Materials, Philadelphia, Pennsylvania, pp 38-54, 1984.

Mackay, D., "Chemical Dispersion: A Mechanism and a Model", in *Proceedings of the Eighth Arctic Marine Oilspill Program Technical Seminar*, Environment Canada, Ottawa, Ontario, pp 260-268, 1985.

NRC, Using Oil Spill Dispersants on the Sea, Marine Board, National Research Council, National Academy Press, Washington, DC, 1989.

Table 1 Properties of Oils

Oil Name	Evapin	Sulphur Re	eid VP	Density P	our Point 1	Viscosity	Dispersibility % 8	Saturates A	romatics	Resins As	phaltenes'	Total VOCs 1	BP<200 E	3P < 250 si	mall HC i	n-C12 n	C14 p	C16 n-	C18
	\$	(v:t%)	(kPa)	(gl/mL)	€ Ŭ	(mPa s)	w/Coroxi: 9500	(w1%)	(nt%)	(Mt%)	(M1%)	(mqq)	$(\mathbf{u}, \mathbf{f}^{n}\mathbf{n})$	(wt?s)		ս) (նլես	ng/g) (m	ш) (Б/З.	(13,6)
Sockryc (2000)	0	4.51		0.8354	-25	761	12	33	18	18	5	14040	14	6.	5	1.14	5	52	19
Sockryc (2000)	8	5.47		0.0539	13	274000	5	75	13	20	20		0	ம	ц	0.63	1.52	.76 1	71
Vest Texas (2000)	0	383		0.9474		6	28	82	ΰ	e;	÷	33560	26	35	21	6.72	5.03	:05 5	30
Arabian Light (2000)	c	1.93		D.8841	-21	ţ	<u>91</u>	92	ΰ	g	4	1957D	21	29	23	6.41	5.62 4	76 3	5
South Louisiana (2001)	C	6/0		0.0562		10	26 26	11	13	عن	÷	16890	22	22	÷	1.25	9.01 3	A6 2	સં
Arabian Light (2000)	26	2.60		0.8193	¢	174	æ	¢۲	1E	6	ĿС	3550	Ļ	4	Ŀ.	5.44	2.13 B	AB A	55
ASM3 //5	0	990		0.8404	-18	ŝ	28	11	17	۷	~	30570	26	35	43	4.45	1.37 A	.16 31	4
Wes. Texas (2000)	3	1.24		0.8373	~	112	13	75	4	9	04	320	04	2	36	6.21	9.10 7	4	927
South Louisiana (2001)	26	88.3		0.8018	÷	141	10	11	<u>ې</u>	70	2	200	2		÷	3.81	:19 4	. 41.	÷
ASM3 Pb	37	6910		0.5017	ი	123	11	12	18	n	ŝ	120	F	n.	77		5.92 8	3 69'	19
Chayvo #6	D	2.84		0.8345	4	7	् न	88	5		0	42745	27	40	27	6.47	0.06	.14 5	20
Chayvo #6	14	0.38		0.8542	Ţ	12	46	96	ŧ	4	0	31890	20	35	35	6.73	3.26 e	.73 8	8
Chayvo #6	22	973		0.8009	ø	21	29	81	12	7	0	14955	12	29	37	6.75 1	0.03 1)3' ŝ	62
Chayvo #6	8	87.2		0.8721	60	g	24	81	12	7	0	386	2	<u>-</u>	36	6.71	1.98	0.25 5	28
Diese (2002)	D	6010		0.8310	0q-	m	72	28	Ú	2	0	19330	2/	88		13.23 1	2.33 1	3 36.1	27
Diese (2002)	8	0.10		0.9416	4	4	99	88 88	7	e	0	2267	11	47	5	15.25 1	5.77 1	3.70 B	20

Reed, M., *Technical Description and Verification Tests of OSCAR2000, A Multi-Component 3-Dimensional Oil Spill Contingency and Response Model*, Casual paper of SINTEF, 2002.

Parameter	Correlation	Relationship	Simplest	llead
n-C12	0.79	Inv	Relationship	Inx
Nonthalanaa	0.76	J1.5	X	JUDY:
naphthalenes	0.70	(Ima)2	14	1.62
n-C26	0.7	(10X)	1/X	1/X
Total PAHs	0.67	X		X [*]
Sum of C12 to C18	0.66	x ²		x ²
Viscosity	0.64	1/x		1/x
BP < 250	0.63	xInx	х	х
n-C14	0.61	x ²		Inx
n-C16	0.56	x ^{2.5}	x ²	х
Density	0.54	(Inx) ²	1/x	1/x
Resins	0.53	lnx/x	Inx	Inx
Dispersibility % (9527)	0.45	x		х
BP < 200	0.44	xinx	х	x
Dispersibility % (Dasic)	0.42	х		х
Saturates	0.36	х		х
Total VOCs	0.33	х		х
n-C18	0.32	(Inx) ²	х	х
Dispersibility % (Enersperse 700)	0.31	Inx		х
Pour Point	0.25	x ²		$(67+x)^2$
Asphaltenes	0.24	Inx		Inx
Sulphur	0.23	power	NC	not used
Aromatics	0.18	(Inx) ²	x ^{1/2}	not used
Reid Vapour Pressure	0.13	x ³		not used
Flash Point	NC	NC		not used
Complex modulus	NC	NC		not used
Waxes	NC	NC		not used
Surface Tension	NC	NC		not used
Interfacial Tension	NC	NC		not used
n-C20	NC	NC		not used

Table 2 Correlation of Parameters with Corexit 9500 Dispersibility

NC = no useful correlation

Table 3 Model sets

Number	Description	Number of Variables	R ²	Variable 1	Variable 2	Variable 3	Variable 4	Variable 5	Variable 6	Constant	Variable 7	Variable 8	
1	High correlators only	5	0.98	In C12 -3.19 0.19	Napthalene 0.00361 0.028	PAH ² -7.62 0.094	c12-c18 ² 0.0115 0.16	BP<250 0.785 0.00002		-11.1 0.029			parameto value prob(t)
2	Best plus boiling point	6	0.98	In C12 -2.75 0.31	Napthalene 0.00354 0.039	1/C26 0.113 0.65	PAH ² -7.48 0.12	c12-c18 ² 0.0107 0.22	BP<250 0.761 0.000012	-10.65 0.046			paramet value prob(t)
3	Best plus viscosity	6	0.94	In C12 -1.29 0.76	Napthalene 0.00368 0.17	1/C26 -0.0185 0.97	PAH ² -8.65 0.25	c12-c18 ² 0.0144 0.31	1/viscos 100 0.011	-2.93 0.73			paramet value prob(t)
4	Two-way - Density and Viscosity	2	0.71	Model Z = a=-77.6	= a + be ^{-density} b= 214	+ c/viscos c=60	ity ^{0.5}						
5	Two-way- Density and BP<250	2	0.7	Model Z a= -68.8	= a +b/density b= 67.4	/ ^{1.5} + cBP ^{1.4} c= 0.0787	5						
6	Groups plus viscosity	5	0.68	Saturates 0.315 0.043	Aromatics ^{1/2} 3.44 0.031	InResins -4.32 0.21	InAsphaltenes -1.81 0.21	1/viscos 58.9 0		-7.78 0.7			parameto value prob(t)
7	Groups plus low HC	5	0.95	Saturates -1.86 0.0041	Aromatics ^{1/2} -18.2 0.017	InResins -33.6 0.0001	INAsphaltenes -9.03 0.099	c12-c18 ² 0.00951 0.0065		296 0.00047			parameto ∨alue prob(t)
8	Groups plus VOCs	5	0.71	Saturates -0.0298 0.039	Aromatics ^{1/2} -2.24 0.13	InResins -12.2 0	InAsphaltenes -4.87 0.00037	VOCs 0.000681 0		73.4 0.00004			parameto value prob(t)
9	Groups alone	4	0.57	Saturates -0.103 0.55	Aromatics ^{1/2} -0.678 0.7	InResins -13.3 0	InAsphaltenes -4.38 0.0071		27	62.7 0.0031			paramet value prob(t)
10	Composition component	t 13	0.998	Saturates -2.25 0.43 C16 -17 0.36	Aromatics ^{1/2} -15.4 0.47 C18 8.87 0.32	InResins -42.6 0.32 1/C26 0.821 0.43	InAsphaltenes -14 0.39 Napthalene 0.00156 0.71	VOCs -0.000472 0.46 PAH ² -1.36E-07 0.29	c12-c18 ² 0.074 0.29	368 0.38	InC12 -1.71 0.95	In C14 8.34 0.84	paramete ∨alue prob(t) paramete value prob(t)
11	Smallest complete set	14	0.998	1/density 855 0.45 BP<250 4.96 0.62	1% iscos -250 0.39 c12-c18 ² -0.0226 0.82	Saturates -7.09 0.51 InC12 11.4 0.87	Aromatics ^{1/2} -72.6 0.45 InC14 2.8 0.94	InResins -69.7 0.42 1/C26 0.299 0.94	nAs phattenes -11.6 0.42 Napthalene -0.00414 0.56		VOCs 0.00045 0.44	BP<200 -6.82 0.59	paramete value prob(t) paramete value prob(t)
12	Physical data less pp	4	0.71	1/density 90 0	1/viscos 22.9 0.0049	BP<200 -0.443 0.0016	BP<250 0.855 0	0.04	0.000	-95.6 0			paramet value prob(t)
13	Physical data	5	0.69	1/density 121 0	Pour point ² -0.00071 0.0186	1/viscos 15.3 0.11	BP<200 -0.488 0.0045	BP<250 0.732 0		-124 0			paramet value prob(t)

Table 4 **Comparison of Actual Versus Predicted Values**

			Predict	ted with th	e Equation	n noted									
		Actual	1	2	3	4	5	6	7	8	9	10	11	12	13
Oil Name	Evap'n	Dispersibility %	Hgh	Best plus	Best plus	Density &	Density &	SARA &	SARA &	SARA &	SARA	Compos	Complete	Physic	- Physic
	%	w/Corexit 9500	Correlators	BP<250	Viscosity	Viscosity	BP<250	Viscosity	Low HC	VOCs		аопе	ар	PP	
Arabian Light (2000)	0	19	20	20	17	29	27	24	15	47	22	22	22	26	28
Arabian Light (2000)	26	8	5	6	11	12	10	16	10	34	17	10	6	10	11
ASMB #5	0	28	27	27	28	39	35	33	27	62	30	31	28	34	35
ASMB #5	37	11	10	11	14	15	12	20	19	35	24	12	10	13	13
Chayvo #6	0	41	42	42	48	45	39		49	8D	37	44	40	40	39
Chayvo #6	14	48	41	40	35	31	53		44	69	34	49	49	33	32
Chayvo #6	22	29	36	35	31	26	28		31	50	27	32	25	29	29
Chayvo #6	33	24	25	24	26	22	20		30	40	27	29	24	22	23
Diesel (2002)	0	72	71	72	72	50	54		70	69	43	74	71	58	57
Diesel (2002)	22	66	65	65	66	45	44		66	52	37	68	65	52	52
Sockeye (2000)	0	12	14	14	8	9	12	5	4	24	4	15	16	11	12
Sockeye (2000)	20	9	Б	7	10	3	1	1	13	12	3	30	18	0	-2
South Louisiana (2001)	0	26	24	25	21	32	30	28	21	54	28	27	25	29	29
South Louisiana (2001)	28	10	11	11	13	14	13	19	14	34	22	13	17	13	16
West Texas (2000)	0	28	30	30	26	34	34	29	24	63	28	30	32	32	32
West Texas (2000)	32	13	15	15	20	15	14	1B	11	32	19	16	11	14	15
Overall Stati	stics of	Std. Deviation	1.6	1.3	2.4	4.6	5	4.9	6.7	11.8	6	2.6	2	4.8	4.9
Eq	uations	(average)													
		Maximum Dev	5	6	Ð	32	30	34	18	42	39	15	6	31	34
		R ²	0.98	0.98	0.94	0.71	0.7	D.68	0.95	D.71	0.57	D.998	D.997	D.71	D.69

Abbreviations

SARA = Saturates, Aromatics, Resins, Asphaltenes BP<250 = fraction having boiling point less than 250 °C Low HC - low hydrocarbons Compos = composition elements

VOCs - Volaule Organic Compounds

ap - as is possible

Table 5	Exper	imental and P	redicted Disp	ersibilities for	Corexit 9527,	Dasic, and E	nersperse	
			0-41	Dustistad	0	Deadlased	0 stual	Duralistad
Oil Nama	Euon'n	Dispersibility %	Actual Dispersibility %	Predicted	Actual Dispersibility %	Predicted	Actual Dispersibility %	Predicted
Oli Name	Суар п	w/Corevit 9500	w/Corevit 9527	w/Corevit 9527	W/Desic LTS	w/Desic LTS	w/Energinerge 700	w/Energinerge 700
Adao	0	29	W/0010Xii 0021	W/0010/010021	10	14	WENCIOPEI SCI DO	WENCIOPEI SCI DO
Amauligak	Ō	45	55	36	25	21		
ANS (1989)	0	10		8	15	6		
Arabian Light	Ō	21	25	16	25	11	10	13
BCE 24	0	12	20	9	n	7	5	9
Belridge Heavy	Ō	4	9	3	Ō	3	Ő	4
Bent Horn	0	25			15	13	15	16
Beta	n n	0	Ω	Π	n	2	0	2
Bunker C Light Fuel Oil	n	5	ñ	4	n	4	0 0	5
California (API 11)	0	ŭ	ň	ñ	ň	2	Ő	2
California (API 15)	0	0 0	õ	0	Ő	2	0	2
Carninteria	0	16	ñ	12	ñ	9	11	11
Carninteria	10	7	ň	5	n	5	0	6
Carninteria	15	7	ñ	5	0	5	0	6
Catalytic Cracking Feed	0	10	5	8	5	6	5	7
Dos Cuadras	0	37	5	29	5	18	5	
Dos Cuadras	11	15	8	12	8	8	10	10
Dos Cuadras	20	7	10	5		0	0	6
Empiro	20	21	10	24	10	15	10	10
Endipott		10	10	0	5	6	10	7
Englobal cland Block 43	0	10	5	17	20	11	0	14
Edgene Island Diock 45	0	 E1	20	40	20	11	15	14
Federated (1994)	10	20	20	40	10	20	10	
Federated (1994)	10			30	10	10	10	23
Federated (1994)	40	10	4	17	9		С	14
Pederated (1994)	42	10	2	14		9	5	12
	0	41	8/	32	9	20	21	24
Green Canyon Block 109	0	20	5	10	10	10	5	13
Green Canyon Block 65	U	15	5	12	5	8	10	10
Guilfaks	U	25	20	20	10	13	10	16
Hondo	U	8	5	ь	U	5	4	6
Hondo	17	6	U	4	U	4	U	5
Hondo	32	4	U	3	U	3	U	4
Hout	U	18	2	14	10	9	5	12
Iranian Heavy	U	14	10	11	5	8	10	10
Lago	0	10	0	8	0	6	5	7
Louisiana	0	34	13	27	17	16	14	21
Lucula	0	20	5	16	5	10	5	13
Main Pass Block 306	0	27	25	21	20	13	30	17
Main Pass Block 37	0	33	20	26	25	16	10	20
Malongo	0	15	5	12	0	8	5	10
Mississippi Canyon Block 194	0	29	15	23	15	14	10	18
Norman Wells	0	35			20	17	65	21
Oseberg	0	15	30	12	10	8	20	10
Pitas Point	0	65	42	52	55	30	66	38
Pitas Point	24	66	38	52	50	31	59	38
Point Arguello Comingled	0	3	0	2	0	3	0	4
Point Arguello Comingled	9	0	0	0	0	2	0	2
Point Arguello Comingled	16	0	0	0	0	2	0	2
Point Arguello Comingled	22	0	0	0	0	2	0	2
Point Arguello Heavy	0	0	0	0	0	2	0	2
Point Arguello Heavy	9	0	0	0	0	2	0	2
Point Arguello Heavy	18	0	0	0	0	2	0	2
Point Arguello Liaht	0	13	10	10	3	7	6	9
Port Hueneme	Ū	12	0	9	Ō	7	Ó	9
Port Hueneme	4	5	Ō	4	Ō	4	0	5
Port Hueneme	8	n.	ñ	N	n	2	7	2
Sakhalin	Ō	84	76	67		1		174
Sakhalin	25	49	73	39				
Sakhalin	42	31	49	24				

Table 6 Cross-Correlation Matrix of Parameters

	Disp		Pour		Disp	Disp	Disp																	
0.000000000000000000000	9500	Density	Paint	Viscosity	9527	Dasic	Elle stretse	Salure.95	A oralis	Resina	Aspha, Jerea	Waxes	VOCs	3P<200	BP<250	c12-18	C12	C14	C16	C18	C20	C26	Nephrelenes	PAHs
Disp 9500		-0.54	-0.25	-0.64	D.45	0.42	0.31	0.36	-0.18	-0.53	-0.24	-0.02	0.33	0.44	0.63	0.66	D.79	0.61	0.56	0.32	0.16	-0.7	0.76	0.7
Density	-0.54		0.09	0.02	-0.2	-0.18	-0.28	-0.81	Q.47	0.7	0.58	-0.14	-0.29	-0.55	-0.65	0.39	-0.5	-0.35	-0.32	-0.28	-0.19	0.06	-0.4	-0.31
Pour Point	-0.25			0.23	-0.16	-0.16	-0.29	0.08	0.04	D.06	0.05	0.28	-0.1	-D.18	-0.28	D.3	-D.48	-0.33	-0.25	-0.17	0.17	0.56	-0.49	-0.44
Viscos ty	-0.64				-0.37	-0.6	-0.52	-0.6	0.28	D.62	0.6	0.06	-0.29	-0.57	-0.76	0.38	-0.6	-0.35	-0.31	-0.24	-0.15	0.19	-0.5	-0.38
Disp 9527	0.45					0.16	0.29	0.14	-0.08	-0.15	-0.2	-17	0.24	0.29	0.3	nsd	nsd	nsd	nsd	nsd	nsd	nsd	nsd	nsd
Disp Dasic	0.42						0.54	0.25	-0.15	-0.24	-9.17	-0.09	0.1	Q.42	0.53	nsd	nsd	nsd	nsd	nsd	nsd	nsd	nsd	nsd
Disp Encrepense	0.31							0.2	-0.09	-0.15	-0.13	-0.16	0.12	0.38	0.43	nsd	nsd	nsd	nsd	nsd	nsd	nsd	nsd	nsd
Saturates	0.36								-0.77	-0.76	-0.62	Q.11	0.15	D.21	0.35	0.61	D.62	0.55	0.54	0.48	0.3	0.1	0.53	0.54
Aromatics	-0.18									0.24	0.07	-0.1	0.08	-D.12	-0.21	-0.55	-0.5	-0.51	-D.5	-0.5	-0.31	-0.03	-0.53	0.53
Resins	-0.53										0.49	-0.09	-0.16	-0.22	-0.39	-0.5	-D.65	-0.45	-0.42	-0.33	-0.23	-0.03	-0.55	-0.49
Asphaltenes	-0.24											-0.04	-0.15	-D.11	-0.2	-0.66	-D.72	-0.6	-0.55	-0.48	-0.43	-0.39	-0.56	-0.4
Wexes	-0.02									14			-0.03	-D.02	-0.01	D.1	D	0.07	0.16	0.4	0.72	0.89	0.16	0.24
VOCs	0.33													0.61	0.51	0.02	0.08	-0.04	-0.05	-0.01	0.02	0.08	0.16	-0.03
BP<200	0.44														0.83	0.18	D.24	0.1 B	0.17	0.15	0.13	0.06	0.11	0.1
BP<250	0.63													_		0.38	0.63	0.36	0.29	0.16	0.11	-0.19	0.53	0.4
C12-18	0.66														1		D.87	0.99	0.98	0.81	0.48	0.15	0.92	0.91
C 12	0.79														- X			65.0	0.79	0.52	0.27	-0.2	0.81	0.71
C14	0.61																		0.98	0.78	0.45	0.4	0.88	0.86
C16	0.56																			0.87	0.54	D.19	0.91	0.92
C18	0.32																				0.83	0.39	0.61	0.75
C20	0.16																					0.72	0.26	0.41
C26	-0.7																				_		0.8	0.62
Naothalenes	0.76																							0.98
PAHs	0.7																						_	

Abbreviations Disp = dispersibility nsc = not sufficient data

Dispersibility

Figure 6 Correlation of Viscosity and Corexit 9500 Dispersibility

Figure 8 Correlation of C14 Components and Corexit 9500 Dispersibility

Figure 10 Correlation of Density and Corexit 9500 Dispersibility

Figure 12 Correlation of the Saturate Component with Corexit 9500 Dispersibility

Figure 14 Correlation of Asphaltenes with Corexit 9500 Dispersibility

Figure 16 Correlation of Pour Point with Corexit 9500 Dispersibility

Figure 20 Correlation of Sulphur Content and Corexit 9500 Dispersibility

Figure 22 Correlation of C18 Content and Corexit 9500 Dispersibility

Figure 23 Comparison of Average and Standard Deviation to the Regression Coefficient

Figure 24 Error and Fit Indicators of Each Model

Figure 26 Regression Coefficients Classified by Type

Out own Out own Out own Out own Control Control <t< th=""><th>OUN</th><th>Evente</th><th>F. Jahren</th><th>Clash Da</th><th></th><th>Dennid</th><th>Barro Baria</th><th></th><th>modulus</th><th>Discourse in 1944 M</th><th></th><th></th><th>Discourte Ille 12</th><th>Faturation</th><th>R</th><th>Basian</th><th></th></t<>	OUN	Evente	F. Jahren	Clash Da		Dennid	Barro Baria		modulus	Discourse in 1944 M			Discourte Ille 12	Faturation	R	Basian	
App 0	UII Name	е кар п	fully-1	r Flash Pol	INT HEID VI IkPai	/ Denshy	Pour Pour	to Pas	(mPa)	Dispersionity %	Dispersionity %	Uispersioning %	Dispersionity %	Saturates	Aromatic Ind 9-3	ford %	Aspnaitenes
Annulgsh 0 0 0 0 0 0.886 66 14 45 95 95 95 90 0	Adap	D	0.19	(9)	(ke a)	0.9530	194	62	funcui.	23	WOULEAR ODE?	12	TO PUBLICIA 122	80.	10	1	D
Akker (staba) 0 1.16 1.19 0.0866 48 2.3 10 10 16 10 </td <td>Amaulidak</td> <td>õ</td> <td>0.15</td> <td>0</td> <td></td> <td>0.8856</td> <td>-66</td> <td>14</td> <td></td> <td>45</td> <td>55</td> <td>25</td> <td></td> <td>90</td> <td>9</td> <td>ċ</td> <td>õ</td>	Amaulidak	õ	0.15	0		0.8856	-66	14		45	55	25		90	9	ċ	õ
Abs. 1930) 6 1.30 0.0026 5 60 17 12 10	ANS (1989)	Ď	1 15		19	0.8036	-8	29		10		15			•		2
Artis (1990) 's 10 10 0	ANS (1989)	Di II	1 19		1000	0.9086		66			17	17	10				7
And 5, index Payeline) D 1 16 2 0 0075 2 5 1 10 4 6 0 0 2 05 0 5 ANDS index Payeline) 11 143 -0018 144 100 1000 100	ANS (1909)	-6	1.10			0.0000		184			5	0	E				Б Б
And is Northine Teppines 0 1.14 000 1.70 0	ANC (1999)	5	1.00	00		0.0220	E 4	15		15		U	0	FD	75	Б.	F
And B And B And B <	AND (Litella Disalica)	24	1.10	-2.5		0.0115	-01	DDD	4.20	- 12				40	20	47	5
Arabis Industrin Pipelle, 0 1.14 -19 0.019 -20 1.44 100 65 21 24 25 14 77 Abbis Isouther Pipelle, 0 1.44 E61 13 34 40 14 36 34 36 34	ANS MARINE Eipennes	01	1 4.0	10		0.9410	. 14	14	124	() 20				4.	00	1. C	é
Adds (transmin regene) Adds Mode Distance Souther File Adds Control Control <thcontrol< th=""> Control <thc< td=""><td>ANS (Northern Fipe ine,</td><td></td><td>1.14</td><td>-19</td><td></td><td>0.0ris</td><td>-22</td><td>14</td><td></td><td>35</td><td></td><td></td><td></td><td>21</td><td>54</td><td></td><td>2</td></thc<></thcontrol<>	ANS (Northern Fipe ine,		1.14	-19		0.0ris	-22	14		35				21	54		2
Able i control mar plante i 0 1.13 -2.1 0.071(s) -2.0 1.90 4.0 -0.071(s) -2.0 1.90 6 -0.071(s) -2.0 1.90 6 -0.071(s) -2.0 1.90 6 -0.071(s) -2.0 1.00 -0.071(s) -0.071(s) <t< td=""><td>ANS (Normein Fipeline,</td><td>21</td><td>1.59</td><td>500</td><td></td><td>0.9402</td><td></td><td>7 +B</td><td>TTD.</td><td>10</td><td></td><td></td><td></td><td>44</td><td>21</td><td>14</td><td>2</td></t<>	ANS (Normein Fipeline,	21	1.59	500		0.9402		7 +B	TTD.	10				44	21	14	2
Abs. is during Fragment 30 1.40 <t< td=""><td>ANS (Southern Pipeline)</td><td>0</td><td>1.13</td><td>-21</td><td></td><td>0.8700</td><td></td><td>18</td><td>400</td><td>45</td><td></td><td></td><td></td><td>04</td><td>32</td><td>6</td><td>5</td></t<>	ANS (Southern Pipeline)	0	1.13	-21		0.8700		18	400	45				04	32	6	5
Arabar Heavy (2000) b -10 0.849 -32 4.3 13 Arabar Heavy (2000) 5 20 0.6558 12 821 13 Arabar Heavy (2000) 2 10 0.6558 12 821 13 Arabar Heavy (2000) 2 185 2.0 0.8558 12 821 13 Arabar Heavy (2000) 2 185 2.0 0.8558 12 821 13 Arabar Heavy (2000) 2 185 2.0 0.8562 15 13 400 11 12 15 16 46 97 6 5 Arabar Liph (2000) 13 13 13 53 13 13 53 13 460 16 46 46 47 4 Arabar Liph (2000) 16 2.16 13 560 15 17 10 12 10 54 22 7 6 4 Arabar Liph (2000) 16 3.16 17 10 23 12 10 54 9 7	ANS (Southern Fipeline)	30	1.46	82.2		0.9451	14	561	190	6				42	25	13	
Araber Heavy (2000) 9 10 10 9 11 10 9 11 9 11 10 9 11 10 9 11 11 10	Arabian Heavy (2000)	U U		-16		0.8897	-32	43		15							
Arabar Heavy (2000) 6 80 0.4558 12 821 13 Arabar Heavy (2000) 2 13 324 11 13 Arabar Legy (2000) 2 1.84 -20 0.858 -2 14 271 25 25 10 51 38 5 Arabar Light (2000) 2 1.84 -20 0.8521 -1.3 33 -400 17 25 25 10 51 36 5 Arabar Light (2000) 5 2.3 0.8521 -1.5 27 27.2 14 - - 66 36 6 Arabar Light (2000) 76 2.60 0.9451 -5 27 27.2 14 - - 72 7 4 Arabar Light (2000) 76 2.60 0.9455 -7 2.50 68 8 0.16 -7 2.2 14 10 12 12 14 14 Arabar Light (2000) 76 2.60 0.9455 -7 2.50 68 23 12 12 10 13 22 7 5 Arabar Light (2000) 73 3.818 9 0.9102 2.7 7	Arabiar Heavy (2000)	9		39		0.9176	-21	157		14							
Arabiar Light 133 0.4688 -4 8244 -11 Arabiar Light 2 1.85 2.4 0.8655 2.5 1.4 -70 21 2.5 2.5 1.4 33 2.40 17 4.9 37 8 5 Arabiar Light 2.1 2.0 6.4 0.8645 -7.2 13 33 -400 17 4.9 37 8 5 Arabiar Light (2000) 0 1.33 -40 0.8646 -15 2.7 12.2 14 -70 17 17 6 4 Arabiar Light (2000) 16 2.17 6 0.8666 -15 2.7 2.12 14 -70 17 6 4 Arabiar Light (2000) 16 2.10 0.866 -10 2.16 0 17 6 0 17 6 0 17 6 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 1	Arabian Heavy (2000)	-В		80		0.9356	12	621		13							
Arabser Light 0 1.84 -20 0.658 -28 1.4 -70 21 25 25 10 51 38 5 Arabser Light 21 25 24 0.8921 -113 33 400 11 -10 46 37 6 5 4 Arabser Light(2000) 9 2.17 36 0.0660 -15 27 212 14 -76 76 6 4 Arabser Light(2000) 16 260 0.0163 -9 174 563 6 -70 76 5 6 4 Arabser Light(2000) 16 2.66 0.0163 -9 174 563 6 -70 76 5 5 4<	Arabian Heavy (2000)	24		100		0.9538	-1	3244		-11							
Arabar Light '2 125 '4' 0.382' -13 33 400 17	Arabiar Light	D	1.84	-20		0.8658	-28	14	470	21	25	25	1ū	51	39	Б	3
Acabar Light 21 2.06 40 0.0111 -12 91 510 11	Arabian Light	-2	1.85	22		0.8921	-13	33	400	17				49	37	8	5
Arabbar Lipht (2000) 0 1.93 -71 13 93 -72 76 <th< td=""><td>Arabian Light</td><td>24</td><td>2.06</td><td>40</td><td></td><td>0.9111</td><td>-12</td><td>\$≁1</td><td>510</td><td>1.1</td><td></td><td></td><td></td><td>46</td><td>36</td><td>10</td><td>Ē.</td></th<>	Arabian Light	24	2.06	40		0.9111	-12	\$ ≁ 1	510	1.1				46	36	10	Ē.
Araba Light (2000) 9 2.17 36 0.6660 -15 27 212 14	Arabiar Light (2000)	D	1.93	-10		0.8641	-21	13	83	19				76	*5	6	4
Arabar Light (2000) '18 2.38 '72 '0 '14 <th'14< th=""> <th'14< th=""> <th'14< td="" th<=""><td>Arabian Light (2000)</td><td>Э</td><td>2.17</td><td>36</td><td></td><td>0.8660</td><td>-15</td><td>27</td><td>212</td><td>14</td><td></td><td></td><td></td><td>73</td><td>-7</td><td>Б</td><td>4</td></th'14<></th'14<></th'14<>	Arabian Light (2000)	Э	2.17	36		0.8660	-15	27	212	14				73	-7	Б	4
Arable Ignt [2000] 26 260 0196 -9 174 508 6	Arabian Light (2000)	. Η	2.36	62		0.902B	-В	60	214	10				12	1	1	4
Arabar Michael 0 1.60 -1.3 0.8763 -1.0 2.9 550 2.3 1.0 1.0 54 3.2 7 6 Arabar Michael 1.01 1.4 90 0.9263 -2 2.75 740 7 40 45 6 7 Arabar Michael 0 1.6 0.9263 -2 2.75 740 7 43 3.6 7 3.54 9 7 ASM3 AG 0 -17 0.3366 -10 5 20 22 23 55 23 351 9 7 43 350 23 55 23 354 9 7 3 363 9 7 7 43 350 23 55 23 351 9 7 43 350 23 55 23 351 9 7 43 350 23 23 56 23 23 56 23 43 43 43 43 43 43 43 43 43 43 43	Arabiar Light (2000)	26	2 60			0 9 1 9 3	-9	174	503	8				70	1 Б	9	5
Arabier Middan '3 3.18 b2 D.9102 -4 91 10 17	Arabian Medium	0	1.60	-13		0.8763	-10	29	550	23	10	10	10	54	32	7	Б
Arabar Methur 21 3.44 90 0.9263 -2 275 740 7	Arabian Medium	13	3.18	52		0.9102	-4	91	150	17				42	44	1	1
Arabiar McJaur313.860.449572155190620335497ASM3 k_0 0-170.3365-105-20-22652753ASM3 k_1 00.58-220.4484-277403023652753ASM3 k_2 00.6340.8404-18613328-771742ASM3 k_2 00.6340.8405-12147627-761552ASM3 k_2 0.70240.8676-123263017-761552ASM3 k_2 0.890.89179123124112142055633323Avulon00.7114640.2440121412055633323323Avulon00.7114600.8006-62436-663040Barrow Island220.05800.8006-421251120600033137Barrow Island220.05800.8005-4212512200543371373033	Arabian Medium	21	3.44	90		0.9263	-2	275	740	7				40	45	6	7
ASMB 34-3 0 20 2 ASMB 34-1 0 0.58	Arabian Medium	31	3.86	53.01		0.9495	7	2155	190	6				33	54	B	7
ASM3 #4 D 0.58 -22 0.8434 -27 7 40 30 30 23 65 27 5 3 ASM3 #5 0 0.63 4 0.8404 -16 6 133 29 77 77 7 4 2 ASM3 #5 24 0.70 24 0.8676 -12 14 /400 27 77 76 4 2 ASM3 #5 24 0.70 66 0.3652 -12 32 630 17 76 15 6 2 ASM3 #5 37 0.89 0.0/1 14 64 0.2440 12 141 20 5 83 13 2 9 Awaken 0 0.11 14 64 0.2440 12 141 20 5 83 13 2 9 Barrow Island 17 0.03 42 0.8700 -62 4 36 13 26 9 0 0 33 37 13 7 3	ASM3 43	D		-17		0.8366	-10	5				20					2
ASM3 ± 5 0 0.63 4 0.8404 -18 6 133 23 77 77 7 4 2 ASM3 ± 5 '3 0.70 2/4 0.8076 -12 1/4 //400 27 77 '6 4 2 ASM3 ± 5 24 0.78 66 0.855 -12 32 630 17 77 '6 4 2 ASM3 ± 5 37 0.89 0.9017 9 123 1225 11 72 '8 6 3 2 3 AsMa ± 5 37 0.89 0.9017 9 123 1225 11 72 '8 6 3 2 3 Asulon 0 0.11 1/4 0.40 0.21 111 27 16 4 0 0 14 0 0 14 0 11 27 13 13 13 14 0 13 13 13 13 14 14 14 14 14 14 14	ASMB #4	D	0.58	-77		0.8434	-27	7		40	30		23	65	27	5	3
ASMB #C 73 0.70 24 0.8676 12 14 400 27 77 16 4 2 ASMB #C 73 0.8 68 0.8676 12 14 400 27 77 16 4 2 ASMB #C 37 0.8 68 0.9017 32 630 17 76 15 5 5 2 Avalon 0 0.1 14 64 0.8410 12 141 20 5 5 83 3 2 3 Barrow Island 0 0.04 0.8410 7 11 20 5 64 35 4 0 Barrow Island 32 0.05 80 0.8005 -27 23 23 23 25 15 16 35 4 0 35 0.9126 42 125 12 20 0 5 43 37 13 7 Barrow Island 32 0.8105 -27 23 23 23 23 23 <td>ASIJE #5</td> <td>Ď</td> <td>0.63</td> <td>4</td> <td></td> <td>0.8404</td> <td>-18</td> <td>6</td> <td>133</td> <td>28</td> <td></td> <td></td> <td></td> <td>77</td> <td>.7</td> <td>4</td> <td>2</td>	ASIJE #5	Ď	0.63	4		0.8404	-18	6	133	28				77	.7	4	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ASM3 #5	. 9	0.70	20		0.8676	-12	Ĩ.	100	27				77	15	Å	2
Norm PC2-70.600.6021726001727863Avalon00.1114640.2440121412055683323Barrow Island00.0400.8005-624365663040Barrow Island320.05800.8005-624365663040Barrow Island320.05800.8005-772323566600Barrow Island480.060.9075-27232359002639303Bel/dge Ieavy01.030.97462126101-049002639303Bel/dge Ieavy31.030.9770417105206723151594500Bald00.82830.6814182425151594500Bald00.37820.8736313306600023422015Bunkor C Fuel Oil (Alaska)00.53830.9691-287061301423422015Bunkor C Fuel Oil (Alaska)00.56950.96820346000<	ASM3 #5	74	0.78	68		0.8857	-12	32	630	17				76	15	E	2
Availant 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000 0.000000000 0.00000000000 0.000000000000000000 0.00000000000000000000000000000000000	ASM3 HS	37	0.99	~~~~		0.0002		123	1-25	11				72	- 9	E	2
Andom 0 0.71 12 0.11 12 14 12 14 12 14 15 16 37 4 0 Barrow Island 7 0.03 4.2 0.8700 -62 4 36 66 30 4 0 Barrow Island 32 0.05 80 0.8006 -62 4 36 66 30 4 0 Barrow Island 48 0.06 0.9075 -27 23 23 59 0 5 43 37 13 7 Belridge leavy 0 1.03 0.9770 4 17105 200 7 28 38 30 4 Beridge leavy 0 1.03 0.9770 4 17105 200 7 28 38 30 4 Beridge leavy 0 0.882 9 0.8181 18 24 25 15 15 94 5 0 0 Beridge leavy 0 0.37.8 2 0.9351 -6 45 </td <td>Audeo</td> <td>0</td> <td>0.02</td> <td>1/</td> <td>61</td> <td>0.3011</td> <td>12</td> <td>1.11</td> <td>1020</td> <td>21.0</td> <td>90</td> <td>Ь</td> <td>h.,</td> <td>39</td> <td></td> <td>0</td> <td>4</td>	Audeo	0	0.02	1/	61	0.3011	12	1.11	1020	21.0	90	Ь	h.,	39		0	4
Definition 0	Reprint Island	5	0.04	0.00	94	0.2410	12	141			20	P.		6.4	25	4	5
Dartion Island 1 0.03 +2 0.070 +02 + 30 50 40 1 0 Barrow Island 48 0.06 0.9075 -27 23 23 59 36 6 0 Barrow Island 48 0.06 0.9075 -27 23 23 59 36 6 0 Barrow Island 48 0.207 43 5 0.9176 42 122 20 0 5 43 37 13 7 Belridge Teavy 0 1.03 0.9770 4 17105 200 7 29 38 30 4 Beta 0 3.78 2 0.9736 3 13300 0 0 0 0 21 39 31 7 13 7 Beta 0 3.78 2 0.9736 3 13300 0 0 0 0 0 0 17 14 1 Bunker C Fuel OI (Alaska) 0 0.55 83 0.9864	Barrow Island	- 7	0.04	12		0 9700	60			50				04 66	20	4	č
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Barrow Island	r 	0.05	-2		D.OFUC	-02	+		30				OD	30	4	L.
Barrow Ibland 44e 0.06 0.075 -27 23 23 56 66 7 7 <th7< th=""> <th7< td=""><td>Barrow Island</td><td>32</td><td>0.05</td><td>80</td><td></td><td>0.8905</td><td>-+0</td><td>11</td><td></td><td>21</td><td></td><td></td><td></td><td>61</td><td>30</td><td>4</td><td>D .</td></th7<></th7<>	Barrow Island	32	0.05	80		0.8905	-+0	11		21				61	30	4	D .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Barrow Island	48	0.05	10	2	0.9075	-21	23		23		2	-	69	30	0	v ÷
Beiridge leavy 0 1.03 0.9746 2 12510 140 4 9 0 0 26 39 30 3 Belridge fleavy 3 1.03 0.9770 4 17105 200 7 29 38 30 4 Bent Hom 0 0.82 9 0.818 18 24 25 15 15 94 5 0 0 0 28 39 30 4 Bent Hom 0 0.82 9 0.8181 18 24 25 15 15 94 5 0 0 0 23 31 7 Bent Blend 0 0.39 0.3351 -6 6 45 15 25 72 23 4 1 Bunker C Fuel Oil (Alaska) 8 0.56 95 1.0060 23 280020 6 23 280020 6 23 24 20 16 Bunker C Light Fuel Oil 0 0 0.9862 0 3400 0 0	BGI 24	U	2.07	43	5	0.9129	42	125	110	12	20	U	5	43	3/	13	(
Belfalge Heavy 3 1.03 0.9770 4 17105 200 7 29 38 30 4 Bent Horn 0 0.82 9 0.8181 18 24 25 15 15 94 5 0 0 Bent 0 3.78 2 0.9776 3 13390 6 0 0 0 21 39 31 7 Bent 0 3.78 2 0.9776 4 17105 200 7 15 15 94 5 0 0 Bent 0 3.78 2 0.9776 4 17105 200 6 45 15 15 94 5 0 0 Bunker C Fuel Oil (Alaska) 8 0.56 95 1.0050 23 26000 6 23 26 0	Beludde Jeavy	D	1.03			0.9746	2	12510	140	2	9	D	D	26	39	30	3
Bent Horn 0 0.82 9 0.8181 18 24 25 15 15 94 5 0 0 Beta 0 3.78 2 0.9736 3 13390 0 0 0 0 0 21 39 31 7 Beta 0 0.39 0.3351 -6 6 45 15 25 72 23 4 1 Bunker C Fuel Oil (Alaska) 0 0.53 83 0.9691 -2 8706 130 14 25 47 17 11 Bunker C Fuel Oil (Alaska) 8 0.56 96 1.0060 23 280000 6 23 42 20 15 Bunker C Light Fuel Oil 0 - 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 16 0 0 0	Belridge Heavy	3	1.03	22		0.9770	4	17105	200	7		12	1227	29	3B	30	4
Bela D 3.78 2 0.9736 3 13390 6 0 0 0 21 39 31 7 Brent Blend D 0.39 0.3351 -6 6 45 15 25 72 23 4 1 Bunker C Fuel Oil (Alaska) 0 0.53 83 0.9891 -2 8706 130 14 25 72 23 4 1 Bunker C Fuel Oil (Alaska) 8 0.56 95 10050 23 280000 6 25 0	Bont Horn	0	0.82	8		0.8181	18	24		25	12254	15	15	94	5	D	D
Brent Blend 0 0.39 0.8351 -6 6 45 15 25 72 23 4 1 Bunker C Fuel Oil (Alaska) 0 0.53 83 0.9851 -2 8706 130 14 25 47 17 11 Bunker C Fuel Oil (Alaska) 8 0.56 95 1.0050 23 280000 6 23 42 20 15 Bunker C Light Fuel Oil 0 0 0 0 0 0 0 16 California (API 15) 0 3.30 28 0.9882 0 34000 0 0 0 16 Carpinteria 0 1.88 -15 0.9155 -21 154 16 0 0 11 44 30 17 9 Carpinteria 1 2.01 5 0.9259 6 755 73 7 0 0 0 19 11 Carpinteria 10 2.01 5 0.9259 6 755 73 7 0 0 0 31 36 22 11 Carpinteria 15 2.04 0.9462 12 3426 130 </td <td>Bela</td> <td>D</td> <td>3.78</td> <td>2</td> <td></td> <td>0.9736</td> <td>3</td> <td>13390</td> <td></td> <td>0</td> <td>0</td> <td>Ð</td> <td>Û</td> <td>21</td> <td>39</td> <td>31</td> <td>7</td>	Bela	D	3.78	2		0.9736	3	13390		0	0	Ð	Û	21	39	31	7
Bunker C Fuel Oil (Alaska) 0 0.53 83 0.9891 -2 8706 130 14 25 47 17 11 Bunker C Fuel Oil (Alaska) 8 0.56 95 1.0050 23 260000 6 23 42 20 15 Bunker C Light Fuel Oil 0 0 0 0 0 0 0 16 California (API 11) 0 3.30 28 0.9882 0 34000 0 0 0 0 16 California (API 15) 0 5.50 12 0.9175 -21 164 16 0 0 11 44 30 17 9 Carpinteria 0 1.88 -15 0.9155 -21 164 16 0 0 11 44 30 17 9 Carpinteria 10 2.01 54 0.9259 6 755 73 7 0 0 0 30 19 11 Garpinteria 15 2.04 0.9259 6	Brent Blend	D	0.39			0.8351	-6	Б			45	15	25	72	23	4	1
Bunker C Fuel Oil (Abaska) 8 0.56 95 1.0050 23 280000 6 23 42 20 15 Bunker C Light Fuel Oil 0 5 0 16 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 16 0	Bunker C Fut-I Oil (Alaska)	0	0.53	83		0.9891	-2	8706	130	14				25	47	17	11
Bunker C Light Fuel Oil D 5 0 0 0 0 0 California (API 1') 0 3.30 28 0.9882 0 34000 0 0 0 0 16 California (API 15) 0 5.50 12 0.9770 -9 6400 0 0 0 0 79 35 23 22 Carpinteria 0 1.88 -15 0.9155 -21 164 16 0 0 11 44 30 17 9 Carpinteria 10 2.01 54 0.9299 6 755 73 7 0 0 0 40 30 19 11 Carpinteria 15 2.04 0.9482 12 3426 130 7 0 0 0 31 36 22 11 Catable/ic Cranking Feed 0 0.29 0.9139 25 780 10 5 5	Bunker G Fuel Oil (Alaska)	в	0.56	95		1.0050	23	280000		6				23	42	20	15
California (API 1*) 0 3.30 28 0.9882 0 34000 0 0 0 0 0 0 0 0 0 0 0 16 Galifornia (API 15) 0 5.50 12 0.9770 -9 6400 0 0 0 0 12 35 23 22 Carpinteria 0 1.88 -15 0.9155 -21 164 16 0 0 11 44 30 17 9 Carpinteria 10 2.01 54 0.9299 6 755 73 7 0 0 0 40 30 19 11 Garpinteria 15 2.04 0.9299 6 755 73 7 0 0 0 40 30 19 11 Garpinteria 15 2.04 0.9482 12 3426 130 7 0 0 0 31 36 22 11 Gatabilitic Cranking Feed 0 0.29 0.9139 25	Bunker C Light Fuel Oil	D								5	0	0	Q				
Galiforma (API 15) 0 5.50 12 0.9770 -9 6400 0 0 0 19 35 23 22 Carpinteria 0 1.88 -15 0.9155 -21 164 16 0 0 11 44 30 17 9 Carpinteria 10 2.01 54 0.9259 6 755 73 7 0 0 0 40 30 19 11 Carpinteria 15 2.04 0.9462 12 3426 130 7 0 0 0 31 36 22 11 Carpinteria 15 2.04 0.9462 12 3426 130 7 0 0 0 31 36 22 11 Catabylic Cranking Feed 0 0.29 0.9139 25 780 10 5 5 53 38 7 2	California (API 11)	D	3.30	28		0.9882	: 0	34000		0	0	D	0				16
Carpinteria D 1.88 -15 0.9155 -21 164 16 0 0 11 44 30 17 9 Carpinteria 0 2.01 54 0.9259 6 755 73 7 0 0 0 40 30 19 11 Carpinteria 5 2.04 0.9452 12 3426 130 7 0 0 0 31 36 22 11 Catablic Cranking Feed 0 0.29 0.9135 25 780 10 5 5 53 38 7 3	Galifornia (API 15)	U	5.5U	12		0.9770	-9	6400		Ð	0	U	U	7 B	35	23	22
Carpinteria 10 2.01 54 0.9299 6 755 73 7 0 0 0 40 30 19 11 Carpinteria 15 2.04 0.9462 12 3426 1300 7 0 0 0 31 36 22 11 Catabulic Cranking Feed D 0.29 0.9139 25 780 10 5 5 53 38 7 5	Carpinteria	D	1 88	-15		0 9155	-21	164		16	0	Ð	11	44	30	17	Ð
Carpinteria 15 2.04 0.9462 12 0426 1300 7 0 0 0 31 36 22 11 Catabilic Cranking Feed D 0.29 0.9139 25 780 10 5 5 53 38 7 5	Carpinteria	10	2.01	54		0.9299	6	755	73	7	ò	0	0	40	30	19	11
Catabilic Cranking Feed D 0.29 0.9138 25 780 10 5 5 5 5 33 38 7 3	GeroInterla	-5	2.04			0.9462	12	3426	130	2	0	D	ū	31	36	22	11
	Catalytic Cracking Feed	D	0.29			0.9130	25	780	2076	10	5	5	5	53	38	7	2

Complex

Table A1 Data Used in the Correlation

Oil Name	Evap'n	Surface Tension	Interfacial Tensio	n BP < 200	BP < 250	n-C12	n-C14	n-C16	n-C18	n-C20	n-C26	Naphthalene	s Total PAHs
	%	(mN/m)	(mN/m)	(set%)	(w 1%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg'g)	(mg ⁱ g)	(ppm)	(ppm)
Adgo	0	32.0	6.9	5	20	64442	18 3.030		1961 (BALIA		1000	02724	870 973
Amauligak	O	29.2	20.9	17	32								
ANS (1989)	0	28.1	27.4										
ANS (1989)	9	29.1	26.6										
ANS (1989)	16	29.7	24.9										
ANS (Middle Pipeline)	0	27.0	19.9	25	33								
ANS (Middle Pineline)	31	31.5	14.7		5								
ANS (Northern Pipeline)	D	26.8	20.6	26	34								
ANS (Northern Pipeline)	31	31.4	21.5	20	6								
ANS (Southern Pipeline)	0	27.0	21.7	23	31								
ANS (Southern Pipeline)	30	31.4	17.7	20	5								
Arabian Heavy (2000)	0	26.4	22.5	21	20								
Arabian Heavy (2000)	0	20.4	22.0	15	22								
Arabian Heavy (2000)	16	20.3	63	15	20								
Arabian Heavy (2000)	10	29.0	0.0	10	0								
Arabian Heavy (2000)	24	30.4	00.4	0	0								
Arabian Light	0	20.0	20.4	22	16								
Arabian Light	12	28.0	17.3	15	25								
Arabian Light	24	28.5	20.2	ь	14								
Arabian Light (2000)	0	26.0	21.6	21	29	6.41	5.62	4.76	3.42	2.57	1.00	3939	7947
Arabian Light (2000)	9	27.9	22.8	15	24								
Arabian Light (2000)	18	28.4	24.6	8	18								
Arabian Light (2000)	26	30.2	20.4	1	9	5.41	7.13	6.46	4.55	3.43	1.38	4002	9055
Arabian Medium	0	27.0	20.8	18	26								
Arabian Medium	13	28.7	24.4	11	20								
Arabian Modium	21	29.9	23.3	4	13								
Arabian Medium	31	31.3	20.0		2								
ASMB #3	0			33	43								
ASMB #4	0	25.8	12.2	31	41								
ASMB #5	0	25.5	23.1	26	35	4.45	4.37	4.18	3.14	2.80	1.56	5498	9565
ASMB #5	13	27.2	23.1	21	31								
ASMB #5	24	28.0	24.1	11	22								
ASMB #5	37	29.9	23.2	1	10	4.12	5.92	6.69	5.19	4.33	2.44	8165	14895
Avalon	0	26.4	20.5	15	23								
Barrow Island	0	26.2	15.9	37	55								
Barrow Island	17	28.3	14 9	26	47								
Barrow Island	35	20.8	12.7	11	35								
Barrow Island	48	31.0	12.1	4	18								
BCE 24	-0	28.2	21 3	13	10								
Boleidas Useau	ő	20.2	21.0	13	19								
Delnoge Heavy	0	31.2	20.0	-	5								
Beet Use	3	32.9	20.4	2	0								
Bont nom		20.2	30.0	19	20								
Reta	U O	37.7	-343.4	D	11								
Brent Blend	0	25.5	22.5	32	42								
Bunker C Fuel Oil (Alaska)	D	32.5		4	12								
Bunker C Fuel Oil (Alaska)	8				4								
Bunker C Light Fuel Oil	O			1	7								
California (API 11)	0	37.0		7	12								
California (API 15)	0	33.6		8	12								
Carpintoria	0	27.8	23.7	18	24								
Carpinteria	10	28.6	21.3	9	17								
Carpinteria	15	33.3	30.0	3	10								
Catalytic Cracking Feed	0	32.3	27.7	9	3								

Oil Name	Evap'n	Sulphur	Flash Poin	t Reid VP	^o Density	Pour Poir	t Viscosity	modulus	Dispersibility %	Dispersibility %	Dispersibility %	Dispersibility %	Saturates.	Aromatic:	Resins	Asphaltenes
	%	(1117.)	(C	(kPe)	(g/mL)	19.5	(ពាមិម្	(inPe)	w/Corexit 9500	w/Corexil 9527	w/DespLIS	w,Enersperse 700	(w19.)	(wt%.)	(wt/.)	(wt%)
Chayvo #6	D	0.34	10		0.8345	4	4		-11				66	9	3	D
Cheyvo #6	-4	0.38	27		0.8542	-*	12		48				86	°D	4	0
Chayvo #6	22	0.40	70		0.8609	ß	21		29				61	12	7	D
Сћаууо #6	33	0.48	135		0.8721	8	33		24				81	12	7	D
Cohasset	0		32		0.7900	-30					5	35				0
Cold Lake Bitumen	D	6.90	411		1.0002	9	2350001			0	D	Ω				13
Diese (2002)	D	0.09	51		0.8310	-50	3		77				6B	1Β	2	D
Diese (2002)	7	0.10	65		0.8350	-49	3		71				EG	12	2	D
Diese (2002)	-4	0.10	76		0.8383	-43	3		64				86	-2	2	D
Diese (2002)	22	0.10	85		0.8416		+		36				86		3	D
Diese (Alaska)	D	0.21	40		0.8300	-36	2		70				74	24	1	D
Diese (Alaska)	37	0.33			0.8515	22	5		39				75	23	1	D
Diese (Southern U.S.A., 1994)	0	0.22	70		0.8369	-7	5		52				76	22	2	D
Diese (Southern U.S.A., 1994)	8	0.21			0.8427	-7	5		45				78	20	2	C
Diese (Southern U.S.A., 1994)	- Б	0.27			0.8447	4	6		53				78	20	2	D
Diese (Southern U.S.A., 1997)	D	0.40	66		0.8362	-14	4		36				76	23	1	D
Diese (Southern U.S.A., 1997)	В	0.43			0.8400	-9	5		32				75	23	1	C
Diese (Southern U.S.A., 1997)	-4	0.43			0.8420	7	6		20				79	· B	2	D
Dos Cuadras	D	1.24		32	0.9000	-30	51		37	5	5	5	46	30	17	6
Dos Cuadras		1.17	53		0.9270	-3	187	3	15	В	8	1ū	42	31	20	7
Dos Cuadras	20	1.42			0.9359	6	741	33	7	12		0	41	31	19	9
Empire	0	0.30	-9		0.8554	-41	11		31	10	12	10	67	25	1	1
Endicett	D	1.34		25	0.9149	-7	B4		10	10	5	10				4
Endicett	8	1.34		1999	0.9318	8	321		100	5	D	5				4
Endicell	- 3	1.40			0.9401	14	662			5	0	ō				4
Eugene Island Block 32	D	0.02	21		0.8399	7	1D		44	6755		2772	84	1	2	1
Eugene Island Block 32	6	0.03	79		0.8418	9	G		31				81	-B	2	1
Eugene Island Block 32	13	0.03			0.8453	12	16		22				82	15	2	1
Eugene Island Block 32	20	0.04			0.8481	13	21		15				81	15	3	1
Eugene Island Block 43	D	0.18	12		0 8404	0	13		22	5	20	n	81	- B	3	D
Eugene Island Block 43	7	0.10	65		0.8516	7	21		11				78	-7	4	1
Eugene Island Block 43	15	0.10			0.8594	7	36		10				77	*5	7	i
Eugent: Island Block 43	24	0.11			0.8665	11	65		13				78	'B	5	1
FCC Medium Cycle Oil	0	0.27			0.9835	-15	31			60	5	15	30	62	7	i i
Federateo (1994)	D	0.29			0.8293	-15	4		81	20	18	15	74	21	3	1
Federatria (1994)	- B	0.30	35		0.8589	15	10		38	8	16	13	69	24	5	1
Federatea (1994)	28	0.33	74		0.8767	22	29		22	,	(J)	3	64	27	7	2
Federates (1994)	42	0.40	0.435		0.8924	9	101		15	7	1	5	62	28	7	2
Fuel Oi, No. 5 (2002)	0	6.00				(*)	10.01		15	15-24	13	1.00		10.28	28	57 <u>0</u>
Fuel Oi, No. 5 (2002)	7								7							
Garcen Banks Block 387	D	1.52	-28		0.378?	-39	29		27				53	35	10	1
Garcen Banks Block 387	7	1.45	33		0 8975	-34	64		31				51	38	11	1
Garcen Banks Block 387	15	1.55	HI		0.9144	-29	181		10				51	37	11	1
Garcen Banks Block 387	23	1.68			0.9287	-25	579	8	0				46	40	13	5
Garcon Banks Block 426	D	0.94	-24		0.8265	-37	6	8.60	43				70	24	5	1
Garcen Banks Block 428	12	0.78	24		D.8561	-1	13		22				61	30	в	1
Garcen Banks Block 426	25	1.06	68		0 8779	-2	34		10				62	28	6	2
Garcen Banks Block 426	38	1 17	<u> </u>		0 8993	6	136	82	15				56	32	10	3
Genesis	15	1.38	-222		0.8841	-62	26	50	22				51	204	14	ĩ
Genesis	8	1.36	35		0 9074	-41	66		13				45	43	12	1
Genesis	-5	1.51	71		0.9223	26	157		24				41	43	11	1
Genesis	22	1.73	crote		0.9364	-24	543	28	10				41	14	14	1
Oracile Point	D	0.06	-73		0.8205	-37	4		.11	87	D	27	72	22	5	1
WILLING F VIII.	с. С	0.00	-20		0.0200	-01	7		10.00	21	9	21		25	100	30

Compley

Table A1 Data Used in the Correlation

Oil Name	Evap'n	Surface Tension	Interfacial Tensio	n BP < 200	BP < 250	n-C12	n-C14	n-C16	n-C18	n-C20	n-C26	Naphthalene	s Total PAHs
	%	(mN/m)	(mN/m)	(wt%)	(wt%)	(mg/g)	(maya)	(mq/q)	(mg/g)	(mq/q)	(mg/g)	(ppm)	(ppm)
Chayvo #6	0	26.6	15.8	27	40	6.47	7.06	7.14	6.67	5.38	2.01	11296	16768
Chayvo #6	14	28.1	12.4	20	35	8.73	9.26	8.73	B.00	6.52	2.61	12705	19272
Chayvo #6	22	28.6	9.7	12	29	6.75	10.09	1D.31	9.73	7.77	3.26	13832	21285
Chavyo #6	33	28.4	28.4	2	17	6.71	9.98	10.25	9.28	7.69	3.11	13722	21832
Cohasset	0	25.6	16.5										
Cold Lake Bitumen	D			1	3								
Diesel (2002)	D	27.5	18 1	27	58	13 23	12.33	10.96	6 72	3.01	0.04	20852	2593B
Diesel (2002)	7	27.7	19.5	22	55		10.00		0.1.1				
Diesel (2002)	14	28.1	20.7	17	50								
Diesel (2002)	22	28.3	21.0	11	47	15 25	15 77	13 70	8 20	3 74	0.05	24337	30776
Diesel (2002)	D	27.4	34.5	20	56	10.20	10.01	10.70	0.20	0.14	0.00	24001	30110
Diesel (Alacka)	37	29.5	21.1	2	32								
Discal (Paulham L. P.A. 1004)	0	20.0	40.0	0	32								
Discol/Couthern L.S.A. 1994/		20.0	10.0	0	20								
Diesel (Southern U.S.A., 1994)	D 1C	20.9	13.1	3	20								
Dissol (Southern U.S.A., 1994)	10	29.0	15.1		15								
Diesel (Southern U.S.A., 1997)	0	21.3	22.8	<u>1</u>	31								
Diesel (Southern C.S.A., 1997)	8	28.5	20.5	5	26								
Diesel (Southern U.S.A., 1997)	14	28.6	16.8	2	21								
Dos Guadras	0	28.1	21.2	19	28								
Dos Cuadras	11	28.7	22.6	10	19								
Dos Cuadras	20	30.6	21.0	3	12								
Empire	0	27.4	15.9	19	30								
Endicott	0	29.1	25.8	11	17								
Endicott	8	27.7	26.0										
Endicott	13	30.9	23.0										
Eugene Island Block 32	0	27.5	18.5	10	23								
Eugene Island Block 32	в	28.5	23.5	6	20								
Eugene Island Block 32	13	27.9	23.7	2	14								
Eugene Island Block 32	20	27.9	21.3		9								
Eugene Island Block 43	D	27.5	2.9	18	27								
Eugene Island Block 43	7	28.5	3.6	10	21								
Eugene Island Block 43	16	29.2	4.2	3	14								
Eugene Island Block 43	24	29.7	8.0		7								
FCC Medium Cycle Oil	D	32.7	22.8	1	5								
Federated (1994)	0	25.8	16.2	34	44								
Federated (1994)	16	28.1	18.4	23	35								
Federated (1994)	28	Z 9.4	18.9	10	24								
Federated (1994)	42	30.8	16.9	1	8								
Fuel Oil No. 5 (2002)	0			2	7								
Eucl Oil No. 5 (2002)	7			ō	4								
Garden Banks Block 387	n	27.5	22.0	17	74								
Garden Banks Block 387	7	28.7	23.2	13	21								
Garden Banks Block 387	15	30.1	22.9	6	14								
Garden Banks Block 387	23	31.0	18.6	0	6								
Gardon Banks Block 426	D.	23.3	73.7	20	30								
Garden Banks Block 420	12	26.3	26.6	22	33								
Carden Banks Block 420	25	20.0	25.2	11	24								
Cordon Banks Diock 420	20	20.2	20.2	1	24								
Conocin Danks Block 420		30.1	21.0	11	17								
Connaia	0	20.0	22.0	11	13								
Oenesis Oceania	8 4 E	20.0	21.0	8	14								
Cenesis	15	28.9	21.2	5	11								
Genesis	23	30.6	16.4	1	6								
Granite Point	D	25.6	20.7	36	47								

Ch Mare Explor Support Plant Point Point Point Four Journal by Comparability & Deparability & Deparability & Support Plant Point	0.000	623. R	- 12 M - 12 - 12				12 SZS	2733 17	Complex	San services	1975 1972 19			2010 33	12 IV	631 W H	
$ \begin{array}{c} Carte First \\ Carte First \\ Carte First \\ Carte Grays Bibli 100 \\ Cart$	Oil Name	Evap'n	Sulphur I	Flash Poin	it Reid V	P Density I	Pour Poir	nt Viscosity (mPar	modulus /mPai	Dispersibility %	Dispersibility %	Dispersibility %	Dispersibility %	Saturates	Aromatic South S	s Resins A	sphaltenes but%)
Circle Carryen Block Mol 0 158 0 30 20 5 12 5 97 46 9 1 Gree Carryen Block 184 22 1.00 1.8 0.3375 55 11 33 1 51 30 8 1 Gree Carryen Block 184 23 1.10 67 0.338 4 1	Granile Point	45	0.08	1,0	(icea)	0.9028	2	75	340	11	WICHPEAR SUZ?	WIDHA A LI D	TO CUBIOPRIOR 700	62	2B	7	3
Grane Darys Bank: M4 0 0 0.814 -4 7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 10 13 0 1 Gree Crays Bick: 144 25 1.15 67 0.8231 22 1.15 10 55 10 55 10 55 10 55 10 55 10 55 11 <t< td=""><td>Group Capyon Block 109</td><td>0</td><td>1.89</td><td>•</td><td></td><td>0.8921</td><td>-36</td><td>39</td><td>0-0</td><td>21</td><td>5</td><td>12</td><td>5</td><td>51</td><td>30</td><td>G</td><td>1</td></t<>	Group Capyon Block 109	0	1.89	•		0.8921	-36	39	0-0	21	5	12	5	51	30	G	1
Green Cargon Black 194 2 10.5 17 0.8 37 25 11 39 58 11 58 11 58 11 58 11 58 11 58 11 58 11 1	Green Canyon Block 184	Ď	0.94	-18		0.8314	-11	5		47			-	6.P	24	8	i.
Green Cargon Black 194 ab. 1.52 Set 1.55 6.7 0.882 2.5 Set 1.55 5.5 10 5.8 3.3 8 1 1.5 Green Cargon Black 05 0 1.72 4.4 0.850 -2.8 1.77 2.5 2.5 5.5 10 5.8 3.3 1 1 Green Cargon Black 05 0 0.70 -2.5 1.7 2.5 2.5 5.5 10 5.8 3.4 4.8 3.4 4.8 Green Cargon Black 04 0 3.2 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 9 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Green Cabuon Block 184	4 12	1.00	18		0.8575	-55	11		22				61	20	8	
Convert Rayny Hikkel, 193 Victor 0.0943 2.5 17 2.2 2.2 10 13 34 1 1 Conver Cargon Hikkel, 50 0 0.50 -5 100 56 45 5 10 56 45 41 8 Carling 0 0.50 -5 100 55 55 100 56 45 1 Hettery 140[0382] 0 -5 56 10 56 55 100 56 55 10 56 55 10 56 45 1 Hettery 140[0382] 0 32 12 10 <t< td=""><td>Groop Capuan Block 104</td><td>26</td><td>1.15</td><td>67</td><td></td><td>0.9821</td><td>-28</td><td>31</td><td></td><td>25</td><td></td><td></td><td></td><td>58</td><td>22</td><td>8</td><td>4</td></t<>	Groop Capuan Block 104	26	1.15	67		0.9821	-28	31		25				58	22	8	4
Grame Rock 05 0 157 4 0 056 5 5 10 58 50 10 58 50 10 58 50 10 58 50 10 58 50 10 58 55 10 58 55 10 58 55 10 58 55 10 58 55 10 58 55 10 58 55 10 58 55 10 58 55 10 58 55 10 56 55 10 56 55 10 56 55 10 56 55 10 56 55 10 56 55 10 56 55 10 56 56 10 56 56 10 56 56 10 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56	Green Canyon Block 184	20	1.10	01		0.0024	-25	1.1	99	20				51	111	11	i
Confination 0 0.50 -3 0.8701 +2 13 25 2 12 10 60 35 5 1 Hewy hard (1892) 0 9 5 0.9189 -2 154 10	Green Cabuon Block 65	D	1.87	-1		0.0265	-28	177		15	5	5	10	35	46	14	B
Description (D1K002) D <thd< th=""> D D <thd< th=""></thd<></thd<>	Gullfake	ő	0.30	9		0 8701	32	13		25	20	12	10	60	35	5	1
introm V-30 0 8 0 9189 2 154 10 Hebrary IV-30 6 02 0.9423 12 IA42 13 21 Hebrary IV-30 6 02 0.9423 12 IA42 13 21 Hebrary IV-30 3 0 13 21 22 21 21 22 21 21 22 21 21 21 21 21 21 21	Hearn Fried Oil K309	15	0.00	~		0.0101	-0.5	10.2		4	20		10	00	~~		
inthem 9 55 0 6344 9 675 10 Hebron V-44 23 0.0564 10 1442 10 Hebron V-44 23 0.0564 10 13 21 Hebron M(566) 0 0.778.5 15 55 17 Hebron M(566) 0 17 0.0576 27 73 970 15 Hebron M(566) 3 0.0778 28 773 970 0 15 17 10.0576 27 730 970 16 17 10.0576 28 773 970 0 0 0 27 33 29 12 Horts 10.0576 17 9730 970 6 0 0 0 27 33 29 12 Horts 10.0576 10 252.4 20 10 25 10 25 10 25 11 10 IFS 183 0 15.20	Hebron M-3/1	П		D		0.0198	-7	15-1		17							
Inden V-34 6 62 0.4423 12 142 13 Hborn V-34 23 0.4854 10 13 21 Hborn (1666) 0 17 0.4854 10 13 21 Hborn (1666) 0 17 0.4853 15 99 15 Hborn (1666) 31 101 10.14 2 15440 910 1 Hg/ Nuccash Fiel Ch 0 101 10.14 2 15440 910 27 32 32 12 Hank 13 9350 15 930 6 0 0 0 27 32 22 12 Hank 13 9353 13 93 130 0 0 27 32 22 12 Hank 15 0.576 14 15 15 10 5 16 0 24 28 11 15 Hott 15 0.576	Hebron V 04	6		55		0.9311	6	676		10							
Internation 2-41 23 Max 0.0954 20 77.86 1 Haberia (1990) 0 56 0.8753 16 37.3 1 Haberia (1990) 0 56 0.8753 16 99 15 Haberia (1990) 0 1.91 0.8054 10 99 15 Haberia (1990) 0 1.91 0.8054 10 19.0 1.91 1.91 Horiz 0.9075 2.8 77.3 11 1.91 2.3 31 2.4 1.2 Horiz 0.9364 3.9863 13.970 8 5 0 4 2.3 31 2.4 1.2 Horiz 0.9874 3.9863 13.5 1.7 1.5 5 0.0 4 2.3 31 2.4 1.2 Horiz 0.9874 3.9863 1.5 2.4 0.0 0 2.2 1.3 1.1 1.5 1.6 1.5 1.6 1.7	Hebros V M	.6		00		0.0423	13	1442		10							
International variable 0 17 0.8973 15 17 Hberning (1990) 21 71 0.8975 18 99 17 Hberning (1990) 21 71 0.8975 18 99 17 Hubring (1990) 21 71 0.8975 28 773 11 Hubring (1990) 21 74 60 0 0 27 33 29 122 Hubring (1990) 24 450 71 0.9676 13 988 130 6 0 0 27 33 29 122 Hubring (1990) 1 1 0.9676 10 232 2 0 2 2 11 10 Hourin 0 1.88 -18 0.8676 10 232 2 0 17 15 15 15 16 17 15 HS 310 1 1 0.8467 12 2200 0 0<	Habroo M 201	52		472		0.0564	20	7260		10							
Ibbernal (1990) 0 60 0.3375 10 17 Hbernal (1996) 33 - 0.9675 28 77.3 1 -<	Hiberoio (1000)	20		17		0.9504	10	1305		21							
International (1990) 21 77 10.869 15 99 15 Hagrin (1990) 3 0.9175 28 77.3 11 Hagrin (1990) 0.9175 28 77.3 11 12 Hando 0 1.91 0.9575 15 735 970 6 0 0 0.27 33 29 12 Hando 7 4.60 71 0.9576 13 970 6 0 0 0 27 23 29 12 Hauto 0 1.58 -18 0.9576 10 224 24 0 0 0 2 29 11 10 10 12 10 16 10 22 200 0 26 35 17 15 1F2 1030 0 1.54 0.9666 12 2000 0 24 23 30 17 15 15 15 15 15 16	Tibornia (1999)	.0		96		0.03759	1=	15		47							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hibergin (1000)	51		71		0.9605	10	002		16							
International (1929) 3.3 0.301 2.5 1/1.3 1 <	Hibernia (1999)	21		11		0.0090	10	99 770		10							
High Machan Public A 0 131 1344 1344 1344 13 <th< td=""><td>Hibernia (1999)</td><td>33</td><td>4.04</td><td></td><td></td><td>0.9075</td><td>20</td><td>49460</td><td>040</td><td>11</td><td></td><td></td><td></td><td></td><td>80</td><td>40</td><td>150</td></th<>	Hibernia (1999)	33	4.04			0.9075	20	49460	040	11					80	40	150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	High viscosity Filer Oil	0	1.91			1.0140	45	13460	310	U D	1		22	D 55	4.5	13	20
India i 4 0 n 0 0 0 0 2/7 2.8 2.9 1.3 Hourd 0 188 -1.8 0.867.8 -1.1 115 -1.5 0 0 0 2/7 2.8 2.5 1.1 10 Hourd 0 1.54 91 0.867.8 -1.1 115 1.5 2.7 1.5 5.6 3.5 8 5 Hourd 0 1.54 91 0.867.8 -1.1 10 0.966.9 0 -22 2.0 0 -21 2.8 3.9 17 15 HS3050 0 1.20 -1.5 0.376.9 -22 2.00 0 - 2.6 3.00 11 6 0 3.00 11 6 0 3.00 11 6 0 0 0.6 7.6 0.8244 4.4 2 - 9.6 3 1 0 0 0 </td <td>Honac</td> <td>- 7</td> <td>4.30</td> <td>-7</td> <td></td> <td>0.9356</td> <td>-10</td> <td>7,30</td> <td>1929</td> <td>6</td> <td>0</td> <td>U C</td> <td>4</td> <td>00</td> <td>00</td> <td>.4</td> <td>1.0</td>	Honac	- 7	4.30	-7		0.9356	-10	7,30	1929	6	0	U C	4	00	00	.4	1.0
Hundo 32 4 30 0.0061 21 440/LJ - 0 0 0 27 28 32 13 IF3 160 0 154 91 0.9670 10 23.24 24 0 0 26 35 11 10 IF3 160 0 154 91 0.9667 10 23.24 24 0 0 26 35 11 10 IF3 160 0 120 17 0.9668 -6 121.70 300 0 - 26 32 12 10 IF3 300 1 1.0 0.9668 -12 2000 J 0 - 26 30 11 6 Issungrafi 0 0.03 54 0.3158 -22 40 11 12 23 14 10 5 10 5 10 10 10 10 10 10 10 10 10 10 10 </td <td>Нопас</td> <td></td> <td>4.60</td> <td>ाः ।</td> <td></td> <td>0.9674</td> <td>3</td> <td>9563</td> <td>ាទ១៨</td> <td>6</td> <td>0</td> <td></td> <td>U</td> <td>21</td> <td>33</td> <td>29</td> <td>12</td>	Нопас		4.60	ा ः ।		0.9674	3	9563	ាទ១៨	6	0		U	21	33	29	12
Hort 0 1 88 -18 0 80-2 -14 15 15 15 15 16 16 17 15 IFO 100 0 1.54 91 0.8040 6 27200 610 0 26 32 17 15 IFO 300 5 1.80 0.8940 6 27200 0 24 28 30 17 15 IFO 300 5 1.80 0.9966 12 22000.0 0 24 28 30 17 16 Issungask 0 0.005 - 0.4490 - 57 10 53 0.0 0 0 0 0 0.0 0<	Honde	32	4.80	226		0.9861	21	449703		40	0	0	0	21	2B	32	13
	Hout	0	1 88	-18		98058	-14	15		15		18	5	56	3.	В	6
$ \begin{array}{ $	IFG 180	D	1.54	91		0.9670	10	2324	240	U O				29	51	11	10
IF 3 630 0 1.72 0.9869 -6 1 44/0 380 0 -26 52 T2 10 Iranian laway 0 1.20 -15 0.0756 -22 2000 14 12 5 10 53 30 11 6 Issungrat 0 0.03 54 0.3756 -22 2000 14 12 5 10 53 30 11 6 Joc.Adul A-' 0 0.03 54 0.3159 -55 2 57 53 94 6 0	IFO 100	Ц	1.64			0.9840	6	27280	610	0				28	35	16	15
IFO 303 S 1.80 0.99996 12 2203 0 24 28 30 17 Isandan lisandan 0 0.08 0.3490 12 220 14 12 5 10 53 30 11 6 Jest-Audi A-' 12 0.03 66 0.8159 -55 2 57 50 92 3 0 0 Jet-Audi A-' 12 0.03 66 0.8159 -55 2 57 50 92 3 1 0 Jet-Audi A-' 12 0.03 66 0.8159 -55 2 413 33 96 2 0 0 Jet-Audi A-' 23 0.04 71 0.2716 -50 7 51 0	IFO 300	D	1.72			0.9859	-6	14470	390	6				26	52	12	10
	IFO 300	5	1.80	2022		0.9996	12	220000		0	9925	122	12.20	24	28	30	17
	Iranian Lleavy	D	1.20	-15		0.8756	-22	20		14	12	5	10	53	30	11	6
Jet:Avel A ⁻¹ 0 0.03 54 0.8193 -55 2 57 94 6 0 0 Jet:Avel A ⁻¹ 72 0.03 66 0.8193 -55 2 43 94 6 0 0 Jet:Avel A ⁻¹ 72 0.03 76 0.8193 +55 2 43 96 3 1 0 Jet:Avel A ⁻¹ 37 0.06 76 0.8244 44 2 96 3 1 0 0 0 96 3 1 0 0 0 1 0 0 0 0 1 0 <th< td=""><td>lssungnak</td><td>D</td><td>0.08</td><td></td><td></td><td>0.8490</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td>92</td><td>3</td><td>D</td><td>C</td></th<>	lssungnak	D	0.08			0.8490							50	92	3	D	C
Je. A. let A.'et '2 0.03 66 0.8123 -b 2 43	JetA/JetA-1	D	0.03	54		0.8159	-55	2		57				94	6	D	D
Jet:Acted A-' 23 0.01 71 0.216 -50 2 51 96 3 1 0 Jet:Acted A-' 37 0.06 76 0.2244 444 2 76 81 79 0 0 Jet:3 (klaska) 0 0.08 42 0.8111 -54 2 76 81 79 0 0 Jet:3 (klaska) 0 0.30 413 0.8907 21 153 13 0 0 0 55 66 31 11 3 Lapp 0 0.30 4.3 0.8907 21 155 13 0 0 0 55 61 11 32 33 33 33 36 38 14 11 32 33 36 38 14 11 36 38 14 11 32 36 38 14 11 36 36 38 14 11 36 36 37 16 36 36 38 13 16 36 36	Jet A/Jet A-1	-2	0.03	66		0.8193	-55	2		43				96	2	0	C
Jet A,	Jet Aldet A-1	23	0.04	71		0.8216	-5D	8		50				96	3	1	D
Jc. 3 (Alaska) 0 0.06 42 0.8111 -64 2 75 66 79 0 0 Lago 0 0.30 -13 0.62354 -44 3 33 60 9 0 0 0 Lago 0 0.259 -3 0.6230 -20 272 13 0 0 0 5 56 31 11 3 Lago fraco 0 2.59 -3 0.9661 -1 16160 10 32 38 14 11 Lago fraco 0 0.45 -11 0.9661 -2 16160 31 17 14 73 21 4 1 Lago fracio 0 0.45 -11 0.8516 -26 6 34 13 17 14 73 21 4 1 Lago fracio 0 0.45 -11 0.8516 -26 6 34 13 17 14 73 21 4 1 Lago fraci 0 0.46	Jet AvJet A+1	37	0.06	76		0.8244	-44	2						98	2	D	D
def 3 (Alaska) 53 0.13 86 0.8354 -14 3 33	Jet B (Alaska)	Û	0.08	42		0.8111	-54	2		15				61	-0	0	D .
Lage 0 0.30 -13 0.8967 21 153 10 0 0 5 56 31 11 3 Lage Treco 0 2.59 -3 0.9230 -20 272 10 - 32 38 38 14 11 Lage Treco 6 2.75 0.9230 -20 272 10 - 32 38 38 14 11 Lage Treco 6 2.75 0.9230 -20 277 10 - 32 38 14 11 14 14 15 15 16 38 14 11 15 16 16 15 16 32 15 15 16 15 15 16 17 14 14 14 14 14 14 14 14 14 14 14 14 15 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16<	Jet B (Alaska)	53	0.13	86		0.8354	-44	3		33				60	1 Ģ	D	D
Lago Treco 0 2.59 -3 0.9230 -20 272 10 38 38 14 11 Lago Treco 6 2.75 0.9661 -' 16160 10 32 38 38 14 11 Lago Treco 6 2.75 16 0.8720 41 20 5 10 32 38 14 11 Lago Treco 0 0.45 -11 0.8516 -26 6 34 13 17 14 73 21 4 1 Lurula 0 0.17 -10 0.8571 18 438 20 5 5 5 67 22 8 4 Main Pass Block 306 0 0.28 0.8842 -5 19 23 63 29 8 1 Main Pass Block 306 37 0.38 0.9031 -32 54 18 33 20 25 10 /33 21 5 1 Main Pass Block 37 0 0.16 -6 0.8311	Lago	D	0.30	-13		0.8907	21	153		10	0	D	5	56	31	11	3
Lago Treco'62.750.0661-'161601032381515Lago medic0 57 160.8720412051055555555555555555555556722841Lucula00.45-100.857118432055555722844Main Pass Block 30600.280.8692-53927252030652951Main Pass Block 306740.330.8849-3519235833111Main Pass Block 306370.380.9203-16219175533111Main Pass Block 3700.16-60.8311-3733202510732151Main Pass Block 3700.46-0.8689153616702361Main Pass Block 3700.46-0.8689153616702351Main Pass Block 3700.46-0.8689153616702361Main Pass Block 3700.20-0.8689153616594 <td>Lago Treco</td> <td>0</td> <td>2.59</td> <td>-3</td> <td></td> <td>0.9230</td> <td>-20</td> <td>272</td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td>36</td> <td>38</td> <td>14</td> <td>11</td>	Lago Treco	0	2.59	-3		0.9230	-20	272		10				36	38	14	11
Lagemedie 0 57 16 0.8720 41 20 5 10 5 Lot Islana 0 0.45 -11 0.8571 18 -26 6 34 12 17 14 73 21 4 1 Lucula 0 0.457 -10 0.8571 18 43 20 5 5 5 67 22 8 4 Main Pass Block 306 0 0.28 0.3606 -53 9 27 25 20 30 65 29 5 1 Main Pass Block 306 12 0.31 44 0.8849 -35 19 23 63 29 8 1 1 Main Pass Block 306 37 0.38 0.9023 -16 219 17 55 33 10 1 <td< td=""><td>Lego Treco</td><td>1Β</td><td>2.75</td><td></td><td></td><td>0.9661</td><td>-1</td><td>16160</td><td></td><td>10</td><td></td><td></td><td></td><td>32</td><td>38</td><td>15</td><td>15</td></td<>	Lego Treco	1Β	2.75			0.9661	-1	16160		10				32	38	15	15
Lot Islana 0 0.45 -11 0.8516 -26 6 34 13 17 14 73 21 4 1 Lurols 0 0.17 -10 0.8571 18 43 20 5 5 5 67 22 8 4 Main Pass Block 306 0 0.28 0.8656 -53 9 27 25 20 30 65 29 5 1 Main Pass Block 306 2 0.31 24 0.8849 -35 19 23 63 29 8 1 Main Pass Block 306 74 0.33 0.9031 -35 51 19 23 55 33 11 1 Main Pass Block 306 37 0.38 0.9023 -16 219 17 17 14 73 21 5 10 1 Main Pass Block 37 0 0.16 -6 0.8311 -3 7 33 20 25 10 73 21 5 1 1 1 <th< td=""><td>Lagomedic</td><td>0</td><td></td><td>57</td><td>16</td><td>0.8720</td><td></td><td>41</td><td></td><td></td><td>20</td><td>5</td><td>10</td><td></td><td></td><td></td><td>5</td></th<>	Lagomedic	0		57	16	0.8720		41			20	5	10				5
Lucola D 0.17 -10 0.8571 18 43 20 5 5 5 67 22 8 4 Main Pass Block 306 0 0.28 0.3606 -53 9 27 25 20 30 65 29 5 1 Main Pass Block 306 12 0.31 44 0.8849 -35 19 23 63 29 8 1 Main Pass Block 306 12 0.33 0.9051 -35 19 23 55 33 11 1 Main Pass Block 306 37 0.38 0.9203 -16 219 17 55 33 11 1 Main Pass Block 37 0 0.16 -6 0.8311 -3 7 33 20 25 10 73 21 5 1 Main Pass Block 37 15 0.31 44 16 26 73 21 5 1 Main Pass Block 37 50 0.39 0.8689 15 36 16 76 23 </td <td>Louisiana</td> <td>0</td> <td>0.45</td> <td>-11</td> <td></td> <td>0.8516</td> <td>-26</td> <td>ß</td> <td></td> <td>34</td> <td>13</td> <td>17</td> <td>14</td> <td>73</td> <td>21</td> <td>4</td> <td>1</td>	Louisiana	0	0.45	-11		0.8516	-26	ß		34	13	17	14	73	21	4	1
Main Pass Block 306 0 0.28 0.3606 -53 9 27 25 20 30 65 29 5 1 Main Pass Block 306 72 0.31 24 0.8848 -35 19 23 63 29 8 1 Main Pass Block 306 74 0.33 0.9031 -32 51 19 23 58 37 10 1 Main Pass Block 306 74 0.33 0.9031 -32 51 19 55 33 11 1 Main Pass Block 306 74 0.38 0.9031 -32 51 19 55 33 11 1 Main Pass Block 37 0 0.16 -6 0.8311 -3 7 33 20 25 10 73 21 5 1 Main Pass Block 37 0 0.46 0.8655 17 15 14 70 23 6 1 Main Pass Block 37 0 0.207 -26 0.8653 -28 33 36 45	Lucula	D	0.17	-10		0.8571	18	43		20	5	5	5	67	22	ĸ	4
Main Pass Block 306 '2 0.31 '4' 0.8849 -35 19 23 63 29 8 1 Main Pass Block 306 '7' 0.33 0.9051 -52 51 18 58 37 10 1 Main Pass Block 306 '7' 0.38 0.9053 -16 219 17 55 33 11 1 Main Pass Block 37 0 0.16 -6 0.8311 -3 / 33 20 25 10 /3 21 5 1 Main Pass Block 37 0 0.46 0.8343 4 16 26 73 21 5 1 Main Pass Block 37 0 0.46 0.8659 17 1'5 14 70 23 5 1 Main Pass Block 37 0 0.207 -26 0.8653 15 5 0 5 62 24 8 2 Main Pass Block 37 0 0.207 -26 0.8653 -28 33 -5 5 0 5 62 <td>Main Pass Block 306</td> <td>D</td> <td>0.28</td> <td></td> <td></td> <td>0.8606</td> <td>-53</td> <td>9</td> <td></td> <td>27</td> <td>25</td> <td>20</td> <td>30</td> <td>65</td> <td>29</td> <td>5</td> <td>1</td>	Main Pass Block 306	D	0.28			0.8606	-53	9		27	25	20	30	65	29	5	1
Main Pasa Block 306 24 0.33 0.9031 -32 51 19 58 37 10 1 Main Pasa Block 306 37 0.38 0.9203 -16 219 17 55 33 11 1 Main Pasa Block 306 37 0.38 0.9203 -16 219 17 55 33 11 1 Main Pasa Block 37 0 0.16 -6 0.8311 -3 / 33 20 25 10 /3 21 5 1 Main Pasa Block 37 16 0.31 48 0.8543 4 16 26 73 21 5 1 Main Pasa Block 37 0 0.46 0.8659 15 36 16 73 23 6 1 Main Pasa Block 37 0 0.46 0.8655 17 1'5 14 66 24 8 2 Mator 100 0 0.07 -26 0.8656 -26 33 36 0 5 0 5 62 25 <	Main Pass Block 306	-2	0.31	22		0.8849	-35	19		23				63	29	8	1
Main Pass Block 306 37 0.38 0.9203 -16 219 17 55 33 11 1 Main Fass Block 37 0 0.16 -6 0.8311 -3 / 33 20 25 10 /3 21 5 1 Main Pass Block 37 16 0.31 48 0.3543 4 16 26 26 10 /3 21 5 1 Main Pass Block 37 16 0.31 48 0.3543 4 16 26 26 73 21 5 1 Main Pass Block 37 30 0.46 0.3659 15 36 16 70 23 6 1 Main Pass Block 37 50 0.39 0.8655 17 1'5 14 66 24 8 2 Mains TLP 0 2.07 -26 0.8653 -28 33 36 45 40 11 3 Mars TLP 8 1.97 26 0.9122 -16 93 13 34 41	Main Pass Block 306	24	0.33			0.9031	-32	5/1		15				5B	37	10	1
Main Pass Block 37 0 0.16 -6 0.8311 -3 / 33 20 25 10 /3 21 5 1 Main Pass Block 37 16 0.31 48 0.8543 4 16 26 73 21 5 1 Main Pass Block 37 30 0.46 0.8669 15 36 16 70 23 6 1 Main Pass Block 37 50 0.39 0.8669 15 36 16 70 23 6 1 Main Pass Block 37 50 0.39 0.8655 17 15 14 66 24 8 2 Mains TLP 0 2.07 -26 0.8863 -28 33 36 45 40 11 3 Mars TLP 8 1.97 26 0.9122 -16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9520 -7 2237 84 2 35 45 15 4 </td <td>Main Pass Block 306</td> <td>37</td> <td>0.38</td> <td></td> <td></td> <td>0.9203</td> <td>-16</td> <td>219</td> <td></td> <td>17</td> <td></td> <td></td> <td></td> <td>55</td> <td>33</td> <td>11</td> <td>1</td>	Main Pass Block 306	37	0.38			0.9203	-16	219		17				55	33	11	1
Main Pass Block 37 16 0.31 48 0.8543 4 16 26 73 21 5 1 Main Pass Block 37 30 0.46 0.8669 15 36 16 70 23 5 1 Main Pass Block 37 50 0.39 0.8655 17 1'5 14 66 24 8 2 Matongo 0 0.20 -9 0.8701 21 63 15 5 0 5 62 25 9 4 Mars TLP 0 2.07 -26 0.8863 -28 33 36 45 40 11 3 Mars TLP 8 1.97 26 0.9122 -16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9331 -17 104 21 16 35 41 43 13 3 Mars TLP 2 2.37 0.9520 -7 2237 84 2 35 45 15 <td>Main Pass Block 37</td> <td>0</td> <td>0.16</td> <td>-6</td> <td></td> <td>0.8311</td> <td>-3</td> <td>1</td> <td></td> <td>33</td> <td>20</td> <td>25</td> <td>10</td> <td>13</td> <td>21</td> <td>ь</td> <td>1</td>	Main Pass Block 37	0	0.16	-6		0.8311	-3	1		33	20	25	10	13	21	ь	1
Main Pass Block 37 30 0.46 0.8669 15 36 16 70 23 5 1 Main Pass Block 37 50 0.39 0.8655 17 1'5 14 66 24 8 2 Matongo 0 0.20 -9 0.8701 21 63 15 5 0 5 62 25 9 4 Mars TLP 0 2.07 -26 0.8863 -26 33 36 45 40 11 3 Mars TLP 8 1.97 26 0.8261 -16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9321 -17 104 21 16 35 45 15 4 Mars TLP 2 2.37 9.4 2 35 44 18 5	Main Pass Block 37	1 B	0.31	48		0.8543	4	16		26				73	21	5	1
Main Pass Block 37 50 0.39 0.8855 17 115 14 66 24 8 2 Matorgo 0 0.20 -9 0.8701 21 63 15 5 0 5 62 25 9 4 Mars TLP 0 2.07 -26 0.8865 -26 33 36 45 40 11 3 Mars TLP 8 1.97 26 0.9122 -16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9321 -17 104 21 16 35 41 43 13 3 Mars TLP 2 2.37 0.9520 -7 2237 84 2 35 45 15 4	Main Pass Block 37	30	0.46			0.8689	15	36		10				70	23	G	1
Metongo 0 0.20 -9 0.8701 21 63 15 5 0 5 62 25 9 4 Mars TLP 0 2.07 -26 0.8863 -28 33 36 45 40 11 3 Mars TLP 8 1.97 26 0.9122 -16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9331 -17 10/1 21 16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9520 -7 2237 84 2 35 45 15 4	Main Pass Block 37	50	0.39			0.8855	17	1.2		14				66	24	B	2
Mars TLP D 2.07 -26 0.8863 -28 33 36 45 4D 11 3 Mars TLP B 1.97 26 0.8863 -28 33 36 45 4D 11 3 Mars TLP B 1.97 26 0.9122 -16 93 13 34 41 43 13 3 Mars TLP 7 2.13 71 0.9321 -17 104 21 16 35 45 15 4 Mars TLP 26 2.37 0.9520 -7 2237 94 2 33 44 18 5	Malunuo	U	0.20	-9		0.8701	21	Б3		15	5	D	5	62	25	9	4
Mars TLP B 1.97 26 0.9122 -16 93 13 34 41 43 13 3 Mars ILP 7 2.13 71 0.9321 -17 104 21 16 35 45 15 4 Mars TLP 25 2.37 0.9520 -7 2237 94 2 33 44 18 5	Mars TLP	Ď	2.07	-26		0.8883	-28	33		36	1.0	72	17.0	45	40	11	3
Mars ILP 7 2.13 71 0.9331 -17 104 21 16 35 45 15 4 Mars TLP 2E 2.37 0.9520 -7 2237 84 2 33 44 18 5	Mars TLP	ß	1.97	26		0.9122	-16	93	13	34				41	43	13	3
Mars TLP 2E 2.37 0.9520 -7 2237 84 2 33 44 18 5	Mars ILP	.7	2.13	71		0.9331	-17	1124	21	16				35	45	15	4
	Mars TLP	26	2.37	10.00		0.9520	-7	2237	84	2				33	44	18	Б

Table A1 Data Used in the Correlation

Oil Name	Evap'n S	Surface Tension	Interfacial Tensio	n BP < 200	BP < 250	n-C12	n-C14	n-C16	n-C18	n-C20	n-C26	Naphthalene	s Total PAHs
	%	(mN/m)	(mN/m)	(wt%)	(w 1%)	(mg/g)	(mq/q)	(mg/g)	(mg/g))	(mg'g)	(mg ^l g)	(ppm)	(ppm)
Granite Point	45	30.7	14.6		6					1	1 2 2/	1.22	
Green Canyon Block 109	O	28.0	21.5	15	22								
Green Canyon Block 184	0	25.0	23.3	29	39								
Green Canyon Block 184	12	27.0	23.2	24	34								
Green Canyon Block 184	26	28.9	25.2	12	24								
Green Canyon Block 184	38	30.2	19.3	1	10								
Green Canvon Block 65	0	29.4	23.9	11	1B								
Gullfaks	õ	27.7	25.4	21	31								
Heavy Fuel Oil 6303	õ		20.1	7	6								
Hebron M-04	ō	28.3	24.9	16	24								
Liebron M-04	9	28.6		10	18								
Hebron M-04	16	34.6		5	14								
Hebron M-04	23	04.0		Ď	5								
Hibernia (1999)	0	26.5	21.6	74	33								
Hibornia (1999)	10	20.0	26.3	17	27								
Hibernia (1999)	21	20.1	20.5	D II	20								
Libernia (1999)	21	20.9	24.8	9	20								
Hibernia (1999)	33	00.0	10.0	U O	6								
High viscosity Fuel Q1	0	32.9	43.3	2	14								
Hondo	0	28.2	10.0	14	20								
Hondo	17	SU.S	22.8	Þ	17								
Hondo	32			22	2								
Haut	D	26.7	15.2	23	31								
IFO 180	0	31.4	30.7	2	12								
IFO 180	8	33.1		1	6								
IEO 300	0	32.6	37.3	2	В								
IFO 300	5			1	4								
Iranian Heavy	0	26.1	22.5	21	28								
Issungnak	0	26.2	16.8	20	35								
Jet A/Jet A-1	0	26.4	31.2										
Jet A/Jet A 1	12	27.2	31.0										
Jot A/Jot A-1	23	26.8	29.0										
Jet A/Jet A-1	37	27.0	29.0										
Jet B (Alaska)	0	26.3	39.1	47	62								
Jet B (Alaska)	53	27.8	30.5	B	61								
Lago	0			12	18								
Lago Troco	Q	28.7	19.3	13	19								
Lago Treco	16				4								
Lagomedio	0	28.2	12.4	15	23								
Louisiana	0	25.9	19.6	21	33								
Lucula	0			18	25								
Main Pass Block 306	Ô	26.9	16.5	26	37								
Main Pass Block 306	12	2B 7	18.3	17	29								
Main Pass Block 306	24	30.1	17.4	5	18								
Main Pass Block 306	37	34.2	13.6	2	4								
Main Door Block 37	0	24.0	10.0	20	41								
Main Pass Dioty St	16	24.0	12.7	18	21								
Main Pass Diock 51	20	20.0	22.0	10 E	20								
Main Pass Diock St Main Dass Pleak 97	20	29.0	20.2	D	20								
Main Mass DIOCK ST	50	31.2	21.7	45	4								
Maiongo Mara TLD	U A	20.1	22.1	15	21								
	0	26.2	21.3	11	10								
Mars TLP	8	28.0	21.1	9	15								
Mars TLP	17	29.6	16.2	4	10								
Mars TLP	26	30.8		D	4								

								Complex								
Oil Name	Evap'n	Şulphur I	Flash Poir	nt Reid V	P Density I	Pour Poir	nt Viscosity	modulus	Dispersibility %	Dispersibility %	Dispersibility %	Dispersibility %	Saturates	Aromatic	s Resins /	Asphaltenes
	%	(w1%)	(D	(kPa)	(y/mL)	19.	(ពេមិម្	(inPe)	w/Corexit 9500	w/Corexil 9527	w/DespLLS	w/Enersperse 700	(w1%)	(1117.)	(u(t))	$(\omega 1/c)$
Maur	- 4		n		0.0001	11	CI		33							
Militar	4		5		0.8340	24	212		25							
Mau	3912		4(4)		0.3421	28	TIME		1.7							
Maur	44	2.00			0.0055	3: 4E	000		17		<u>`</u>	F	20	20		10
Maya Law 2007s	0	3.00	-3		0.0200	-10	200		15	v	U	0	30	30	D 11	10
Maya (1987)	17	3.50	-1		0.0700	-20	, HH		13				08	31	4.4	10
Maya (1897) Nicelecteri Conuce Direk 104	5	3.00			0.9762	2	99390		15	4.5%		40	29	35	14	21
Mississippi Canyon Block 194	0	0.21	-0		0.8483	-40	5		28	15	215	10	71	20	4	U N
Mississippi Canyon Block 194	-0	0.19	54		0.8655	25	11		22				(1	23	ь	D
Mississippi Lanyon Block 194	21	0.21			0.8762	-22	21		10				65	24	0	U U
Mississippi Canyon Block 194	30	0.26	2		0.8874	16	51		15				07	20	4	0
Mississippi Canyon Block 72	0	0.39	3		0.8545	20	16		31				64	21	6	2
Mississippi Lanyon Block 72	8	0.35	41		0.3827	-0	34	-	24				D/	33	8	z
Mississippi Canyon Block 72	-B	0.40	82		0.8966	-	10	n n n n	19				58	31	9	2
Mississippi Canyon Block 72	25	0.48			0.9095	1	195	40	15				52	34	11	3
Mississippi Lanyon Block 807	0	2.19	-		0.3894	-34	41	10	19				47	35	12	ь -
Mississippi Canyon Block 807	H	2.13	214		0.9187	-00	127	20	11				38	41	14	4
Mississippi Canyon Block 807	D	2.31	15		0.9375	-26	491	54	0				38 114	41	13	6
Mississippi Lanyon Bibbk 807	20	2.51			0.9552	-0	3404	100	0				31	43	16	5
Neptune SPAR	U.	0.29	4		0.6087	-	17		19				00	78	U 5	1
Neptune SPAR	B	0.32	54		0.8825	9	42	1.21	21				63	28	D	2
NSplune SPAR	D	0.27	60		0.8925	17	84	04-0	19				62	20	1	2
Neptune SPAR	20	0.50	100	22	0.8980	19	187	920	14			05	01	29	р С	4
Norman vicelis Orlandu	0	0.37	3	30	0.8520	40	Ξ.		35		20	65	65		2	U o
Odopiu	0	0.33	-10		0.8225	-+0	2		.04						2	1
Odopiu	4	0.38			0.8759	-44	9		40						D 7	1
Odopiu	29	0.44	10		0.0941	29	10		24						6	
Cappiu	41	0.52	2412	- 	0.9072	-17	313		15			00	25		10	1
Osecerg	U B	0.28	-24	20	0.6522	-9	10		15	30	10	20	55	20	В	2
Planuke Dilas Palat	0	000	-30		0.7757	-00	6		64	14	40	03	0.0	10	0	<i>v</i>
Piles Point	0	0.61	11	(E)	0.3341		2		22	42	00	00	00	0	2	Ľ.
Pitas Point	14	0.76	-11		0.0000		2		0.001		306	CIM .	D-Co.	- 1910	0.00	17
Phas Point	41	1 06	/16		0.0000	2.45	+	4.00	22				200	00	114	4.0
Platform Gail	- -	4.00	-20		0.0207	-20	1450	702	22				50	4D 21	21	12
Platform Call		4.10	75		0.9468		7000	220	~				20	20	20	10
Platform Coll	24	4.42	15		0.3040	12	1092	1040	0				24	20	20	15
Pratitioni Gali	21	9.00	E		0.9910	1.5	101505	720	U v	.	n.	0	27	25	20	18
Point Arguello Comingleo	0	3.04	~		0.9240	-14	4000	000	0	e A		v o	50	20	40	17
Point Anguerto Comingios	-6	2.04	0.3		0.9526	- -	4966	610	0	0	0	0	97	22	04	10
Point Arguero Comingios	55	4.00	0/1		0.06F5	200	71000 22555000	0.10	10 10	1		0	21	22	21	33
Point Arguello Comingleo	22	4.09	•		0.9000	40	2200000	100	0	o A	0	ů,	20	20	47	10
Point Arguent Heavy	0	3.44	74		0.9447	4	5250	-50	0	0	0	0	32	32	11	20
Point Arguella Heavy	20 20	4.55	14		0.0014	20	4062600		0	v 0		0	20	.262	71	20
Point Arguella Light	n D	1.10	E		0.9914	-22	49:561/161	650	49	47		E L	/D	27	B	7
Point Arguerio Light	-0	1.10	20		0.0100	-22	18	9393	20	10	5	U	- 1 - 1	21	0	
Point Arguello Light	10	1.10	P7		0.0072	12	107	24177	10				46	21	17	5
Point & guero Fight	20	1.14	φı		0.9107		674	000	13				40	20	12	57 11
Port Arguero Light	20	1.44	11	4	0.9268	0	011	500	4.3		iii.	n	40	32	12	19
Port Hussens	4	3.00	- 11	ບ	0.0002	-0	4131	170	12	0		0	24	45	20	12
Port Hussems	4	2 62			0.9745	-9	0000	270	0	0	0	ů Z	20	20	27	14
Port nueneme Brudbao Bau	B	5.65			0.9(5)	U	20880	210	10	U	U	d.	23	20	3	13
Produce Day	0	o ne	17		0.9697	15	22	17	10				70	9.4	3	2
Fragmos bay (1990)	v	0.90	-11		0.0001	-10	22	0	L)				00	34	10	4

Table A1 Data Used in the Correlation

Oil Name	Evap'n	Surface Tension	Interfacial Tensio	on BP < 200	BP < 250	n-C12	n-C14	n-C15	n-C18	n-C20	n-C26	Naphthalene	s Total PAHs
	%	(mN/m)	(mN/m)	(wt%)	(w 1%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg'g)	(mg'g)	(ppm)	(ppm)
Maui	0	31.1	00000000000	35	46			*********			202-202-202-2	and a second second	
Maui	14			27	39								
Maui	30			13	27								
Maui	44			D	10								
Mava	0	28.2	27.0	13	19								
Maya (1997)	D	28.0	27.3	20	27								
Maya (1997)	19	000000000		0.000	5								
Mississioni Canyon Block 194	0	27.2	18.1	23	37								
Mississippi Canyon Block 104	10	28.5	10.3	14	20								
Mississippi Canyon Block 104	21	20.6	17.0	4	20								
Mississippi Canyon Block 194	35	30.3	15.8	12.73	6								
Mississippi Canyon Block 72	0	27.1	25.5	50	26								
Mississippi Canyon Block 72	ő	28.6	20.0	15	25								
Mississippi Canyon Diock 72	10	20.0	27.0	7	17								
Mississippi Canyon Diock 72	76	20.0	21.3	1	6								
Mississippi Canyon Diock 72	20	10.0	21.0	52 A	чи: -								
Mississippi Canyon block cor	0	20.4	20.0	21	20								
Mississippi Canyon Block 607	10	20.0	20.0	10	15								
Mississippi Canyon Block 607	10	30.1	20.5	P 4	0								
Mississippi Ganyon Block 807	20	32.0	04.0		0								
Neptune SPAR	U	27.8	21.2	11	17								
Neptune SPAR	8	28.9	19.3	в	15								
Neptune SPAR	15	29.6	18.3	4	12								
Neptune SPAR	23	30.1	14.9	1	<u>(</u>								
Norman Wells	0	23.6	16.4	27	38								
Cdoptu	0	26.7	Z3.Z	35	49								
Odoptu	14	28.2	25.1	28	44								
Odoptu	29	26.7	24.6	12	31								
Odoptu	41	30.5	22.7	2	18								
Oseberg	D	26.2	20.2	23	33								
Panuke	0			57	71								
Pilas Point	0	26.3	7.3	54	76								
Pitas Point	24	27.1	8.9	40	68								
Pitas Point	47	26.4	3.7										
Platform Gail	0	27.6		15	21								
Platform Gail	7	29.0		11	17								
Platform Gail	13	30.5		6	13								
Platform Gail	21			1	6								
Point Arguello Cominaled	O	27.5	28.2	14	20								
Point Arguello Comingled	9	30.2		10	16								
Point Arguello Comingled	16			4	11								
Point Arguello Comingled	22				4								
Point Arguello Heavy	0	23.8	28.4	11	17								
Point Arquello Heavy	Ŷ,		Color h	5	12								
Point Amuello Heavy	18			2	3								
Point Arguello Linht	0	27.1	24.0	22	31								
Point Arguello Linht	10	28.9	25.8	14	25								
Point Arquello Linht	10	2G Q	25.5	E.	17								
Point A vuello Light	70	20.0	20.0	U	6								
Pod Hueneme	0	30.9	22.2	Б	11								
Port Huoneme	4	30.0	20.2	9	i ۱ م								
Port Huorsma	4	30.0	20.4		0								
For figerenie Deudoos Dau	0	01.1	×0.0	10	0								
Produce Bay	0	20.3	9.7	10	24								
Prudhoe Bay (1995)	0	27.0	3.9	22	32								

								Complex								
OII Name	Evap'n %	Sulphur Io(95)	Flash Poin (C	it Reid VI (kPa)	P Density I JoimL	ic.	nt Viscosity (mPas	modulus (inPa)	Dispersibility %	Dispersibility %	Dispersibility %	Dispersibility %	Saturates	Aromatic SolV-3	s Resins / TortX.1	Asphaltenes (cd%)
Prudhoe Bay (1995)	9	1.01	.45	[ist a]	0.9048	-9	55	640	15	CT OT THE OTHER	Real Providence	the model of the second	51	35	10	3
Prudhoc Bay (1995)	-8	1.13	87		0.9204	8	148	42/22	0				52	32	12	4
Prudhoe Bay (1995)	27	1.24			0.9352	12	623	230	Ô				43	38	15	5
Renzely	D	0.35	-2		0.8567	17	33	20 71 000		5	15	10	71	21	5	4
Sakhalin	D	0.25	-10		0.8632		1		84	78	22	100	61	32	B	1
Sakhalin	25	0.20			0.0002				43	78			0.1			
Sakhalin	45	0.39			0.9261	-52	52		31				56	35	10	5
Santa Ciara	0	2.85		25	0 0202	3	304	18	6	0	0	5	36	22	20	13
Sonte Ciera		2.00	25	20	0.0475	E	1050	700	2	0	ő	0	30	20	27	13
Sente C era	55	2.11			0.0677	27	257ED	250	n	p g	7	7	25	25	72	17
Shia Shoal Block 260	0	0.44	7		0.9306	12	E	000	36	10	15	10	76	-5	E	6
Chia Cheal Dises 980	. 9	0.41	16		0.0505	10			20	10	10	105	74	39	5	0
Ship Shoal Block 260	55	0.46	- 1J		0.2657	-18	10		21				70	2.0	5	-
Chis Cheel Plant 200	25	0.45	05		0.0007	-20	44		10				67	200	P	1
Shidan Block 269	35	0.04	4.4	54	0.019P	-2	44	01.00	211	2	6	12	Or Al-	20	40	4
Sockeye	U (1	2.29	-17	21	0.4965	-12	45	CCC1	24	5	U	D	40	21	15	р Б
Sockeye	5	2.07	61		0.9100	-0	103	1300					44	0.4	10	1
SOCKEYE	22	2.87	4		0.9264	3	628	14.5.5	5				38	34	15	12
Sockeye (2000)	0	4.51	-4		0.9354	-25	761	183	12				50	В	18	15
Sockeye (2000)	1	4.95	35		0.9537	-18	2720	251	17				47	1	19	16
Sockeye (2000)	-3	5.19	72		0.9692	2	15100	391	10				45	-В	19	18
Sockeye (2000)	20	5.47			0.9835	13	274000	1239	8				42	۰в	20	20
Sockeye Comingled	D	4.17	-6		0.9350	-24	550	110	0				34	32	21	13
Sockeye Sour	0	4.41			0.9409	-22	8-21	120	0				38	29	20	13
Sockeye Sour	10	4.71			0.9662	-3	8708	300	0				20	31	22	17
Sockeye Sour	18	5.02			0.9636	1B	475200		0				26	30	22	24
Sockeye Sweet	D	1.10	-3		0.8752	-20	20		16				55	31	10	4
Sockeye Sweet	в	1.53	41		0.8945	-14	39		17				55	30	10	4
Sockeye Sareet	17	1.67	83		0.9069	-4	103	21	14				50	32	13	5
Sockeys Sweet	27	1.81			0.9229	5	321	510	15				48	33	14	Б
South Louis ana (2001)	0	0.49	-10		0.8562		10		26				81	- 3	8	1
South Louis ene (2001)	11	0.71	22		0.8770	-19	24		24				80	12	õ	1
South Louis ana (2001)	2D	0.79	81		0.8906	14	49		16				78	-3	в	1
South Louis and (2001)	28	0.88			0.9018	-11	141		10				77	.3	8	2
South Pass Block 60	D	0.28	-1		0.8453	-9	Ð		23	45	15	10	71	20	Ĥ	1
South Pass Block 60	17	0.28	61		0.8709	-3	22		21				67	25	7	1
South Pass Block 33	0	0.43	-7		0.8574	-15	19			25	25	25	73	20	4	3
Sputh Timbalier Block 130	D	0.32	5		0.8467	-27	τ		31	10	22	20	7E	15	5	D
Statfierd	D	0.26	-12		0 8354	-7	6		40	35	15	15	68	25	Б	5
Sumatran Heavy	Ď	0.18	54		0.9312	18	13300		17				46	30	13	10
Somalian Heavo	5	0.19			D 9374	22	12900		0				45	39	18	н
Sumatraa Ligat	D	0.07	17		0.8600	38	41480		õ				70	15	Б	Ř
Smanson River	ő	0.13	-23		0.8420	.23	6	10	ar	80		4	65	25	8	5
Smaneon River	40	0.13	-20		0.0143	10	152	200	10	00		107.00	EF	20	7	т
Suntaction	-10 D	0.10	.21	:12	0.2614	.72	5	200	.10		35	65	99	.7	4	E.
Toobino	0	0.20	22	42	0.9700	30	E420000		45		20	05	71	- 0	D.	E E
Tazula	0	0.19	-7		0.9697	1E	110	050	14	5	0	5	6E	200	. Ц	0
Ta culo		0.10	2.4		0.00.07	10	544	1997	0		10		67	24	10	4
Tavula	- 0	0.15	141		0.0000	19	2140	1200	4				60	24	44	4
	D	0.15	2002		0.0961	20	5146	1277	D				00	25	11	4
Table Blend	0	0.06	-20		0.8020	18	B		23				81	D	2	2
Tabla Blend	.4	0.03	1/		0 8/31	26	67		69				(1	- 9	3	1
Tabla Blend	29	0.03	68		0.8396	31	BDD		56				98	Б	3	2
Table Blend	43	0.04			0.8552	34	144C		44				79	. +	4	3
Terra Nova (1994)	D	0.43	-22		0.8457	5	11		14				62	31	3	2

Table A1 Data Used in the Correlation

Oil Name	Evap'n S	Surface Tension	Interfacial Tensic	n BP < 200	BP < 250	n-C12	n-C14	n-C15	n-C18	n-C20	n-C26	Naphthalenes	Total PAHs
	%	(mN/m)	(mN/m)	(wt%)	(w 1%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(ppm)	(ppm)
Prudhoe Bay (1995)	9	29.5	11.5	15	25							4.4	
Prudhoe Bay (1995)	18	30.2	14.Z	Б	17								
Prudhoe Bay (1995)	27	30.9	15.5		7								
Rangely	0	27.1	21.7	17	26								
Sakhalin	0	24.4	14.0	34	47								
Sakhalin	25												
Sakhalin	42	30.3	11.3	1	16								
Santa Clara	0	28.7	23.3	15	21								
Santa Clara	11	28.0	21.6	9	14								
Santa Clara	22	31.8	31.6	2	7								
Ship Shoal Block 269	0	25.9	15.1	30	43								
Ship Sheal Block 269	13	27.5	20.3	20	35								
Ship Shoal Block 269	26	28.6	20.4	8	24								
Ship Shoal Block 265	20	20.0	16.7	0	6								
Sackoup	50	20.0	10.7	91	20								
Cookeye	10	20.0	10.0	21	04								
Contract	10	29.0	10.0	11	44								
Casheye (2002)	22	27.0	19.0	1.0	10	1 1 1	4.40	1 50	1.40	1.07	DEA	2424	Eddo
Sockeye (2000)	0	28.8	21.9	14	19	1.14	1.43	1.52	1.19	1.02	0.51	3424	5149
Sockeye (2000)	10	31.3	Z3.1	9	15								
Sockeye (2000)	13	32.2		4	11	0.00	4 50	1.50		1.00	0.00	4000	0000
Sockeye (2000)	20			U	5	0.63	1.52	1.76	1.41	1.20	0.60	4269	6556
Sockeye Comingled	0	28.7	18.2	16	22								
Sockeye Sour	0	28.9	20.1	15	21								
Sockeye Sour	10	30.8		Б	13								
Sockeye Sour	19				4								
Sockeye Sweet	0	27.7	15.9	23	34								
Sockeye Sweet	8	28.6	17.9	15	26								
Sockeye Sweet	17	30.0	18.5	7	19								
Sockeye Sweet	27	30.6	16.5		В								
South Louisiana (2001)	0	26.1	16.8	22	32	4.25	3.81	3.48	2.24	1.70	0.72	5353	9037
South Louisiana (2001)	11	28.1	19.4	16	27								
Soulh Louisiana (2001)	20	29.4	22.2	в	19								
South Louisiana (2001)	28	29.8	18.4	2	11	3.81	5.19	4.75	3.11	2.27	1.08	6815	11823
South Pass Block 60	0	26.8	18.7	27	39								
South Pass Block 60	17	28.7	20.4	13	26								
South Pass Block 93	0	28.2	24.7	16	28								
South Timbalier Block 130	0	26.5	18.6	25	39								
Statfjord	0	26.1	23.2	30	39								
Sumatran Heavy	0	27.0	20.0										
Sumatran Heavy	5	27.0	20.0										
Sumatran Light	0			11	19								
Swanson River	0	27.0	23.8	32	42								
Swanson River	40	30.7	19.9		9								
Synthetic	0	25.7	29.0	19	32								
Taching	Ō	0.000	673-623	10	15								
Takula	ō	30.6	28.1	17	24								
Takula	11			11	19								
Takula	18			4	12								
Taois Blend	0	27 1	21.2	37	40								
Tapis Blood	14	21.1	£1.£	28	40								
Topic Bland	70	21.1		14	71								
Tapis Dienu Tapis Blood	43			14	14								
Tages News (1004)	40	28.0	01 E	07	14								
iena Nova (1994)	U	20.9	21.5	21	30								

								Complex								
Oil Name	Evap'n	Sulphur	Flash Poin	nt Reid VI	Density I	Pour Poir	t Viscosity	modulus	Dispersibility %	Dispersibility %	Dispersibility %	Dispersibility %	Saturates	Aromatic	s Resins A	sphaltenes
	56	(urt%)	(6)	(kPa)	(g/mL)	1¢	(mPo≱	(mPa)	w/Corcixit 9500	w/Corexit 9527	w/Dasid LTS	w/Encisporse 700	(wt%)	(avt%)	(wt%)	(wt%)
Terra Nova (SOCSEX)	Ó				0.9457		11			5	5	10	62	31	ŧ	2
Theyenard sland	D	0.01			0.7855		1		77	55	20	30	85	-3	2	D
Trading Bay	D	0.13	-17		0.8602	-34	10		47	39	5	18	62	26	7	5
Trading Bay	33	0.15			0.9242	2	278	450	9				51	32	5	в
Transmountain Blend	U	0.79	-2	45	0.8550	2	11			15	10	15	81	· +	2	4
Udang	D	0.94			0.9701	3	10700	130	7				32	41	24	3
Viosca Knoll Block 826	0	0.29	-2		0.2666	-4	16		24				65	26	8	2
Viosca Knoll Block 526	В	0.28	41		0.8842	G	43		17				61	29	7	3
Viosca Knoll Block 826	-7	0.34	86		0.8970	11	132		15				62	20	8	3
Viosca Knoll Block 526	24	0.37			0.9067	16	325	340	17				59	29	В	3
Viosca Knoll Block 990	0	0.22	-17		0.8337	-32	7		41				73	22	4	1
Viosea Knoll Block 990	12	0.26	34		0.8585	-7	12		29				69	25	3	1
Viosca Knoll Block 990	24	0.28	76		0.8752	6	31		22				66	26	Б	1
Viosca Knoll Block 990	35	0.28			0.8905	13	91	98	14				62	28	В	2
Waxy Light Heavy Blend	D	1.01	3		0.9311	30	184		9	5	D	40	38	35	21	5
Waxy Light Heavy Blenc	12	1.08	80		D.9582	-12	2002	41	0				32	38	24	Б
Waxy Light Heavy Blenc	20	1.18			0.9749	0	17280	230	0				30	35	28	Б
West Delta Block 97	0	0.07			0.7763	-21	1		45	51	16		92	1	1	U
West Delta Block 97	23	0.06	30		0.8020	-18	1						87	-2	1	D
Wes, Dolta Block 07	48	0.06	72		0.8191	-15	3						87	**	3	0
West Delta Block 97	74	0.12			3356.0	-5	7						85	14	2	D
West Toxas (2000)	0	0.86	-10		0.8474		B		25				78	'5	Б	1
West Texas (2000)	° 0	1.01	33		0,8665	-12	16		24				79	14	7	1
West Texas (2000)	21	1.11	66		0.8827	1	38	18	13				76	15	8	1
Wes, lexas (2000)	32	1.24			0.8973	7	112	82	13				75	14	10	2
West Texas Intermediate	0	0.48	-17		0.8420	-23	7		15	30	10	40	66	26	Б	1
West Texas Sour	U	1.50	-14		D.8743	-27	13		25	25	10	25	51	36	12	ь
White Rose	D	-10.00			0.8738	13	30		21							
White Rose	9	48.00			0.8926	23	87		20							
White Rose	15	80.00			0.9026	24	253		16							
White Rose	24				0.9143	30	002		16							
Zaire	D	0.16	-3		0.8720	25	362		0	5	D	5	64	22	Ð	5

Table A1 Data Used in the Correlation

Oll Name	Evap'n S	Surface Tension	Interfacial Tensio	on BP < 200	BP < 250	n-C12	n-C14	n-C16	n-C18	n-C20	n-C26	Naphthalenes	Total PAHs
	%	(mN/m)	(mN/m)	(wt%)	(w :1%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg'g)	(mg/g)	(ppm)	(ppm)
Terra Nova (SOCSEX)	0	12	26 - 25 Alexandra	27	36	100608	11.00.00000	140 - 81942	70-10-84	- 9100A392	0.43400	2.32	31253 - 94 - 3
Thevenard Island	0	23.8	17.2	49	66								
Trading Bay	0	26.5	20.6	27	36								
Trading Bay	33	31.0	18.5		8								
Transmourtain Blend	0	25.0	19.3	21	30								
Udang	0	32.2	25.4	3	8								
Viosca Knoll Block 826	0	27.7	23.6	19	29								
Viosca Knoll Block 826	8	29.1	26.5	14	24								
Viosca Knoll Block 826	17	30.1	26.1	Б	16								
Viosca Knoll Block 826	24	31.0	21.1	1	8								
Viosca Knoll Block 990	0	22.8	15.0	26	36								
Viosca Knoll Block 990	12	25.0	22.5	19	30								
Viosca Knoll Block 990	24	29.1	22.1	8	20								
Viosca Knoll Block 990	35	30.3	18.4	D	9								
Waxy Light Heavy Blend	٥	29.0	17.2	12	19								
Waxy Light Heavy Blend	12	31.4	14.2	Б	13								
Waxy Light Heavy Blend	20	33.0			5								
West Delta Block 97	0	24.0	26.9	55	72								
West Delta Block 97	23	25.7	28.2	43	64								
West Dolta Block 97	48	26.6	27.3	19	48								
West Della Block 97	74	28.0	22.0		10								
West Texas (2000)	D	26.0	15.6	26	35	6.72	5.93	5.02	3.39	2.78	1.33	5172	7841
West Texas (2000)	10	27.6	14.6	20	30								
West Texas (2000)	21	28.7	12.6	10	22								
West Texas (2000)	32	29.2	17.3	2	12	6.21	8.10	7.19	4.76	3.87	1.93	6069	9804
West Texas Intermediate	0	26.6	18.9	28	38								
West Texas Sour	D	27.0	17.8	26	36								
White Rose	0	27.7	28.2	17	25								
White Rose	9	29.2	18.4	11	20								
White Rose	15	29.9		Б	15								
While Rose	24	28.0		D	7								
Zaire	D			15	22								

Deadleted Values for All Oils Using the Medals Table A2

Predicted '	Values I	for All	Oils	Using	the	Models

		Mode	I Number Predi	ction	22		6727	6728	1000	22	18	
Oil Name	Evaph	Dispersibility %	1 High Correlators	2 Best plus BP<250	3 Best plus Viscosity	4 Densily & Viscosity	5 Densily & BP<250	6 SARA & Viscosity	7 SARA & Los H€	8 SARA & VOCs	9 SARA	10 Compos alone
Adgo	۵	29	Generatory	01 4200	Carlo Scienca	13	11	42	Letting	B4	72	thoris.
Amauligak	0	45				26	26					
ANS (1989)	0	10				1909	11					
ANS (1989)	9					16	9					
ANS (1989)	16					12	7					
ANS (Middle Pipeline)	0	46				27	28	ED		45	17	
ANS (Middle Pipeline)	31	5				ß	6	12		19	13	
ANS (Northern Pipeline)	D	33				28	30	20		40	1/	
ANS (Northern Pipeline)	31	6				8	6	13		19	12	
ANS (Southern Pipeline)	0	45				20	11	20		45	18	
Arehian Heeuw (2000)	0	15				10	24	12		10	12	
Arabian Heavy (2000)	0	1.1				10	17					
Arabian Lleavy (2000)	16	13				G	6					
Arabian Heavy (2000)	24	11				Ĕ	š					
Arabian Laht	0	21				28	28	24		41	25	
Arabian Light	12	17				21	21	18		34	19	
Arabian Light	24	14				15	13	15		23	15	
Arabian Light (2000)	0	19	20	2D	17	29	27	24	15	47	22	22
Arabian Eght (2000)	9	14				24	24	97		38	22	
Arabian Light (2000)	18	10				17	16	19		32	21	
Arabian Light (2000)	26	8	5	6	11	12	10	16	10	34	17	1D
Arabian Medium	0	23				22	24	19		34	20	
Arahian Medium	13	17				15	16	17		30	19	
Arabian Middilim	21	ſ				11	10	16		24	18	
A CMB 40	21	0				D	4	15		20	17	
	0	J.S.				47	41	20			00	
	0	28	27	57	28	.ər 30	35		27	82	30	31
ASMB #5	13	27	21	21	20	28	28	57	21	42	31	
ASMB #5	24	17				21	20	22		37	25	
ASMB #5	37	11	10	11	14	15	12	20	19	35	24	12
Avalon	0					19	27	26		58	38	
Barroy, Island	0	61				57	51			75	54	
Barrow, Island	17	36				42	40			76	54	
Barrov, Island	32	27				28	28			67	54	
Barrow Island	48	23				21	15			59	49	
BCF 24	p	12				14	15	12		23	12	
Belridge Heavy	0	2				4	3	5		12	6	
Beiridge Heavy	3	(AF				3	3	b		11	4	
Belo	0	25				29	34	0		5	0	
Brent Blend	0	U				46	4	2		86	24	
Bunker C. Friel Oil (Alaska)	ň	1.1				70	3	7		12	7	
Bunker C Friel Oil (Alaska)	à	6				1	-1	1		8	Á	
Bunker C Light Fuel Oil	0	5										
California (API 11)	0	0				2	3					
California (API 15)	D	0				4	4	-1		10	1	
Carpintoria	0	16				13	17	D		10	7	
Carpinteria	10	7				8	12	6		16	5	
Carpinteria	15	7				6	7	5		10	4	
Cala ylic Cracking Feed	D	10	202			10	9	20		31	24	1000
Chayve #6	0	41	42	42	48	45	39		49	BD	37	4
Chayve 76	14	45	41	40	35	31	33		44	69	34	29
Chaylo #P	22	29	30	35	31	20	28		31	50	27	-12
Coharrat	0	24	20	24	20	22	20		30	40	21	∠9
Cold Lake Bitumen	0					+	رے 1					
Diesel (2002)	n	72	71	72	72	50	54		70	80	43	74
Diesel (2002)	7	71	10.4	100.00		50	52		0.70	55	43	1997
Diesel (2002)	14	64				50	48			55	43	
Diesel (2002)	22	66	65	65	66	45	44		66	52	37	68
Diesel (Alaska)	0	73				56	53			77	52	
Diesel (Alaska)	37	39				41	31			81	52	
Diesel (Southern U.S.A., 1994)	ņ	52				42	30			50	43	

Predicted Values for All Oils Using the Models

		Mode	I Number Predi	ction								
Oil Nome	Funda		1	2 Dectalue	3 Destalua	4 Describe P	5 Domoite 8	6 CADAP	7	8 CADA F	9	10
Oli Name	Evaph	w/Corexit 9500	Correlators	BP<250	Viscosity	Density &	BP<250	Viscosity	LDO. HC	VOCs	SARA	alone
Diesel (Southern U.S.A., 1994)	3	45	d chi lo later b	211 12210		41	25	a constant of	Lott Ho	54	43	Li ol lo
Diesel (Southern U.S.A., 1994)	16	53				39	23			53	43	
Diesel (Southern U.S.A., 1997)	0	36				45	33			73	52	
Diesel (Southern U.S.A., 1997)	3	32				42	29			68	52	
Diesel (Southern U.S.A., 1997)	14	20				39	26	322		54	43	
Dos Cuadras	0	37				18	22	12		22	9	
Das Cuedras	11	15				11	13	в 7		16	р с	
Empire	20	21				21	20	17		14	27	
Engliebt	n	13				16	14	E1.		40	27	
Endicati	6	-1.2				10	6					
Endicatt	13					8	5					
Eugene Island Block 32	ŋ	-1-1				34	27	341		06	42	
Eugene Island Block 32	6	30				35	26	35		57	42	
Eugene Island Block 32	13	22				29	22	32		54	42	
Eugene Island Block 32	20	15				27	20	29		45	37	
Eugene Island Block 43	0	22				31	30					
Eugene Island Block 43	7	11				27	25	28		48	33	
Eugene Island Block 43	16	13				23	20	23		39	26	
Eugene Island Block 43	24	13				20	16	24		42	31	
FCC Mod um Cycle Dil	U	61				13	1	22		32	28	
Federated (994)	16	20				40	43	4		D4	31	
Enderated (1994)	28	37					23	22		36	24	
Federated (1994)	47	19				16	13	7-		22	24	
Fuel Dil No. 5 (2002)	11	15				16	10	<u>.</u>			-	
Fuel Oil No. 5 (2002)	7	7										
Garden Banks Block 387	0	27				22	22	21		37	23	
Garden Banks Block 387	7	30				17	16	20		35	21	
Garden Banks Block 307	15	17				13	12	19		32	21	
Garden Banks Block 387	23	0				8	8	16		23	17	
Garden Banks Block 42B	0	43				40	40	34		57	31	
Carden Banks Block 426	12	22				30	31	26		51	25	
Garden Banks Block 425	25	15				22	22	21		37	22	
Ganden Danks Block 420	00	10				10	12	10		20	10	
Conceis	3	13				16	13	19		36	21	
Genesis	15	24				12	10	18		33	22	
Cenesis	23	19				0	7	16		25	19	
Granite Point	D	41				46	46	39		56	31	
Granite Point	45	14				16	12	2D		31	22	
Green Canyon Block 109	D.	20				20	19	52		35	24	
Green Canyon Block 1(4	0	47				42	38	35		57	28	
Green Canyon Block 184	12	33				31	32	26		52	25	
Green Canyon Block 184	26	25				22	22	23		41	25	
Green Canyon Block 184	38	22				15	12	10		26	21	
Culleska	0	15				11	12	11		16	10	
Hearty Final Oil 6363	0	25				29	20	28		52	e1.	
Hehma M-04	ñ	12				13	17					
Hebron M-04	9	12				6	12					
Hebron M-04	16	13				T	9					
Hebron M-04	23	10				5	4					
Hibernia (1999)	0	21				30	32					
Hibernia (1999)	10	17				22	25					
Hdierma (1999)	21	15				16	19					
Hibernia (1999)	33	11				11	11	122		3222	12	
High Viscosity Fuel Oil	0	0				1	1	3		13	8	
Hondo	[]	н Н				H A	13	3		1/	2	
Hondo	17	0 /				4	5			e E	0	
Hout	34 11	19				<u>ے</u> تاری	0	ا مور		10	743	
IEO 180	n	0				5	5	11		17	13	
IFO 1BD	6	0				3	1	5		11	6	
IFO 300	0	0				3	2	1D		16	12	

Predicted Values for All Oils Using the Models

		Mode	I Number Predi	ction								
01.H			1	2	3	4	5	6	7	8	9	10
Oil Name	Evalyt	Dispersibility % w/Corevit 9500	High Correlators	Best plus BP<250	Best plus Viscosity	Density & Vicrosity	Density & BP<250	SARA &	SARA 4 Los HC	SARA &	SARA	Compos
IFO 300	5	0	Correlators	DF 4200	A 10 2001 Å	1	-1	-2	LOUTING	6	2	chone
Iranian Heavy	0	14				25	25	17		33	14	
Issungnak	0						34					
JetA/JetA-1	۵	67				Qõ	23					
Jet A/Jet A-1	12	43				59	22					
Jet Allet A-1	23	63				59	22					
Jet R (Alaska)	37	78				50 66	21					
Jet B (Alaska)	53	33				50	57					
Lapo	0	12				15	17	17		32	16	
Lago Troco	D	10				11	14	1D		22	9	
Lago Treco	16	10				4	3	7		12	7	
Lagomedic	0					21	23					
Louisiana	Ď	34				35	32	32		м	:34	
Lucula	0	20				22	26	19		33	19	
Main Pass Block 306	11	21				33	33	3-		50	31	
Main Pase Block 306	24	23				25	16	21		12	20	
Main Pass Block 306	37	17				12	8	19		30	21	
Main Pass Block 37	0	33				38	41	32		55	31	
Main Pass Block 37	16	26				26	30	28		50	31	
Main Pass Block 37	30	16				22	21	24		40	28	
Main Pass Block 37	50	14				16	13	ED		32	22	
Men muido	n	15				20	22	18		31	18	
Mars TLP	0	36				21	17	17		34	17	
Mars ILP Dave ILP	0	34				15	13	15		30	15	
Mars ILP Mare TLD	26	5				n) B	4	12		14	0	
Mati	0	33				35	48	2		14	~	
Maui	14	25				19	39					
Маці	30	10				16	30					
Maui	44	13					18					
Maya	0					11	13	12		26	15	
Мауа (1997)	n	15				11	18	b		26	11	
Maya (1997)	19	13				3	2	5		12	7	
Mississippi Canyon Block 194	10	29				37	35					
Mississippi Canyon Block 194 Mississippi Canyon Block 194	21	17				১। 25	20					
Mississippi Canyon Block 194	21	15				10	13					
Mississippi Canvon Block 72	0	31				28	27	24		42	24	
Mississippi Canyon Block 72	9	24				21	22	21		39	22	
Mississippi Canyon Block 72	18	19				17	16	20		32	21	
Mississippi Canyon Block 72	26	15				13	11	16		24	17	
Mississippi Canyon Block 807	0	19				20	23	15		28	13	
Mississippi Canyon Block 807	9	17				13	16	12		25	12	
Mississippi Canyon Block 807	26	0				и Б	10	12		12	12	
Nentine \$748	0	23				27	20	26		56	29	
Neplune SPAR	à	21				20	17	23		46	26	
Neptune SPAR	15	16				17	15	21		35	24	
Neptune SPAR	23	14				14	12	2D		31	22	
Norman Wells	ŋ	35					38					
Odoptu	0	54				40	43					
Odoptu	14	40				32	36	8		54	41	
Odoptu	29	24				24 10	20	-13-		50	37	
Oseacou	41	15				10	32	-15		4B 24	22	
Panuke	0					00	77	23			22	
Pilas Point	n	85				БВ	12					
Pitas Point	24	66				56	61					
Pitas Point	47					42	14					
Platform Gail	υ	22				10	14	ь		16	4	
Platform Gail	7	2				7	10	4		15	4	
Platform Gail	13	0				5	6	1		12	1	
Platform Gall	21	0				3	2	D		7	81	

Predicted Values for All Oils Using the Models

		Mode	I Number Predi	ction								
			1	2	3	4	5	6	7	8	9	10
Oil Name	Evap'n	Dispersibility %	High	Best plus	Best plus	Density &	Density &	SARA &	SARA &	SARA &	SARA	Compos
Period Research & Pressionland	0	w/Corexit 9500	Correlators	BP<250	Viscosity	Viscosity	BP<250	Viscosity	Lon HC	VOC5		alone
Point Arguello Comingled	9	0				5	9	2		15	2	
Point Arcuello Comingled	16	ŏ				4	5	5		10	3	
Point Arcuello Cominalezt	22	ò				5	ĩ	ō		A	ž	
Point Arcuello Heavy	0	0				7	10	4		17	5	
Point Arcuello Heavy	9	õ				4	5	3		12	4	
Praint Arguello Heavy	18	0				2	ò	1		ī	2	
Point Arcuello Licht	0	13				25	27	17		32	16	
Point Arguello Light	10	23				16	20	15		30	15	
Proint Arguello Light	19	13				13	14	12		20	11	
Point Arguello Light	28	2				E.	8	11		17	11	
Port Hueneme	0	12				5	5	5		10	5	
Port Hueneme	-1	5				1	Э	3		Ð	4	
Port Huenome	6	0				3	2	-3		4	-3	
Prudhoe Bay	0	13								55	34	
Prudhoe Bay (1995)	0	10				24	27	19		46	17	
Prudhoe Bay (1995)	9	18				17	19	18		41	18	
Prudhop Bay (1995)	18	0				13	13	15		27	14	
Prudhoe Bay (1995)	27	0				9	7	12		17	11	
Rangely	0					24	27	22		42	25	
Sakhalin	0	84				43	41	38		B5	29	
Sakhalin	25	49										
Sakhalin	42	31				16	13	19		26	19	
Santa Clara	0	6				11	15	0		12	0	
Santa Clara	11	2				7	8	1		10	1	
Saula Clara	22	0				1	4	1		н	2	
Ship Shoal Block 262	0	36				42	42					
Ship Sheal Block 269	13	27				36	33					
Ship Sheal Block 269	26	23				27	24	26		41	28	
Ship Sheal Block 269	39					20	15	24		36	29	
Scokeye	0	24				19	24	13		Ze	11	
Scokeye	13	9				13	16	10		23	9	
Spokeye	22	5	1997	22		10	10	5	1.0	15	8	45
Scokeye (2000)	0	12	14	14	8	8	12	5	4	24	4	15
Scokeye (2000)	10	13				0	8	3		13	4	
Stockeye (2000)	13	12	0	7	40	4	0	3	10	13	3	20
Saskeye (2000)	20	17	0	L_{2}	្ទល	3	1.	4	-la	12	3	ວມ
Sockeye Coming ed	0	0				0	14	4		19	4	
Scolege Store	10	0				4	6	0		10	4	
Sockeye Sour	10					5	1	2 D		7	1	
Sockeye Stuart	0	16				2	00	10		41	17	
Scolenna Consol	3	10				20	91	19		30	10	
Scokeve Sweet	17	14				15	16	14		24	13	
Seckage Sugat	27	15				11	0	12		12	11	
South Louisiana (2001)	'n	26	- 24	25	21	32	30	28	21	54	28	21
South Louisiana (2001)	11	24	200		50	24	24	24	1.526	41	28	0.00
South Enuisiana (2001)	20	16				19	18	2-		35	25	
South Louisiana (2001)	28	13	11	11	13	14	13	18	1.1	34	22	13
South Pass Block 60	0	28	22	1999	1965	34	37	27	9500	47	25	
South Pass Block 60	17	21				25	25	25		42	26	
South Pass Block 93	n					27	28	26		45	29	
South Timbal or Block 130	0	31				37	37					
Statfiord	0	40				40	39	32		52	25	
Surratran Heavy	0	13				7	6	1D		18	10	
Surrahan Heavy	5	0				7	5	10		16	8	
Sumatran Light	0	0				13	22	16		33	20	
Swanson River	0	36				39	40	29		45	22	
Swanson River	40	10				13	10	17		26	19	
Synthetic	0	40				40	30					
Taching	0	9				12	19	14		29	16	
Taku a	11	1.1				18	24	19		36	22	
Taku a	11	9				13	19	16		29	16	
Taku a	18	6				11	14	15		25	15	
Tapis Blend	U	U3				40	52	34		82	39	

Table A2 Predicted V

Predicted Values for All Oils Using the Models

		Mode	I Number Pred	iction								
			1	2	3	4	5	6	7	8	9	1D
Oil Name	Evap'n I	Dispersibility %	High	Best plus	Best plus	Density &	Density &	SARA &	SARA &	SARA &	SARA	Compos
	10000000000	w/Corexit 9500	Correlators	BP<250	Viscosity	Viscosity	BP<250	Viscosity	Lon HC	VOCs		alone
Tapis Blend	14	69			83	24	43	28		79	37	
Tapis Blend	29	56				17	32	25		59	34	
Tapis Blend	43	44				15	21	22		40	29	
Terra Nova (1994)	0	14				32	35	27		51	26	
Terra Nova (SOCSEX)	0					24	21	27		53	26	
Theyenard is and	0	77				80	70					
Tracling Bay	0	47				32	33	24		38	20	
Trading Bay	33	9				11	9	14		22	15	
Transmountain Blond	n					32	29	3D		54	37	
Udang	O	7				-1	4	6		14	8	
Viosca Knoll Block 826	n	24				27	27	25		49	26	
Viosca Knoll Block 826	6	17				20	22	21		13	22	
Viosca Knoll Block 826	17	15				15	16	<u>2</u> *		36	24	
Viosca Knoll Block \$26	24	17				12	11	18		29	21	
Viosca Knoll Block 990	0	41				38	37	34		64	34	
Viosca Knoll Block 990	12	29				30	29	28		55	28	
Viosca Knoll Block 390	24	22				22	21	25		45	29	
Viosca Knoll Block 390	35	14				17	13	2D		31	22	
Waxy Light Heavy Blend	0	9				11	13	9		18	7	
Waxy Light Heavy Blend	12	0				Б	7	6		13	5	
Waxy Light Heavy Blend	20	0				4	2	4		10	3	
West Delta Block 97	0	48				B1	77					
West Della Block 97	23					76	65					
West Delta Block 97	48					51	48					
West Della Block 9/	14					36	21					
West Texas (2000)	0	23	30	30	26	34	34	29	24	63	26	30
West Texes (2000)	10	24			20	27	28	25	2.1	30	28	
West Texas (2000)	21	13				21	20	52		37	25	
West Texas (2000)	32	13	15	15	20	15	14	18	11	32	19	18
West Texas Intermediate	n.	15				37	37	2-	2003	49	29	
West Texas Sour	0 0	25				28	31	31		42	17	
White Rose	ň	21				23	24			10		
White Bose	9	27				16	18					
White Bose	15	16				13	14					
White Rose	24	16				10	10					
7aire	n	0				15	22	1Б		33	17	
		Std. Deviation	1.6	1.3	2.4	4.6	5	4.9	6.7	11.8	6	2.6
		Maximum Dev	5	6	9	32	30	34	18	42	39	15
Abbreviations	SARA -	Saturates, Aroma	itics, Resins, As	sphallenes		VOCs - Volatils	Organic Compo	unds				
	BP<250	= fraction having	boling point lea	ss (han 250 ° C		Low HC - low h	lydrocarbons					
	-											

Compos = composition elements Physic – physicel properties ap - as is possible PP - pour point