FINAL REPORT

EXAMINING THE FATE OF EMULSION BREAKERS USED FOR DECANTING

by

SL Ross Environmental Research Ltd. Ottawa, ON

for

Minerals Management Service Technology Assessment and Research Division Herndon, VA

and

Alaska Clean Seas Prudhoe Bay, AK

September 14, 2004

FINAL REPORT

EXAMINING THE FATE OF EMULSION BREAKERS USED FOR DECANTING

by

SL Ross Environmental Research Ltd. Ottawa, ON

for

Minerals Management Service Technology Assessment and Research Division Herndon, VA

and

Alaska Clean Seas Prudhoe Bay, AK

September 14, 2004

The project described in this report was funded by the U.S. Minerals Management Service (MMS) through Purchase Order 0103PO73457.

SUMMARY

In U.S. Territorial waters mechanical recovery (using containment booms and skimmers) is the preferred method used to clean up oil spills. Skimmers operating in waves often recover a large amount of water, both in the form of emulsions and free water. Recovered water dramatically reduces the temporary storage capacity available for oily fluids offshore. This report describes the latest study of an ongoing, multi-year program to research decanting of water from recovered oil spill fluids offshore.

The objective of this study was to research the partitioning of emulsion breakers injected into an oil spill recovery system at both lab-scale (at the SL Ross Environmental Research wave tank in Ottawa, ON) and mid-scale (at Ohmsett, the National Oil Spill Response Test Facility in Leonardo, NJ). The experiments were designed to simulate the conditions in an offshore oil spill recovery operation. The ability of emulsion breaker addition to reduce water contents of the recovered fluid and the effects of demulsifier addition of the oil content of decanted water were also assessed. The efficiency of emulsion breaking chemicals in resolving water-in-oil emulsions is highly parent oil/surfactant specific. The results are strictly valid only for the combinations of demulsifiers (Alcopol O 70% PG, Breaxit OEB-9, Exxon Nalco EC 2085 and Unichem RNB 60425) and emulsions used (50% salt water in either a blend of 80% Hydrocal 300/5% No. 6 Fuel Oil/15% diesel, or fresh Endicott crude).

The formation of micelles by the surfactants in the water at high concentrations and the resulting limitations of the analytical technique used to measure the concentration of the demulsifiers in the decanted water make definitive conclusions about the partitioning of the demulsifier between oily and water phases impossible. The following general conclusions could be made:

- A large fraction of the demulsifier injected into the recovered fluid stream appears to end up in the decanted water.
- The concentrations of demulsifier in the decanted water are well in excess of 100 ppm and could be as high as in the 1000's of ppm.

The use of a demulsifier injected into a recovery system, combined with decanting, substantially reduced the volume of water in temporary storage tanks and the water content of emulsions for disposal/recycling. The efficacy of the demulsifier was a strong function of free water content: if the free water content exceeded approximately 55%, the effect of the surfactant was substantially reduced.

The degree of emulsion breaking achieved increased with increasing mixing energy applied to the fluid. Increasing the flow rate (and hence turbulence level) and increasing the length of the flow path both resulted in increased emulsion breaking.

Primary break occurred in only a few minutes (2 to 5 in the lab tests, less than 30 for the Ohmsett tests). The application of demulsifier did not appear to affect the time required. The Ohmsett results indicated that the use of a demulsifier increased oil droplet concentrations in the decanted water by approximately a factor of two.

The implication of this research for oil spill response is that it may be possible to greatly reduce downtime for offshore skimming operations caused when the available temporary storage systems are filled with fluids containing large amounts of water. The legislated requirements for onsite temporary storage systems could also ultimately be reduced by the use of these results, resulting in considerable savings in operating and disposal costs for Oil Spill Response Organizations (OSROs). Knowing that the separated water can be decanted quickly will optimize onsite recovery operations and greatly reduce the volume of fluids requiring disposal. In fact, the removal of most of the free and emulsified water from the recovered product would greatly enhance the likelihood that it could be recycled, as opposed to requiring disposal. The Net Environmental Benefit of using demulsifiers and decanting water offshore should be addressed

ACKNOWLEDGEMENTS

The project described in this report was funded by the U.S. Minerals Management Service (MMS) through Purchase Order 0130PO73457. Alaska Clean Seas also provided major funding for the work. The authors of this report were Ian Buist and Alun Lewis. The author would like to acknowledge the contributions of Mr. Bob Smith and Mr. Joe Mullin, with MMS, Mr. Lee Majors and Mr. Ken Linderman with Alaska Clean Seas, the other staff of Alaska Clean Seas, and the staff of MAR, Inc. who operate Ohmsett, particularly Alan Guarino and Sue Cunneff.

DISCLAIMER

This report has been reviewed by the U.S. Minerals Management Service staff for technical adequacy according to contractual specifications. The opinions, conclusions, and recommendations contained in this report are those of the authors and do not necessarily reflect the views and policies of the U.S. Minerals Management Service. The mention of a trade name or any commercial product in this report does not constitute an endorsement or recommendation for use by the U.S. Minerals Management Service. Finally, this report does not contain any commercially sensitive, classified or proprietary data release restrictions and may be freely copied and widely distributed.

TABLE OF CONTENTS

Summaryii
Acknowledgementsiii
Disclaimeriii
List of Tablesv
List of Figuresv
1. Introduction1
1.1 Background1
1.2 Objective
2. Lab-scale Testing
2.1 Analytical Test for Demulsifier in Water4
2.2 Parent Oil Blend for Emulsions
2.3 Laboratory Test Methods 72.3.1 Test Loop72.3.2 Test Procedures92.3.3 Emulsion Sample Analysis92.3.4 Demulsifier Concentration in Decanted Water9
2.4 Laboratory Scale-model Test Results
3. Ohmsett Testing 17
3.1 Ohmsett Test Equipment and Methods 17 3.1.1 Preparations 17 3.1.2 Test Procedures 20 3.1.3 Test Matrix 22 3.1.4 Sample Analyses 23
3.2 Ohmsett Test Results 24
4. Conclusions and Recommendations
4.1 Conclusions
4.2 Recommendations
References

LIST OF TABLES

Table 2-1. Demulsifier effectiveness tests with four emulsion breakers and three	e oils 6
Table 2-2. Matrix of laboratory test variable targets	11
Table 2-3. Water content of emulsion batches [*] for laboratory tests.	12
Table 2-4. Results for Test 1	13
Table 2-5. Results for Test 3	13
Table 2-6. Summary of laboratory test results.	15
Table 3-1. Nominal Wave Characteristics.	
Table 3-2. Planned Test Matrix	
Table 3-3. Data spreadsheet for Test No. 7 – No Demulsifier.	
Table 3-4. Data spreadsheet for Test No. 3 – 1400 ppm Alcopol	
Table 3-5. Summary of Ohmsett test results.	

LIST OF FIGURES

Figure 2-1. Calibration curve of interfacial tension vs. demulsifier concentration	5
Figure 2-2. Least-squares fits to power law relationship for various demulsifiers	5
Figure 2-3. Emulsion stability test results for 50% salt water emulsions with various	
parent oil blends	7
Figure 2-4. Schematic of laboratory scale-model piping layout	8
Figure 2-5. Photograph of laboratory scale-model piping system.	. 10
Figure 3-1. Layout of equipment in tank at Ohmsett	. 18
Figure 3-2. Photo of boom triangle and Desmi Terminator skimmer in water	. 19
Figure 3-3. Photo showing power pack on deck, skimmer discharge hose to recovery	
tanks and inline mixer.	. 19
Figure 3-4. Decanted water temporary storage tank (foreground) and water sampling	
tank (background)	. 21
Figure 3-5. Schematic of emulsion formation system	. 21
Figure 3-6. Separation of recovered fluid as a function of time.	. 27
Figure 3-7. Emulsion breaking efficiency test results	. 27
Figure 3-8. Concentrations of oil in decanted water	. 29

1. INTRODUCTION

In 2003 the Minerals Management Service (MMS) and Alaska Clean Seas (ACS) jointly funded a research program to examine the fate of chemical emulsion breakers (also known as demulsifiers) when they are injected into a recovered fluid stream from a skimmer used in open water containment and recovery operations. The demulsifiers are used to aid in decanting of recovered emulsified water to conserve temporary storage capacity. The primary objective was to quantify the amount of the emulsion breaker that ends up in the decanted water, and how much stays with the oily phase.

1.1 Background

The preferred approach to cleaning up an offshore oil spill is to contain and thicken the oil slick(s) with booms and then place skimmers in the oil or emulsion to recover it. The recovered fluids are placed in temporary storage containers for transfer to larger storage vessels or for direct input into waste recycling and disposal systems. The most common type of high-capacity skimmer in use today is the weir skimmer. These skimmers often recover a large amount of water, both in the form of emulsified water and free water, when operating in waves. In some cases, the transfer pump built into the skimming system can impart enough energy to cause additional emulsification of the recovered fluids. The problem is that the recovered water (both emulsified and free) dramatically reduces the temporary storage space available at the site of skimming operations; this can result in having to stop skimming prematurely when the storage capacity is reached and having to wait until empty, temporary storage containers arrive at the response site.

Over the last six years a series of lab-scale and mid-scale tests with and without the use of emulsion breakers were completed that give some quantitative insight into the oil/water separation processes occurring in temporary storage devices (SL Ross 1998, 1999 and 2002). The objective of these earlier tests was to determine the optimum time to decant the water and maximize the available on-site storage space during a skimming operation as well as the efficacy of adding emulsion breakers into the recovery stream to allow decanting of emulsified water. The results indicated that "primary break" (the initial separation of the recovered fluid into a layer containing most of the oil and a layer containing most of the free water) occurred within a few minutes to one hour, depending on the physical characteristics of the oil. Rapidly decanting this free water layer, in appropriate situations, produced immediate increases of 200 to 300% in available temporary storage space. The addition of emulsion breakers increased the amount of water that could be decanted, in the same time frame. Addition of the emulsion breaker increased the oil content of the separated water significantly. During the last decanting experiments at Ohmsett using emulsion breakers (SL Ross 2002), the separated water foamed easily when agitated, providing strong qualitative evidence that it contained significant amounts of surfactant.

A significant potential impediment to the application of emulsion breakers to extend temporary storage capacity is the ultimate fate of the emulsion breaking chemical(s). If the demulsifier remains with the oil, there should be no problem with their use; however, if demulsifier components partition significantly into the separated water, they will be discharged into the environment when the water is decanted.

Demulsifiers are surface-active, or surfactant, chemicals that can be added to 'break' or 'resolve' the emulsion back into separate oil and water phases. Demulsifiers function by destabilizing or disrupting the film of precipitated asphaltenes and/or resins that are known to stabilize water-in-oil emulsions. For a demulsifier to function effectively, it must be able to come into intimate contact with the oil-water interface around the water droplets in emulsified oil. The surfactant chemicals within a demulsifier therefore need to be introduced into the emulsified oil and thoroughly mixed with it.

Being surfactants, the active ingredients of demulsifiers are not truly soluble in either water or oil; the minimum surface free energy is achieved when the surfactant molecules are orientated at an oil/water interface. This property results in their surface-active nature. The molecules of surfactants can orientate into "micelles" or "reverse micelles" to accommodate their dissolution in either water or oil. These are less preferred arrangements than orientation at an interface, but it is critical to the behaviour of these chemicals. It is therefore possible for surfactants to be present in bulk in either the water or oil phases, as well as at the oil/water interface. This tendency is known as 'partitioning'. Of course, if a demulsifier is effective, it greatly reduces the amount of oil/water interface originally in a water-in-oil emulsion, and much of the surfactant would move back into the bulk liquid phases. The proportion of oil and water phases that are available for them to be dissolved in as well as the surface-active properties of the demulsifier itself.

The use of surfactants in demulsifiers for breaking recovered emulsified oils is therefore quite complex. The surfactants in demulsifiers are normally in the form of a concentrated solution blended in a solvent. The solvent in the blend allows the surfactants to transfer into the emulsified oil (in an oil spill emulsion the oil is the continuous phase that contains droplets of water). In the inevitable presence of free water during oil recovery operations some surfactant may move directly into the free water and will not perform its intended function of breaking the emulsion. This tendency can be minimised if the proportion of free water is kept to a minimum. The transfer of surfactants into the emulsified oil can be difficult because of the highly viscous nature of many emulsified oils. Once inside the bulk of the emulsified oil, the surfactants need to be able to contact the oil/water interface at the surface of the entrained water droplets. Some surfactant may orientate to form reverse micelles within the oil – this is effectively 'lost' from the emulsion-breaking process unless mechanical agitation introduces it to the oil/water interface.

The surfactants within demulsifiers can therefore partition into any of the phases that they may encounter during spilled oil recovery:

- Into the free water
- Into the oil phase
- Into the emulsified water phase that is subsequently separated by gravity

If the bulk of the surfactants in the demulsifier remain with the oil, there should be no problem with their use; the recovered oil will be collected and disposed of. However, if the majority of the surfactants partition into the separated water (either initially free or emulsified water), they will be discharged into the environment if the separated water is decanted overboard. Some partitioning is an inevitable consequence of surfactant behaviour. The relative tendency to partition, either as individual molecules or as micelles and reverse micelles between oil and water is very dependent on molecular structure.

Some demulsifiers, such as sodium diisooctyl sulfosuccinate, (the active ingredient in Alcopol, aka Drimax) are strong ionic surfactants that have a relatively high toxicity to some marine organisms. If a recovered fluid consists of 50% free water and 50% of an emulsion containing 75% water and all the emulsion breaker used to treat it (typically dosed at 1:400 demulsifier:recovered fluids) transfers into the water, the decanted water could contain some 1400 ppm of demulsifier. Discharge regulations in some jurisdictions would not permit the decanting of such water to the ocean in normal circumstances. Other demulsifiers, such as the EO/PO (ethylene oxide/propylene oxide) coplymers are non-ionic, and tend to be much less toxic.

Some emulsions are easier to break with ionic surfactants, and some are easier to break with non-ionic surfactants. The environmental consequences of demulsifier use will depend on:

- Their effectiveness in breaking emulsions
- Their partitioning behaviour into the different water and oil phases
- Their toxicity to marine organisms
- The potential for dilution of the decanted water in the receiving water body

The intention of this study was to research the partitioning of different emulsion breakers injected into a recovery system at both lab-scale (at SL Ross) and mid-scale (at Ohmsett). A series of small-scale tests with a scale-model piping system simulating a weir skimmer recovery system (used in the previous decanting study – SL Ross 2002) was completed in the summer of 2003 to determine the effects of several variables on the concentration of demulsifier in decanted water. In addition, a technique for determining the concentration of demulsifier in the decanted water was perfected. In the fall of 2003 a series of mid-scale experiments was conducted at Ohmsett.

1.2 Objective

The objective of the proposed study was to determine the partitioning of different chemical emulsion breakers between oily and water phases when they are used to enhance decanting of recovered water from offshore skimming operations.

2. LAB-SCALE TESTING

This section describes the development of an analytical test to measure the concentration of demulsifiers in water, the decanting laboratory test apparatus and results. The tests were conducted at the SL Ross laboratory in Ottawa, ON.

2.1 Analytical Test for Demulsifier in Water

Prior to carrying out the small-scale research program in the laboratory, it was necessary to develop a simple, inexpensive test to measure the concentration of demulsifier in decanted water. The approach taken was to adapt a technique developed to measure the concentration of dispersants in Ohmsett tank water (SL Ross 2003). This method involves measuring the interfacial tension between a highly refined mineral oil (USP, or pharmaceutical grade) and the water containing the surfactant using a DuNouy ring apparatus (ASTM –D971). The interfacial tension value obtained is compared to a plot of interfacial tension vs. concentration of prepared aqueous solutions of the demulsifier in question to obtain an estimate of the concentration of the demulsifier.

Figures 2-1 and 2-2 show the calibration curves prepared for the four demulsifiers considered for use in the lab-scale tests. Although the interfacial measurement technique gives a reasonable fit of the data for most of the demulsifiers to a power law relationship of the form:

Concentration = $C_1(IFT)_2^{C_2}$ (1) Where: C_1 and C_2 are demulsifier-specific constants

It is clear from Figure 2-1 that the relationships will not give very accurate results at concentrations of demulsifier above about 100 ppm. This is because there is very little change in interfacial tension with a large change in demulsifier concentration above this point, most likely due to the fact that the demulsifier has exceeded its Critical Micelle Concentration (CMC) and the oil/water interface is saturated with surfactant molecules at demulsifier concentrations. A difference of only 0.3 dynes/cm in interfacial tension in the 1.5-dyne/cm range (the DuNouy ring is a notoriously finicky apparatus to use and repeatability at this level would be quite good) results in a 300+ ppm difference in calculated demulsifier concentration.

Despite its shortcomings, the interfacial tension technique was used as the analytical method for determining the concentrations of demulsifier in the decanted water for this study. This was primarily because the other available techniques (High Pressure Liquid Chromatography [HPLC], complex titrations, etc.) are very expensive and time consuming.

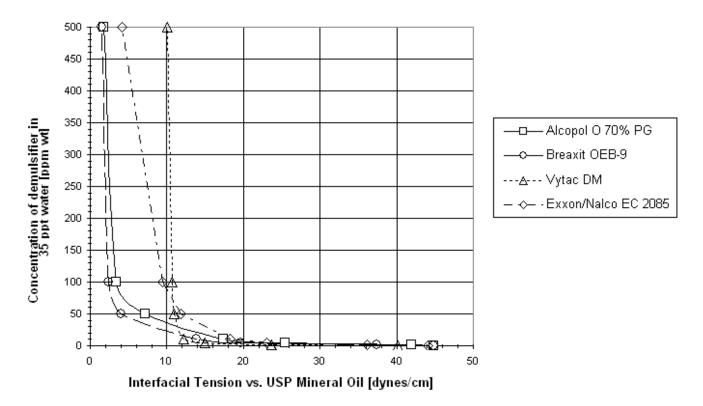


Figure 2-1. Calibration curve of interfacial tension vs. demulsifier concentration.

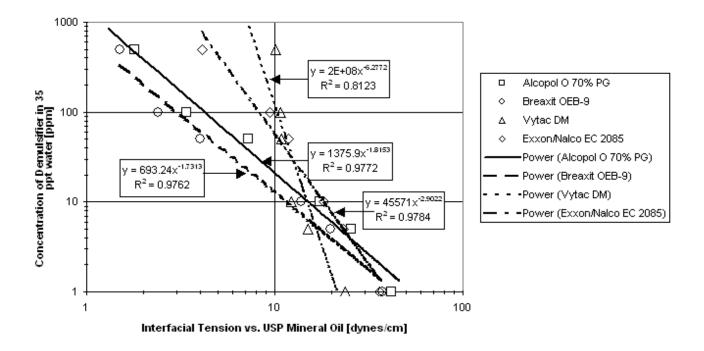
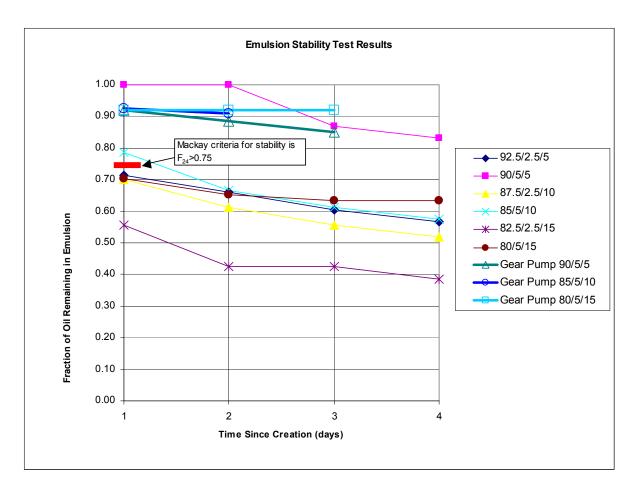


Figure 2-2. Least-squares fits to power law relationship for various demulsifiers.

2.2 Parent Oil Blend for Emulsions

In the previous series of tests using demulsifiers (SL Ross 2002) it was observed that the demulsifiers could not completely resolve the emulsions created using a blend of 95% Hydrocal and 5% No.6 fuel oil (to add asphaltenes). This was presumed to be because this parent oil contained no aromatic compounds (Hydrocal is a de-aromatized lube stock) to act as a sink for the asphaltenes displaced from the water/oil interface by the demulsifier surfactant. As such, a series of emulsion stability tests with various mixtures of Hydrocal, No. 6 Fuel Oil (2.5 or 5 % by volume) and automotive diesel (5, 10 or 15% by volume) were conducted to select a mixture that would form a stable, 50 % salt water emulsion that could be completely resolved by the demulsifiers to be used.

Full results are contained in Appendix A. Figure 2-3 shows the stability test results (fraction of oil not creamed out of the emulsion) over four day settling periods for emulsions created using a high-speed hand blender and the gear pump used to create the emulsions for the tests (see Section 2.3 below). Only the 90/5/5 (Hydrocal/No. 6/diesel) parent oil created by the hand blender met the standard criteria for a stable emulsion, but all three emulsions created with the gear pump met the criteria.

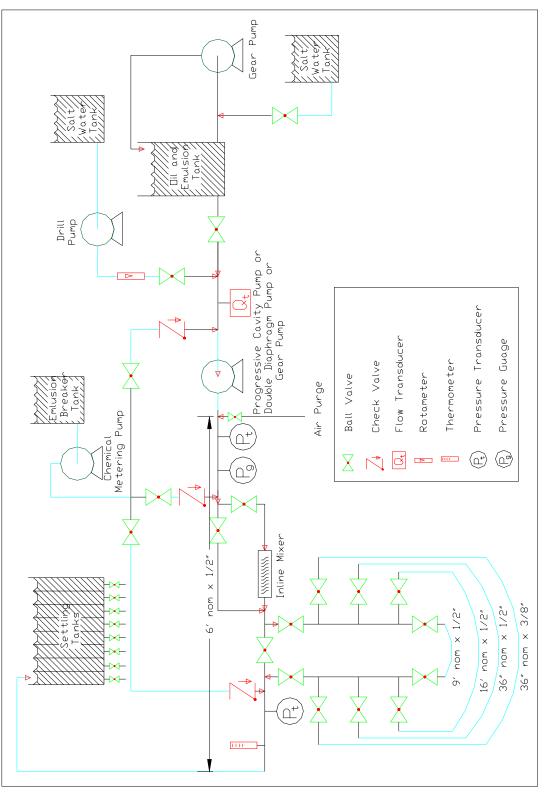

Table 2-1 shows the results of the emulsion breaker effectiveness tests (the method of Hokstad *et al.* 1993 was used) with a variety of demulsifiers on emulsions created with the gear pump using the three blends of parent oils that passed the stability test discussed above.

Parent Oil Blend	Emulsion	Dosage	Initial Emulsion	H _{2min}	H _{60min}	H ₂₄	Dim	D24
	Breaker	Volume	Height	2	0011111			
(parts Hydrocal/Bunker C/Diesel		(mL)	(mm)	(mm)	(mm)	(mm)	(%)	(%)
90/5/5	none	0	41	85	80	80	-215	-190
90/5/5	Vytac DM	0.015	40	93	93	93	-265	-265
90/5/5	Breaxit	0.015	43	93	93	93	-233	-233
90/5/5	Alcopol	0.015	43	39	38	38	19	23
80/5/15	Alcopol	0.015	45	27	27	27	80	80
80/5/15	Breaxit	0.015	45	32	32	31	58	62
80/5/15	Vytac DM	0.015	43	93	93	93	-233	-233
80/5/15	none	0	46	97	97	97	-222	-222
85/5/10	none	0	45	98	98	98	-236	-236
85/5/10	Alcopol	0.015	45	28	27	27	76	80
equivalent to a dosage of 1:500	in the initial '	165 mL of e	mulsion and 165 r	mL of water				

Table 2-1. Demulsifier effectiveness tests with four emulsion breakers and three oils.

Samples shown in green still contained some water, but when heated to burc for 24 hours they broke completely

Based on the stability results and the demulsifier effectiveness tests, the parent oil blend was selected to be 80% Hydrocal, 5% No. 6 Fuel Oil (aka Bunker C) and 15 % automotive diesel. For some tests, emulsion created using fresh Endicott crude (which met the stability criteria), from Alaska, was also used. The three demulsifiers selected for testing in the lab-scale tests were: Alcopol O 70% PG (aka Drimax), Breaxit OEB-9 and Exxon Nalco EC2085, an older product specifically blended as a generic production emulsion breaker for Alaska North Slope crudes.


Figure 2-3. Emulsion stability test results for 50% salt water emulsions with various parent oil blends.

2.3 Laboratory Test Methods

The apparatus and most of the procedures used in the laboratory tests were the same as those used in the previous decanting tests with demulsifiers and are described in detail in that report (SL Ross 2002). The following is a brief summary.

2.3.1 Test Loop

The lab-scale test system schematic is given in Figure 2-4. A photograph of the setup is shown in Figure 2-5. The scale-model piping system was designed to mimic the pumping, mixing and flow processes that occur in an offshore oil recovery system. Pre-mixed 50% emulsion and nominally 50% free water were pumped separately, at measured, pre-determined rates, to the suction of the progressing cavity pump, representing the pump type used in most weir skimmers. The fluid was directed through a static in-line mixer, down either a 6-foot or 36-foot length of ½" ID plastic tubing and then to six cylindrical receiving tanks where samples were taken at different intervals to characterize the separation of the aqueous phase and the dehydration of the emulsion. Demulsifier was injected, at different dosages, into the system before the main pump using a chemical metering pump.

2.3.2 Test Procedures

- 1. Mix enough salt water for emulsion formation and free water injection
- 2. Mix emulsion
 - Add Hydrocal, No. 6 and diesel separately to emulsion tank
 - Add salt water to blend tank
 - Recirculate oil with gear pump
 - Bleed in water slowly (approximately 2 L of salt water per minute)
 - Measure gear pump output rate by timing fill of bucket and adjust to desired flow rate with valve
- 3. Open valves
- 4. Start chemical metering pump (if using)
- 5. Start water pump
- 6. Start main pump
- 7. Start emulsion pump
- 8. Discharge fluid into waste tank until fluid appears consistent
- 9. Discharge into sample tanks; start stopwatch; record time of day
- 10. Fill tanks to 5 L or 2.5 L, depending on free water content; note time on stopwatch when each tank is filled
- 11. When 6th tank is filled, direct discharge to waste tank
- 12. Stop main pump, emulsion pump, water pump and chemical pump
- 13. Decant water from sample tanks into graduated pitchers and record volume after appropriate settling times (2, 5, 10, 15, 30 and 60 minutes); take 30 mL samples of water from all tanks for IFT analysis
- 14. After decanting, mix oil remaining in sample tanks with spatula
- 15. Withdraw 20 mL with syringe and transfer to 30 mL glass bottle for water content analysis
- 16. Empty tanks in preparation for next test

2.3.3 Emulsion Sample Analysis

The emulsion samples in 30 mL glass vials withdrawn from each tank were treated with a few drops of Alcopol emulsion breaker, shaken vigorously, and then placed in a constant temperature bath at 80°C for at least 24 hours to separate. The vials were then removed from the bath, wiped and the heights of water and oil in the vials measured with a steel rule. The water content of the emulsion remaining after decanting could then be estimated.

2.3.4 Demulsifier Concentration in Decanted Water

The water samples taken from each recovery tank were subjected to the interfacial tension test described in Section 2.1 to estimate the concentration of demulsifier that they contained.

Figure 2-5. Photograph of laboratory scale-model piping system.

2.4 Laboratory Scale-model Test Results

A total of 25 test runs were completed using the laboratory scale model piping setup. The complete results may be found in Appendix B. The matrix of test variable target values is given in Table 2-2.

Test		Free			Inline	Circuit
Number	Oil	Water	Breaker	Dose	Mixer	
Number	OII		Dreaker	Rate	(Y/N)	Length
1	Hudrood OO/E/1E	<u>(%)</u> 50	None		Yes	(ft) 36
1	Hydrocal 80/5/15	00			res	30
-	Undersonal OD/E/1E	50	Alcopol	High	Yes	36
	Hydrocal 80/5/15	50	Aleenel	Llinda		
	Hydrocal 80/5/15		Alcopol	High	Yes	36
	Hydrocal 80/5/15	33	Alcopol	Low	Yes	36
	Hydrocal 80/5/15	33	Alcopol	High	Yes	36
	Hydrocal 80/5/15	50	Alcopol	High	Yes	36
7		50	Alcopol	Low	Yes	36
	Hydrocal 80/5/15	66	Alcopol	Low	Yes	36
	Hydrocal 80/5/15	50	Alcopol	High	Yes	36
	Hydrocal 80/5/15	50	Alcopol	High	Yes	6
	Hydrocal 80/5/15	50	Alcopol	Low	Yes	6
	Hydrocal 80/5/15	0	Alcopol	Low	Yes	6
	Hydrocal 80/5/15	0	Alcopol	High	Yes	6
	Hydrocal 80/5/15	66	Alcopol	High	Yes	36
	Hydrocal 80/5/15	66	Alcopol	Low	Yes	36
16	Hydrocal 80/5/15	50	Exxon Nalco	High	Yes	36
17	/	50	Exxon Nalco	Low	Yes	36
18	Hydrocal 80/5/15	0	Exxon Nalco	High	Yes	6
19	Endicott	50	Exxon Nalco	High	Yes	36
20	Endicott	50	Exxon Nalco	Low	Yes	36
21	Endicott	50	Alcopol	High	Yes	36
22	Hydrocal 80/5/15	50	Breaxit	Low	Yes	36
	Hydrocal 80/5/15	50	Breaxit	High	Yes	36
24	Hydrocal 80/5/15	0	Breaxit	Low	Yes	36
	Hydrocal 80/5/15	0	Breaxit	High	Yes	36

 Table 2-2. Matrix of laboratory test variable targets.

The tests were conducted with: two parent oils (the 80/5/15 Hydrocal/No. 6/diesel blend and fresh Endicott crude); free water contents ranging from 0 to 66%; and, three demulsifiers (Alcopol, Breaxit and Exxon Nalco) at two dosages (low or high). All runs involved flow through the inline mixer, and the 36-foot tubing circuit was used for most.

2.4.1 Emulsion Water Content

Table 2-3 shows the water contents measured for the six batches of emulsion created for the tests. All were close to the target of 50% water by volume. It is more likely that the

variation between batches is due to the inherent error in the water content determination, than an actual variation in the emulsion water content of the batch.

			Oil Sa	mples		
Emulsion	Total	Measured	Oil	Water	Total	Percent
Batch	Height	Nater Heigh	Height	Volume	Volume	Water
	(mm)	(mm)	(mm) [*]	(mL)	(mL)	
#1	No Sample	No Sample	No Sample	No Sample	No Sample	48%
#2	66	31	31	17	39	44%
#3	53	27	22	15	31	48%
#4	54	30	20	16	31	53%
Endicott	47	28	15	15	27	57%
#6	49	26	19	14	28	50%
					mean =	50%
* Bottom of jar is	4mm high, s	o heights do	n't add up to	total.	std. dev. =	4.31%

Table 2-3. Water content of emulsion batches^{*} for laboratory tests.

* Note that the water content for Batch #1 comes from the results from Test 1.

2.4.2 Test Results

The complete data set for each test can be found in Appendix B. The ability of emulsion breaking chemicals to resolve water-in-oil emulsions is highly parent oil/surfactant specific. The results are strictly valid only for the combinations of demulsifiers (Alcopol O 70% PG, Breaxit OEB-9 and Exxon Nalco EC 2085) and emulsions used (50% salt water in either a blend of 80% Hydrocal 300/5% No. 6 Fuel Oil/15% diesel, or fresh Endicott crude).

Table 2-4 shows the full results obtained for Test 1, with no demulsifier injected, and Table 2-5 shows the results for Test 3, a run with Alcopol injected at 2654 ppm (a dose rate of 1 part demulsifier in 375 parts of fluid) into the suction side of the progressing cavity pump with a free water injection rate of approximately 50%. The cells with the shading are those into which data from the test was entered.

The results for Test 1 show that, without demulsifier, only free water is decanted, and that the water content of the emulsion remains approximately 50%. The IFT measurements on the water samples show that there are negligible amounts of demulsifier present in the decanted water.

The results for Test 3 show the effects of demulsifier addition. More water is decanted than free water was injected, and the water content of the remaining emulsions is greatly reduced. The emulsion dehydration (the percent reduction in the volume of water in the emulsion¹) ranges from 45% in the early samples to 63% in the 60-minute sample (i.e.,

¹ A reduction in emulsion water content from 50% to 20% equates to an emulsion dehydration of 60%

Test 1
Results for
Table 2-4.

						Comments															
			: Samples	Demulsifier	Concentration	(mqq) (7.0 8.03	No Sample	39.0 1.78	No Sample	31.1 2.68	34.3 2.25									
			Water	FT	Reading	(dynes/cm ²	-	No Sample		No Sample											
				· Emulsion	Dehydration	(%)	B No Sample	B No Sample	2 No Sample	6 No Sample	9 4.0	3.1									
(m				Free Water	ed Removed	(%)	Ϋ́ Ο	ۍ 0	ۍ 0	ū	ŭ	0	0	0	0						
Demulsifier Dose Rate (pp	0				Water Remow	(%)					.0	.0									
				Water	Content	(%)	No Sample	No Sample	No Sample	No Sample			average	minimum:	maximum:						
			il Samples	lio p	ght Height	(mm)	No Sample	No Sample	No Sample	No Sample											
			ō				le No Sample	le No Sample	le No Sample	le No Sample											
	s 36 ft			sion Total	ining Height	(mm) (1	8450 No Samp	8450 No Samp	8450 No Samp	8500 No Samp	8400	8500					ter	t	u)	5.8	
				irrected Emul	Water Rema	(mL) (ml											Oil Wat			2.0	
Flow rate V	0			Decanted Co	Water V	(mL)	1200	1200	1000	1150	1250	1150					Emulsion	Flow	(mqg)	4.0	
Demulsifier Setting	0			Volume	Collected	(mL)	2000	2000	4800	2000	2000	2000					Water	Flow	(dbm)	3.8	
	No			Settling	Time		2	ιΩ	10	15	8	09					Fluid	Flow	(mqg)	7.1	
ī	Hy Hydrocal 80/5/15			Tank	Number		-	2	m	4	S	9					III	Time	(s)	29	
	Demulsifier Free Inline Circuit Setting Flow rate Water Mixer Length	Demulsifier Free Inline Circuit Setting Flow rate Water Mixer Length No 0 0 54% Yes 36 ft	Demulsifier Free Inline Circuit Demulsifier Setting Flow rate Water Mixer Length Dose Rate (ppm) No 0 0 54% Yes 36 ft	Demulsifier Free Inline Circuit Demulsifier Setting Flow rate Water Mixer Length No 0 0 54% Yes 36.1	Demulsifier Free Inline Circuit No 0 54% Yes 36 ft No 0 54% Yes 36 ft Setting 100 54% Yes 36 ft No 0 0 54% Yes Setting 100 54% Yes 36 ft No 0 0 0 0 Setting Volume Decanted Corrected Emulsified	Demulsifier Free Inline Circuit No 0 54% Yes 36 ft No 0 54% Yes 36 ft Setting Flow rate Water Mixer Length No 0 54% Yes 36 ft Setting 0 54% Yes 36 ft Filling Volume Decarted Corrected Emulsified Filling Volume Decarted Contected Mater Mater Massured Oil Water Free Water	Demulsifier Free Inine Circuit No 0 0 54% Yes Benulsifier No 0 0 0 54% Yes Benulsifier No 0 0 0 54% Yes Benulsifier No 0 0 0 0 10 94% 10 Setting Volume Decented Emulsion Total Mater Benulsion Time Collected Water Permissing Volume Permissing Volume Mater Decented Emulsion Total Mater Benulsion FT Demulsion Time Collected Volume Decented Fund Mater Benulsion FT Demulsion (m1) (m1) (m1) (m1) (m1) (m1) (m2) (m1) (m2) (m1)	Demulsifier Free Inine Circuit Demulsifier Demulsifier No 0 0 54% Ves 36 ft Does Rate (ppm) P P P No 0 0 54% Ves 36 ft P <t< th=""><th>Demulsifier Free Inine Circuit Demulsifier Inine Circuit Demulsifier Inine Circuit Ininine <th< th=""><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{$</th><th>$\begin{array}{$</th><th>$\begin{array}{$</th><th>$\begin{array}{$</th><th>$\ \ \ \ \ \ \ \ \ \ \ \ \$</th><th>$\begin{array}{$</th><th>$\ \ \ \ \ \ \ \ \ \ \ \ \$</th><th>$\begin{array}{$</th><th></th></th<></th></t<>	Demulsifier Free Inine Circuit Demulsifier Inine Circuit Demulsifier Inine Circuit Ininine <th< th=""><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{$</th><th>$\begin{array}{$</th><th>$\begin{array}{$</th><th>$\begin{array}{$</th><th>$\ \ \ \ \ \ \ \ \ \ \ \ \$</th><th>$\begin{array}{$</th><th>$\ \ \ \ \ \ \ \ \ \ \ \ \$</th><th>$\begin{array}{$</th><th></th></th<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ $	$ \begin{array}{ $	$ \begin{array}{ $	$ \begin{array}{ $	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{ $	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{ $	

Table 2-5. Results for Test 3

	La ja a			$\left \right $	Circuit C					Domilaitae					
Demuisiner Under Setting Flow rate Water Mixer Length	Flow rate Water Mixer	Vater Mixer	Mixer		Length					Dose Rate (ppm)					
Alcopol 70 0.015491823 48% Yes 36 ft	0.015491823 48% Yes	48% Yes	Yes	-	36 ft					2654					
							Oil Samples	ples					Water Samples	mples	
Decanted Corrected Emulsion Total	Decanted Corrected Emulsion Total	Corrected Emulsion Total	Total	Total		Mea	Measured	lio .		Emulsified Free Water		Emulsion		Demulsifier	
Collected VVater Vvater Remaining Height ' (mi) (mi) (mi)	Vvater Vvater Remaining Height ' (mi) (mi) (mi)	Vater Remaining Height ' (mi) (mi)	Height (mm)	Height (mm)		Water (m	Vvater Height (سس)	Height (mm)	Content (%)	Water Kemoved Kemoved		Dehydration	Keading (Concentration	Commante
4588 22200 2550 2037.5 41	4588 22200 2550 2037.5 41	2200 2550 2037.5 41	550 2037.5 41	2037.5 41	41		13		26%	29	(01)	48.2	1071163/ULL J	22	260.74 Filled to 2.5cm low
5 5000 2450 2800 2200 39	5000 2450 2800 2200	2800 2200	2200	2200	R		Ω	2	27%	Ξ	117	45.3	2.1		
2500 2850 1985	4835 2500 2850 1985	2850 1985	1985	1985	42		12	26	23%	42		54.7	1:		473.36 Filled to 1cm low
4670 2500 2850 1820	4670 2500 2850 1820	2850 1820	1820	1820	ж		11	20	25%	20		51.0	1.		473.36 filled to 2 cm low
2500 2850 2150	5000 2500 2850 2150	2850 2150	2150	2150	R		11	24	22%	35	119	56.5	2.1	357.82	
5000 2600 2950 2050	5000 2600 2950 2050	2950 2050	2050	2050	40		₽	26	18%	42		63.1	1.9		429.11 No further sep'n after 24 hours for Tank 6
									average:	R		53.1			
									minimum:	29	116	45.3			
									maximum:	8	127	63.1			
Water Emulsion Oil	Emulsion Oil	ō		Water											
Flow Flow Input Input	Flow Input	Input		Input											
(mqg)	(gpm) (gpm) (gpm)	(mdg) (mdg)		(gpm)											
5.8 2.8 4.0 2.0 4.8	2.8 4.0 2.0	4.0 2.0	2.0				_								

13

the final water content of the emulsion remaining after settling has been reduced from 50% to 18%). Note that the tank containing the 60-minute sample was left undisturbed for an additional 24 hours, and no further separation occurred. The IFT measurements gave demulsifier concentrations in the decanted water in the 260 to 475 ppm range. Given the lack of sensitivity of the IFT analytical technique at demulsifier concentrations above 100 ppm it was not possible to ascertain what fraction of the 2654 ppm of demulsifier injected into the fluid ended up in the decanted water. Suffice to say that a considerable portion of the demulsifier did end up in the water, and at concentrations in the hundreds to thousands of ppm.

Table 2-6 summarizes the key results from the laboratory tests. Note that fluid flow rate was not an independent variable: all the tests involving free water resulted in a measured flow rate of approximately 23 L/min (6 US gpm) and all the runs with no free water had a flow rate of approximately 11 L/min (3 US gpm).

Primary Break

In almost all of the tests, primary break occurred in two to five minutes.

Partitioning of the Demulsifiers

The formation of micelles by the surfactants in the water at high concentrations and the resulting limitations of the analytical technique used to measure the concentration of the demulsifiers in the decanted water make definitive results impossible. As such, it was not possible to discern any trends in the partitioning of the demulsifiers between the decanted water and the oily phase. The exception may be that more of the Exxon Nalco product ended up in the decanted water than either the Breaxit or Alcopol. The following general observations can be made:

- A large fraction of the demulsifier injected into the recovered fluid stream appears to end up in the decanted water.
- The concentrations of demulsifier in the decanted water are well in excess of 100 ppm and could be as high as in the 1000's of ppm.

Effectiveness of the Three Demulsifiers in Breaking Emulsions of the Two Oils

Overall, it was apparent that the Alcopol demulsifier was the best of the three demulsifiers tested on 50% salt water emulsions made from both parent oils (the Hydrocal blend and the fresh Endicott crude). The next most effective demulsifier on the Hydrocal blend emulsions was Breaxit. The Alcopol was better than the Exxon Nalco demulsifier on the fresh Endicott emulsions, and seemed to work as well with the Endicott as it did with the Hydrocal blend (comparing test 3 to test 21). The effect of the Exxon Nalco product seemed to be to create a very fine dispersion of oil droplets in the water, which made subsequent separation of the oil and water very slow.

Effect of Demulsifier Dose Rate

Comparing tests 4 to 5, 2 to 8 and 6 to 7 and 9, it can be seen that a higher Alcopol dose rate (ca. 2600 ppm) provided better resolution of the emulsion than did a lower rate (ca. 900 ppm). The same was true for the Breaxit demulsifier (comparing tests 22 to 23 and

				2'															ry slow to separ			inders						
		Comments	Timer fouled up & start estimated	Water ran out and test divided into 2 &		Redo of #3			Sample Water ran out after third cylinder										Cylinders filled with oil/cloudy water, very slow to separ	Oily phase in cylinders still brown.		Oil/water mixture of low viscosity in cylinders		May have run out of emulsion.				No Sample No Sample No Sample May have run out of demulsifier at end
of	/ater (ppm)	60 min.	2	329	473	429	329	525	No Sample	525	227	227	329	473	329	391	391	303	661	759	No Sample	946	381	142	209	307	No Sample	No Sample
Concentration of	Demulsifier in Decant Water (ppm)	10 min.	2	261	358	473	473	659	747	659	429	261	261	429	No Sample	429	525	358	1022	759	No Sample	1201	759	149	177	307	No Sample	No Sample
ŏ	Demulsifier	2 min.	ω	329	No Sample	261	391	303	586	473	429	227	187	429	No Sample	No Sample	329	243	878	1022	No Sample	No Sample	No Sample	243	164	277	No Sample	No Sample
u (%)		60 min.	m	47	20	8	6	41	No Sample	8	22	48	13	20	52	g	œ	40	8	26	÷	5	32	64	თ	21	~	on
Emulsion Dehydration (%)		0 or 15 min.	No Sample	45	42	55	33	R	32	20	თ	45	8	14	m	m	22	8	Ŕ	-23	m	-10	16	40	0	20	m	÷
Emulsio		2 or 5 min. 10 or 15 min.	No Sample	7	22	48	22	45	48	11	16	8	22	9	m	No Sample	25	27	-37	Ŕ	ų	No Sample	នុ	8	17	თ	ω	.
Circuit	Length	(H	æ	æ	æ	æ	æ	ж	æ	æ	æ	99	و	ى	ى	۵	99	36	æ	æ	ى	99	ж	ģ	æ	æ	ю	я
Inline	Mixer	(N/X)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Demulsifier	Concentration	(mqq)	0	3058	5408	2654	686	2680	2606	686 0	883 883	2639	2671	915	1929	4398	2671	1014	2737	1014	5239	2737	1038	2639	1001	2606	2077	4789
	Demulsifier 0		None	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Exxon Nalco	Exxon Nalco	Exxon Nalco	Exxon Nalco	Exxon Nalco	Alcopol	Breaxit	Breaxit	Breaxit	Breaxit
Free	Water	(%)	54	53	0	48	8	R	47	49	53	48	23	8	0	0	62	64	49	47	0	49	49	48	48	47	0	0
	lio		1 Hydrocal 80/5/15	2 Hydrocal 80/5/15	2' Hydrocal 80/5/15	3 Hydrocal 80/5/15	4 Hydrocal 80/5/15	5 Hydrocal 80/5/15	6 Hydrocal 80/5/15	7 Hydrocal 80/5/15	Hydrocal 80/5/15	9 Hydrocal 80/5/15	10 Hydrocal 80/5/15	11 Hydrocal 80/5/15	12 Hydrocal 80/5/15	13 Hydrocal 80/5/15	14 Hydrocal 80/5/15	15 Hydrocal 80/5/15	16 Hydrocal 80/5/15	17 Hydrocal 80/5/15	18 Hydrocal 80/5/15	Endicott	Endicott	Endicott	22 Hydrocal 80/5/15	23 Hydrocal 80/5/15	24 Hydrocal 80/5/15	25 Hvdrocal 80/5/15
Test	Number		L H	2 H	2' H	m	4 H	5 H	Н 9	H 7	Ω	н б	10 H	1 1	12 H	13 H	14 H	15 H	16 H	17 H	18 H	19	2	21	22 H	23 H	24 H	25 H

Table 2-6. Summary of laboratory test results.

24 to 25). In one case with the Exxon Nalco product (test 19 vs. 20), the lower dose rate resulted in better breaking of the Endicott crude emulsion than the higher dose did.

Effect of Free Water

As was the case with the previous series of tests (SL Ross 2002), when the free water content in the treated fluid exceeded 55%, the efficiency of the demulsifier was reduced. When the demulsifier was injected into a fluid stream that contained only emulsion, the separation initially was much poorer than in tests where the free water was less than 50%, but after 60 minutes, the demulsifier effectiveness was about the same for both cases. In the case of the Breaxit demulsifier, it seemed to work much better with 50% free water in the treated fluid than it did when there was no free water present. The same was true for the Exxon Nalco demulsifier when applied to the Hydrocal blend emulsion.

Effect of Tubing Length

Pumping the treated fluid down either a 6-foot or 36-foot long length of ½"-tubing was the only variation in mixing level used in this test series. As was observed in the earlier demulsifier tests (SL Ross 2002), better resolution of the emulsion was obtained when the treated fluid was pumped through the 36-foot length than the 6-foot length (tests 9 vs. 10, 7 vs. 11 and 2' vs. 13). This was likely related to greater mixing of the demulsifier and the emulsion in the longer length of tubing.

3. OHMSETT TESTING

This section describes the procedures and results for the meso-scale tests carried out at Ohmsett. These are based on the previous demulsifier tests, and are described fully in the report (SL Ross 2002). Only a summary of the equipment and procedures is given here. The tests were completed during the week of the 9th through the 14th of November 2003. The Ohmsett Test Plan may be found in Appendix C.

3.1 Ohmsett Test Equipment and Methods

3.1.1 Preparations

The preparations for the tests included:

- Installing the skimmer, hoses, Globe boom and instrumentation
- Conducting required safety checks, calibrations and notifications.

Test Set-up and Instrumentation

All tests were conducted in a stationary position (i.e., no towing down the tank). A schematic layout of the test equipment is given in Figure 3-1.

The test area consisted of 11.5 m (37.5 feet) of 24-inch Globe boom deployed in a triangle (12.5' per side) between the Auxiliary Bridge and the Main Bridge (Figure 3-2). The boomed area was approximately 6.2 m^2 (67 ft²). The Desmi Terminator skimmer was placed in the test area and operated from the deck. The skimmer discharge was directed to four of the oil recovery tanks on the Auxiliary Bridge (Figure 3-3) via 3-inch flexible hose. For all tests, the skimmer discharge was directed through a Lightnin Series 45 Model 4 Type 12H in-line mixer. The separated water from the oil recovery tanks was directed to a temporary holding tank (Figure 3-4) for water sampling, and then sent to a holding tank for eventual treatment and return to the tank.

Demulsifiers (Alcopol O 70% PG, aka Drimax 1235B, and Unichem RNB-60425, an emulsion breaker specifically designed for Endicott crude) were injected using a fixed-rate (0.25 gpm) peristaltic pump directly into the skimmer weir. For all tests the decanted water was sent to the sampling tank, where it was mixed thoroughly, allowed to settle and then sampled for oil content and IFT analysis. Oil or emulsion from the recovery tanks was pumped to the Ohmsett oily water processing system then stored for disposal.

Waves were generated at the south end of the tank and controlled by the bridge operator in the Control Tower at the north end. The wave profiles were recorded using a Datasonics ultrasonic distance meter. The signal from the wave meter was recorded and analyzed to confirm the wave characteristics.

Two wave conditions were generated during this test series. Their nominal characteristics are defined in Table 3-1.

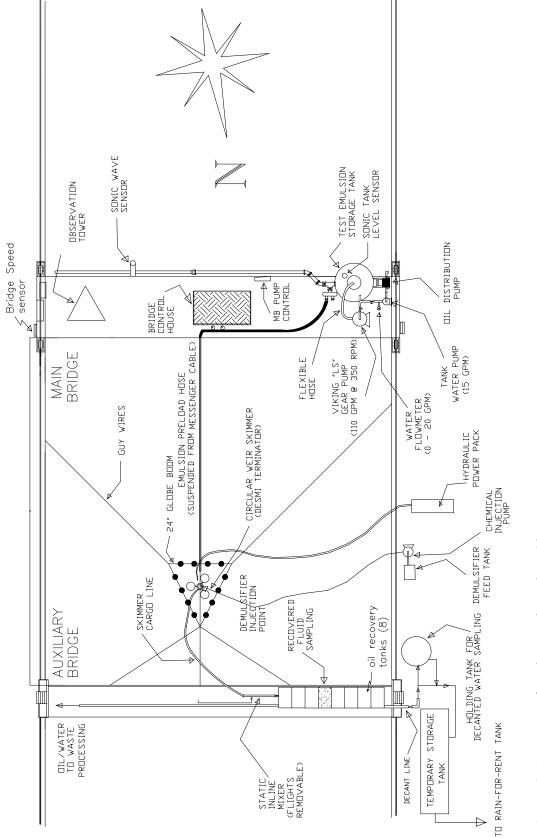


Figure 3-2. Photo of boom triangle and Desmi Terminator skimmer in water.

Figure 3-3. Photo showing power pack on deck, skimmer discharge hose to recovery tanks and inline mixer.

Wave No.	Stroke (in.)	СРМ	Туре	Nominal H ^{1/3} (in.)	Wave Length (ft.)	Period (sec)
#1	3	22	Sinusoidal	16.5	37	2.8
#2	3	35	Sinusoidal	15	15	1.7

Table 3-1. Nominal Wave Characteristics.

Emulsion Preparation

At the beginning of the tests, and subsequently as required, batches of emulsion were prepared. A gear pump was used to prepare the emulsion, since large quantities of a consistent quality were required on a daily basis. The use of high-speed pumps, including gear pumps, to create emulsions for equipment testing is well known and widely utilized in North America and Europe (eg., Gåseidnes 1993, DNV 2002). A blend of 80% Hydrocal 300/5% IFO 380/15% automotive diesel was used as the parent oil for most of the tests. Fresh Endicott crude was used as the parent oil for two tests. A sample of the first batch of Hydrocal blend emulsion prepared was allowed to sit for 24 hours, and showed no signs of breaking. The target property of the emulsion was 50% (vol.) water content. A 50% water content was chosen because it could be prepared reasonably quickly using the gear pump technique with little risk of inverting the emulsion, as can occur with higher water contents. The emulsion batches were prepared, using the Viking gear pump plumbed to the Main Bridge oil tank as shown schematically in Figure 3-5, using the same procedures as described in detail in SL Ross 2002. Samples of each batch were taken and subjected to BS&W analysis (see Section 3.1.4 below). The sample from the first batch of Hydrocal blend emulsion was misplaced, but the water content of the first sample from the second baseline test (i.e., Test 2 - no demulsifier) was 50%. The second batch had a water content of 45% and the batch of emulsion created with the fresh Endicott crude had a water content of 53%.

3.1.2 Test Procedures

The following procedures were followed for each test:

Before each test the Emulsion Recovery Rate (ERR) for the skimmer was estimated and the volume of emulsion removed from the boomed area during the previous test calculated. The aim was to pump emulsion into the boomed area at the same rate that the skimmer removed it so that a constant thickness of emulsion was being presented to the skimmer. Then:

- 1. The required volume of test emulsion was added to the boomed area to make up the desired slick thickness (approximately 100 mm, see Test Matrix below).
- 2. The Main Bridge distribution pump speed was set to supply fresh test emulsion at the ERR estimated for the test.
- 3. The waves were turned on at the desired setting and allowed to come to apparent steady state (this required about two minutes). The data acquisition system was started.

Figure 3-4. Decanted water temporary storage tank (foreground) and water sampling tank (background)

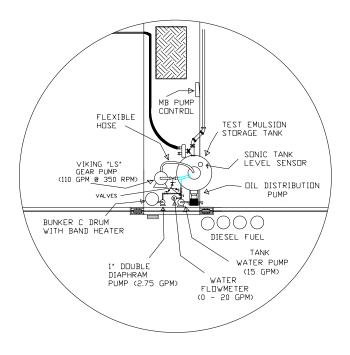


Figure 3-5. Schematic of emulsion formation system

- 4. The emulsion distribution pump was started and the skimmer turned on, with its discharge directed to recovery tanks #8 and #7. The chemical injection pump was started with flow to the desired location at the desired demulsifier flow rate (nominally 1/400th or 1/1000th of the Fluid Recovery Rate).
- 5. When the cargo line was purged, the skimmer discharge was directed to the recovery tank cells sequentially (i.e., fill cell #6, then #5, etc.). The target volume of emulsion (exclusive of free water) in each cell was 180 L.
- 6. The time when filling each tank cell was started and finished was recorded. The depth of fluid in each cell was measured and recorded.
- 7. After the last tank cell (#3) was filled, the emulsion distribution pump, demulsifier injection pump, skimmer and waves were stopped.
- 8. Simultaneously with the filling operation, two minutes after tank cell #6 was filled, the separated water was decanted until the discharge from the bottom was "black". The water was sent to a temporary storage tank and not poured back into the test basin. Note that cells #8 and #7 were also decanted to the temporary storage tank for processing.
- 9. All the test cells in each run were decanted directly to a Nalgene temporary holding tank on the deck beside the Auxiliary Bridge. When all water from a given test cell was transferred, the contents of the temporary holding tank were thoroughly mixed with an electric, bladed mixer and allowed to settle for five minutes to allow large droplets of emulsion to surface. A small water sample, for oil content analysis, was taken when half the water had drained. The purpose of this was to estimate the average concentration of "permanently dispersed" oil in the decanted water i.e., the droplets that would not rise out and re-coalesce with the slick if the decanted water was discharged back into a boomed area. A second water sample for IFT analysis to measure demulsifier concentration was obtained at the same time.
- 10. The remaining emulsion recovery tank cells were decanted in sequence at 10, 30 and 60 minutes after the time they were filled. The purpose of this was to determine the time required for "primary break" of the skimmer discharge product. "Primary break" is the point at which the bulk of the lower density phase has risen to the top and the higher density phase has settled to the bottom; both phases typically contain small droplets of the other phase at this point.
- 11. The depth of fluid remaining in each cell was measured (these depths, combined with the initial depths, were used to calculate the volumes of recovered product, decanted water and emulsion remaining).
- 12. Each recovery tank cell was mixed and sampled to determine the water content of the oily fluid remaining.
- 13. The contents of the recovery tank cells were transferred for waste processing.

3.1.3 Test Matrix

The following variables were involved in constructing the test matrix:

- One circular weir skimmer (representative of OSRO stockpiles)
 - Desmi Terminator (USCG/Ohmsett) nominal ORR in waves 20 m³/hr (90 USgpm)

- One slick thickness (representing a thickness typically expected for large-scale offshore boom/skimmer operations)
 - 100 mm (requires 625 L 165 US gallons preload in triangular boom)
- One demulsifier injection point
 - into the skimmer mouth
- Two Wave Conditions
 - wave #1, $H^{1/3} = 15''$ with $\lambda = 37'$
 - wave #2, $H^{1/3} = 15''$ with $\lambda = 15'$
- Three demulsifier dose rates (1:400, 1:1000 and 1:2500)
- Three parent oil/demulsifier combinations (Hydrocal/Alcopol, Hydrocal/Unichem RNB-60425 and two tests with Endicott/Unichem RNB-60425)
- Two control tests (no demulsifier injected)

One duplicate test was conducted. Table 3-2 gives the preliminary test matrix.

 Table 3-2.
 Planned Test Matrix.

Test No.	Emulsion Parent Oil	Demulsifier	Demulsifier Dose	Wave No.
1	Hvdrocal 80/5/15	none	none	1
2	Hydrocal 80/5/15	none	none	2
3	Hydrocal 80/5/15	Alcopol O 70% PG	1:400	1
4	Hydrocal 80/5/15	Alcopol O 70% PG	1:400	2
5	Hydrocal 80/5/15	Alcopol O 70% PG	1:1000	1
6	Hydrocal 80/5/15	Alcopol O 70% PG	1:1000	2
7 (duplicate)	Hydrocal 80/5/15	Alcopol O 70% PG	none	none
8	Hydrocal 80/5/15	Alcopol O 70% PG	1:2500	2
9	Endicott crude	Unichem RNB-60425	1:400	1
10	Endicott crude	Unichem RNB-60425	1:400	2

3.1.4 Sample Analyses

Each test involved collecting 4 water samples for TPH analysis, 4 emulsion samples for BS&W, and 4 water samples for IFT analysis to determine demulsifier concentrations. The oil-in-water samples were sealed in glass jars until such time as they could be analysed. The emulsion and IFT samples were stored in Nalgene jars. In addition, a sample of each batch of emulsion was subjected to a BS&W analysis.

Bottom Solids and Water

The water content of the emulsion samples was determined using the procedures specified in ASTM D1796. The method involved splitting a well-shaken, 100-mL emulsion sample into two aliquots. Each aliquot was poured into a graduated, centrifuge

tube containing 50 mL of toluene, filling the tube to the 100-mL mark. The tube was shaken vigorously, warmed and then placed in the centrifuge and spun for 10 minutes. The volume of water in the tubes was read directly from the graduations. For water volumes in the 10 to 25 mL range (20% to 50% water content emulsions) the reading error was on the order of 1 mL (2%); for higher water content emulsions the error was likely in the 3 to 5 mL range (6% to 10%).

Total Petroleum Hydrocarbons

The decanted water samples were extracted with a solvent and then analysed with a gas chromatograph at the US Army Fort Monmouth Environmental Testing Laboratory. The techniques used followed those specified in NJ-DEP OQA-QAM-025,. The limit of detection of this method was 1 to 5 ppm. The technique also detects the dissolved hydrocarbons in the tank water from previous testing. Generally, the "background" TPH level in the tank is 3 to 5 ppm. During the extraction process, the solvent could also remove some portion of the demulsifier that is dissolved in the water. It is not certain what this portion would be.

IFT Analysis for Demulsifier

The water samples taken from each recovery tank were subjected to the interfacial tension test described in Section 2.1 to estimate the concentration of demulsifier that they contained. Calibration curves (IFT against USP mineral oil vs. concentration of demulsifier in Ohmsett tank water) were constructed for both the Alcopol (aka Drimax) and Unichem demulsifiers.

3.2 Ohmsett Test Results

The complete data set for each test can be found in Appendix D. The ability of emulsion breaking chemicals to resolve water-in-oil emulsions is highly parent oil/surfactant specific. The results are strictly valid only for the combinations of demulsifiers (Alcopol O 70% PG, aka Drimax, and Unichem RNB-60425) and emulsions used (50% salt water in either a blend of 80% Hydrocal 300/5% IFO 380/15% diesel, or fresh Endicott crude).

Table 3-3 shows the full results obtained for Test 7, with no demulsifier injected, and Table 3-4 shows the results for Test 3, a run with Alcopol injected at 1413 ppm (a dose rate of 1 part demulsifier in 700 parts of fluid) into the hopper of the Desmi Terminator skimmer.

The results for Test 7 show that, without demulsifier, only free water is decanted, and that the water content of the emulsion remains approximately 50%. The IFT measurements on the water samples show that there are negligible amounts of demulsifier present in the decanted water, although there may be traces left from a previous test. The TPH data shows initial oil concentrations in the decanted water in the 800-ppm range, declining as the settling proceeds.

The results for Test 3 show the effects of demulsifier addition. More water is decanted than free water was injected, and the water content of the remaining emulsions is greatly

Test Number	Demulsifier Y/N	Inline Mixer	Preload Volume	Preload Thickness	Distribution Rate	Wave Number	Parent Oil	Demulsifier
						Number		
7	Fluid:Demulsifie N	r Y	(gal) 354	(mm) 215	(gpm) 50	1	Blend 81/15/4	Vol (L)
	N	Y	354	215	50	1	81/15/4	U
Redo 1	r		1 111	D 1 1		101.1		0.1
Tank	Settling	Time	Filled	Decanted		Water	Rec. Emulsion	Oil
Number	Time	to Fill	Depth	Depth			Water Content	
		(s)	(in)	(in)	(gal)	(gal)	(%)	(gal)
8								
7								
6	2	25	8.5	7.5	44	6	46	24
5	10	23	9.3	8.8	51	3	53	24
4	30	24	8.8	6.8	39	12	46	21
3	60	24	8.5	6.3	37	13	42	21
2								
1								
Fill	Averag	e Skimming R	ate	Free		Emulsion	Removed (gal)	180
Time	Total	Emulsion	Water	Water			Preload (gal)	
(s)	(gpm)	(gpm)	(gpm)	(%)		Emuls	ion Added (gal)	
96	128	113	15	11.8		Emulsion Remaining (gal)		
Test								
Number								
Number								
7								
· ·								
Tank	Free	E 1 .	TOU	ICT	Demulsifier			
Tallin								
Number		Emulsion Dehydration	TPH Wotor	IFT Water				
Number	Water	Dehydration	Water	Water	in Water			
8	Water	Dehydration	Water	Water	in Water			
8	Water Removed (%)	Dehydration (%)	Water (mg/L)	Water (mN/m)	in Water (ppm)			
8 7 6	Water Removed (%) 100	Dehydration (%) O	Water (mg/L) 803	Water (mN/m) 7.05	in Water (ppm) 33			
8 7 6 5	Water Removed (%) 100 46	Dehydration (%) 0	Water (mg/L) 803 506	Water (mN/m) 7.05 8.95	in Water (ppm) 33 21			
8 7 6 5 4	Water Removed (%) 100 46 193	Dehydration (%) 0 0 8	Water (mg/L) 803 506 344	Water (mN/m) 7.05 8.95 8.7	in Water (ppm) 33 21 22			
8 7 6 5 4 3	Water Removed (%) 100 46	Dehydration (%) 0	Water (mg/L) 803 506	Water (mN/m) 7.05 8.95	in Water (ppm) 33 21			
8 7 6 5 4 3 2	Water Removed (%) 100 46 193	Dehydration (%) 0 0 8	Water (mg/L) 803 506 344	Water (mN/m) 7.05 8.95 8.7	in Water (ppm) 33 21 22			
8 7 6 5 4 3 2 2	Water Removed (%) 100 46 193	Dehydration (%) 0 0 8 16	Water (mg/L) 803 506 344 647	Water (mN/m) 7.05 8.95 8.7 10.8	in Water (ppm) 33 21 22 15	ppm		

Table 3-3. Data spreadsheet for Test No. 7 – No Demulsifier.

 Table 3-4. Data spreadsheet for Test No. 3 – 1400 ppm Alcopol.

Test Number F	Demulsifier Y/N Iuid:Demulsifie	Inline Mixer r	Preload Volume (qal)	Preload Thickness (mm)	Distribution Rate (gpm)	Wave Number	Parent Oil Blend	Demulsifier Vol (L)
3	Y	Y	203	123	75	1	81/15/4	3.3
	708							Drimax
Tank	Settling	Time	Filled	Decanted	Emulsion	Water	Rec. Emulsion	Oil
Number	Time	to Fill	Depth	Depth	Remaining	Decanted	Water Content	Recovered
		(s)	(in)	(in)	(gal)	(gal)	(%)	(gal)
8								
7								
6	2	51	15.0	6.0	35	53	11	31
5	10	55	15.5	5.3	31	60	5	29
4	30	55	15.0	4.5	26	61	28	19
3	60	57	14.8	4.0	23	63	21	18
2								
1								
Fill	Averag	e Skimming R	ate	Free		Emulsio	n Removed (gal)	195
Time	Total	Emulsion	Water	Water			Preload (gal)	203
(s)	(gpm)	(gpm)	(gpm)	(%)		Emuls	sion Added (gal)	
218	97	54	43	44.5		Emulsion Remaining (gal)		140
Test								
Number								
3								
Tank	Free	Emulsion	TPH	IFT	Demulsifier			
Number	Water	Dehydration	Water	Water	in Water			
	Removed (%)	(%)	(mg/L)	(mN/m)	(ppm)			
8								
7								
6	135	78	8252	2.4	257			
5	149	90	1325	2.25	291			
4	157	44	1102	1.9	401			
3	164	58	452	2.4	257			
2								
1								
Average co	ncentration of	demulsifier in r	ecovered fl	uids =	1413	nnm		

reduced. The emulsion dehydration (the percent reduction in the volume of water in the emulsion¹) ranges from 45% to 90%. Given the lack of sensitivity of the IFT analytical technique at demulsifier concentrations above 100 ppm it was not possible to ascertain what fraction of the 1400 ppm of demulsifier injected into the fluid ended up in the decanted water. Suffice to say that a considerable portion of the demulsifier did end up in the water, and at concentrations in the hundreds to thousands of ppm. The concentrations of oil in the decanted water were over 8000 ppm initially, declining to 450 ppm after 60 minutes.

Table 3-5 summarizes the key results from the Ohmsett tests.

Primary Break

Figure 3-6 shows the rate of separation of water from the recovered fluids in the recovery tank. The baseline test results (no demulsifier was used in Tests 1, 2 and 7) are shown with larger symbols and thicker lines. In each test the four recovery tanks were filled to the same level, within an inch or so (5.84 gallons per inch is the factor for the recovery tanks) at a steady recovery rate. The exceptions were Tests 6 and 9, during which there were problems with the skimmer hydraulic power pack that resulted in a change in the "steady state" conditions for the test. It is clear that, in most cases, primary break is achieved in 30 minutes or less. This is entirely consistent with the results of both previous decanting test series (SL Ross 1999 and 2002).

Partitioning of the Demulsifiers

The formation of micelles by the surfactants in the water at high concentrations and the resulting limitations of the analytical technique used to measure the concentration of the demulsifiers in the decanted water make definitive results impossible. As such, it was not possible to discern any trends in the partitioning of the demulsifiers between the decanted water and the oily phase. The following general observations can be made:

- A large fraction of the demulsifier injected into the recovered fluid stream appears to end up in the decanted water.
- The concentrations of demulsifier in the decanted water are well in excess of 100 ppm and could be as high as in the 1000's of ppm.

Effectiveness of the Two Demulsifiers in Breaking Emulsions of the Two Oils

Figure 3-7 shows the measured dehydration of the samples from the recovery tanks as a function of time since the tank was filled (i.e., the time at which they were decanted). Again, the results from the baseline tests (2 and 7) are shown with larger symbols and thicker lines.

Without the addition of demulsifier, there was no dehydration in the emulsions recovered in Wave 1 conditions, and an increase in the water content of the emulsions (from 50% at 2 min. to 65% at 60 minutes) in Wave 2 conditions. Note that the 30-minute and 60minute samples from test 7, the repeat of the baseline test 1 in Wave 1, did show a low level of dehydration, possibly related to contamination of the skimmer, hoses and recovery tanks from previous tests with demulsifier. The extra mixing energy added to

 $^{^1}$ A reduction in emulsion water content from 50% to 20% equates to an emulsion dehydration of 60%

	60 min.	No Sample	0	ŝ	g	64	46	16	64	44	20
(%)											
hydration (30 min.	No Sample	0	44	42	R	R	ω	62	33	30
Emulsion Dehydration (%)	10 min.	No Sample	0	6	48	20	62	0	58	R	28
	2 min.	No Sample	0	78	44	54	70	0	62	26	42
Recovered Emulsion Water	Content (Avg %)	No Sample	60	16	29	24	23	47	19	34	35
Demulsifier Concentration	(mqq)	0	0	1413	1194	888	1354	0	425	1380	1647
Demulsifier		None	None	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Unichem	Unichem
Free Water	(Avg %)	12	19	44	45	16	49	12	89	9	34
Wave Total Fluid Number Flow Rate	(gpm)	67	104	97	8	117	8	128	224	135	95
Wave Number		1	7	÷	7	.	7	.	2	.	2
ōi		Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	4 Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	8 Hydrocal 80/5/15	Endicott	Endicott
Test Number		1	2	m	Þ	ŋ	ى	2	œ	6	10

		Concentration of Demulsifier in Decanted Water (ppm)	60 min.	2	No Sample	257	257	401	445	15	364	171	156
	ration of		30 min.	2	No Sample	401	267	229	401	22	279	175	175
			10 min.	No Sample	No Sample	291	267	592	470	21	317	223	149
		Demul	2 min.	No Sample No Sample	No Sample	257	445	140	630	R	279	241	301
		~	60 min.	918	No Sample	452	979	22209	923	647	1249	934	491
	ration of	Concentra Oil In Decanted V 10 min	d Water (pp 30 min.	206	No Sample	1102	430	740	14572	344	066	1347	2143
	Concent		10 min.	212	No Sample	1325	799	25330	2816	506	1680	3338	4184
			2 min.	No Sample	No Sample	8252	3491	2189	22547	803	4649	11239	4515
	Test	Number		-	2	m	4	Ś	G	7	œ	0	ļ

1	left test results	
	mmarv of ()hmse	
	3	

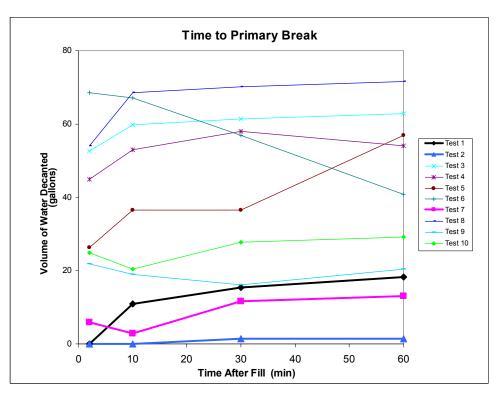


Figure 3-6. Separation of recovered fluid as a function of time.

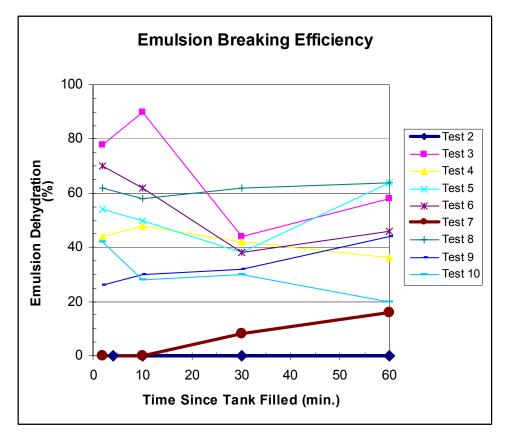


Figure 3-7. Emulsion breaking efficiency test results.

the slick by the steeper Wave 2 conditions caused additional emulsification of the oil (as observed in the previous tests – SL Ross 2002).

The addition of demulsifier caused significant amounts of water to separate from the treated emulsions. In Wave 1 conditions almost $\frac{2}{3}$ rds of the emulsion water was removed and decanted; in Wave 2 conditions, a lesser degree of emulsion dehydration was calculated; however, these calculations are based on the assumption that the emulsion has a water content of 50%. If, as is likely based on the results of Test 2, the emulsion water content was upwards of 65% by the end of a test in Wave 2 conditions, the dehydration efficiencies for Tests 4 and 6 would be closer to 60%, rather than 36% and 46% respectively.

The best dehydration obtained was for Test 8, run in Wave 2 with the lowest dose rate of Alcopol of all, but with a recovery rate almost twice that of any other test. The 60-minute dehydration result of 64% (72%, if a 65% water content emulsion was being skimmed) was a testament to the fact that mixing energy is very important for effective emulsion breaking, even more so than dose rate.

The results obtained at Ohmsett were consistent with those from the lab tests with free water contents of less than 50%.

The efficiency of the Unichem demulsifier on the emulsions of fresh Endicott crude was not as high as the Alcopol with the Hydrocal blend emulsions, but the results were encouraging nonetheless. This is because the demulsifier is not an oil spill demulsifier, but a product designed for oil field production purposes (and hence, stored in large quantities in Alaska at the oil fields). In Wave 1 conditions (Test 9), 44% dehydration was achieved in the 60-minute sample. In Wave 2 (Test 10), 20% dehydration was calculated after 60 minutes (40%, if the emulsion was 65% water, not 50%).

Oil Content of the Decanted Water

Figure 3-8 shows the measured oil content of the decanted water from the various tests. The results from the two baseline tests (#1 and #7) are shown with larger symbols and thicker lines. Several of the samples from tests using demulsifier had measured TPH values in the 10,000 to 25,000 ppm range, much higher than expected. It is possible that these samples contained one or two very large oil droplets that biased the result. One oil droplet with a diameter of 2.67 mm would result in a concentration of 20,000 ppm in a 500-mL water sample.

In general, the concentration of oil in the decanted water declined from values in the thousands of ppm after two minutes, to the high hundreds of ppm after 60 minutes.. The baseline results were generally similar to those obtained in the previous test series, with TPH values in the 200 to 1000 ppm range. The TPH values measured with tests involving demulsifier on Hydrocal blend emulsions were general higher than those obtained in the previous test series. This could be due to different analytical techniques (the previous series used extraction/IR analysis for TPH) but is more likely due to the addition of 15% diesel to the parent oil blend for this test series. This would make the parent oil

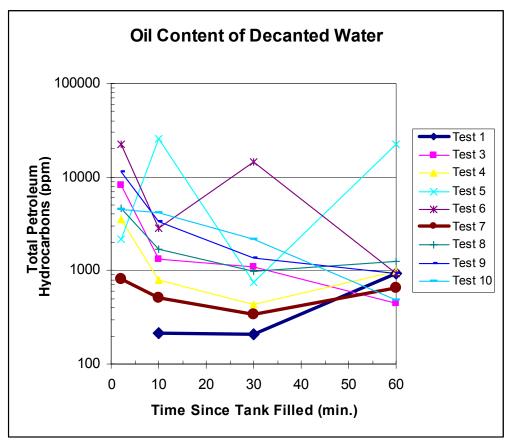


Figure 3-8. Concentrations of oil in decanted water.

significantly less viscous, and hence easier to shear into very small droplets that take longer to rise out of the water.

The TPH results for the Endicott emulsions treated with the Unichem demulsifier were in the same range as the results for the Hydrocal emulsion treated with the Alcopol demulsifier.

4. CONCLUSIONS AND RECOMMENDATIONS

The efficiency of emulsion breaking chemicals in resolving water-in-oil emulsions is highly parent oil/surfactant specific. The conclusions drawn from the results are strictly valid only for the combinations of demulsifiers (Alcopol O 70% PG, Breaxit OEB-9, Exxon Nalco EC 2085 and Unichem RNB 60425) and emulsions used (50% salt water in either a blend of 80% Hydrocal 300/5% No. 6 Fuel Oil/15% diesel, or fresh Endicott crude).

The major implication of this research for oil spill response is that it may be possible to greatly reduce downtime for offshore skimming operations caused when the available onsite temporary storage systems are filled with fluids containing large amounts of water; however, it is likely that much of the demulsifier used will be contained in the decanted water. The legislated requirements for onsite temporary storage systems could also ultimately be reduced by the use of these results, resulting in considerable savings in operating and disposal costs for OSRO's. Knowing that the separated water can be decanted quickly will optimize onsite recovery operations and greatly reduce the volume of fluids requiring disposal. In fact, the removal of most of the free and emulsified water from the recovered product would greatly enhance the likelihood that it could be recycled, as opposed to requiring disposal.

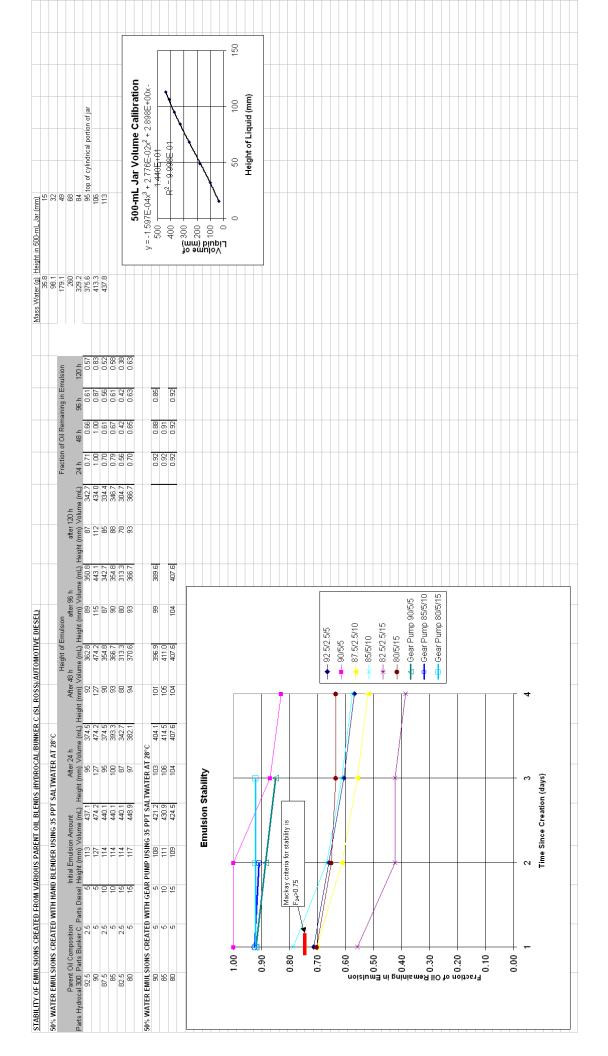
4.1 Conclusions

- The use of a demulsifier injected into a recovery system, combined with decanting, substantially reduced the volume of water in temporary storage tanks and the water content of emulsions for disposal/recycling.
- The formation of micelles by the surfactants in the water at high concentrations and the resulting limitations of the analytical technique used to measure the concentration of the demulsifiers in the decanted water make definitive conclusions about the partitioning of the demulsifier between oily and water phases impossible. The following general conclusions could be made:
 - 1. A large fraction of the demulsifier injected into the recovered fluid stream appears to end up in the decanted water.
 - 2. The concentrations of demulsifier in the decanted water are well in excess of 100 ppm and could be as high as in the 1000's of ppm.
- The efficacy of the demulsifier was a strong function of free water content. In these tests, if the free water content exceeded about 55%, the effect of the surfactant was substantially reduced.
- The degree of emulsion breaking achieved increased with increasing mixing energy applied to the fluid. Increasing the flow rate (and hence turbulence level)

and increasing the length of the flow path both resulted in increased emulsion breaking.

- Primary break occurred in only a few minutes (2 to 5 in the lab tests, less than 30 for the Ohmsett tests). The application of demulsifier did not appear to affect the time required.
- The Ohmsett results indicated that the use of a demulsifier increased TPH concentrations in the decanted water.
- The efficiency of the Unichem demulsifier on the emulsions of fresh Endicott crude was not as high as with the Alcopol, but the results were encouraging nonetheless. This is because the demulsifier is not an oil spill demulsifier, but a product designed for oil field production purposes (and hence, stored in large quantities in Alaska at the oil fields).

4.2 Recommendations


- It is apparent that the decision to decant recovered water offshore to increase available on-site temporary storage will involve trade-offs. The ability to continue skimming and remove oil from the water surface must be compared as quantitatively as possible to the potential effects of discharging the decanted water overboard. Ideally, a Net Environmental Benefit (NEB) comparison should be performed.
- The North Slope of Alaska utilizes a number of different emulsion breakers for production operations in a number of fields of varying oil characteristics and age. The use of an existing stockpile of production demulsifiers to treat emulsions recovered during spill response operations is very attractive. It is recommended that the various demulsifier chemicals stockpiled on the Slope be tested with emulsions of crude oils to determine which work best with which crudes.
- Consideration should be given to modifying the IFT technique to better measure demulsifier concentrations above 100 ppm. It is suggested that serial dilution of the samples, to reduce the demulsifier concentrations to the range in which the IFT technique gives reasonable results, could be a simple solution to the problem brought about by demulsifier micelle formation. Serial dilution will ultimately reverse the surfactant micellisation, but it can be relatively slow hence IFT readings from a just-diluted sample will change over time as the individual surfactant molecules separate from the micelles. As long as the diluted solution is left to equilibrate for a while (a time period that will need to be determined experimentally but is likely minutes, not seconds, but probably not hours) it will achieve a new micelle-molecule equilibrium.

• A standard emulsion for use in testing at Ohmsett should be developed. This effort should entail developing techniques to consistently "build" emulsions with water contents in the 70% to 80% range in order to achieve the high viscosities typical of oil spill emulsions at sea.

REFERENCES

- Det Norske Veritas (DNV). 2002. Procedeure for Preparation of Water-in-Oil Emulsion for Testing of Oil SpillResponse Equipment. Det Norske Veritas. Hovik, Norway
- Gåsiednes, K. 1993. Preparation of Mousse for Oil Spill Equipment Testing. In *Formation and Breaking of Water in Oil Emulsions: Workshop Proceedings*. MSRC Technical Report 93-018. Washington, DC. pp 123-132
- Hokstad, J.N., P. Daling, A. Lewis and T. Strom-Kristiansen. 1993. Methodology for Testing Water-in-oil Emulsions and Demulsifiers: Description of Laboratory Procedures. *Proceedings of a Workshop on Formation and Breaking of Water-in-Oil Emulsions*. MSRC Technical Report Series 93-018. API. Washington, DC
- SL Ross Environmental Research Ltd. 1998. *Modeling and lab-scale testing of water separation from fluids recovered by weir-type skimmers*. Report to Alaska Clean Seas. Deadhorse, AK
- SL Ross Environmental Research Ltd. 1999. *Testing at Ohmsett to determine optimum times to decant simple temporary storage devices*. Final report to MM S. Herndon, VA.
- SL Ross Environmental Research Ltd. 2002. *Extending Temporary Storage Capacity Offshore with Emulsion Breakers*. Final report to MMS. Herndon, VA.
- SL Ross Environmental Research Ltd. 2003. Research On Powdered Activated Carbon To Remove Dissolved Oil Spill Dispersants From Ohmsett Basin Water. Final report to MMS. Herndon, VA.

APPENDIX A - OIL BLEND AND DEMULSIFIER TEST RESULTS

Emulsion-Breaker Effectiveness									
Hvdrocal + Bunker C (SL Bose) + Autor	+ Automoti	ve Diesel	motive Diesel 50% 35 nnt saltwater emulsion created with Gear Pumn	ater emuls	ion created	with Gear	Pumn		
Parent Oil Blend	Emulsion	Dosage	Initial Emulsion	H _{2min}	H _{60min}	H ₂₄	Dim	D24	
	Breaker	Volume	Height						
(parts Hydrocal/Bunker C/Diesel		(mL)	(mm)	(mm)	(mm)	(mm)	(%)	(%)	
90/5/5	none	0	41	85	8	8	-215	-190	
90/5/5	Vytac DM	0.015*	40	8	8	8	-265	-265	
90/5/5	Breaxit	0.015	43	8	8	8	-233	-233	
90/5/5	Alcopol	0.015	43	ନ	R	R	19	33	
80/5/15	Alcopol	0.015	45	27	27	27	8	8	
80/5/15	Breaxit	0.015	45	32	32	õ	ŝ	62	
80/5/15	Vytac DM	0.015	43	8	8	8	-233	-233	
80/5/15	none	0	46	67	67	97	-222	-222	
85/5/10	none	0	45	8	8	8	-236	-236	
85/5/10	Alcopol	0.015	45	8	27	27	76	8	
* equivalent to a dosage of 1:500 in the initial 165 mL of emulsion and 165 mL of water	n the initial '	65 mL of e	mulsion and 165 r	nL of water					
Samples shown in green still contained some water, but when heated to 80°C for 24 hours they broke completely	ained some	water, but v	when heated to 80	°C for 24 ho	urs they bro	ke complete	١		

APPENDIX B - **LABORATORY-SCALE TEST RESULTS**

Lab Test Summary	ary						
	Test	Free			Inline	Circuit	
	Number Oil	Water	Breaker	Dose	Mixer	Length	
		(%)		Rate	(V/N)	(H)	Comments
	1 Hydrocal 80/5/15	50	None	0	Yes	99	Timer fouled up & start estimated
			Alcopol	High			Water ran out and test divided into 2 &
	2 Hydrocal 80/5/15	50			Yes	æ	2
	3 Hydrocal 80/5/15	50	Alcopol	High	Yes	æ	Redo of #3
	4 Hydrocal 80/5/15	8	Alcopol	Low	Yes	æ	
	5 Hydrocal 80/5/15	ន	Alcopol	High	Yes	œ	
	6 Hydrocal 80/5/15	6	Alcopol	High	Yes	æ	Water ran out after third cylinder
	7 Hydrocal 80/5/15	9	Alcopol	Low	Yes	ю	
	8 Hydrocal 80/5/15	99	Alcopol	Low	Yes	ю	
	9 Hydrocal 80/5/15	ß	Alcopol	High	Yes	ю	
	10 Hydrocal 80/5/15	6	Alcopol	High	Yes	ى	
	11 Hydrocal 80/5/15	9	Alcopol	Low	Yes	ى	
	12 Hydrocal 80/5/15	0	Alcopol	Low	Yes	ى	
	13 Hydrocal 80/5/15	0	Alcopol	High	Yes	ى	
	14 Hydrocal 80/5/15	66	Alcopol	High	Yes	æ	
	15 Hydrocal 80/5/15	99	Alcopol	Low	Yes	æ	
	16 Hydrocal 80/5/15	50	Exxon Nalco	High	Yes	99	Cylinders filled with oil/water mixture of low viscosity that was very slow to separate Separated water very cloudy
	17 Hydrocal 80/5/15	20	Exxon Nalco	Low	Yes	æ	Oily phase in cylinders still brown.
	18 Hydrocal 80/5/15	0	Exxon Nalco	High	Yes	ى	
	19 Endicott	20	Exxon Nalco	High	Yes	æ	Oil/water mixture of low viscosity in cylinders
	20 Endicott	20	Exxon Nalco	Low	Yes	99	
	21 Endicott	20	Alcopol	High	Yes	99	May have run out of emulsion.
	22 Hydrocal 80/5/15	20	Breaxit	Low	Yes	99	
	23 Hydrocal 80/5/15	50	Breaxit	High	Yes	99	
	24 Hydrocal 80/5/15	0	Breaxit	Low	Yes	æ	
	25 Hydrocal 80/5/15	0	Breaxit	Hiah	Yes	ų	Mav have run out of demulsifier at end

								Percent mL=[(mm) - 3.2119]/1.6251	Water		48%	44%	48%	53%	57%	50%	50%	4.31%
						Jsifier	-	Total Per	Volume W	(mL)	Vo Sample	හි	31	9	27	3	mean =	std dev =
	cted"		.	easures		elling of demu	nples	Water	Volume	(mL)	No Sample No Sample No Sample No Sample No Sample	17	15	16	15	14		
	olume Colle	et:"	me Collecte	to sample m	-numerics	n EXACT spi	Oil Samples	lio	Height	(mm) [*]	No Sample	ω	22	20	15	19		of and up to
umu	to actual "V	o top of outle	UM of "Volu	le bottom int	to allow non-	alc based or		Measured	Water Heigh	(mm)	No Sample	9	27	R	28	26		n heights dor
collected" coll	0" references	or "H2O Vol ti	low" to use S	n sample bott	umber" tests	ns including c		Total	Height /	(mm)	No Sample 1	99	ß	54	47	49		4mm hinh sc
Added "Volume Collected" column	Changed all "5000" references to actual "Volume Collected"	Added constant for "H2O Vol to top of outlet:"	Changed "Fluid Flow" to use SUM of "Volume Collected"	ncorporated 4mm sample bottle bottom into sample measures	ncorporated "IsNumber" tests to allow non-numerics	Added IFT columns including calc based on EXACT spelling of demulsifier		Emulsion	Batch		#	#2	#3	#	Endicott	£₽		* Bottom of iar is 4mm high so heights don't add up to total

Decant III Lab Results	ab Res	sults												
_	Constants:			Chemical Metering Pump		Flow	Flowrate	IFT/Cond	entration	FT/Concentration Calibration Equation Slope	Slope	Exponent		-
		H ₂ O Vol to top of outlet (ml):	350		Setting (ga	il/mi	(ml/min)		Alcopol	Alcopol y = 1375.9x-1.815	1375.9		-1.8153	-
		Sample bottle bottom height (mm)	4		20%	0.0155	58.56		Breaxit	y = 693.24x-1.731	693.24		-1.7313	
					40%	0.0059	22.22		Exxon/Nalc	Exxon/Nalco y = 45571x-2.9022	45571		-2.9022	
													_	_
														1

					<u>9</u>			ts sumed () d 48 hours for Tank 6	
	Comments				ulsifier tration 328.84 260.74 328.64 Filled to 4cm below mark			Comments Water ran out during fill, assumed O No further seph after 24 and 48 hours for Tank	
	amples Demulsifier Concentration (ppm)	22			2 0 2			ulsifier entration pm) ample 473.36	
	Water Samples IFT Den Reading Conc (dvnes/cm ²) ((D - 4			Water Samples IFT Den Reading Conc (dynes/cm ²) ((2.5 2.5			Water Samples IFT Den Reading Conc (dynes/cm ²) (f No Sample 2.1 1.8	
	Emulsion Dehydration (%)	No Sample No Sample No Sample A.O 3.1 3.5			Emulsion Dehydration (%) 7.0 45.3 46.8 33.0 7.0			Emulsion Dehydration (%) 22.0 49.5 37.9 22.0	
	Free Water Removed (%)	88888888			Free Water Removed (%) 2 78 101 28 25 955 28 26 26 28			Free Water J Removed (%) none 2 none 3 none 2 none 2 none 0 none	
Demulsifier Dose Rate (ppm) 0	Emulsified Water Removed (%)			Demulsifier Dose Rate (ppm) 3058	Emulsified Water Removed (%) 13 3 0 0 0		Demulsifier Dose Rate (ppm) 5408	Emulsified Water Removed (%) 70 68 68 53 53 53	
	Water Content (%)	No Sample No Sample No Sample No Sample 48% 48% average:	minimum: maximum:		Water Content (%) 27% average: minimum:	maximum:		Water Content (%) 39% 29% 25% average: minimum:	
	amples Oil Height (mm)	No Sample No Sample No Sample No Sample 25 16			Oil Samples red Oil eight Height 13 22 13 23 13 23			Oil Samples ried Oil leight Height 16 (mm) 13 20 13 25	
	Measu Vater H (mrr	lo Sample lo Sample lo Sample lo Sample 30 30 32			Measu Water H (mm			Measu Water H (mm	
Circuit Length 36 ft	Total Height (mm)	3450 No Sample N 3450 No Sample N 3450 No Sample N 3450 No Sample N 3400 Sample N 3400 42		Circuit Length 36 ft	Total Height (mm) 35 36 33		Circuit Length 36 ft	Total Height (mm) 36 37 42	
Inline Mixer Yes			Water Input (gpm) 5.8	Inline Mixer Yes	1 Emulsion Remaining (mL) 0 2850 0 2200 0 1830	Water Input (gpm) 0 4.8	Inline Mixer Yes	1 Emulsion Remaining (mL) 0 3250 0 4450 0 3300	Water Input (gpm) 0 2.0
Free Water 54%	0	0 1550 0 1550 0 1550 0 1500 0 1500 0 1500 0 1500	Oil Input (gpm) 2:0	Free Water 55%	Corrected Water (m1) 2150 0 2550 0 2550	Oil Input (gpm) 0 2:0	Free Water 0%	Corrected Water (mL) 0 1750 0 550 0 1700	Oil Input (gpm) 2.0
Flow rate	Decante Water (mL)		Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (mL) 1800 2450 2200	Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (ml) 1400 200	Emulsion Flow (gpm) 4.0
Demulsifier Setting 0	Volume Collected (mL)		Water Flow (gpm) 3.8	Demulsifier Setting 70	Volume Collected (mL) 5000 4380	Water Flow (gpm) 2.8	Demulsifier Setting 70	Volume Collected (mL) 5000 5000 5000	Water Flow (gpm) 0
۶	Settling Time	8 3 2 2 2	Fluid Flow (gpm) 7.1	Alcopol	Settling Time 5 3 30	Fluid Flow (gpm) 5.1	Alcopol	Settling Time 30 30 30	Fluid Flow (gpm) 2.9
Oil Oil Hydrocal 80/5/15	Tank Number	004700	Fill Time (s)	Test #2 Oil Hydrocal 80/5/15	Tank Nurnber 3	Fill Time (s) 45	Test #2' Oil Hydrocal 80/5/15	number 6 5 4	(s) (s) (s)

	ulsifier entration 260.74 Filled to 2.5cm low 357.82 473.36 filled to 1cm low 473.36 filled to 2 cm low 357.82 429.11 No further sep'n after 24 hours for Tank 6			Commontes				nulsifier nulsifier sentration 303.35 669 07 Filled to 1cm low 686.20 525.11 Filled to 2cm low 525.11 Filled to 2cm low	
	2 3 2			mples Demulsifier Concentration	390.96 390.96 390.35 357.82 357.82 328.84 328.84			nples Demulsifier Concentration (ppm) 533.35 659.07 (747.00 (526.11 (525.11 (
	Water Samples IFT Derr Derr Conco Conco (dynes/cm ²) (f 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			Nat Nat	UNINSCOTT 1.8 2.0 2.1 2.1 2.1 2.2 2.2 2.2			Water Samples Water Samples IFT Den Conc (dynes/cm ²) (f 1.5 1.5 1.5 1.6 1.7	
	Emulsion Dehydration (%) 48.2 45.3 56.5 56.5 53.1 53.1 53.1 55.1 53.1 55.5	83.1		Emulsion Dehydration	(**) 21.7 28.9 32.3 32.3 90.3 45.8 90.3 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7			Emulsion Dehydration (%) 45.3 32.3 32.3 41.4 41.4 41.4 41.4 33.3	0 0 4 4
		127		Free Water F Removed D	(**) 169 175 175 172 210 210 187 187 210 210			Free Water Free Water Removed D (%) (%) 185 182 185 185 185 185	28
Demulsifier Dose Rate (ppm) 2654	Emulsified Emulsified [Water Removed (%) 29 (%) 29 31 31 31 33 35 50 35 50 35 50 35 50 35 50 23 35	G	Demulsifier Dose Rate (ppm) 989	Emulsified F Water Removed	(%) 55 71 73 103 103 103 81 81 81		Demulsifier Dose Rate (ppm) 2680	Emulsified F Water Removed (%) 81 (%) 81 84 84 84 84 84 84 84 84 84 83	2.68
	8888886	maximum:		L E	(%) 39% 36% 34% 15% 5% average: minimum: maximum:			Water Content (%) 31% 27% 29% 29% 29% 29% 29% 29%	maximum:
	Oil Samples ured Oil Height Height 13 24 11 24 11 24 11 24			Oil Samples ured Oil Height Height	31 23 34 34 23 34 34 24 34 34 36 34 36 36 36 36 36 36 36 36 36 36 36 36 36 3			Oil Samples ured Oil Height Height (mn) 13 22 14 22 14 22 14 22 14 22 14 22 14 22	
	Oil Sar Measured Water Height (mm) 13 13 13 13 13 13 13 13 13			Oil Sar Measured Water Height	ил 9 0 0 0 1 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Oil Sar Measured Water Height (mm) 13 14 14 14 14	
Circuit Length 36 ft	Total Height (mm) 41 42 33 33 33 40 40		Circuit Length 36 ft		44444		Circuit Length 36 ft	Total Height (mm) 33 40 40 40 40	
Inline Mixer Yes	Emulsion Remaining (mL) 2037.5 2200 1985 1985 1985 21500 21500 2050	Water Input (gpm) 4.8	Inline Mixer Yes	шæ	1650 1650 1650 1650 1650	Water Input (gpm) 3.9	Inline Mixer Yes	Emulsion Remaining (mL) 2000 1 1935 1 1935 1 1935 1 1885	Water Input 3.9
Free Water 48%	Corrrected Water (mL) 2850 2850 2850 2850 2850 2850 2850 2850	Oil Input (gpm) 2.0	Free Water 32%	Corrected Water	2700 2800 2950 3350 3350 3350	Oil Input (gpm) 2.0	Free Water 33%	Corrrected Water (mL) 2950 2950 3100 2950 3100 2850	Oil Input (gpm) 2.0
Flow rate 0.015491823	Decanted Water (ml) 2200 2450 2500 2500 2500 2500 2500 2500	Emulsion Flow (gpm) 4.0	Flow rate 0.005878895	Decanted Water	2350 2450 2400 3000 3000 3000 3000	Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (mL) 2650 2500 2550 2550 2550 2550 2550	Emulsion Flow (gpm) 4.0
Demulsifier Setting 70	Volume Collected (ml) 4588 4670 4670 4670 6000 5000	Water Flow (gpm) 2.8	Demulsifier Setting 40	Volume Collected		Water Flow (gpm) 1.9	Demulsifier Setting 70	Volume Collected (mL) 5000 4835 4835 4835 5000 5000	Water Flow (gpm) 1.9
(redo of #2) Alcopol	Settling Time 5 10 10 10 10	Fluid Flow 5.8 5.8	Alcopol	Settling Time	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fluid Flow (gpm) 5.9	Alcopol	Settling Time 60 30 5 60 80	Fluid Flow (gpm) 5.8
Test#3 Oil Hydrocal 80/5/15	Tank Number 6 5 4 4 3	Fill Time (s) 79	Test #4 Oil Hydrocal 80/5/15	Tank Number	0 0 4 0 0	Fill Time (s) 80	Test #5 Oil Hydrocal 80/5/15	6 0 4 4 0 2 1	a (©) 80 80

	Comments Water ran out after 3rd cylinder		Comments		Comments QC check on ST of oil gives 33.9	
	nulsifier entration 586.20 854.57 747.00		nples Demulsifier Concentation (ppm) 473.36 586.20 659.07 473.36 555.11 525.11			
	Water Samples IFT Den Reading Conc (dynes/cm ²) (f 1.6 1.3 1.3		Water Samples IFT Dem Reading Conc. (dynes/cm ²) (f 1.6 1.5 1.5 1.5 1.5 1.5		Water Samples IFT Demulsifier Reading Concentratio (dynes/cm ²) (ppm) 1.9 429.1 1.9 429.1 1.9 429.1 2.7 226.7	
	Emulsion Dehydration (%) 48.2 32.3 32.3 41.1 48.2 48.2		Emulsion Dehydration (%) (%) 11.1 16.4 11.1 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	30.5	Emulsion Dehydration (%) 16.4 16.1 16.1 16.1 16.1 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21	<u></u>
	Free Water Removed [(%) 125 125 125 125 125 125 125		Free Water Removed ((%) 107 113 113 115 115 117 117 117	11	Free Water Removed [(%) 107 107 107 107 107 106	Ž
Demulsifier Dose Rate (ppm) 2606	Emulsified F Water Removed (%) 45 (%) 45 45 45 45 45	Demulstifer Dose Rate (pm)	ied 13 24 32 32 32 32 32 32 32 32 32 32 32 32 32	32 Demulsifier 0981 Rate (ppm) 983	noved 17 14 14 14	¥
	Water Content (%) 26% 29% 34% average: minimum:		Water Content (%) (%) 44% 42% 42% 36% 36% 36% 36% 36%		Water Water Content (%) 42% 46% 41% 39% 39% average: minimum	
	nples Oil (mm) 23 21 21		ples Oil Height (mm) 17 18 18 20 20 20 20 20		Oil Samples ured Oil leight Height 0 19 (mm) 18 18 18 17 18	
	Oil Samples Measured C Water Height Hei (mm) 13 14 14		Oil Samples Measured O Water Height Hei (mm) 20 (m 19 17 17 16		Oil San Measured Water Height (mm) 19 18 18	
Circuit Length 36 ft	Total Height (mm) 41 41	Circuit Length 36 A	t 444444	Circuit Length 36 ∄	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Inline Mixer Yes	Emulsion Remaining (mL) 2050 2050 2050	Water Input (gpm) 4.8 4.8 Mixer	ш B	Water Input (gpm) 4.9 Mixer Mixer	ш B	Water Input 5.3
Free Water 47%	Corrected Water (mL) 2950 2950	Oil Input (gpm) 2.0 2.0 Free VVäter Våter		Oil Input (gpm) 2.0 2.0 7.6%	Corrected Water (mL) 2950 2950 2950 2950	Oil Input (gpm) 2.0
Flow rate 0.015491823	Decanted Water (mL) 2600 2600 2600	Emulsion Flow (gpm) 4.0 Flow rate	Decanted VVater (mL) 2200 2200 2400 2400 2400 2500	Emulsion Flow (gpm) 4.0 Flow rate	Decanted Water (m) 2600 2600 2600 2600 2600 2600	Emulsion Flow (gpm) 4.0
Demulsifier Setting 70	Volume Collected (mL) 5000 5000 5000	Water Flow (gpm) 2.8 Demulsifier Setting	Volume Collected (mL) 5000 5000 5000 5000 5000	Water Flow (gpm) 2.9 Demulsifier Setting	Collected (ml) 5000 5000 5000 5000 5000 5000	Water Flow (gpm) 3.3
Alcopol	Settling Time 2 10	Fluid Flow 5.9 Alronol	Settling Time 30 80 80	Fluid Flow (gpm) 5.9	Settling Time 5 30 60	Fluid Flow (gpm) 6.0
Test #6 Oil Hydrocal 80/5/15	Tank Number 3	Fill Time (s) 40 Cest #7 Oil Di5/15	Tank Number 6 5 4 3 3 2	Fill Time (s) 80 Test #8 Oil Di5/15	And	Fill (s) 53

	/USP mineral oil gives 40.3								
	Comments Comments OC check on IFT of tap water/USP			Comments				Comments	
	mples Demulsrifier Concentration (ppm) 2260.74 328.84 328.84 323.35 226.74			nples Demulsifier Concentration (nnm)	260.74 260.74 260.74 260.74 328.84 328.84			Demulsifier Demulsifier (ppm) 525:11 429:11 429:11 429:11 429:11 429:11 429:11 429:11 429:11 429:11 473:36	
	Water Samples Water Samples IFT Demulsifier Reading Concentration (dynes/cm ²) (pm) 27 226.74 25 220.74 25 320.74 23 333.35 23 303.35 27 226.74			Water Samples IFT Demulsifier Reading Concentratio	5 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Water Samples IFT Dem Reading Conc. (dynes/cm ²) ((1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	
	Emulsion Dehydration (%) 45.3 45.3 45.3 45.3 45.4 48.4 48.4 44.8 42.4	6. G		Emulsion Dehydration	21.7 27.0 27.0 27.0 27.0 27.0 27.0 27.0 13.4 13.4	34.1		Emulsion Dehydration (%) 5.9 11.1 14.2 21.7 21.7 21.7 21.7 21.7 25.9 5.9	
	Free Water Removed C (%) 128 132 132 132 132 132 134 134 128 134	134		Free Water Removed D	(***) 107 110 110 110 1107 1107	19		Free Water Removed C (%) 112 112 112 112 112 113 113 113 111	
Demulsifier Dose Rate (ppm) 2639	Emulsified Water Removed (%) 59 59 59 59 59 53 59 53 53 53 53 53 53 53 53 53 53 53 53 53	6	Demulsifier Dose Rate (ppm) 2671	Emulsified F Water Removed		24	Demulsifier Dose Rate (ppm) 915	Emulsified Water Removed (%) 31 25 25 25 25 25 25 25 23 23 23 23 23 23 23 23 23 23 23 23 23	
	Water Content (%) 31% 27% 26% 26% 26% average average	maximum:		Water Content (%)	39% 36% 35% 35% 43% average: average: minimum:	maximum:		Water Content (%) 47% 43% 39% 39% 39% 39% 39% 39%	
	Oil Samples ured Oil Height Height (mm) 15 23 13 23 13 23 14 21 14 21			nples Oil Height (mm)	10 13 13 13 13 13 13 13 13 13 13 13 13 13			Oil Samples ured Oil Height Height 21 (mm) 13 17 13 13 18 19 18 19 18 19 18 19	
	Oil Sa Measured Water Height (mm) 15 13 13 13 13			Oil Samples Measured O Water Height Hei (mm) (m	2 2 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Oil Sa Measured Water Haight (mm) 19 19 19 18 18	
Circuit Length 36 ft	Total Height (mm) 41 45 33 33 33 45		Circuit Length 6ft	Total Height (mm)			Circuit Length 6ft	Total Height V (mm) 41 41 41 41 41 41	
Inline Mixer Yes	Emulsion Remaining (mL) 1850 2100 2100 1950 1950	Water Input (gpm) 4.8	Inline Mixer Yes	шœ	2150 2150 2150 2100 2150 2150 2150	Water Input (gpm) 5.1	Inline Mixer Yes	Emulsion Remaining (mL) 2200 2125 2125 2125 21250 21250 2150	Water Input (gpm) 5.2
Free Water 48%	Corrected Water (mL) 3150 3150 3150 3150 32050 32050 32050	Oil Input (gpm) 2.0	Free Water 53%	Corrected Water (ml)	2750 2750 2850 2930 2930 2930 2930 2950 2950 2950 2950 2950	Oil Input (gpm) 2.0	Free Water 50%	Corrected Water (mL) 2800 2800 2800 2850 2850 2850	Oil Input (gpm) 2.0
Flow rate 0.015491823	Decentred Water (ml) 2700 2800 2500 2500 2500 2500 2500 2550	Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (ml)		Emulsion Flow (gpm) 4.0	Flow rate 0.005878895	Decanted Water (mL) 2450 2450 2450 2450 2450 2450 2450 2555 2555	Emulsion Flow (gpm) 4.0
Demulsifier Setting 70	Volume Collected (m) 5000 5000 5000 5000 5000	Water Flow (gpm) 2.8	Demulsifier Setting 70	Volume Collected (ml.)		Water Flow (gpm) 3.1	Demulsifier Setting 40	Volume Collected (mL) 5000 5000 5000 5000 5000 5000 5000	Water Flow (gpm) 3.2
Alcopol	Settling Time 30 80 80 80 80	Fluid Flow (gpm) 5.9	Alcopol	Settling Time	8 3 2 7 2	Fluid Flow (gpm) 5.8	Alcopol	Settling Time 300 800 800	Fluid Flow (gpm) 6.4
Test #9 Oil Hydrocal 80/5/15	Tank Number 6 5 4 3 2 1	Fill Time (s) 81	Test #10 Oil Hydrocal 80/5/15	Tank Number	← N M 4 D D	Fill Time (s) 82	Test #11 Oil Hydrocal 80/5/15	Tank Number 3 3 3 2 1	Fill Time (s) 74

	Comments Comments A small amount of decarted water, estimated at 50ml. Sample had lots of oil.			Comments Lots of oil in sample			Comments	
	amples Demulsifier Concentration (ppm) No Sample No Sample No Sample Sam			amples Demulsifier Concentration No Sample 4 230.36			amples Demulsifier Contration (ppm)	
	Water Samples IFT Derr IFT Derr (dynes/cm ²) (p 0 No sample No SS 0 No sample No SS 0 No sample No SS 0 No sample No SS 0 No sample No SS			Water Samples Neter Samples Reading Conc (dynes/cm ²) (f No sample 1.9 2.0 2.0			Vider Samples IFT Den Reading Conc (dynes/cm ³) Cnc 1,2 1,7 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3	
	Emulsion Dehydration (%) -5.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	52.2 52.2 52.2		Emulsion Dehydration (%) 3.1 16.4 53.5 35.9 35.9 31.1 3.1			Emulsion Dehydration (%) 22.9 22.9 14.4 44.4 38.0 30.5 30.5 22.0	
	Free M (%)			Free Water Removed (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)			Free Water Removed (%) 1111 1111 1111 Nosample 1111 1111 1111	
Demulsifier Dose Rate (ppm) 1929	Emulsified Water Removed (%) 0 0 32 32 88	88	Demulsifier Dose Rate (ppm) 4398	Emulsified Water Removed (%) 36 36 36 36 36 36 36 36 36 30 30 30 30 30 30 30 30 30 30 30 30 30	ŕ	Demulsifier Dose Rate (ppm) 2671	Emulsified Water Removed (%) 37 37 No sample 37 37 37	6
	Water Content (%) 48% 52% 48% 48% 48% 22% 22%	average: minimum: maximum:		Vlater Content (%) 48% 42% 23% 32% average: minimum: maximum			Water Content (%) 33% 39% 39% 39% 39% 31% average: average:	maximum:
	Oil Samples red Oil eight Height 21 (mm) 21 15 21 15 21 15 21 15 21 15 21 15 21 15			ad 0il ad 0il ight Heigh (mm) 19 12 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15			Oil Samples red Oil eight Height 17 (mm) 17 19 17 19 18 18 16 No Sample 16 14 24 14 20	
	Measu Water H (mm			Measun Water He (mm)			Measu Water H (mm no samp	
Circuit Length 6ft	Total Height (mm) 40 33 30 40 40 40 40 40		Circuit Length 6ft	Total Height (mm) 42 41 41		Circuit Length 36ft	0000	
Inline Mixer Yes	Emulsion 1 Emulsion Remaining (mL) (mL) 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 1660 2100 1650 2100	Water Input (gpm) 2.0	Inline Mixer Yes	4 Emulsion Remaining (mL) (mL) 2500 0 2050 0 2050 0 1900	Water Input (gpm) 0 2.0	Inline Mixer Yes	Emulsion Total Emulsion Total Remaining Height (ml) (mm) 1550 4 1550 3 1550 3 1550 3 1550 3 1550 3	Water Input (gpm) 5.1
Free Water 0%	Correctec Water (mL) 40	Oil Input (gpm) 2.0	Free Water 0%	Corrected Water (mL) 45 45 60	Oil Input (gpm) 2.	Free Water 62%	Corrected Water F (m) 3450 3450 0 3450 0 3450 0 3450 0 3450 0 3450 0 3450	Oil (gpm) 1.
Flow rate 0.005878895	Decanted Vvater (mL) 0 0 50 50	Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (mL) 100 250	Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (ml) 3100 no sample 3100 3100 3100 3100 3100	Emulsion Flow (gpm) 2.9
Demulsifier Setting 40	Volume Collected (mL) 2500 2500 2500 2500 2500 2500 2500	Water Flow (gpm) 0	Demulsifier Setting 70	Volume Collected (ml) 2500 2500 2500 2500	Water Flow (gpm) 0	Demulsifier Setting 70	Volum Collect (mL)	Water Flow (gpm) 3.6
Alcopol	Settling Time 3 3 3 6 0 3 0 6 0 0 0 0 0	Fluid Flow (gpm) 3.0	Alcopol	Settling Time 10 10 15	Fluid Flow (gpm) 3.5	Alcopol	Settling Time 5 30 5 30 60 60 60	Fluid Flow (gpm) 5.8
Test #12 0il Hydrocal 80/5/15	0 0 4 4 3 2 7	Fill Time (s) 78	Test #13 Oil Hydrocal 80/5/15	Tank Number 4 3 3 2	Fiil Time (s)	Test #14 Oil Hydrocal 80/5/15	Tank Number 2 2 1 6 5 4 4	Fill Time (s) 82

	ients				Comments Water sample: lots of oil. All cloudy. Water sample: some oil. All cloudy. Water sample: little oil. All cloudy. All cloudy. All cloudy.	are intrute of low would be independente of l		All cloudy. All brown	
	Comments				ples Demulsifier Concentration (ppm) 1558.27 Water sample: lots of oil. All cloudy. 877.61 Water sample: little oil. All cloudy. 1022.48 Water sample: little oil. All cloudy. 759.04 All cloudy. 759.04 All cloudy. 861.05 All cloudy.	that was very slow to unverse much be and was very slow to separate Separated water very cloudy		nulsifier apminion permitation 1022 48 Water sample: lots of oil. All clour 815 44 All cloudy. 759.04 All cloudy. 618.35 All cloudy. 759.04 All cloudy. 759.04 All cloudy.	
	nples Demulsifier Concentration (ppm)	242.82 357.82 357.82 328.84 328.84 303.35			nples Demulsifier Concentration (ppm) 1558.27 1558.27 1558.27 1022.48 815.44 759.04 759.04 661.05			Water Samples FT Demulsifier ading Consentation scim ³ (1022.48 4.1 759.04 4.1 759.04 4.1 759.04	
	Water Samples IFT Der Reading Conci (dvnes/cm ²) (t	222 223 223 223 223 223 223 223 223 223			Water Samples Terr Dem Redring Conct (dynes/cm ²) (p 3.2 4.1 4.1 4.1			Water Sam IFT Reading (dynes/cm ³ ,7 4,0 4,1 4,1 4,1	
	Emulsion Dehydration (%)	27.0 22.0 30.2 30.0 23.0 22.0	286		Emulsion Dehydration (%) 40 Sample -32,4 -32,9 -32,9 -35,9 -115,1	5 5 5 5 7 7 7		Emulsion Dehydration (%) -22.9 -23.0 -7.6 -10.6 -10.6 -10.6 -12.5 -12.5	26.5
	Free Water Removed C (%)	8 <u>1</u> 1 6 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2		Free Water E Removed De (%) 0 No 27 32 38 64 63 33 38	8		Free Water Removed C (%) 32 85 85 91 112 112	11
Demulsifier Dose Rate (ppm) 1014	Emulsified F Water Removed (%)	0 34 34 0 9 0 0	34	Demulsifier Dose Rate (ppm) 2737	Emulsified F Water Removed (%) 0 (%) 0 0 0 0 0 0 0		Demulsifier Dose Rate (ppm) 1014	Emulsified F Water Removed (%) (%) 0 0 0 0 21 21	21
	Water Content (%)	36% 39% 35% 36% 34% 34% average: minimum:	maximum:		Viater Content (%) No Sample 64% 54% 35% average: average:	maximum:		Water Vontent Content (%) 66% 64% 64% 55% 37% average: average:	maximum:
	Oil Samples ured Oil Height Height n) (mm)	20 19 21 39 21			aht mple 11 9 8 15 11 9			Oil Samples ured Oil Height Height 27 (mm) 28 9 24 9 23 13 23 13 23 13	
	Oil Sar Measured Water Height (mm)	1 9 9 9 9 1			Oil Samples Messured O Water Height Hei (mm) (mm) 27 26 21 21 21			Oil Sar Measured Water Height (mm) 27 26 26 23 23 23 23 26 23	
Circuit Length 36ft	Total Height M (mm)	48888		Circuit Length 36ft			Circuit Length 36ft	Total Height (mm) 33 33 33 33 33 33 33 33 33 33 33 33 33	
Inline Mixer Yes	Emulsion Remaining (mL)	1850 1850 1850 1850 1500	Water Input (gpm) 5.2	Inline Mixer Yes	Emulsion Total Remaining Height Remaining mm) 6000 no sample 38 4,250 33 1 4,255 39 3450 3450 36	Water Input (gpm) 4.8	Inline Mixer Yes	Emulsion Emulsion (mL) 5000 5000 5000 3850 3850 3450 22850 22850 22850 22850	Water Input (gpm) 4.8
Free Water 64%	Corrected Water (mL)		Oil Input (9pm) 1.5	Free Water 49%	Corrected Water (ml) 35C 35C 1755 1755 1755 2255C	Oil Input (gpm) 2.0	Free Water 47%	Corrected Water (mL) 75C 115C 215C 215C 215C 215C	Oil Input (gpm) 2.0
Flow rate 0.005878895	Decanted Water (mL)	2800 2800 2850 3000 3150	Emulsion Flow (gpm) 2:9	Flow rate 0.015491823	Decanted Water (ml) 1200 1200 1900	Emulsion Flow (gpm) 4.0	Flow rate 0.005878895	Decanted Water (mL) 400 1200 1200 2300	Emulsion Flow (gpm) 4.0
Demulsifier Setting 40	Volume Collected (mL)		Water Flow (gpm) 3.7	Demulsifier Setting 70	Volume Collected (mL) 5000 5000 5000 5000 5000	Water Flow 2.75	Demulsifier Setting 40	Volume Collected (mL) 5000 5000 5000 5000	Water Flow (gpm) 2.75
Alcopol	Settling Time	8 <u>영 각 </u>	Fluid Flow (gpm) 5.8	Exxon/Nalco	Settling Time 30 60 60 60	Fluid Flow (gpm) 5.7	Exxon/Nalco	Settling Time 30 90 60 60	Fluid Flow (gpm) 5.8
Test #15 Oil Hydrocal 80/5/15	Tank Number	00400	Fill (s) 82	Test #16 Oil Hydrocal 80/5/15 Exxon/Nalco	Tank Number 6 5 4 a 3 2 1	Fill (s) 84	Test #17 Oil Hydrocal 80/5/15 E	Tank Number 6 5 4 3 3 2 1	Fill (s) 82

				spod				spod	
	Comments			Comments Comments Water sample all cloudy. Oil sample had slime pods Water sample all cloudy. Oil sample had slime pods Water sample all cloudy.	Oil/water mixture of low viscosity in cylinders		Comments	Vater sample all cloudy. Oil sample had slime Vater sample all cloudy. Vater sample all cloudy. Vater sample all cloudy.	
	mples Demulsifier Concentration (ppm) No Sample No Sample No Sample No Sample			nulsifier entration ample 1201.42 946.33			imples Demulsifier Concentration (ppm)	No.	
	Water Samples ion Water Samples in FT Dem EFT Dem Dem Dem -4.7 no sample No SS 3.3 no sample 3.3 no sample No SS 3.3 no sample 0.5 no sample No SS 1.1 1.1 -4.7 no sample			Water Samples IFT Den Reading Conc (dynes/cm ²) (f 35 35 35			Water Samples IFT Den Reading Conc (dvnes/cm ²) (t	no sample 4.1 4.4 5.2	
	Emulsion Dehydration (%) 3.3 m 3.3 m 3.3 m 0.6 m 0.6 m	າ 		Emulsion Dehydration (%) No Sample no -13.0 -13.0 -13.0	-13.0		Emulsion Dehydration (%)	49.7 16.4 16.4 31.8 31.8 12.0 12.0 49.7 49.4	
	Free Water Removed (%) none none none none none none			Free Water Removed (%) 28 113 133	142		Free Water Removed (%)	142 142 158 158 112 112 158	
Demulsifier Dose Rate (ppm) 5239	Emulsified Water Removed (%) 0 0 0 0 0 0	>	Demulsifier Dose Rate (ppm) 2737	Emulsified Water Removed (%) 26 65 83	3 - 20	Demulsifier Dose Rate (ppm) 1038	Emulsified Water Removed	0 81 97 113 73 73 73 73	
	88888 a				minimum: maximum: maximum:			75% 42% 25% 34% average: minimum: maximum:	
	Oil Samples ured Oil Height Height 23 (mm) 23 (14 21 15 21 15 21 15 21 15 21 15			ni m) 13 13 13			nples Oil Height (mm)	, 13 19 0 13 19 0	
	Oil Sa Measured Water Height (mm) 23 21 21 21 21 21 21 21			Oil Samples Measured C Water Height He (mm) (m no sample 24 21			Oil Samples Measured O Water Height Hei (mm) (m	8655	
Circuit Length 6ft	Total Height (mm) 41 40 40 39		Circuit Length 36ft	Total Height (mm) no sample 41 38		Circuit Length 36ft	Total Height (mm)		
Inline Mixer Yes	Emulsion Remaining (mL) 2500 2500 2500 2500 2500 2500 2500	Water Input (gpm) 2.0	Inline Mixer Yes	Emulsion Remaining (mL) 2150 1100 850 750	Water Input (gpm) 4.8	Inline Mixer Yes		2500 750 650 550	Water Input (gpm) 4.8
Free Water 0%	Corrected VVater (mL) 0 0 0 0 0	Oil Input 2.0 2.0	Free Water 49%	Corrected Water (mL) 1400 1650 1750	Oil Input (gpm) 2.0	Free Water 49%	Corrected Water (mL)	0 1750 1850 1950	Oil Input (gpm) 2.0
Flow rate 0.015491823	Decanted Water (ml)	Emulsion Flow (gpm) 4.0	Flow rate 0.015491823	Decanted Water (ml) 0 1050 1400	Emulsion Flow (gpm) 4.0	Flow rate 0.005878895	Decanted Water (mL)	1400 1500 1500	Emulsion Flow (gpm) 4.0
Demulsifier Setting 70	Volume Collected (mL) 2500 2500 2500 2500 2500 2500	Water Flow (gpm) 0	Demulsifier Setting 70	Volume Collected (mL) 2500 2500 2500 2500 2500 2500	Water Flow (gpm) 2.8	Demulsifier Setting 40	Volume Collected (mL)	2500 2500 2500	Water Flow (gpm) 2.8
Exxon/Nalco	Settling Time 50 0 0 15 52	Fluid Flow 3.0	Exxon/Nalco	Settling Time 30 00 00	Fluid Flow (gpm) 5.7	Exxon/Nalco	Settling Time	8 3 1 2	Fluid Flow (gpm) 5.7
Oil Oil Hydrocal 80/5/15	Tank Number 5 4 4 3 3 2	Fill Time (s)	Test #19 Oil Endicott	Tank Number 3 3 3 2	Fill Time (s) 28	Test #20 Oil Endicott	Tank Number	- N M 4	Fill Time (s) 28

	ss emulsrifer ncentration (ppm) 242.82.0! sample had slime pods on bottom 192.16.0! sample had slime pods on bottom 193.16.0! sample had slime pods on bottom	May have run out of emulsion, no slime pods.		Comments			Comments	
	nples Demulsifier Concentration (ppm) 242.82 149.21 199.16	141.56		mples Demulsifier Concentration (ppm) 163.92 177.03 177.03 177.03 177.03 163.92 208.79 208.79		-	nples Demulsifier (ppm) 250.57 307.25 307.25 307.25 307.25 307.25	
	Water Samples IFT Dem Reading Conc (dynes/cm ²) (p 2.6 2.6 2.9 2.9	ч С		Water Samples IFT Dem Reading Conco (dynes/cm ³) (p 1.7 2.2 2.3 2.3 2.3 2.3 2.0 2.0 2.0			IFT Dem Parer Samples IFT Dem Parer Amples (Ithe Parer	
	Emulsion Dehydration (%) 30.5 39.7 38.4	64.4 43.3 30.5 64.4		Emulsion Dehydration (%) 17.4 11.8 13.4 13.4 8.7 8.7 8.7	11.5 8.7 17.4		Emulsion Dehydration (%) 87 87 81 41.4 20.7 20.7 20.7 24.9 81.0 41.4 41.4	
		147 127 29 168		Free Water Removed C (%) 113 111 109 109 113	111		Free Water Removed C (%) 117 123 123 125 125 125 125 126 126	
Demulsifier Dose Rate (ppm) 2639		85 81 124 124	Demulsifier Dose Rate (ppm) 1001	Emulsfied F Water Removed (%) (%) 24 20 20 20 16 16 20 20 20 20 20 20 20 20 20 20 20 20 20	20	Demulsifier Dose Rate (ppm) 2606	Emulsified F Water Removed (%) (%) 11 41 45 45 45 45 45 11 135	
	Water Content (%) 35% 30% 31%	18% average: maximum: maximum:		Water Content (%) 41% 43% 46% 46%	average: minimum: maximum:		Vater Content (%) 45% 40% 40% 29% 31% 40% 31% 40% maximum: maximum:	
	nples Oil Height (mm) 20 18	33		nples Oil Height (mm) 17 18 18 18 16 16 16		-	mpres Height (mm) 17 12 22 22 20 17 17	
	Oil Samples Measured O Water Height Hei (mm) 16 14	=		Oil Samples Measured O Water Height Hei (mm) (m 18 20 20 20 20 20 20			OII Sa Measured Water Height (mm) 20 17 18 18 14	
Circuit Length 36ft	Total Height (mm) 39 35		Circuit Length 36ft	Total Height V (mm) 33 33 40 40 40		Circuit Length 36ft	Total Height 38 40 40 38 38 40 38 40 30 40 30 30 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30	
Mixer Ves	Emulsion Remaining (mL) 2150 550 500		Inline Mixer Yes	Emulsion Remaining (mL) 23500 23500 23500 24000 24000 24000 24000 23500	(gg	Mixer Yes		Water Input (gpm) 4.8
Free Water 48%	Corrected Vvater 1 (mL) 350 1950 2000	1750 Oil Input (gpm) 2.0	Free Water 48%	Corrrected Water (mL) 2700 2650 2650 2650 2650 2650 2600 2600 26	Oil Input 2.0	Free Water 47%	92000000000000000000000000000000000000	Oil Input (gpm) 2.0
Flow rate 0.015491823	Decanted Water (mL) 1600	1400 Emulsion Flow 4.0	Flow rate 0.005878895	Decanted Water (mL) 2350 2300 2300 2300 2300 2350	Emulsion Flow (gpm)	Flow rate 0.015491823	Decanted Water (mL) 2150 2400 2550 2500 2500 2500 2500	Emulsion Flow (gpm) 4.0
Demulsifier Setting 70	Volume Collected (mL) 2500 2500	2500 Water Flow (gpm) 2.8	Demulsifier Setting 40	Volume Collected (mL) 5000 5000 5000 5000 5000	Water Flow (gpm) 2.8	Demulsifier Setting 70		Water Flow (gpm) 2.8
Alcopol	Settling Time 30	Fluid (gpm)	Breaxit	Settling Time 2 30 30 60	Fluid Floid (gpm) 5.9	Breaxit		Fluid Flow (gpm) 5.9
Test#21 Oil Endicott	Tank Number 3	4 Fiil Time (s)	Test #22 Oil Hydrocal 80/5/15	Tank Number 6 5 4 3 2 1	Fill Time (s) 81	Test #23 Oil Hydrocal 80/5/15	7 Tank Number 6 5 4 3 2 1	Fill (s) 80

																															-
		Comments																		Comments				May have run out of demulsifier at end							
	Water Samples FT Demulsifier ading Concentration	(mdd)	No Sample	No Sample	No Sample	No Sample	No Sample											Water Samples	Demulsifier		No Sample	No Sample									
		(dynes/cm ²)	o no sample A no sample	1 no sample	5.9 no sample	1 no sample	0.6 no sample	10	(0.0									Water 8	= 2 0 1	-	0.5 no sample	6 no sample	2 no sample	7 no sample	4.0		~				
	Deh	(%)							9.0										Emulsion Debudention	Denyulation (%)											
- e	Fre	%)	U none			0 none			0 none							8			Free Water			0 none	0 none		0 none		0 none				
Demulsifier Dose Rate (ppm) 2077	Emulsified Water Removed	(%)													Demulsifier	Lose Hate (ppm)	4/89		Emulsified	VVALEI NEILIUVE (%)											
	Water Content	(%)	40%					average:	minimum: mavimum:										Water	(%)				46%	average:	minimum:	maximum:				
	ampl	(mm)	2 4															Oil Samples	Hoiaht				15								
	Oil S Measured Water Height	(mm)	7 10															0 II 0	Measured	mm) (mm)			9 20								
Circuit Length 36ft		(mm)	4 1												Circuit	Length	#B		Total				8								
Inline Mixer Yes	<u>ш</u> щ	٤	0022		0 2500					Water	Input	udb)	n:7 n:7		Inline	MIXer	Yes		Corrected Emulsion	(mL)	1		0 2500					Water	Input (enm)	20 20	
Free Water 0%	Corrected Water	(mL)				-				0	Input	(gpm			Free	vvater	%		Corrected	(mL)			0	-				Iio	Input (cnm)		
Flow rate 0.005878895	Decanted	(mL)								Emulsion	Flow (mm)	(gpm)	4.0		ī	P IOW Fate	0.015491823		Decanted	(mL)								Emulsion	Flow (cnm)		
Demulsifier Setting 40	Volume Collected	(mL)	2500		2500					Water	Flow (and)	(gpm)	∍		Demulsifier	Setting	R		Volume Colloctod	(mL)			2500					Water	Flow (enm)		2
Breaxit	Settling Time	C	V 4							Fluid	Flow	(mqg)	7.0				Breaxit		Settling	2	2		R					Fluid	Flow (com)	Ŀ	
Oil Hydrocal 80/5/15	Tank Number		- 0	i m	4	S	9			Fill	Time		5	Test #25	;	UII 100 m ar	Hydrocal 8U/5/15		Tank		-	2	m	4				Fill	Time (s)	49	2

		Comments	Timer fouled up & start estimated	Water ran out and test divided into 2 & 2'					No Sample Water ran out after third cylinder										Cylinders filled with oil/cloudy water, very slow to separate	Oily phase in cylinders still brown.		Oil/water mixture of low viscosity in cylinders		May have run out of emulsion.				No Comula No Comula No Comula Man bara ana aré demulaitar at and
	-		Timer foul	Water ran		Redo of #3			le Water ran										Cylinders	Oily phas		Oil/water		May have			e	lo May have
Jot	Water (ppm	60 min.	2	329	473	429	329	525	No Samp	525	227	227	329	473		391	391	303	661	759	e No Sample	946	381	142	209	307	e No Samp	No Comp
Concentration of	in Decant ^v	10 min.	2	261	358	473	473	6 5 9	747	659	429	261	261	429	No Sample	429	525	358	1022	759	No Sample	1201	759	149	177	307	No Sample	No Comple
3	Demulsifier in Decant Water (ppm)	2 min.	ω	329	No Sample	261	391	88	586	473	429	227	187	429	No Sample	No Sample	329	243	878	1022	No Sample	No Sample	No Sample	243	164	277	No Sample No Sample No Sample	No Samula
u (%)		60 min.	e	47	50	ន	6	41	No Sample	8	22	48	13	2	52	R	R	40	8	26	÷	-2	32	64	6	21	÷	σ
Ernuision Denyuration (70)		min. 10 or 15 min.	No Sample	45	42	ŝ	32	æ	32	20	თ	45	00	14	m	m	22	œ	ę	-23	m	-10	16	40	13	20	m	
Emulsio		2 or 5 min. 1	No Sample	7	53	48	53	45	48	÷	16	R	22	ى	m	No Sample	25	27	-37	Ŗ	ų	No Sample	-50	8	17	თ	ω	-
Circuit	Length	€		ස	ģ	ю	ю	Ŗ	æ	ж	ස	ж	9	ى	ى			99	99	ස	ى		99	ж	ģ	ස	ю	ų
Inline	Mixer	(N/X)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Vac
Demulsifier	Concentration	(mqq)	0	3058	5408	2654	686	2680	2606	686	983 983	2639	2671	915	1929	4398	2671	1014	2737	1014	5239	2737	1038	2639	1001	2606	2077	1789
	Demulsifier C		None	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Alcopol	Exxon Nalco	Exxon Nalco	Exxon Nalco	Exxon Nalco	Exxon Nalco	Alcopol	Breaxit	Breaxit	Breaxit	Broavit
Free	Water	(%)	54	53	0	8	8	ខ្ល	47	49	55	48	ន	5	0	0	53	64			0	49	49	48	48	47	0	c
	lio		1 Hydrocal 80/5/15	Hydrocal 80/5/15		3 Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	10 Hydrocal 80/5/15	11 Hydrocal 80/5/15	16 Hydrocal 80/5/15	17 Hydrocal 80/5/15	18 Hydrocal 80/5/15	Endicott	Endicott	Endicott	Hydrocal 80/5/15	23 Hydrocal 80/5/15	24 Hydrocal 80/5/15	Hudrocal 80/E/1E				
lest	Number		~	2	2	m	4	ۍ ا	9	~	ω	б	10	1	12	Ω	4	15	16	17	10	19	20	2	23	3	24	ų

APPENDIX C - OHMSETT TEST PROTOCOL

Test Plan for

Task Order No. 422

EXAMINING THE FATE OF EMULSION BREAKERS USED FOR DECANTING

Sponsors: U.S. DEPARTMENT OF THE INTERIOR Minerals Management Service Contact: Robert Smith COTR (703) 787-1580

and

ALASKA CLEAN SEAS Prudhoe Bay, AK Contact: Lee Majors (907) 659-3207

Client: S.L. Ross Environmental Research Ltd Ottawa, ON

Time Frame: NOVEMBER 2003

September 30, 2003

Second Draft Test Plan

Test Plan for

EXAMINING THE FATE OF EMULSION BREAKERS USED FOR DECANTING

Task Order No. 422

Sponsors: US DEPARTMENT OF THE INTERIOR Minerals Management Service Contact: Bob Smith COTR (703) 787-1580

and

ALASKA CLEAN SEAS Prudhoe Bay, AK Contact: Lee Majors (907) 659-3207

Client: S.L. Ross Environmental Research Ltd. 200-717 Belfast Rd. Ottawa, ON K1G 0Z4

Time Frame: November 2003

Prepared By:

Dave DeVitis - Test Director

_____ and ____

Ian Buist - SL Ross Project Officer

APPROVALS:

MAR, Inc.:

William Schmidt - Site Manager

- DOI MMS Robert Smith - COTR
- SL Ross:

Ian Buist - Project Manager

TABLE OF CONTENTS

Section INTROI	DUCTION	Page
Backg	ground1	
1.2	Objectives	
1.3	Organizations Participating in the Testing2	
1.4	Test Personnel	
TEST P	PROCEDURES	
2.1	Preparation5	
2.1	1	
2.1		
2.1	1	
2.2	Testing	
2.2	1	
2.2		
DELIV	ERABLES13	
3.1	Test Data	
3.2	Video Documentation	
HEALT	TH AND SAFETY JOB HAZARD ANALYSIS	
4.1	Introduction14	
4.2	Hazardous Materials14	
4.3	Generic Job Safety Analysis15	
4.4	Personal Protective Equipment18	
4.5	Communication Plan	
4.6	Contingency Plan	
EXAM	INING THE FATE OF EMULSION BREAKERS TEST QUALITY19)
5.1	Introduction	
5.2	Procedures	
5.3	Initial Calibration Data19	
5.4	Pre- and Post-Test Checks and Conditions	
5.5	Test Checks and Conditions	
5.6	Sampling	

5.7	Significant Occurrences/Variations	20
5.8	Data Reduction and Validation	20
SCHED	PULE	21
REFER	ENCES	22

LIST OF FIGURES

Page

Figure 1. Test	t Set-up	7
Figure 2. Plur	mbing for Main Bridge Oil Tank Emulsion Mixing and Oil Distribution	8

LIST OF TABLES

Page

Table 1.	Test Personnel Assignments	4
	Nominal Wave Characteristics	
Table 3.	Preliminary Schedule of Tests	11
Table 4.	Task Hazard Prevention	15

1. INTRODUCTION

A test program is planned to examine the fate of chemical emulsion breakers (also known as demulsifiers) when they are injected into a recovered fluid stream from open water containment and recovery operations to aid in decanting of recovered water to conserve temporary storage capacity. The primary objective is to quantify how much of the emulsion breaker ends up in the decanted water, and how much stays with the oily phase.

2.1 Background

The preferred approach to cleaning up an oil spill is to contain and thicken the oil slick(s) with booms and then place skimmers in the oil or emulsion to recover it. The recovered fluids are placed in temporary storage containers for transfer to larger storage vessels or for direct input into waste recycling and disposal systems. The most common type of high-capacity skimmer in use today is the weir skimmer. These skimmers often recover a large amount of water, both in the form of emulsified water and free water, when operating in waves. In some cases, the transfer pump built into the skimming system can impart enough energy to cause additional emulsification of the recovered fluids. The problem is that the recovered water (both emulsified and free) dramatically reduces the temporary storage space available at the site of skimming operations; this can result in having to stop skimming prematurely when the storage capacity is reached and having to wait until empty, temporary storage containers arrive at the response site.

A series of lab-scale and mid-scale tests with and without the use of emulsion breakers were completed recently that give some quantitative insight into the oil/water separation processes occurring in temporary storage devices (SL Ross 1998, 1999 and 2002). The objective of these tests was to determine the optimum time to decant the water and maximize the available on-site storage space during a skimming operation as well as the efficacy of adding emulsion breakers into the recovery stream to allow decanting of emulsified water. The results indicate that "primary break" (the initial separation of the recovered fluid into a layer containing most of the oil and a layer containing most of the free water) occurs within a few minutes to one hour, depending on the physical characteristics of the oil. Rapidly decanting this free water layer, in appropriate situations, may offer immediate increases of 200 to 300% in available temporary storage space. The addition of emulsion breakers can increase the amount of water that can be decanted, in the same time frame. Addition of the emulsion breaker seems to increase the oil content of the separated water significantly. At least one technology exists that can rapidly and effectively remove this dispersed oil from the decanted water.

A significant potential impediment to the application of emulsion breakers to extend temporary storage capacity is the ultimate fate of the emulsion breaking chemical(s). If the demulsifier remains with the oil, there should be no problem with their use; however, if they partition significantly into the separated water, they will be discharged into the environment when the water is decanted. Some demulsifiers are strong ionic surfactants that have a relatively high toxicity (on the order of tens of ppm) because their surface activity can disrupt the gills of fish. If

a recovered fluid consists of 50% free water and 50% of an emulsion containing 75% water and all the emulsion breaker used to treat it (typically dosed at 1:400 demulsifier:emulsion) transfers into the water, the decanted water could contain some 1400 ppm of demulsifier. Discharge regulations in some jurisdictions would not permit the decanting of such water to the ocean. Other demulsifiers are non-ionic, and tend to be much less toxic. Some emulsions are easier to break with ionic surfactants, and some are easier to break with non-ionic surfactants. During the July 2001 decanting tests at Ohmsett using emulsion breakers, the separated water foamed easily when agitated, providing strong qualitative evidence that it contained significant amounts of surfactant.

A series of small-scale tests with a scale-model piping system simulating a weir skimmer recovery system (used in the previous decanting study - SL Ross 2002) was completed this summer to determine the effects of several variables on the concentration of demulsifier in decanted water. As well, a technique for determining the concentration of demulsifier in the decanted water was perfected. This involves measuring the interfacial tension of the decanted water against a highly-refined mineral oil, such as USP grade (pharmaceutical) and comparing the measured interfacial tension with a calibration curve of prepared samples of different concentrations of the demulsifier in question).

The research idea here is to study the partitioning of different emulsion breakers injected into a recovery system at full-scale at Ohmsett. Experiments have been developed based on the lessons learned from the scale-model tests and the earlier decanting studies. They are designed to assess the fate of the demulsifier chemical(s).

1.2 Objectives

The objective of the proposed study is to determine the partitioning of different chemical emulsion breakers between oily and water phases when they are used to enhance decanting of recovered water from offshore skimming operations.

1.3 Organizations Participating in the Testing

All those who will be at the Ohmsett Facility are advised that they are subject to US Navy, Naval Weapons Station Earle (NWS-Earle) and Department of Interior, Minerals Management Service rules and regulations. The most obvious of those regulations involve health, safety, and security. All operational personnel must have 40-hour or 24-hour HAZWOPER training and an introductory Ohmsett Health & Safety training session. Access to the site is controlled by NWS-Earle. Use of a camera requires a permit issued by a NWS-Earle Base Security Officer. Unless informed otherwise by the Site Manager, testing is on weekdays only, and begins at 0700.

Minerals Management Service (MMS):

- Funds the operation of Ohmsett
- Provides the Work Order to MAR, Inc.
- Reviews and approves the Work Order Proposal
- Reviews and Approves the Final Report

SL Ross Environmental Research and Alun Lewis Oil Spill Consultancy:

- Prepares the Test Plan with MAR input
- Assists with the equipment assembly and checking
- Assists with the equipment operation
- Writes the final report

MAR, Inc:

- Prepares the Test Plan with SL Ross
- Provides the Desmi Terminator skimmer
- Prepares test fluids and confirms suitability
- Collects test data including oil distribution rates and volumes, volumes recovered, initial oil properties, and recovered oil and water analysis
- Collects background data including oil/water temperatures and wave data
- Photographs and videotapes the trials
- Provides raw data to SL Ross
- reviews the Draft Final Report

1.4 Test Personnel

The test personnel assignments are listed in Table 1.

Table 1: Test Personnel Assignments

Personnel	Location	Duties
<u>Site Manager</u> Bill Schmidt	Control Tower	Oversight
Test Engineer/Director Dave DeVitis	Test Basin	Overall supervision of testing
<u>OA Engineer</u> Alan Guarino	Roving	Monitors fluid sampling, data collection and test parameter accuracy.
Bridge Operator/Instrumentation Tech. Don Backer	Control Tower	Operates traveling bridge and data acquisition system
<u>Chemical Technician</u> Susan Cunneff	Oil Analysis Lab	Handles and analyzes fluid samples.
<u>H&S Specialist</u> Rich Naples	Roving	Monitors personnel safety.
<u>Fluid Transfer Technician</u> Dave Knapp	Main Tank Deck	Operates oil transfer system, Operates fill and off-loading pumps
Video Technician Rob Stewart	Roving	Operates hand-held video and digital still camera
<u>Oil Recovery Technician</u> Don Snyder	Auxiliary Bridge	Operates Ohmsett recovery tank valves, measure fluid recovery depths samples fluids
<u>SL Ross Sr. Engineer</u> Ian Buist	Roving	Provides advice on system operation and test suitability
<u>Chemist</u> Alun Lewis	Roving	Provide advice on tests and chemistry issues.
<u>Writer/Editor</u> Kathleen Nolan	Control Tower	Collate Raw Data and Deliver Test Documentation

2. TEST PROCEDURES

2.1 Preparation

The preparations for the tests include:

- Obtaining 1200 gallons of Hydrocal 300, 75 gallons of No. 6 Fuel Oil, 225 gallons of automotive diesel and 220 gallons of fresh Endicott crude, 1 gallon of Unichem RNB-60425 and 6 gallons of Alcopol O 70% PG (aka Drimax 1235B)
- Installing skimmer, hoses and Globe boom
- Conducting required safety checks and notifications.
- 2.1.1 Test Set-up and Instrumentation

All tests are to be conducted in a stationary position (i.e., no towing down the tank). A preliminary layout of the test equipment is given in Figure 1.

The test area will consist of 40 feet of 24"-Globe boom deployed in an isosceles triangle (11'10" base and 12'6" height) between the auxiliary bridge and the main bridge. The boomed area will be approximately 6.8 m² (73 ft²). The smaller test area being used this time, compared to the earlier tests, is so that less oil is consumed in each test, allowing more tests to be conducted in the one-week test window. The Desmi Terminator skimmer will be placed in the test area and operated from the side of the tank or the Auxiliary Bridge. The skimmer discharge will be directed to the oil recovery tanks on the auxiliary bridge. The separated water from the oil recovery tanks will be directed to a temporary water sampling Nalgene tank, then to a temporary holding tank on the deck and finally, pumped to a Rain-for-Rent tank located by the filter for treatment. Oil or emulsion from the oil recovery tanks will be processed to remove as much water as possible, then stored for disposal. The Hydrocal cannot be re-used for testing at Ohmsett because it will contain some diesel fuel, Bunker "C" and residual demulsifier that would reduce it's interfacial tension.

Portable video and digital still cameras will be used to record the testing from various perspectives.

Waves are generated at the south end of the Test Basin and controlled by the Bridge Operator in the Control Tower at the north end. A local readout of the wave generator cycles per minute is on the control console. The wave profiles will be recorded using a Datasonics ultrasonic distance meter. The signal from the wave meter will be recorded and analyzed after testing to confirm the wave characteristics.

2.1.2 Wave conditions

Two wave conditions will be generated during this test series. Their nominal characteristics are defined in Table 2.

Wave No.	Stroke (in.)	CPM	Туре	Nominal H ^{1/3} (in.)	Wave Length (ft.)	Period (sec)		
#1	3	22	Sinusoidal	16.5	37	2.8		
#2	#2 3 35		Sinusoidal	15	15	1.7		

Table 2. Nominal Wave Characteristics

2.1.3 Emulsion Preparation

At the beginning of the tests, and subsequently as required, emulsions will be prepared. A gear pump will be used to prepare the emulsion, since large quantities of a consistent quality are required on a daily basis. The use of pumps to create emulsions for equipment testing is well known and widely utilized in North America and Europe (eg., Gåseidnes 1993). The capability of the Hydrocal 300 test oil doped with 5% No. 6 Fuel Oil and 15% automotive diesel to form a meso-stable emulsion that is completely broken by the Alcopol emulsion breaker has been confirmed by lab tests. In addition, this year, an Alaskan crude oil , Endicott, will be included in the tests. The lab tests have shown that it will form a stable emulsion with seawater at 20°C. The target properties of the emulsion are a 50% (vol) water content. A 50% water content was chosen because it can be prepared reasonably quickly using the pump technique with little risk of inverting the emulsion, as can occur with higher water contents. The Hydrocal-based emulsion will be prepared, using the Viking gear pump plumbed to the Main Bridge oil tank as shown in Figure 2, as follows:

- 1) Add 1840 L (560 gallons) of Hydrocal 300 to the 1500-gallon Main Bridge oil tank.
- 2) Warm No. 6 Fuel Oil to 40 to 45°C using electric band heater
- 3) Turn on Viking gear pump (at 350 rpm, nominally 110 gpm) and Moyno oil distribution pump (nominally 350 gpm) and recirculate tank contents.
- 4) Add 400 L (105 gallons) of automotive diesel to the Main Bridge oil tank.
- 5) Slowly (2.75 gpm) add 145 L (35 gallons) of warm No. 6 Fuel Oil to the suction side of the Viking gear pump while circulating.
- 6) Continue recirculating for 10 minutes after last No. 6 Fuel Oil added.
- 7) Stop Viking gear pump and Moyno oil distribution pump.
- 8) Record volume of oil in tank using ultrasonic probe.
- 9) Restart Viking gear pump and Moyno oil distribution pump and recirculate tank contents.
- **10)** Open water valve and draw 57 L/min (15 gpm) of tank water into suction side of Viking pump.
- 11) Monitor tank level until a total of 2650 L (700 gallons) of tank water has been added (for a total volume in the tank of 5300 L (1400 gallons).
- **12)** Continue recirculating for 30 minutes.

Each test will require an estimated 850 L (225 gallons) of emulsion, allowing approximately six runs per batch of Hydrocal-based emulsion.

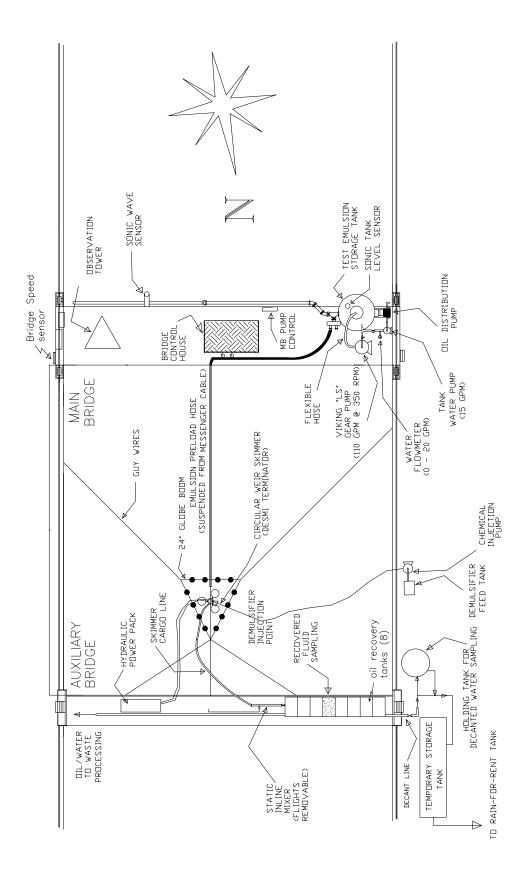


Figure 1. Test Set-up.

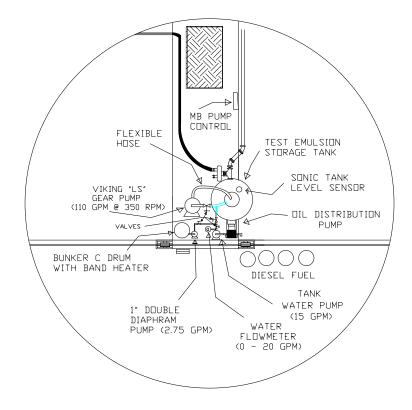


Figure 2. Plumbing for Main Bridge Oil Tank Emulsion Mixing and Oil Distribution.

The procedure for preparing the emulsions with Endicott crude will be similar:

- 1) Add 820 L (220 gallons) of fresh Endicott crude to the 1500-gallon Main Bridge oil tank.
- 2) Record volume of oil in tank using ultrasonic probe.
- 3) Turn on Viking gear pump (at 350 rpm, nominally 110 gpm) and Moyno oil distribution pump (nominally 350 gpm) and recirculate tank contents.
- 4) Open water valve and draw 57 L/min (15 gpm) of tank water into suction side of Viking pump.
- 5) Monitor tank level until a total of 820 L (220 gallons) of tank water has been added (for a total volume in the tank of 1640 L (440 gallons).
 - 6) Continue recirculating for 30 minutes.

This will allow two full-scale tests with the Endicott-based emulsion.

2.2 Testing

2.2.1 Test Descriptions

The following procedures are suggested for each test:

Before each test the Emulsion Recovery Rate (ERR) for the skimmer will be estimated and the volume of emulsion removed from the boomed area during the previous test calculated. The aim is to pump emulsion into the boomed area at the same rate that the skimmer removes it so that a constant thickness of emulsion is being presented to the skimmer. The following procedures are then used:

- 1. The required volume of test emulsion is added to the boomed area (to a total of 180 gallons) to make up the desired slick thickness (100 mm).
- 2. The Main Bridge distribution pump speed is set to supply fresh test emulsion at the ERR estimated for the test.
- 3. The waves are turned on at the desired setting and allowed to come to apparent steady state (this requires about two minutes). The data acquisition system is started.
- 4. The emulsion distribution pump is started and the skimmer turned on, with its discharge directed to recovery tank #8. The chemical injection pump is started with flow to the skimmer hopper at the desired demulsifier flow rate (nominally 1/400th or 1/1000th of the Fluid Recovery Rate).

- 5. When the cargo line is purged, the skimmer discharge is directed to four recovery tank cells sequentially (i.e., fill cell #7, then #6, etc., ending with cell #4). The target volume of emulsion (exclusive of free water) in each cell is 150 L, or 40 gallons.
- 6. The time when filling each tank cell is started and finished is recorded. The depth of fluid in each cell is measured and recorded.
- 7. After the last tank cell (#4) is filled, the emulsion distribution pump, demulsifier injection pump, skimmer and waves are stopped.
- 8. Simultaneously with the filling operation, two minutes after tank cell #7 was filled, it is decanted until the discharge from the bottom is "black". The water is sent to a temporary sampling tank and not poured back into the test basin.
- 9. The remaining emulsion recovery tank cells are decanted in sequence at 10, 30 and 60 minutes after the time they were filled.
- 10. For each cell in each test, the decanted water is directed to a Nalgene temporary holding tank on the deck beside the auxiliary bridge. When all water from the selected cell is transferred, the contents of the temporary holding tank are thoroughly mixed with an electric, bladed mixer and allowed to settle for five minutes to allow large droplets of emulsion to surface. The surface emulsion is removed with a sorbent pad, and then the temporary sampling tank is drained to the temporary storage tank. Two small water samples, one for oil content analysis and one for dissolved demulsifier analysis, are taken when half the water had drained from the temporary storage tank. Note that cell #8 is also decanted directly to the temporary storage tank for processing at the end of the test.
- 11. The depth of fluid remaining in each cell is measured (these depths, combined with the initial depths, are used to calculate the volumes of recovered product, decanted water and emulsion remaining).
- 12. Each recovery tank cell (#7 through #4) is mixed and sampled to determine the water content of the fluid remaining.
- 13. The contents of the recovery tank cells are transferred for waste processing.

2.2.2 Test Schedule

Test Matrix Variables

- One circular weir skimmer (representative of OSRO stockpiles)
 - Desmi Terminator (USCG/Ohmsett) nominal ORR in waves 20 m³/hr (90 USgpm)
- One slick thickness (representing a thickness typically expected for large-scale boom/skimmer operations)

- 100 mm (requires 684 L - 180 US gallons - preload in triangular boomed area)

- One demulsifier injection point - into the skimmer mouth
- Two Wave Conditions

- wave #1, $H^{\frac{1}{3}} = 15''$ with $\lambda = 37'$
- wave #2, $H^{\nu_3} = 15''$ with $\lambda = 15'$
- Two demulsifier dose rates (1:400 and 1:1000)
- Three parent oil/demulsifier combinations (Hydrocal/Alcopol, Hydrocal/Unichem RNB-60425 and two tests with Endicott/Unichem RNB-60425)
- Two control tests (no demulsifier injected)

Varying all of these gives 9 individual tests. It is proposed that one duplicate test be run to bring the total to 10 test runs. Table 3 gives the preliminary schedule for the tests.

Day	Test No.	Emulsion Parent Oil	Demulsifier	Demulsifier Dose	Wave No.
1	1	Hvdrocal 80/5/15	none	none	1
2	2	Hydrocal 80/5/15	none	none	2
2	3	Hydrocal 80/5/15	Alcopol O 70% PG	1:400	1
2	4	Hydrocal 80/5/15	Alcopol O 70% PG	1:400	2
3	5	Hydrocal 80/5/15	Alcopol O 70% PG	1:1000	1
3	6	Hydrocal 80/5/15	Alcopol O 70% PG	1:1000	2
3	7 (duplicate)	Hydrocal 80/5/15	Alcopol O 70% PG	TBD	TBD
3	8	Hydrocal 80/5/15	Unichem RNB-60425	1:1000	2
4	9	Endicott crude	Unichem RNB-60425	1:1000	1
4	10	Endicott crude	Unichem RNB-60425	1:1000	2

Table 3. Preliminary Schedule of Tests

2.2.4 Sample Analyses

Each test will involve 4 oil-in-water analyses (i.e., TPH with solvent extraction/IR), 4 water-in-oil analyses (Centrifuge -perhaps with a little demulsifier added - a well-mixed sample from each cell in the recovery tank after it has been decanted) and 4 interfacial tension measurements against USP mineral oil to determine the concentration of demulsifier in the decanted water. For the 10 tests this totals 40 TPH, 40 water-in-oil analyses and 40 IFTs. Duplicates (at 10%) would raise the totals to 44 for each. A total of about 10 IFT measurements will be required to construct calibration curves for the concentration of the two emulsion breakers in tank water.

In addition a rheological work up on each batch of emulsion prepared (viscosity at different shear rates with the Haake), a water content and a density is desired. It is estimated that about three batches of emulsion will be required.

3. DELIVERABLES

3.1 Test Data

Original data logs, computer generated data files, video and photos will be kept on file at Ohmsett. Copies or duplicates will be created and delivered to SL Ross to generate the final data report. The Ohmsett deliverable items will include:

- Raw computer generated data files.
- Observations on tests.
- All manually generated logs.
- Ohmsett laboratory oil-in-water, water-in-oil, rheology, density and interfacial tension analyses.

3.2 Video Documentation

High-resolution, commercial-grade videos (S-VHS) shall be produced with titles that clearly state the test name, time of day, date and test number. Video documentation will be duplicated in VHS format as deliverable items for SL Ross. Logs will accompany the videos specifying test number, date, time and location on the video tape. Photos, digital and 35 mm, will also be duplicated as deliverables. All original video documentation will be maintained at Ohmsett.

4. HEALTH AND SAFETY JOB HAZARD ANALYSIS

4.1 Introduction

A job hazard analysis is a means of preventing or controlling hazardous conditions associated with testing activity. Analysis begins by determining the basic tasks of a job. Each task is then analysed to identify potential hazards associated with it. It will then be possible to develop control measures for the hazards identified. Prior to any test activity, personnel involved with the test are informed of potential hazards and controls for an understanding of their health and safety responsibilities.

4.2 Hazardous Materials

Fuel:

- Hydrocal 300
- Automotive Diesel
- Endicott crude oil
- No. 6 Fuel oil

Other Products/Chemicals:

- Alcopol O 70% PG (aka Drimax 1235B) emulsion breaker
- Unichem RNB-60425
- Citrus (Cleaning Agent)
- Steam Cleaner (Cleaning Agent)
- Hydraulic Fluid

According to available product safety information, respiratory protection is not needed, as the evaporation rate of the oil is negligible, resulting in the off-gassing of little, if any, vapors.

All personnel involved in testing are informed of associated health hazards, as well as the proper personal protective measures required to eliminate exposure to the oil, in accordance with OSHA Hazard Communication Standard requirements. A Material Safety Data Sheet is maintained for test oils, chemicals or various products, and will be available to each employee involved in testing.

In addition to the above-mentioned products/chemicals, there are laboratory and sampling chemicals. Although specific to laboratory operations, Material Safety Data Sheets will be made available for review. They are: Carbon Tetrachloride, Toluene, Hydrochloric Acid, and Propane. In the event additional lab chemicals are utilized, MSDS sheets are available for review.

4.3 Generic Job Safety Analysis

The following table lists basic or generic tasks necessary for the "Extending Temporary Storage Capacity Offshore with Emulsion Breakers" test. Hazards associated with the tasks are listed with preventive measures to be followed by affected personnel.

	TASK		HAZARDS		PREVENTION/CONTROL
1)	Materials handling, general set-up	a)	Lifting material(s) (muscle strains, back injuries)	a)	Use proper lifting techniques; lift with your legs, not your back; get help for heavy loads, use mechanical devices (i.e., fork lift, job cranes).
		b)	Forklift operations (objects striking)	b)	Follow acceptable safe practices for operators.
		c)	Jib crane(s) operations (objects striking)	c)	Do not stand under raised loads. Do not exceed capacity of jib crane. Use one signal man.
		d)	Mobile crane (contractor personnel, objects striking)	d)	Only qualified crane operator and signal man will control lift operations. Do not stand under raised loads.
		e)	Hand/power tools (muscle strains, pinch points, electrocution)	e)	Use correct tool for the job, use correct PPE and proper body positioning when handling tools. Inspect all power tools to ensure no frayed or exposed wires exist, equipment is grounded and insulated and GFI's extension cords etc. are functioning properly.
2)	Boom assembly and placement into tank (set-up)	a)	Rigging from work boat (falls)	a)	Personnel on work boat MUST wear PFD's. Evenly distribute weight and do not overload. Life preservers are in place as needed.
		b)	Cable handling (pinch points)	b)	Wear hand protection during rigging.
		c)	Positioning bridges (objects striking)	c)	Have appropriate lines of continual communication.
		d)	Positioning boom equipment. Mobile crane operations (objects striking)	d)	No one permitted under heavy loads. Only contract operator and signal man will control lift operations.

Table 4. Task Hazard Prevention

3)	Oil transfer	a) b)	Spilled oil/deck area (slip/fall hazard) Pressurized equipment/pumps/hoses/ lines (pressure release, objects striking)	a) b)	 Clean spills on deck/bridges immediately. Utilize spill equipment, as required. Inspect all equipment prior to use. Do not use damaged equipment. Replace cracked hoses, broken gauges prior to pressurization. Inspect for leaks. Use adequate PPE (hard hat, gloves, face shield).
4)	Bridge operation positioning and movement	a)	Bridge movement (objects striking, falls)	a) b) c)	No personnel permitted on the deck, under moving cables or in motor perimeter while in operation. All guard rails must be in place and secured while working on moving bridge. Continued and open communications with bridge operator is mandatory. While testing, only authorized personnel involved with the test allowed in bridge control area (third floor).
5)	Oil addition to test tank	a) b)	Splashing/spraying oils while transferring to Test Tank. [Slips/falls, exposure (skin/eyes), exposure (inhalation)] Pressure release (object striking, pinch points)	a) b)	 Wear appropriate PPE (protective clothes, goggles/face shield, nitrile gloves). Air sample base line tests will be taken. Appropriate respirators will be worn as required. Technician will keep bridge/deck as oil-free as possible. Utilization of damaged hoses for faulty equipment is prohibited. Check all piping, hoses, hose connections, etc. prior to use. Bleed pressure prior to disconnect. Wear PPE to include protective clothes, goggles/face shield, hard hat, nitrile gloves.
6)	Operations of skimmer system(s)	a) b) c)	General operation for Collection/Skimming (high noise levels) General operations (hydraulics, striking objects) Deployment and general operations (testing)	a) b) c)	Sound level readings will be taken and protective devices will be issued should action levels be reached. All hoses are to be inspected prior to use to ensure adequate rating. All fittings will be inspected to ensure adequate ratings. Hoses and fittings will be securely tightened. Wear appropriate PPE (protective clothes goggles/face shield, gloves, appropriate respirators will be worn as required.

7)	Wave generation	a)	Moving wave generating equipment (pinch points, objects striking).	a)	No personnel permitted in wave generating room during operations. PPE must be utilized when adjusting mechanics of wave generation equipment. Use correct tools for the job and use them safely.
8)	Removal of oil from test tank	a)	Oil exposure (skin/eye contact)	a)	Wear protective clothing, goggles/face shields and nitrile gloves.
		b)	Falls, slips	b)	When moving oil from the water with high pressure hose streams, avoid direct contact of oil with water stream. Clean any splashed oil from the deck with absorbent pads.
		c)	Drum skimmer power pack operations.	c)	Hearing protection is mandatory, (muffs or plugs)
9)	Cleanup of equipment	a)	Disassembly of rigging from work boat (falls).	a)	Personnel on work boat must wear PFD's. Evenly distribute weight and do not overload. Life preservers are in place as needed.
		b)	Pressurized water/water lines (objects striking)	b)	Inspect all equipment prior to use. Ensure hoses/fittings, etc. Are in good condition with no signs of deterioration/cracks damage.
		c)	Hot water/steam wash (burns)	c)	Wear appropriate PPE (face shield, goggles, gloves, protective clothes).
		d)	Oil/cleaning agent exposure (skin, eye contact)	d)	Wear appropriate PPE (face shield, goggles, protective clothes, Sarnac or Tyvek suits, gloves).
		e)	Slippery surfaces from excess oil/cleaning agents (falls/slips)	e)	Keep deck as oil and soap free as possible, watch footing and remove obstacles. Creation of a decontamination zone will be mandatory.
10)	Pack up	a)	Fork lift operations (objects striking)	a)	Follow acceptable safe practices for fork lift operations.
		b)	Material handling (muscle strains, back injuries)	b)	Use proper lifting techniques, lift with your legs and not with your back, get help for heavy loads (i.e. fork truck, jib crane, etc.).

Finally, personal protective equipment guidelines (for items such as hard hats, steel toed boots, and the like) will be followed based on our Health & Safety Site Plan. The assessment is based only on generic or basic steps. Chemical Hazards will be discussed based on hazard communication standards with MSDS's reviewed.

Material Safety Data Sheets are available to participants at the Ohmsett Facility Office, Building R-26.

4.4 Personal Protective Equipment

The following personal protective equipment shall be available at all times. Specific use requirements may be found in Section 4.2.

- Work gloves
- Oil resistant gloves (neoprene, nitrile)
- Eye protection (safety glasses, goggles)
- Face protection
- Hardhats
- Safety shoes
- Personal flotation devices (for workboat operations) mandatory
- Respiratory protection (suitable for dusts, mists, vapors and fumes) if applicable
- Hearing protection, for power pack operation
- Life rings
- Splash suits, for boom clean up
- Fall-arrest system (life line, safety belt, tie-off point)

4.5 Communication Plan

Good communication is essential to the safe execution of the test. The following types of communication tools and skills will be available for use:

- Two-way radios
- Intercom system
- PA system
- Hand signals

4.6 Contingency Plan

In case of medical emergency, fire, major oil spill, or other emergency, it is necessary to notify Naval Weapons Station Earle. The OHMSETT Spill Response Plan shall be followed in the event of any oil spill.

A) Emergency Telephone Numbers:

- Naval Weapons Station Earle X 2911
- Leonardo First-Aid 9 615 2100
- Riverview Medical Center 9 741 2700
- Bayshore Hospital 9 739 5900
- Poison Control Center 9 1 (800) 962-1253

5. EXAMINING THE FATE OF EMULSION BREAKERS TEST QUALITY 5.1 Introduction

Examining the Fate of Emulsion Breakers Test Quality is the active application of The Ohmsett "General Quality Procedures and Documentation Plan Manual" and the "Examining the Fate of Emulsion Breakers Test Quality Checklist."

The Quality Checklist has a list of those items in the Examining the Fate of Emulsion Breakers Test Plan (see Section 5.2) that are deemed important elements in creating a quality test. This list will be used by the QA Engineer to record spot checks of key quality elements, along with appropriate comments, where necessary. A description of these key quality elements follows. The QA Checklist will be provided in the Final Test Plan.

5.2 Procedures

The Examining the Fate of Emulsion Breakers Test Quality Checklist is implemented as follows:

The Examining the Fate of Emulsion Breakers Test Quality Checklist consists of a complete list of Quality concern items that the QA Engineer uses to spot check items, and confirm adherence to the Test Plan. This checklist is used both before, during and after the test to make sure all areas of the test plan receive the same thorough Quality attention. These areas include:

- A. Initial calibration data
- B. Pre- and post-test checks and conditions
- C. Test checks and conditions
- D. Sampling
- E. Significant occurrences/variations
- F. Data reduction and validation
- G. Data accuracy and precision
- H. Documentation of the tests
- I. Technical project report

5.3 Initial Calibration Data

A check is made to insure that data is available to show the initial source of calibration data for each piece of instrumentation used in the test. This includes any calibration information necessary to assure that the calibration data is current for this test.

5.4 Pre- and Post-Test Checks and Conditions

These are checks that are performed on the instrumentation and weather conditions each morning before testing starts and at the end of the day when testing stops. This is done on all days that testing occurs. Note is made of any unusual conditions that occur. These conditions must be evaluated before testing is started or if noted at the end of the day, the day's data is examined to determine its validity and whether the affected tests need to be repeated.

5.5 Test Checks and Conditions

These checks insure that the test plan's instructions on how the test is to be done are followed and that the records that are to be made during the test are completed accurately.

5.6 Sampling

Sampling will be checked for compliance with the instructions in this plan and the "Operating Manual for Ohmsett Laboratory Including Laboratory Procedures."

5.7 Significant Occurrences/Variations

This part of the Examining the Fate of Emulsion Breakers Test Quality checks will be concerned with recording any significant occurrences/variations that might occur during the tests. These will be immediately reported to the Project Officer.

5.8 Data Reduction and Validation

All data reduction and validation will be performed in accordance with approved and accepted methods. When non-standard methods are utilized, they shall be included in the Technical Project Report and sufficiently described so that they can be used by independent sources to duplicate the results. The treatment of data is described in Sections 3.

6. SCHEDULE The following schedule is planned for conduct of the tests.

DATE	EVENT
September 30, 2003	Submit Draft Test Plan
November 10 to 14, 2003	Examining the Fate of Emulsion Breakers Tests
December, 2003	Deliver Raw and Processed Data, Observations and Photo Video Documentation
December 31, 2003	Submission of Final Report

7. REFERENCES

- Gåsiednes, K. 1993. Preparation of Mousse for Oil Spill Equipment Testing. In Formation and Breaking of Water in Oil Emulsions: Workshop Proceedings. MSRC Technical Report 93-018. Washington, DC. pp 123-132
- Schulze, R. V. Keith and C. Purcell. 1995. World catalog of oil spill response products. Port City Press. Baltimore, MD
- SL Ross Environmental Research Ltd. 1998. Modeling and lab-scale testing of water separation from fluids recovered by weir-type skimmers. Report to Alaska Clean Seas. Deadhorse, AK
- SL Ross Environmental Research Ltd. 1999. Testing at Ohmsett to determine optimum times to decant simple temporary storage devices. Report to MMS and CCG. Herndon, VA
- SL Ross Environmental Research Ltd. 2002. Extending temporary storage capacity offshore with emulsion breakers. Report to MMS and CCG. Herndon, VA.

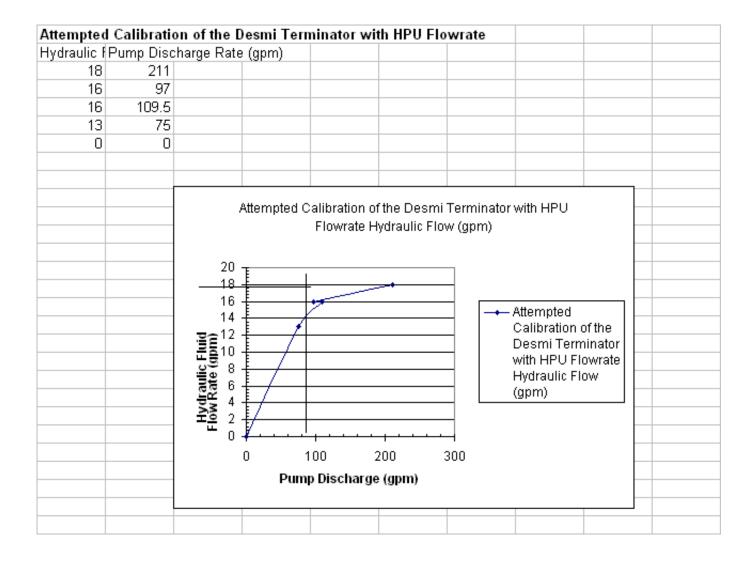
APPENDIX D - OHMSETT TEST RESULTS

	Comments	Neglected to take recovery tank samples, No water samples at 2 minutes, Forgot IFT sample at 10 min.	No Sample. Not enough water for samples	Creamed oil on surface of emulsion in boom, 10-min tank decanted at 12 min. 26 s	10-min. tank decanted at 12 min. 2 s. Note tanks 3 and 4 times switched	Demulsiner injection pump had problems early in test.	Skimmer paused during tilling of recovery tank #5, 1U-min tank decarted at 12 min. 51 s	Demulsifier injection pump tuming slowly. 10-min tank decanted at 12 min. 14 s	Skimmer slow to start, 10-min tank decanted at 10 min. 48 s	Problems with skimmer HPU for first 5 minutes, then better,10-min tank decanted at 10 min. 40 s	ficiency	Image: Signal state of the signal s
(mm)	.ррт.) 60 min.	2	No Sample	52	52	₽;	6 1 7	38	171		aking Efi	aik Hilled
Concentration of Dominicition in Decented Withter (mm)	anteu vvater 30 min.	2	No Sample	401	292	677	3	279	175	175	Emulsion Breaking Efficiency	10 20 30 40 50 10 10 10 10 10 10 10 10 10 10 10 10 10
Concentration of	siller in veca 10 min.	No Sample No Sample	No Sample	291	267	760	21	317	223	149		
Domu	Derru 2 min.	No Sample	No Sample	257	46	RF 000	2 R	279	241	301		
1	1) 60 min.	918	No Sample	452	6/6	AU222	276	1249	934	491		
Concentration of	a water (ppr 30 min.	206	No Sample	1102	8 8	/#/	7/04	66	1347	2143		→ 1 [est] → 1 [est]
Concentration of	10 min.	212	No Sample	1325	799	2010	909	1680	888	4184		Mater Mater
3	2 min.	Vo Sample	Vo Sample	8252	3491	7103	/#C77	4649	11239	4515	89977	of Decanted Water and the second sec
	60 min.	Vo Sample I		8	ж г	5 9	ද ද	64	₽	8		Content of Decanted Wa
dration (%)	30 min.	No Sample No Sample No Sample	0	4	49	88	8 œ	62	32	R		
Emulsion Dehydration (%)	10 min.		0	6	9 8	3 8	3 -	8	R	88		image: construction of the structure of
Ē	2 min. 1	No Sample No Sample	0	82	¥ 1	38	2 0	62	22	42		
Recovered		No Sample No	8	9	83	5	57	19	Æ	æ		
Demulsifier F	m) Con			1413	1194	80 90 91 90	<u>ş</u> _	425	1380	1647	_	
Domulation Concertation E-mulation Weter	omer curiceriro (ppm)			_	_						reak	- 9 =
-		None			-	+	Alcopol	-		Lunichem	Time to Primary Break	Time After Fill (min)
Fluid Free			104 19	97 44	+		128 128 128				Time to F	
Wave Total Fluid	niriber Frium (gp	0 -	2 10	-	~ ~	+	7 -	2	+	3		
		Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15	Hydrocal 80/5/15		Hydrocal du'o/15	Hvdrocal 80/5/15	ficott	Endicott		
		1 Hydroca	2 Hydroca	3 Hydroca	4 Hydroca	5 Hydroca	D Hydroca	8 Hvdroca	9 End	10 End	8	betancesed retrieved (snollep)
Test	INUTION											

Test	Demulsifier	Inline	Preload	Preload	Preload Distribution	Wave	Parent		Test	Demulsifier	Inline	Preload	Preload Distribution		Wave	Parent	
Number	۸/N	Mixer	Volume	Thickness	Rate	Number	lio	Demulsifier	Number	۸/۲	Mixer		Thickness		Number		Demulsifier
	Fluid: Demulsifier		(gal)	(mm)	(gpm)		Blend	Vol (L)		Fluid:Demulsifier		(gal)	(mm)	(gpm)		Blend	Vol (L)
-	N	λ	193	117	151	.	81/14/5	0	2	N	γ	259	157	101	2	81/14/5	0
	i0//I0#									i0//I0#							
Tank	Settling	Time	Filled	Decanted	Emulsion	Water H	Rec. Emulsion	_	Tank	Settling	Time	Filled	-	Emulsion	Water F	Rec. Emulsion	lio
Number	Time	to Fill	Depth	Depth	Remaining	Decanted	Remaining Decanted Water Content	: Recovered	Number	Time	to Fill	Depth	Depth F	Remaining Decanted		Water Content Recovered	Recovered
		(s)	(in)	(in)	(gal)	(gal)	(%)	(gal)			(s)	(ii)	(in)	(gal)	(gal)	(%)	(gal)
00									œ								
2									~								
و			14.8				mn	MALUE!	9	2	ជ	15.5	15.5	9	0	29	45
ų	10	76	14.8		75	11	mu	I #VALUE!	Ś	10	51	16.5	16.5	96	0	55	43
4			15.0			15	mn	1 #VALUE!	4	8	5	15.3	15.0	8	~	8	28
m			15.1				mn		m	8	25	15.5	15.3	8	~	65	щ
0									2								
-									-								
															_		
Fill	Average	Average Skimming Rate		Free		Emulsion	Emulsion Removed (gal)		Ε	Average	Average Skimming Rate		Free		Emulsion	Emulsion Removed (gal)	296
Time	Total	Emulsion	Water	Water			Preload (gal)	193	Time	Total	Emulsion	Water	Water			Preload (gal)	259
(s)	(mdg)	(mdg)	(mdg)	(%)		Emulsi	Emulsion Added (gal)	_	(s)	(mgpm)	(dpm)	(dpm)	(%)		Emulsio	Emulsion Added (gal)	315
60E		8	8	11.9		Emulsion F	Emulsion Remaining (gal)	_	211	104	84	2	19.3	ш	Emulsion R	Emulsion Remaining (gal)	278
							2									2	
Test									Test								
Number									Number								
-									2								
Tank	Free	Emulsion	НДТ	FT	Demulsifier				Tank	Free	Emulsion	TPH	IFT D	Demulsifier			
Number	Water	Dehydration	Water	Water	in Water				Number	Water	Dehydration	Water	Water	in Water			
	Removed (%)	(%)	(mg/L)	(m/Nm)	(mqq)					Removed (%)	(%)	(mg/L)	(mN/m)	(mqq)			
00									œ								
2									7								
9		i0//I0#	шu	шu					9	0	0	шu	mu	шu			
S		i0//I0#	212.4	шu					Q	0	0	шu	mu	mn			
4		i0//I0#	205.8	30.96667	2				4	ω	0	шu	mu	шu			
m	i0//IC#	i0//I0#	917.9	30.75					m	ω	0	шш	mu	ш			
0									2								
-									~								
Average co	Average concentration of demulsifier in recovered fluids =	vulsifier in recov	ered fluids	II	iQ/AIC#	maa			Average col	Average concentration of demulsifier in recovered fluids =	ulsifier in recove	ered fluids =		#DIV/01	maa		
0									0								

Test	Demulsifier	Inline	Preload	Preload 1	Preload Distribution	Wave	Parent		Test	Demulsifier	Inline	Preload	Preload D	Preload Distribution	Wave	Parent	
Number	Y/N	Mixer		Thickness	Rate	Number	lio	Demulsifier	Number	N/Y	Mixer		Thickness	Rate N	Number	lio	Demulsifier
	Fluid: Demulsifier			(mm)	(mqg)		Blend	Vol (L)		Fluid: Demulsifier			(mm)			Blend	Vol (L)
ъ	>	Y	278	169	20	÷	81/14/5	1.6	و	7	×	67	<u>6</u>	100	2	81/14/5	ť.
	1127							Drimax		738							Drimax
Tank	Settling	Time	Filled	Decanted	Emulsion	Water	Rec. Emulsion	lio	Tank	Settling	Time	Filled	Decanted	Emulsion	Water R	Rec. Emulsion	lio
Number	Time	to Fill	Depth	ء	Remaining Decanted	Decanted	Water Content Recovered	Recovered	Number	Time	to Fill	Depth	ء	Remaining Decanted		Water Content Recovered	Recovered
		(s)	(in)	(u)	(gal)	(gal)	(%)	(gal)			(s)	(in)	(in)	(gal)	(gal)	(%)	(gal)
œ									œ								
~									~								
G	2	52	15.3			26	23		G	2	62	15.0	3.3	19	8	15	
Ś	1	40	16.0	9.8	29	37	25		ų	9	61	15.5	4.0	33	67	19	19
4	8	42	14.8			37	ю.		4	8	62	15.3	5.5	32	25	ю.	22
m	8	48	15.0			25	18		m	8	8	14.8	7.8	45	41	27	R
2									2								
-									~								
Fill	Åverage	Average Skimming Rate	ate	Free		Emulsion	Removed (gal)	301	Fill	Average	Average Skimming Rate	te	Free		Emulsion 1	Emulsion Removed (gal)	181
Time	Total	Emulsion	Water	Water			Preload (gal)		Time	Total	Emulsion	Water	Water			Preload (gal)	97
(s)	(dpm)	(dbm)	(dbm)	(%)		Emulsi	Emulsion Added (gal)		(s)	(dbm)	(mdp)	(mqp)	(%)		Emulsic	Emulsion Added (gal)	287
182	117	66				Emulsion F	Remaining (gal)		265	8	41	8	48.9	Ш	Emulsion R.	Emulsion Remaining (gal)	203
							(in B) B			}	:	3		1		(nB) B	
Test									Test								
Number									Number								
ъ									٥								
Tank	Free	Emulcion	TDH	ĒT	Domulcifior				Tank	Fraa	Emulcion	TDH		Dominicition			
Number		Dehvdration	Water	-	in Water				Number	Water	Dehvdration	Water	-	in Water			
	8	, (%)	(mg/L)	(m//m)	(mqq)					Removed (%)	, (%)	(mg/L)	(m//m)	(mqq)			
ω									8								
2									2								
G	190	54		3.3	140				9	160	70	22546.7	1.5	630			
ç	251	20		1.55	592				S	152	62	2816.4	1.75	470			
4	273	R		2.55	229				4	131	R	14571.7	<u>1</u> .9	401			
m	418	64		1.9 ق	401				m	101	46	923	1.0	445			
2									2								
~									~								
Average coi	Average concentration of demulsifier in recovered fluids =	mulsifier in n	ecovered flu	= spir	888 ppm	mqc			Average co.	Average concentration of demulsifier in recovered fluids =	emulsifier in re	ecovered flu	ids =	1354 ppm	ma		

Demulsifier Vol.(1)	73 23	Drimax	lio	lecovered (ral)	(Bai)			R	27	19	17			186	238	113	165																	
Parent Oil D Blend	81/15/4		Rec. Emulsion	Water Content Recovered	(or)			38	26	33	3			Emulsion Removed (gal)	Preload (gal)	Emulsion Added (gal)	Emulsion Remaining (gal)	2																
wave Number	~		Water F	Decanted V	(gai)			45	ដ	5	8			Emulsion		Emulsi	Emulsion R												60 min	30 min			bm	
Preload Ulstribution hickness Rate (mm) (nnm)	100		Emulsion	Remaining (ral)	(gai)			42	37	8	8											Domulcifier	in Water	(mqq)			445	267	257 6	267 3			1194 ppm	
Preload L Thickness (mm)	145	2	Decanted	Depth I	(11)			7.3	6.3	4.8	4.0	test only		Free	Water	(%)	45.4					L L	ŗ	(m/vm)			1.8	2.35	2.4	2.35	test only		iids =	
Preload Volume	ر 238 238		Filled	Depth (in)	(111)			15.0	15.3	14.0	14.0	ned for this		ate	Water	(mq <u>p</u>)	88					TPH	Water	(mg/L)			3491	799	626	6 1	ned for this		scovered flu	
Inline Mixer	>		Time	to Fill (s)	(0)			37	34	<u>ب</u>	8	anting switch		Average Skimming Rate	Emulsion	(mqg)	81					Emulcion	Dehvdration	(%)			44	48	æ	42	anting switch		mulsifier in n	
Demulsmer Y/N Fluid: Demulsifier	4.001101101	888	Settling	Time				2	10	8	R	2 NB: Order of decanting switched for this test only		Average 5	Total E		149					Free		%			114	130	146	157	NB: Order of decanting switched for this test only		Average concentration of demulsifier in recovered fluids =	
lest L Number Flui	4	-	Tank	Number	C	20	2	9	S	4	m	2 NE	~		Time	(s)	137		Test	Number	4	Tank	Number		<u> </u>	~	9	Υ	4	m	2 NE	~	Average conc	
Demulsifier Vol. (1.)	33 (f)	Drimax	Oil	tent Recovered (ral)	(gai)			31	29	19	18			195	203	132	140																	
Parent Oil D Blend	81/15/4		Rec. Emulsion	Water Content F	(0/)			11	Q	28	21			Emulsion Removed (gal)																				
vvave Number	-		Water	Decanted ((gai)			3	8	6	8			Emulsion		Emulsi	Emulsion Remaining																mdo	
Preload Distribution Wave hickness Rate Numbe (mm) (num)	75		Emulsion	Remaining Decanted Water Cont (Aal) (Aal)	(gai)			8	31	26	33											Domileifior	in Water	(maa)			257	291	401	257			1413 ppm	
Preload Thickness (mm)	123		Decanted	Depth (in)	(III)						4.0			Free	Water	(%)	44.5					ΕT	Water	(m//m)			2.4	2.25	0.1 0	2.4			ids =	
Preload Volume (dal)	903 203		Filled	Depth (in)	(111)				15.5		14.8			ate	Water	(mqg)						HdT	Water	(mg/L)				1325		452			recovered fly	
Mixer Mixer	>		Time	to Fill (e)	(0)			51	S	55	25			Average Skimming Rate	Emulsion	(mdg)	54					Emulcion	Dehvdration	(%)			78	6	44	58			mulsifier in t	
Demulsitier Y/N Fluid:Demulsifier		108	Settling	Time				2	10	8	00			Average	Total		26					Free		%			135	149	157	164			Average concentration of demulsifier in recovered fluids =	
Number Number	e 		Tank	Number		20	7	9	ŋ	4	m	2	-	lii	Time	(s)	218		Test	Number	m	Tank	Number		<u> </u>	2	g	νΩ	4	m	2	-	Average conu	


Demulsifier Vol (L)	0		Oil	Recovered	(gal)			24	24	21	21		180	354	102	276]
Parent Oil D Blend	81/15/4		Rec. Emulsion	ntent	(%)			46	33	46	42		Emulsion Removed (gal)	Preload (gal)	Emulsion Added (gal)	Emulsion Remaining (gal)																_
Wave Number	-		Water	eq	(gal)			ى	m	12	Ω		Emulsion		Emulsi	Emulsion F															mqq	-
Preload Distribution hickness Rate (mm) (gpm)	33		Emulsion	ing	(gal)			44	51	R	37									Demulsifier	in Water	(ppm)			R	21	22	15			0	
Preload I Thickness (mm)	215		Decanted	ء	(ii)				8.8				Free	Water	(%)	11.8				ΕT	Water	(mN/m)			7.05	8.95	8.7	10.8			= spir	
Preload Volume (gal)	354		Filled	Depth	(ii)			8.5	9.3	8.8	8.5		ate	Water	(mqg)					TPH	Water	(mg/L)						647			ecovered flu	
Inline Mixer	≻		Time	to Fill	(s)			25	33	24	24		Average Skimming Rate	Emulsion	(mqg)	113				Emulsion	Dehydration	(%)			0	0	ω	16			mulsifier in r	
Demulsifier Y/N Fluid:Demulsifier	z		Settling	Time				2	10	R	9		Average (Total	(dbm)	128				Free		Removed (%)			100	46	193	224			Average concentration of demulsifier in recovered fluids =	_
Test Number Fli	2	Redo 1	Tank	Number		œ	2	9	S	4	σ	~	Fill	Time	(s)	96	Test	Number	~	Tank	Number	H	œ	~	٩	S	4	m	7	~	Average cor	
Demulsifier Vol (L)	0.5	Drimax	lio	lecovered	(gal)			28	21	14	12		151	262	51	162																
Parent Oil D Blend	81/15/4		Rec. Emulsion	Remaining Decanted Water Content Recovered	(%)			19	21	19	9		Emulsion Removed (gal)	Preload (gal)	Emulsion Added (gal)	temaining (gal)																_
Wave Number	2		Water	Decanted	(gal)			54	69	22	72		Emulsion		Emulsi	Emulsion Remaining															mqq	
Preload Distribution hickness Rate (mm) (gpm)	75		Emulsion	Remaining	(gal)				26											Demulsifier	in Water	(mpm)			279	317	279	364			425 ppm	_
Preload Thickness (mm)	159		Decanted	Depth	(uj)				4.5				Free	Water	(%)	57.9				FT	5	(mN/m)			2.3	2.15	2.3	7			= spin	
Preload Volume (gal)	262		Filled	Depth	(u)				16.3		14.0		late	Water	(mqg)					TPH	Water	(mg/L)						1249			recovered fl	
Inline Mixer	≻		Time	to Fill	(s)			25	23	24	24		Average Skimming Rate	Emulsion	(mqg)	94				Emulsion	Dehydration	(%)			62	23	62	64			emulsifier in	
Demulsifier Y/N Fluid:Demulsifier	>	2354	Settling	Time				2	10	R	9		Average	Total	(mdg)	224				Free		Removed (%)			105	125	138	143			Average concentration of demulsifier in recovered fluids =	_
Test Number FI	@		Tank	Number		ω	~	9	ŋ	4	mΝ	-	Fill	Time	(s)	96	Test	Number	ω	Tank	Number		00	~	ى	S	4	m	2	~	Average coi	-

	Demulsifier	Vol (L)	1.8	JNICHEM	Oil	overed	(gal)			9	21	16	12			L	8	8	144	9																	
	Dem	ν		NII	sion	tent Reci	0			53	ю	35	40			4	gaij	(gal)	(gal)	(gal)																	
Parent	ΪÖ	Blend	Endicott		Rec. Emulsion	Water Content Recovered	(%)										Emuision Removed (gai)	Preload (gal)	Emulsion Added (gal)	Emulsion Remaining (gal)	ó																
Wave	Number		2		Water		(gal)			55	2	38	29			L			Emuls	Emulsion F																	mdd
Preload Distribution	Rate	(dpm)	75		Emulsion	Remaining Decanted	(gal)			55	34	25	20													Demulsifier	in Water	(ppm)			301	149	175	156			1647 ppm
Preload 1	Thickness	(mm)	20		Decanted	Depth	(in)					4.3	3.5			L	aau	Water	(%)	34.4							Water	(mN/m)			4.6	ى	5.65	5.9			lids =
Preload	Volume	(gal)	82		Filled	Depth	(in)			8.5	9.25	6	8.5			-	ale	Water	(mdg)	R						H	Water	(mg/L)			4515	4184	2143	491			ecovered flu
Inline	Mixer		Y		Time	to Fill	(s)			44	40	22	24				Average Skimming Rate	Emulsion	(mdg)	62						Emulsion	Dehydration	(%)			42	28	8	20			mulsifier in r
Demulsifier	N/Y	Fluid:Demulsifier	Y	607	Settling	Time				2	10	R	60			0	Average :	Total	(dpm)	9 6								Removed (%)			145	110	153	171			Average concentration of demulsifier in recovered fluids =
	Number	Flu	10		Tank	Number		œ	~	G	ŋ	4	m	2	~		≡ ∟ i	Time	(s)	130		Test	Number	10		lank	Number	æ	ω	~	۵	ŋ	4	m	2	~	Average cond
	er			×		pa				Ω.	5	16	5.			ç	8	0	0	2																	
	Demulsifier	Vol (L)	1.2	UNICHEM	lio	Recovere	(gal)			14	14	-							150																		
Parent	lio	Blend	Endicott		Rec. Emulsion	Remaining Decanted Water Content Recovered	(%)			37	35	34	28			-	Emuision Removed (gai)	Preload (gal)	Emulsion Added (gal)	emaining (gal)											26	8	32	44			
Wave	Number		-		Water F	Decanted \	(gal)			53	19	16	20				Lmusion		Emulsio	Emulsion Remaining																	mq
Preload Distribution	Rate	(mdg)	75		Emulsion	Remaining [(gal)			ଞ	34	25	29													Demulsifier	in Water	(mdd)			241	223	175	171			1380 ppm
Preload [Thickness	(mm)	61		-	Depth	(in)			<u>6</u> .8	5.8	4.3	5.0			L	Lree	Water	(%)	17.7							Water	(mN/m)			ч	5.15	5.65	5.7			iids =
	Volume .	(gal)	6		Filled	Depth	(in)			10.5	9.0	7.0	8.5			-	ale	Water	(dpm)	24						H	Water	(mg/L)			11239	338 338	1347	934			ecovered flu
Inline	Mixer		7		Time	to Fill	(s)			28	21	19	23			с	Average okimming Kate	Emulsion	(dpm)	111						Emulsion	Dehydration	(%)			26	8	32	44			emulsifier in n
Demulsifier	N/Υ	Fluid:Demulsifier	×	725	Settling	Time				2	10	œ	60				Average	Total	(dpm)	135					-		Water D	Removed (%)			201	204	221	232			Average concentration of demulsifier in recovered fluids =
	Number	Flu	б		Tank	Number		œ	2	G	Υ	4	m	2	~	Ē	≡ ∟ i	Time	(s)	9		Test	Number	6		lank	Number	a	ω	2	ى	ч	Þ	m	2	-	Average cont

		ffier in Standards									Power (UNICHEM KINB)	Power (DRIMAX)	
		Correlation of IFT with Concentration of Demulsifier in Standards		1000			800	 	$H_{\pi} = 0.9162$	500 -	ecce y = 1366.8x ^{-1.9093} 1	- 00+	Contraitive Demulative
	IFT(AVG)	2.93	4.70	6.05	5.05	8.95	16.60	2.55	2.50	2.45	2.50	2.95	38
	- E	2.94	4.60	<u>6.00</u>	5.00	9.00	16.50	2.50	2.50	2.50	2.50	2.90	13.80
0043	IFT1 IFT2 IF	2.92	4.80	6.10	5.10	8.90	16.70	2.60	2.50	2.40	2.50	3.00	13.30
DECANI 3 (10 422) DEMULSIFIER STANDARDS W/ MINERAL OIL (USP) FISHER TENSIOMAT RING 0043	IFT2	2.92	500 4.80							200 2.40			

	ial Tensions of R	ecovered	Water v	s Minera	l Oil (Eckerd USP)		
Feb. 6, 2	004	dynes/cm	dun oo/om	dun oo/om	Notes		
Feb. 6, 2	004	aynes/cm	aynes⊭cm	aynes/cm	Notes		
Test #1							
	2 min.	N/A					
	10 min	N/A					
	30 min	32.3	30.7	29.9			
			29.6	25.5			
	60 min	31.9	29.0				
Test #2	No samples collected						
Test #3					Straightened ring for rest of tests		
	2 min.	2.5	2.3				
	10 min	2.3	2.2				
	30 min	1.9	1.9		Very cloudy soln.		
	60 min	2.5	2.3		Very cloudy soln.		
Test #4							
1001 114	2 min.	1.8	1.8		slightly cloudy soln		
	2 min. 10 min		2.3		Signity cloudy SUII		
		2.4					
	30 min	2.5	2.2				
	60 min	2.4	2.4				
						ļ	
Feb. 7, 2	004						
Test #5							
	2 min.	3.4	3.2				
	10 min	1.8	1.3		a lot of surfoil on sample		
	30 min	2.8	2.3				
	60 min	1.9	1.9				
		1.0	1.0				
To at 40							
Test#6	2 min	4.5	4.5		- 1-4		
	2 min.	1.5	1.5		a lot of surf oil on sample		
	10 min	1.9	1.6				
	30 min	1.9	1.9		solid layer of surface oil		
	60 min	1.9	1.7				
Test #7							
	2 min.	7.2	6.9		slightly cloudy soln		
	10 min	9.2	8.7		slightly cloudy soln		
	30 min	11.1	6.2	4.2	slightly cloudy soln-unstable resi	ulte	
		6.1	3.9	1.2	slightly cloudy soln-unstable res		
	60 min	10.9	10.7		slightly cloudy soln		
		10.9	10.7		siightiy cloudy soin		
TO-42	2 Examining th	ne Fate	of Emu	lsion B	reakers Used for Dec	canting	
Interfac	ial Tensions of R	ecovered	Water v	s Minera	I Oil (Eckerd USP)		
				•			
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	• •			•		
Feb. 8, 2	004	aynes/cm	aynes/cm	dynes/cm	Notes		
lest#8	0	2.5	2.1		slightly cloudy soln		
lest#o	2 min.		2.1		slightly cloudy soln		
lest#8		2.2					
lest#d	10 min		22		slightly cloudy soln		
lest#d	10 min 30 min	2.4	2.2 2.0		slightly cloudy soln slightly cloudy soln		
lest#8	10 min		2.2 2.0		slightly cloudy soln slightly cloudy soln		
	10 min 30 min	2.4			slightly cloudy soln	te*	
	10 min 30 min 60 min	2.4 2.0	2.0		slightly cloudy soln used Roberts USP for rest of tes		
	10 min 30 min 60 min 2 min.	2.4 2.0 5.1	2.0 4.9		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu	Joy ring	
	10 min 30 min 60 min 2 min. 10 min	2.4 2.0 5.1 5.2	2.0 4.9 5.1		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring	
	10 min 30 min 60 min 2 min. 10 min 30 min	2.4 2.0 5.1 5.2 5.8	2.0 4.9		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring	
	10 min 30 min 60 min 2 min. 10 min	2.4 2.0 5.1 5.2	2.0 4.9 5.1		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min	2.4 2.0 5.1 5.2 5.8	2.0 4.9 5.1		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min	2.4 2.0 5.1 5.2 5.8	2.0 4.9 5.1		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min	2.4 2.0 5.1 5.2 5.8	2.0 4.9 5.1	3.8	slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min 60 min	2.4 2.0 5.1 5.2 5.8 5.7	2.0 4.9 5.1 5.5	3.8	slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min 60 min 2 min.	2.4 2.0 5.1 5.2 5.8 5.7 5.7 5.5 3.6	2.0 4.9 5.1 5.5 3.7		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring	
Test #8 Test #9 Test #10	10 min 30 min 60 min 2 min. 10 min 30 min 60 min 2 min. 10 min.	2.4 2.0 5.1 5.2 5.8 5.7 5.5 3.6 6.3	2.0 4.9 5.1 5.5 3.7 5.7	3.8	slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min 60 min 2 min. 10 min 30 min 30 min	2.4 2.0 5.1 5.2 5.8 5.7 5.5 3.6 6.3 5.8	2.0 4.9 5.1 5.5 3.7 5.7 5.5		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring	
Test #9	10 min 30 min 60 min 2 min. 10 min 30 min 60 min 2 min. 10 min.	2.4 2.0 5.1 5.2 5.8 5.7 5.5 3.6 6.3	2.0 4.9 5.1 5.5 3.7 5.7		slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring	
Test #9 Test #10	10 min 30 min 60 min 2 min. 10 min 30 min 60 min 10 min 30 min 60 min	2.4 2.0 5.1 5.2 5.8 5.7 5.5 3.6 6.3 5.8 5.9	2.0 4.9 5.1 5.5 3.7 5.7 5.5 5.9	5.4	slightly cloudy soln used Roberts USP for rest of tes oil covered-very cloudy-new duNu oil covered-very cloudy-new duNu	Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring Joy ring	

Test #	Recovery Tank #	TPHC (mg/L)	MDL (mg/l)
1	5	212.4	1
	4	205.8	0.9
	3	917.9	1.4
3	6	8251.9	1.1
	5	1325.1	1.1
	4	1102.2	1.1
	3	451.5	1
4	6	3491.4	1.6
	5	798.7	1.1
	4	979.3	1
	3	429.6	1
5	6	2189	1.2
	5	25330.2	5
	4	739.7	1
	3	22209.4	3.1
6	6	22546.7	3
	5	2816.4	1
	4	14571.7	2.6
	3	923	1
7	6	802.5	0.9
	5	506	2
	4	344.4	2
	3	646.6	1.7
8	6	4649.4	2.1
	5	1680.3	2.1
	4	990.2	2.1
	3	1249.2	1.9
9	6	11238.6	2.2
	5	3338	2.1
	4	1347.4	2.2
	3	933.5	2.1
10	6	4515.4	2.1
	5	4184.2	2.2
	4	2142.7	2.1
	3	490.8	2

	Sample ID					Sample ID				
Date in '03		<u>Tank #</u>	<u>%' H2O</u>	<u>% Oil</u>	<u>Date in '03</u>		Tank #	<u>%' H2O</u>	<u>% Oil</u>	
12-Nov	T2	TK3	65.0	35.00	12-Nov	17	TK3	42.0	58.00	
12-Nov	T2	TK4	68.0	32.00	12-Nov	17	TK4	46.0	54.00	
12-Nov	T2	TK5	55.0	45.00	12-Nov	17	TK5	53.0	47.00	
12-Nov	T2	TK6	50.0	50.00	12-Nov	17	TK6	46.0	54.00	
12-Nov	T3	TK3	21.0	79.00	13-Nov	T8	TK3	18.0	82.00	
13-Nov	T3	TK4	28.0	72.00	13-Nov	T8	TK4	19.0	81.00	
13-Nov	T3	TK5	5.0	95.00	13-Nov	T8	TK5	21.0	79.00	
13-Nov	T3	TK6	11.0	89.00	13-Nov	T8	TK6	19.0	81.00	
13-Nov	T4	TK3	29.0	71.00	13-Nov	T9	TK3	28.0	72.00	
13-Nov	T4	TK4	32.0	68.00	13-Nov	T9	TK4	34.0	66.00	
13-Nov	T4	TK5	26.0	74.00	13-Nov	T9	TK5	35.0	65.00	
13-Nov	T4	TK6	28.0	72.00	13-Nov	T9	TK6	37.0	63.00	
13-Nov	T5	TK3	18.0	82.00	13-Nov	T10	TK3	40.0	60.00	
13-Nov	T5	TK4	31.0	69.00	13-Nov	T10	TK4	35.0	65.00	
13-Nov	T5	TK5	25.0	75.00	13-Nov	T10	TK5	36.0	64.00	
13-Nov	T5	TK6	23.0	77.00	13-Nov	T10	TK6	29.0	71.00	
12-Nov	T6	TK3	27.0	73.00	13-Nov	Emulsio	n Batch 2 0730	53.0	47.00	
12-Nov	T6	TK4	31.0	69.00	14-Nov	Endicott E	mulsion Batch 3	45.0	55.00	
12-Nov	T6	TK5	19.0	81.00						
12-Nov	T6	TK6	15.0	85.00						