Validation of the Two Models Developed to Predict the Window of Opportunity for Dispersant Use in the Gulf of Mexico

Final Report

BSEE Contract No. E12PC00009 BSEE Project No. 0010004128 Project Period, 2009-2014

Submitted to

Bureau of Safety and Environmental Enforcement

U.S. Department of the Interior 381 Elden Street, MS 4021 Herndon VA 20170-4817

Prepared by

A. Khelifa and B. Fieldhouse

Emergencies Science and Technology Section Water Science and Technology, Science and Technology Branch Environment Canada 335 River Road, Ottawa, ON, K1A 0H3, Canada

June 30, 2014

Disclaimer

This report was prepared as an account of work sponsored by U.S. Bureau of Safety and Environmental Enforcement (BSEE). The report has been reviewed by BSEE. The findings and conclusions presented and views and opinions of the authors expressed herein do not necessarily state or reflect those of BSEE or any agency thereof. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or recommendation for use by BSEE or any agency thereof.

Acknowledgement

Funding for this project was provided by the U.S. Bureau of Safety and Environmental Enforcement (Contract No. E12PC00009, Project No. 0010004128).

We would like to thank Joseph Mullin (retired), Hang Nguyen, Frank Bennett, and Timothy Steffek for their guidance while conducting this research. We would also express our special thanks to ... from MAR Inc. operating at the Ohmsett facility in Leonardo, NJ, for his valuable assistance in providing oil samples.

We would like to thank Dr. Carl E. Brown (ESTS/EC, Ottawa, ON) and Dave Roy (ESTS/EC, Ottawa, ON) for their valuable support in dealing with inevitable administrative tasks throughout the project, Mike Landriault (ESTS/EC, Ottawa, ON) for his continuous support with Gas Chromatography analysis, and Dr. Bruce Hollebone (ESTS/EC, Ottawa, ON) for his valuable help to measuring oil properties. Many thanks for Lloyd Gamble for his valuable support on literature search conducted for this project. Finally, achievement of this project was made possible with the tremendous help of undergraduate students Danielle Marie Charron (University of Waterloo, Waterloo, ON), Nigel Singh (University of Waterloo, Waterloo, ON), Viviana Tong (University of Waterloo, Waterloo, ON), Joshua Cantin (University of Waterloo, Waterloo, ON), Alaa Alsaafin (University of Carleton, Ottawa, ON), and Nathaniel Joseph Zavitz (University of Waterloo, Waterloo, ON). We thank them very much for their quick learning and their determination to learn and help in the same time.

Special thank goes to SL Ross for providing us, via BSEE, a copy of their report and data related to the study they conducted in 2012 on validation of dispersant window of opportunity model for U.S. ICS crude oils.

Executive Summary

In a previous US-BSEE-funded research project entitled: "*Identification of Window of Opportunity for Chemical Dispersants on Gulf of Mexico Crude Oils*" (SL Ross, 2007), two correlation models were developed to predict the "window of opportunity" (or "time-window") for successful chemical dispersant use in the Gulf of Mexico (GOM). The models consist of correlation relationships established using best-fit correlation between readily available fresh oil properties and the window of opportunity for successful chemical dispersant use estimated using data from GOM crude oils and spill volumes of 1,000 and 10,000 barrels. The study showed that combination of Sulfur, Saturate and Wax contents of the fresh oils correlated best with the time-window for dispersant use.

This study aims to validate and improve the two correlation models using a well know oil spill model OILMAP and adding 48 new oils to the initial 24 oils used by SL Ross to develop the models. Among the oils added are 24 crude oils from outside the GOM for which physical and chemical properties are available. The other 24 new crude oils are from the GOM and California for which physical and chemical properties have been measured in this study. The project also aims to conduct sensitivity analysis of the improved models to spill volume, water temperature, wind speed, and the cutoff viscosity used to determine the time-window and include their effects in the new improved models. A total of 9450 OILMAP simulations were performed for this sensitivity analysis using realistic spill and weather conditions obtained from the BURL1 NDBC-NOAA weather station. The final step in this study was to use existing data from large tank tests and data from Swirling Flask Test to test the final models developed in this study.

This study showed that time-window predicted using the SL Ross oil spill model SLROSM and the two correlation models were different from the time-window predicted using OILMAP oil spill model. The time-window predicted by OILMAP is not correlated with Sulfur and Wax contents, but showed some correlation with, Saturates content. Simple correlation and Principal Component Analysis (PCA) methods showed that the time-window predicted using OILMAP has strong correlated with oil viscosity measured at 15 °C. The data showed two distinct trends for viscous and less viscous oils. The separation occurs at a viscosity of about 33.5 cP. Based on orthogonal regression using PCA analysis, two models were developed to predict the time-window for oils with oil viscosity below and higher than this reference viscosity. Sensitivity analysis of these models showed that spill volume, wind speed, temperature, and cutoff viscosity have strong effects on the

time-window. The effects of these factors have been integrated into the new models. The new models to predict the time-window are show by the following equations.

where *TW* is the time-window in hours and C_f is a correction factor that includes the effects of spill volume, wind speed, temperature, and cutoff viscosity. It is given by the following equation:

$$C_{f} = 1.48 \left(\frac{V_{o}}{V_{o1}}\right)^{0.25} \left(\frac{\mu_{co}}{\mu_{or}}\right) e^{0.573 \left(\frac{T}{T_{1}}\right)} e^{-0.97 \left(\frac{W_{s}}{W_{s1}}\right)}$$

 μ_o represents dynamic viscosity of the oil measured at 15 °C in cP, $\mu_{or} = 33.468$ cP, μ_{co} the cutoff viscosity in cP, V_o the spill volume in bbl, $V_{oI} = 1000$ bbl, *T* the air/water temperature in °C, $T_I = 23$ °C, W_s the wind speed in knots, and $W_{sI} = 12$ knots.

The new models were validated using the large tank dispersant effectiveness tests conducted by SL Ross (2012) at Ohmsett – The National Oil Spill Response Research & Renewable Energy Test Facility. The results showed that the new models reproduced the measured time-window better than the two SL Ross correlation models. Further data are needed to validate and improve the new models.

It is of paramount importance to note that the development of the new models shown by the equations above was based on the data generated using OILMAP oil spill model. As such, the accuracy of the new models to predict the time-window for application of chemical dispersant is directly related to the accuracy of this model oil weathering under different weather conditions and for different oils.

$$TW = \begin{cases} 8.754 \, \dim_{f} \left(\frac{\mu_{o}}{\mu_{or}}\right)^{-3.4201} & \text{for} \quad 0 \le \mu_{o} \le \mu_{or} \\ 8.754 \, C_{f} \left(\frac{\mu_{o}}{\mu}\right)^{-0.3556} & \text{for} \quad \mu_{or} \le \mu_{o} < \mu_{co} \end{cases}$$

Table of Contents

1.	Intro	oduction	1
2	Obje	ectives and Goals	3
	2.2	Goals	3
3	Vali	dation of the time-window using the 24 source oils (Task 1)	4
	3.2	Comparison with SL Ross Predictions	6
	3.2	Conclusions for Task 1	8
4 pi	Vali hysical	dation of the correlation models using crude oils from outside the US GOM for which and chemical properties exist (Task 2)	ı 8
	4.1	Results from OILMAP simulations	8
	4.2	Comparison with SL Ross Correlation Models (Eqs. 1 & 2)	1
	4.3	Conclusions for Task 2	2
5	Vali	dation of the correlation models using new crude oils from the US GOM (Task 3)	3
	5.1 5.1.1 5.1.2	Measurement of the physical and chemical properties of the new oils samples Oil Samples Physical and chemical properties of the new oil samples	3
	5 2	Results from OIL MAP simulations	8
	5.3	Comparison with SL Ross Correlation Models (Eas. 1 & 2)	9
	5.4	Conclusion for Task 3	9
6	Mod	onerasion for Tush consistivity analysis (Task 4)	10
U	6 1	Development of new predictive models using time window date generated in Task 1 to 2	. 10
	0.1	Comparison between predicted time window and the original data	10
	0.2	Comparison between predicted time-window and the original data	12
	6.3 .1	Effects of oil spill volume	13
	6.3.2	Effects of water temperature	18
	6.3.3	Effects of wind speed	22
	6.3.4	Simultaneous effects of spill volume, temperature, wind speed and cutoff viscosity.	26
7	Vali	dation of the new models (Tasks 5 and 6)	30
'	7 1	Validation of the final models using existing data	30
	7.1	Validation of the final models using the new date obtained from the Swinling Flagh Test	
	/.2 (SFT)	valuation of the final models using the new data obtained from the Swiring Flask Test 36	
8	Con	clusions	. 37
8	Refe	rences	. 38

List of Figures

<i>Figure 1: Comparison between time-window predicted by the correlation models (equations 1 and 2) and time-window predicted by the SL Ross oil spill model (Task 1).</i> 6
<i>Figure 2: Comparison between time-window predicted by the SLROSS oil spill model and the time-window predicted the OILMAP oil spill model (Task 1).</i> 7
<i>Figure 3:</i> Comparison between time-window predicted by the OILMAP oil spill model and the time-window predicted by the SLRoss correlation models (Eqs. 1 & 2)7
<i>Figure 7: Comparison between predicted time-window using equations (3) and (4) and the original data predicted by OILMAP considering a spill volume of 1000 bbl, wind speed of 12 knots, water temperature of 23 °C, and cutoff viscosity of 7500 cP13</i>
Figure 8: Effects of the spill volume on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the different spill volume indicated on the Figure, wind speed of 12 knots, water temperature of 23 °C, and cutoff viscosity of 7500 cP 15
<i>Figure 9:</i> Data from Figure 8 with the time-window and oil viscosity normalized by the time- window obtained with a spill volume of 1000 bbl and the reference viscosity discussed above, respectively16
Figure 10: Variations of the increase of time-window with the spill volume for oils that have dynamic viscosity less than the reference viscosity of 33.468 cP. Each data series relates to different oil. The oils are referred by their initials. The solid line represents a curve fitting to the median variations16
<i>Figure 11:</i> Comparisons between predicted time-window using new models (equations 3, 4 and 8) and the original data predicted by OILMAP for different spill volumes wind speed of 12 knots, water temperature of 23 °C, and cutoff viscosity of 7500 cP17
Figure 12: Effects of temperature on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the three temperatures indicated on the Figure, spill volume of 1000 bbl, wind speed of 12 knots, and cutoff viscosity of 7500 cP 19
<i>Figure 13:</i> The same data as in Figure 12 with the time-window and oil viscosity normalized by the time-window obtained with a temperature of 23 °C and the reference viscosity discussed above, respectively20
Figure 14:Variations of the time-window with the temperature for oils for which the time- window calculated with OILMAP was not cut to 1000 hours . Each data series relates to different oil. The oils are referred by their initial. The solid line represents a curve fitting to the median variations.21
<i>Figure 15:</i> Comparisons between predicted time-window using new models (equations 3, 4 and (9) and the original data predicted by OILMAP for different temperature, spill volume of 1000 bbl, wind speed of 12 knots, and cutoff viscosity of 7500 cP22
Figure 16: Effects of wind speed on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the three wind speeds indicated on the Figure, spill volume of 1000 bbl, water temperature of 23 °C, and cutoff viscosity of 7500 cP 23
Figure 17: The same data as in Figure 15 with the time-window and oil viscosity normalized by the time-window obtained with a wind speed of 12 knots and the reference viscosity discussed

above, respectively.

Figure 18: Variations of the time-window with the wind speed for oils for which the time-window calculated with OILMAP was not cut to 1000 hours. Each data series relates to different oil. The oils are referred by their initial. The solid line represents a curve fitting to the median variations. 25

Figure 19: Comparisons between predicted time-window using new models (equations 3, 4 and 10) and the original data predicted by OILMAP for different wind speed, spill volume of 1000 bbl, temperature of 23 °C, and cutoff viscosity of 7500 cP._____ 26

Figure 20: Effects of cutoff viscosity on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the three cutoff viscosities indicated on the Figure, spill volume of 1000 bbl, water temperature of 23 °C, and temperature of 23 °C. 27

Figure 21: Variations of the time-window with the cutoff viscosity for oils for which the timewindow calculated with OILMAP was not cut to 1000 hours. Each data series relates to different oil. The oils are referred by their initial. The solid line represents a curve fitting to the median variations. ______28

Figure 22: Comparisons between predicted time-window using new models (equations 3, 4 and 11) and the original data predicted by OILMAP for different cutoff viscosities, spill volume of 1000 bbl, temperature of 23 °C, and wind speed of 12 knots. _____ 29

Figure 23: Comparisons between predicted time-window using new models (equations 3, 4 and 8 to 11) and the original data predicted by OILMAP for all the spill volumes, temperatures, wind speeds and cutoff viscosities shown in Table 7. A total of 9450 simulations were performed and the results were processed to generate the same number of points shown in this figure. _____ 31

Figure 24: Illustration of the two group of the original data for which the new models overestimate or underestimate the time-window predicted by OILMAP oil spill model. _____ 32

Figure 25: Comparisons between measured time-window at the Ohmsett tank tests conducted by Sl Ross (2012) and the predictions using SL Ross correlation models (equations 1 and 2) and the new models (equation 3, 4 and 8 to 11) ______ 35

List of Tables

Table 2. properties v	<i>List of the additional 24 oils selected to conduct Task 2. The physical and chemical were obtained from En. Can. (2006).</i>	9
Table 3. models (Eq.	<i>Time-window predicted using OILMAP oil spill model and the SLRoss correlation</i> <i>s. 1 & 2) for the additional 24 oils listed in Table 2.</i>	1
Table 4.	List of the 24 new oil samples analyzed in this study for Task 3	4
Table 5a. this study a	Summary of the physical and chemical properties of the 24 new oil samples analyzed in nd listed in Table 4	ı 5
Table 5b. this study a	Summary of the physical and chemical properties of the 24 new oil samples analyzed in nd listed in Table 4 (continue)	і 6
Table 5c. this study a	Summary of the physical and chemical properties of the 24 new oil samples analyzed in nd listed in Table 4 (continue)	ı 7

Table 6. Time-window predicted using OILMAP oil spill model for the 24 new oil samples

analyzed in	this study and listed in Tables 4 and 5	_ 8
Table 7.	Values of the variables used in the sensitivity analysis.	14
Table 8. and measure	Conditions of the large tank testing conducted by SL Ross (2012) at Ohmsett Facility ed and predicted time-window for application of chemical dispersant.	35
Table 9. evaporation	Time-window estimated using the results of the SFT tests and the equation of loss compared to time-window predicted using the new models.	37

List of Appendices

Appendix A: List of fresh oil properties used in the SL Ross study (Table 2 in SL Ross, 2007)

Appendix B: Time-window (in Hours) for Dispersant Application Predicted Using OILMAP Version 6.9.3 and the 24 oils from Task 1 and Different Oil Spill Volume, Water Temperature, Wind Speed, and Cutoff Viscosity for Sensitivity Analysis (Task 4)

Appendix C: Time-window (in Hours) for Dispersant Application Predicted Using OILMAP Version 6.9.3 and the 24 oils from Task 2 and Different Oil Spill Volume, Water Temperature, Wind Speed, and Cutoff Viscosity for Sensitivity Analysis (Task 4)

Appendix D: Detailed descriptions of the methods used to measure physical and chemical properties/process of the 24 new oil samples listed in Table 4 and related results.

Appendix E: Time-window (in Hours) for Dispersant Application Predicted Using OILMAP Version 6.9.3 and the 24 oils from Task 3 and Different Oil Spill Volume, Water Temperature, Wind Speed, and Cutoff Viscosity for Sensitivity Analysis (Task 4)

Appendix F: Identification of the key variables controlling variations of the time-window and development of new predictive models (Task 4)

1. Introduction

Crude oil has a pervasive presence in modern society. The widespread extraction, transportation and use of petroleum inevitably results in releases to the environment. It is therefore prudent to plan and prepare for the response to such releases. Research into countermeasures to mitigate the environmental impact of an oil spill is an essential component for informing spill responders on the optimum response (NRC 2005; Chapman et al., 2007). Chemical dispersants are a major countermeasure that may offer potential benefit to a response. The effectiveness of chemical dispersants is related to the physical and chemical properties of the crude oil. The properties are altered over time as the oil remains on the surface of the water due to the processes of weathering, including evaporation, emulsification, dissolution, and natural dispersion. As a consequence, the effectiveness of dispersants declines over time and eventually loses sufficient effect to offer benefit to the response. The duration of the anticipated time period for effective application of chemical dispersants on various oil types is a useful parameter in the planning for, and responding to, a spill. This time period is commonly called the window of opportunity or the time-window of opportunity (hereafter referred to as the "time-window"). Overall, this time-window is limited by the effects of weathering on the chemical and physical properties of the spilled oil, especially the increase in oil viscosity. It varies with spill conditions, oil types, environmental conditions prevailing during a spill, and the types of dispersants and the method of their application. For many oils this means that dispersants must be applied quickly to be effective. As such, it is crucial for decision makers to predict this timewindow as quickly as possible using confident predictive models.

In a previously US-BSEE-funded research project entitled: "*Identification of Window of Opportunity for Chemical Dispersants on Gulf of Mexico Crude Oils*" (SL Ross, 2007), the objective was to develop best-fit correlations between readily available fresh oil properties and the time-window for successful chemical dispersant use using data from Gulf of Mexico (GOM) crude oils. The study showed that combination of Sulfur, Saturate and Wax contents of the fresh oils correlated best with the time-window for dispersant use for both the 1,000 and 10,000 barrels spill scenarios. The two proposed correlation models are:

for 1,000 barrel spill, the model is:

Dispersant Time-Window (hr) = exp^(-1.997657*Sulfur+0.107833*Saturate-0.326005*Wax-1.35108) (1) (R² = 0.979, all input fresh oil property data in wt%)

for 10,000 barrel spill, the model is:

Dispersant Time-Window (hr) = exp^(-1.30926*Sulfur +0.05534*Saturate -0.28146*Wax+2.7153) (2) ($R^2 = 0.971$, all input fresh oil property data in wt%)

The approach undertaken to establish these two correlation models was based on the following conditions, methods and/or assumptions:

- Twenty-four (24) fresh oils from the GOM Region of the United States Outer Continental Shelf. Detailed oil properties for these oils were obtained from the Environment Canada's oil properties database (Env. Can. 2006).
- 2. Average water temperature and wind speed for the US GOM were assumed.
- 3. SLROSM oil spill model (SL Ross 2000) was used to simulate oil behaviour as a function of oil type and environmental conditions.
- 4. The maximum time-window for chemical dispersant use estimated by the time that the SLROSM model predicts that the oil's (or emulsion) viscosity reaches 7,500 cP.
- 5. For oils that never reach the viscosity cutoff of 7,500 cP, a time-window of 1,000 hours was arbitrarily attributed to these oils.
- Fresh oil properties data that were used to perform correlation studies were: gravity, flash point, pour point, viscosity, wax content, asphaltene content, resin content, boiling point distribution, sulfur, aromatics, and saturates.
- 7. Correlation study was performed using Oakdale Engineering's "DataFit" software.

From an operational perspective, application of such correlation models is very cost effective as it immediately provides decision-makers with key information about the time-window for using chemical dispersants during oil spills in the GOM. However, the models were not validated.

Recently, SL Ross used the National Oil Spill Response Research & Renewable Energy Test Facility (OHMSETT) to collect the first series of data to validate the models (SL, Ross, 2012). Several oils were subjected to long-term weathering in the Ohmsett tank considering various wave and wind conditions. The report concluded that the correlation models did not accurately predict the observed individual time-windows for the different oils used in the study. Additional Ohmsett tank experiments were recommended to improve the confidence in the dispersant modelling and the validation of the models. This research project is to validate further the two correlation models (eqs. (1) and (2)).

2 Objectives and Goals

2.1 Objectives

The objective of this research is to validate further the two correlation models (eqs. (1) and (2)) proposed by SL Ross (SL Ross, 2007) to predict time-window for dispersant use in the GOM using a well known oil spill model OILMAP, including crude oils from outside the GOM for which physical and chemical properties are available in EC's oil property database, introducing 24 new oils from the GOM and other places for which physical and chemical properties were measured in this study, and using existing data from large tank tests and field trials/spills. The project also aims to evaluate the sensitivity of the models to water temperature, wind speed and the viscosity with the aim to include effects of these parameters into the models.

2.2 Goals

The goals of this research project are:

- use OILMAP oil spill model to validate the time-window predicted by SL Ross for the 24 crude oils selected from the Environment Canada's oil properties database and using the SLROSM oil spill model. SL Ross used this data set of predicted time-window to develop the two correlations models shown by equations (1) and (2) above;
- use OILMAP oil spill model to validate and to improve the two correlation models proposed by SL Ross (eq. (1) and (2)) using 24 additional crude oils outside the GOM for which physical and chemical properties are available in the Environment Canada's oil properties database;
- use OILMAP oil spill model to validate and to improve the two correlations models using 24 new crude oils from the GOM and other places. Physical and chemical properties of these new oils will be measure in this study;
- use OILMAP oil spill model to perform a sensitivity analysis of the correlation models to show how the time-window varies with temperature, wind speed, viscosity cutoff (threshold) and the spill volume;
- 5. to validate and to improve the correlation models using existing data from large tank tests;

 to validate and to improve the correlation models using new experimental data using EC's Swirling Flask Test (SWT) method. The new SWT experiments were conducted in this project for 24 new oils analyzed in this study.

3 Validation of the time-window using the 24 source oils (Task 1)

SL Ross (2007) used the following steps to establish the two correlation models. In **step1**, SL Ross ran their oil spill model SLROSM to calculate the time history of the variations of the oil viscosity. In **step2**, the time-window for dispersant use was then selected from this time history considering a preset viscosity cutoff (threshold) above which dispersants become ineffective. The last **step3** consists of introducing the time-window obtained in step2 and the readily available fresh oil properties into a statistical model "DataFit" to determine the best correlations (eq. (1) and (2)).

This shows that results from step1 and step2 are crucial for the development of the correlation models. Any uncertainty in the results (calculation of the time-window for dispersant use) from these steps will directly affect the accuracy of the correlation models (eq. (1) and (2)). This is why we believe proper validation of equations (1) and (2) should start with the validation of the calculation of the time-window (step1 and step2) discussed above. For this, one should use a different oil spill model than the SLROSM used in the previous study (SL Ross, 2007). In this study, we propose using the well known OILMAP oil spill model (ASA, 2008) to calculate the time history of the variations of the oil viscosity. OILMAP model is used worldwide and has been validated on several real spills worldwide.

Specifically, this Task 1 aims to validate the two correlation models (eqs. (1) and (2)) using the 24 source crude oils on which SL Ross based their study to develop the correlation models (Appendix A). The task will be performed according to the following steps: 1) using the well known OILMAP oil spill model to recalculate the time-window for dispersant use using the 24 oils and the same weather and spill conditions; 2) comparing the new results (time-window) with those calculated by SL Ross and presented in their final report submitted to BSEE (last two columns in the table shown in Appendix A). If the difference between the results (time-window) is significant, the results obtained with OILMAP will be considered for the validation/improvement of the correlation models (eq. (1) and (2) above).

3.1 Results from OILMAP simulations

Version 6.9.3 of OILMAP oil spill model was used to run the simulations. Weather and spill conditions were kept the same to those used in the SL Ross study. For each of the 24 oil samples used in the SL Ross study to develop the two correlation equations, two oil spill scenarios (1,000 and 10,000 barrel) were run using average environmental conditions for the US GOM; 23 °C (73 °F) water temperature, 6 m/s (12 knots) wind speed (SL Ross 2007) and Cutoff viscosity of 7,500 cP. All simulations were run considering a GIS basemap for the Gulf of Mexico, a wind drift factor of 3.5% and a simulation duration of 1000 hours. Detailed modelling results are shown in Appendix B. and summary results are shown in Table 1.

	Time-window (Hours)										
Oil Name		a			Present OILMAP						
	SLROSS Oil	Spill Model	SLROSS Corr	elation Models	Model						
	1000 bbl	10,000 bbl	1000 bbl	10,000 bbl	1000 bbl	10,000 bbl					
Eugene Island Block 32	1000	1000	82	92	656	1000					
Eugene Island Block 43	61	87	83	111	656	1000					
Garden Banks Block 387	16	24			230	414					
Garden Banks Block 426	66	87			9999	1000					
Green Canyon Block 65	5	6	0	8	5	6					
Green Canyon Block 109	30	47	1	12	8	11					
Green Canyon Block 184	1000	1000			8	11					
Green Canyon Block 200	177	296	187	285	346	620					
Louisiana	1000	1000	75	154	1000	1000					
Main Pass Block 306	1000	1000	62	164	610	1000					
Main Pass Block 37	1000	1000	36	73	1000	1000					
Mars TLP (2004)	1000	1000	2	18	139	251					
Mississippi Canyon Block 72	32	53			140	253					
Mississippi Canyon Block 194	27	46	70	143	140	253					
Mississippi Canyon Block 807	102	169			140	253					
Morpeth Block EW921	77	146	13	64	12	19					
Petronius Block VK87A	12	17	469	473	65	119					
Ship Shoal Block 269	473	473	112	171	9999	9999					
South Pass Block 60	50	83	32	74	362	648					
South Timbalier Block 130	1000	1000	167	242	9999	9999					
Viosca Knoll Block 826	20	30			216	389					
Viosca Knoll Block 990	200	335	214	346	1000	1000					
West Delta Block 97	1000	1000	1244	727	9999	9999					
West Delta Block 143	9	14			12	20					

Table 1.Time-window predicted using OILMAP oil spill model and the 24 oils used in the
SL Ross study and listed in Appendix A.

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cutoff viscosity during the 1000 hours of simulation.

3.2 Comparison with SL Ross Predictions

Before comparing time-window data predicted by the SL Ross models with those obtained with OILMAP oil spill model, a comparison was made between the time-window predicted by the two correlations models (Eqs. 1 and 2) and the time-window predicted by the SL Ross oil spill model. This is shown in Figure 1. Contrary to the high values of the good correlation reported in SL Ross (2007), the agreement between the two predictions is not that good for both the 1000 and 10,000 bbl spill volumes. For many oils, correlation models predicted a much lower values for the time-window than those predicted by the SL Ross oil spill model.

A comparison between the time-window predicted by OILMAP oil spill model and the time-window predicted by the SL Ross oil spill model for the first 24 source oils (Table 1) is shown in Figure 2. There is no good agreement between the results of the two oil spill models. For time-window less than about 400 hours, OILMAP predicted a much higher values than the SL Ross model. The opposite trend is shown for time-window higher than 400 hours.

When compared with the predictions using the two correlation models proposed by SL Ross (Eqs. 1 & 2), OILMAP predicted higher values of the time-window for most oils (Figure 3).

Time Window Predicted by the SLROSS Oil Spill Model (Hour)

Figure 1: Comparison between time-window predicted by the correlation models (equations 1 and 2) and time-window predicted by the SL Ross oil spill model (Task 1).

Figure 2: Comparison between time-window predicted by the SL Ross oil spill model and the time-window predicted the OILMAP oil spill model (Task 1).

Figure 3: Comparison between time-window predicted by the OILMAP oil spill model and the time-window predicted by the SLRoss correlation models (Eqs. 1 & 2).

3.2 Conclusions for Task 1

Conclusions from the completion of Task 1 are:

- 1. The two correlations models proposed by SL Ross (2007) are not good predictors of the time-window initially predicted by SL Ross oil spill model.
- 2. For most of the 24 oils studied in Task 1, the values of the time-window predicted by OILMAP and the SL Ross oil spill models are very different.
- 3. For most of the 24 oils studied in Task 1, the two correlations models proposed by SL Ross (2007) underestimated the time-window predicted by OILMAP.
- Values of the time-window predicted by OILMAP will be used to develop new models in Task 4.

4 Validation of the correlation models using crude oils from outside the US GOM for which physical and chemical properties exist (Task 2)

In this second task, the two correlation models (Eqs. 1 & 2) were validated using other oils, most of them are from outside the U.S. GOM, for which physical and chemical properties are available in the Environment Canada's oil properties database. Table 2 shows the list of the oils selected (a total of 24) to conduct this task and for which Environment Canada (EC) has measured physical and chemical properties.

4.1 **Results from OILMAP simulations**

Version 6.9.3 of OILMAP oil spill model was used to run the simulations. Weather and spill conditions were kept the same to those used in the SL Ross study. For each of the additional 24 oil samples listed in Table 2, two oil spill scenarios (1,000 and 10,000 bbl) were run using average environmental conditions for the US GOM; 23 °C (73 °F) water temperature, 6 m/s (12 knots) wind speed (SL Ross 2007) and Cutoff viscosity of 7,500 cP. All simulations were run considering a GIS basemap for the Gulf of Mexico, a wind drift factor of 3.5% and a simulation duration of 1000 hours Detailed modelling results are shown in Appendix C. and summary results are shown in Table 3.

Table 2.List of the additional 24 oils selected to conduct Task 2. The physical and chemical properties were obtained from En.
Can. (2006).

Oil Name	Origin	API Gravity	Sulfur	Dynamic Viscosity (cP)		Saturates	Aromatics	Resin	Asphaltenes	Wax
		Gravity	(WVL 70)	0°C	15°C	(*** 70)	(WC 70)	(WVC /0)	(WC 70)	(₩₩ 70)
Arabian Light (2000)	Saudi Arabia	31.30	1.93	33	13	75.5	15.2	5.7	3.6	2.7
Barrow Island	Australia	36.70	0.04	4	2	64.0	32.0	4.0	0.0	0.0
Carpinteria	California, USA	22.90	1.88	790	164	44.0	30.0	17.0	9.0	7.0
Chayvo #6	Russia (Exxon-Mobil)	37.91	0.34	19	4	87.9	8.6	3.4	0.2	5.0
Empire	Louisiana, USA	33.80	0.30	21	11	67.0	25.0	7.0	1.0	5.0
Federated (1998)	Alberta, Canada	38.90	0.34	9	5	72.0	22.0	4.0	2.0	2.0
Genesis	Gulf of Mexico, USA	28.40	1.38	48	26	59.0	29.7	9.7	1.6	0.9
Gullfaks	North Sea, Norway	31.00	0.30	25	13	60.0	35.0	5.0	1.0	4.0
Heidrun	Norwegian Sea, Norway	28.60	0.46	35	18	55.0	35.0	9.0	1.0	4.0
Hondo Monterey	California, USA	18.30	4.70	8064	1599	34.0	31.0	20.0	15.0	1.7
Iranian Heavy	Iran	30.00	1.20	43	20	53.0	30.0	11.0	6.0	5.0
Lucula	Angola	33.40	0.17	710	43	67.0	22.0	8.0	4.0	13.0
Malongo	Angola	31.00	0.20	1800	63	62.0	25.0	9.0	4.0	10.0
Odoptu	Alaska, USA	28.50	0.96	46	22	53.0	34.0	10.0	4.0	4.0
Oseberg	North Sea, Norway	34.40	0.28	22	10	65.0	25.0	8.0	2.0	5.0
Pitas Point	California, USA	38.00	0.61	3	2	80.0	18.0	3.0	0.0	0.0
Point Arguello Comingled	California, USA	21.40	3.64	2510	533	36.0	25.0	23.0	16.0	8.0
Prudhoe Bay (1995)	Alaska, USA	28.50	0.96	46	22	53.0	34.0	10.0	4.0	4.0
Sakhalin	Russia	32.30	0.25	6	4	61.0	32.0	6.0	1.0	0.6
Santa Clara	California, USA	22.10	2.85	1278	304	36.0	22.0	29.0	13.0	6.0
Statfjord	North Sea, Norway	37.80	0.26	31	6	68.0	26.0	6.0	2.0	8.0
Thevenard Island	Australia	48.60	0.01	2	1	85.0	13.0	2.0	0.0	1.0
West Texas Intermediate	Texas, USA	36.40	0.48	15	7	66.0	26.0	6.0	1.0	4.0
Zaire	Zaire	30.70	0.16	19200	362	64.0	22.0	9.0	5.0	20.0

Table 3.	Time-window predicted using OILMAP oil spill model and the SLRoss correlation
	models (Eqs. 1 & 2) for the additional 24 oils listed in Table 2.

	Time-window (Hours)								
Oil Name	SLROSS Models	Correlation	Present OILMAP Model						
	1000 bbl	10,000 bbl	1000 bbl	10,000 bbl					
Arabian Light (2000)	8	37	14	18					
Barrow Island	238	495	9999	9999					
Carpinteria	0	2	5	6					
Chayvo #6	335	306	9999	9999					
Empire	38	102	401	718					
Federated (1998)	161	296	1000	1000					
Genesis	7	50	314	562					
Gullfaks	25	92	229	412					
Heidrun	11	56	21	40					
Hondo Monterey	0	0	3	3					
Iranian Heavy	1	14	47	86					
Lucula	4	13	13	22					
Malongo	5	22	41	76					
Odoptu	3	26	1000	1000					
Oseberg	32	94	42	79					
Pitas Point	427	569	9999	9999					
Point Arguello Comingled	0	0	4	5					
Prudhoe Bay (1995)	3	26	8	9					
Sakhalin	93	269	1000	1000					
Santa Clara	0	0	5	7					
Statfjord	17	49	1000	1000					
Thevenard Island	1752	1242	9999	9999					
West Texas Intermediate	33	101	1000	1000					
Zaire	0	2	2	2					

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cutoff viscosity during the 1000 hours of simulation.

4.2 Comparison with SL Ross Correlation Models (Eqs. 1 & 2)

Values of the time-window predicted by OILMAP for the additional 24 oils were compared with those calculated using the two correlations models proposed by SL Ross (2007) and described by Equations (1) and (2) for both the 1000 and 10, 000 bbl spill volumes (Figure 4). Similarly to what was shown in Figure 3, the data in Figure 4 shows that the correlation models underestimate the time-window predicted by OILMAP for both spill volumes.

Time Window Predicted by the OILMAP Oil Spill Model (Hour)

Figure 4: Comparison between time-window predicted by the correlation models (Eqs. 1 and 2) and time-window predicted by the OILMAP oil spill model for the additional 24 oils (Task 2).

4.3 Conclusions for Task 2

Conclusions from the completion of Task 2 are:

- For most of the 24 additional oils studied in Task 2, the two correlations models proposed by SL Ross (2007) underestimated the time-window predicted by OILMAP.
- Values of the time-window predicted by OILMAP will be used to develop new models in Task 4.

5 Validation of the correlation models using new crude oils from the US GOM (Task 3)

This task includes three steps. The first one consists of performing a detailed analyses of 24 oils, mostly newly produced crude oils from the US GOM, at the Environment Canada's Oil Spill Research laboratory. In these analyses, the following properties/process were be measured: Density, Flash Point, Pour Point, Dynamic Viscosity, Wax Content, Asphaltene Content, Resin Content, Boiling Point Distribution, Sulfur Content, Aromatics, Saturates, Interfacial Tensions, CCME Fractions and Evaporation test.

The second step in this task is to use OILMAP oil spill model to calculate the corresponding timewindow considering the weather and spill conditions used in the previous SL Ross study. The final third step is to validate the correlation models against the new time-window data obtained from the previous step.

5.1 Measurement of the physical and chemical properties of the new oils samples

5.1.1 Oil Samples

Oil samples analyzed for this project were selected by US-BSEE and provided at their request to ESTS by the energy companies via MAR Inc. operating at the Ohmsett facility in Leonardo, NJ. In total, 24 samples were analyzed. The samples were tested as received, which in some cases required decanting prior to sampling. The oil identities, corporate sources, geographic locations of the oils, and the reported weathering when received are listed in Table 4.

Oil Identity	Origin				
Alaska North Slope	none	Alaska			
Alaska North Slope weathered	20.86	Prepared from Alaska North Slope oil above as small volume was received from previous Ohmsett experiments, Alaska			
Arabian Medium	none	(replacement of Elly, July 2012), Saudi Arabia			
DOBA	none	Chad			
Dos Cuadras – Well HE-05	none	California			
Dos Cuadras – Well HE-26	none	California			
Ellen - Well A38	none	Well A38, Pacific Energy Resources, California			
Ellen - Well A40	none	Well A40, Pacific Energy Resources, California			
Endicott	none	Alaska			
Endicott weathered	18.56	Prepared from Endicott oil above as small volume was received from previous Ohmsett experiments			
Gail - Well E10	none	Well E10, Venoco Inc, California			
Gail - Well E19	none	Well E19, Venoco Inc, California			
Harmony	none	California			
Heritage – Well HE-05	none	Well HE-05, ExxonMobil Corp., California			
Heritage – Well HE-26	none	Well HE-26, ExxonMobil Corp., California			
IFO-120	none	Fuel oil from from previous Ohmsett experiments			
IFO-180	none	Fuel oil from from previous Ohmsett experiments			
Independence Hub	none	Anadarko Petroleum Corp, Gulf of Mexico			
Irene Lompoc	none	Lampoc Oil and Gas Facility, California			
Irene Comingled	none	Comingled Exploration and Production, California			
Neptune	none	BHP Billiton, Gulf of Mexico			
North Star	none	Alaska			
Rock	none	unknown			
Terra Nova	none	East Coast Canada			

 Table 4.
 List of the 24 new oil samples analyzed in this study for Task 3.

5.1.2 Physical and chemical properties of the new oil samples

For each of the new oil samples listed above, the following properties/process were measured: Density, Flash Point, Pour Point, Dynamic Viscosity, Wax Content, Asphaltene Content, Resin Content, Boiling Point Distribution, Sulfur Content, Aromatics, Saturates, Interfacial Tensions, CCME Fractions and Evaporation test.

Detailed descriptions of the methods used to measure these properties/process and related results are given in Appendix D. A summary of the properties measured for the new 24 oil samples is given in Table 5a,b,c.

Oil Sample	%Evap	p Density (g/mL)		Viscosity (mPa·s)		Interfacial Tension (mN/m)					
	Loss	0°C	15 °C	0°C	15 °C	Air	/Oil	Wate	er/Oil	Brin	e/Oil
	(%w/w)					0 °C	15 ⁰C	0 °C	15 °C	0 °C	15 °C
ANS [2011]	0	0.8870	0.8754	30.2	15.4	28.4	27.9	21.7	21.2	21.1	20.1
ANS [2011]	20.86	0.9269	0.9159	561	133	31.9	29.9	25.5	22.7	24.5	22.3
ANS [2011]	30.67	0.9439	0.9316	4.80E+03	546	NM	30.1	NM	20.7	NM	20.5
Arabian Medium	0	0.8849	0.8738	62.6	21.6	29.3	27.4	24.9	26.7	25.7	27.0
Arabian Medium	31.35	0.9582	0.9454	2.23E+04	2.07E+03	NM	NM	NM	NM	NM	NM
DOBA	0	0.9423	0.9271	3.66E+04	3.11E+03	NM	NM	NM	28.2	NM	27.2
DOBA	14.13	0.9483	0.9372	6.10E+04	7.30E+03	NM	NM	NM	NM	NM	NM
Dos Cuadras HE-05	0	0.9184	0.9078	199	70.3	31.1	29.1	25.7	23.7	23.8	23.5
Dos Cuadras HE-05	23.40	0.9607	0.9491	2.77E+04	2.85E+03	NM	32.6	NM	29.8	NM	26.9
Dos Cuadras HE-26	0	0.8902	0.8785	56.2	20.6	28.3	28.6	NM	16.1	NM	16.1
Dos Cuadras HE-26	32.20	0.9487	0.9353	2.66E+04	1.14E+03	NM	33.3	NM	16.0	NM	17.5
Ellen A038	0	0.9694	0.9587	1.52E+04	3.10E+03	29.3	29.6	20.8	24.0	20.7	22.3
Ellen A038	15.88	1.0071	0.9981	2.31E+07	1.09E+06	NM	NM	NM	NM	NM	NM
Ellen A040	0	0.9889	0.9790	1.24E+05	1.97E+04	27.5	30.7	NM	15.3	NM	21.6
Ellen A040	14.57	1.0141	1.0058	4.63E+07	1.74E+06	NM	NM	NM	NM	NM	NM
Endicott [2011]	0	0.9142	0.9024	235	46.4	31.0	29.3	20.9	20.1	17.2	13.0
Endicott [2011]	18.56	0.9474	0.9357	9.57E+03	866	NM	31.2	NM	22.4	NM	20.3
Endicott [2011]	21.41	0.9518	0.9397	1.50E+04	1.36E+03	NM	31.2	NM	22.4	NM	20.3
Gail E010	0	0.9814	0.9709	6.72E+04	1.16E+04	29.0	29.8	19.0	21.8	22.0	23.6
Gail E010	16.92	1.0177	1.0086	9.65E+07	3.25E+06	NM	NM	NM	NM	NM	NM
Gail E019	0	0.9124	0.8996	147	51.7	28.3	26.4	NM	15.3	NM	17.6
Gail E019	24.42	0.9480	0.9346	1.55E+04	1.36E+03	NM	31.0	NM	NM	NM	NM
Harmony	0	0.9588	0.9456	2.20E+04	3.08E+03	NM	NM	NM	23.8	NM	16.6
Harmony	17.11	0.9996	0.9911	7.86E+07	1.82E+06	NM	NM	NM	NM	NM	NM
Heritage HE 05	0	1.0032	0.9922	3.03E+06	3.59E+05	NM	NM	NM	NM	NM	NM
Heritage HE 05	16.27	1.0253	1.0172	1.46E+09	3.80E+07	NM	NM	NM	NM	NM	NM
Heritage HE 26	0	0.9973	0.9859	1.91E+06	1.86E+05	NM	NM	NM	NM	NM	NM
Heritage HE 26	14.48	1.0213	1.0123	9.42E+08	2.74E+07	NM	NM	NM	NM	NM	NM
IFO-120 [2011]	0	0.9683	0.9567	9.16E+03	1.54E+03	NM	30.8	NM	31.9	NM	29.3
IFO-120 [2011]	9.54	0.9811	0.9701	1.38E+05	1.46E+04	NM	NM	NM	NM	NM	NM
IFO-180 [2011]	0	0.9794	0.9664	1.24E+05	1.92E+04	NM	NM	NM	NM	NM	NM
IFO-180 [2011]	6.86	0.9849	0.9782	1.41E+06	1.19E+05	NM	NM	NM	NM	NM	NM
Ind. Hub Atwater Valley 37	0	0.9255	0.9148	23.4	13.5	29.3	29.6	23.9	24.3	25.1	26.5
Ind. Hub Atwater Valley 37	22.07	0.9471	0.9370	126	40.2	30.6	31.4	19.2	15.5	17.0	18.0
Irene [Lompoc O&G Fac.]	0	0.9700	0.9591	6.83E+04	8.51E+03	30.2	28.7	20.8	19.6	19.0	23.4
Irene [Lompoc O&G Fac.]	17.41	1.0163	1.0073	3.15E+08	8.34E+06	NM	NM	NM	NM	NM	NM
Irene Comingled	0	0.9890	0.9787	4.45E+05	5.73E+04	27.1	26.6	NM	NM	NM	NM
Irene Comingled	20.26	1.0191	1.0107	6.16E+08	2.21E+07	NM	NM	NM	NM	NM	NM
Neptune [2011]	0	0.9354	0.9244	1.33E+03	402	30.1	30.4	35.3	31.6	31.7	30.7
Neptune [2011]	17.30	0.9758	0.9622	1.36E+05	2.07E+04	29.9	31.0	21.8	19.4	19.1	18.7
North Star	0	0.8687	0.8573	17.4	8.9	28.6	26.6	20.8	22.1	20.8	21.8
North Star	35.41	0.9284	0.9165	3.75E+03	201	NM	30.3	NM	21.4	NM	20.8
Rock	0	0.9776	0.9674	2.57E+04	4.36E+03	NM	NM	NM	26.1	NM	25.3
Rock	9.06	0.9964	0.9859	7.88E+05	7.14E+04	NM	NM	NM	NM	NM	NM
Terra Nova	0	0.8752	0.8624	47.6	17.5	NM	27.9	NM	24.4	NM	23.1
Terra Nova	28.55	0.9216	0.9 <mark>114</mark>	1.65E+04	1.37E+03	NM	32.6	NM	24.4	NM	NM

Table 5a.Summary of the physical and chemical properties of the 24 new oil samples
analyzed in this study and listed in Table 4

NM: Not Measurable with the Pendant Drop method. The difficulty is due to the high viscosity of the oil.

Oil Sample	%Evap	Flash	Pour	Sulfur	Water	Disp.		Emulsion	
	Loss	Point	Point	Content	Content	Test	Stability	Water	Comp. Mod.
	(%w/w)	(°C)	(°C)	(%w/w)	(%w/w)	(% Eff.)	Class	(%w/w)	(Pa)
ANS [2011]	0	<-5	-15	0.91	0.1	67	Unstable	NM	ŇM
ANS [2011]	20.86	90	0	1.13	0.1	49	Meso	75.5	17
ANS [2011]	30.67	136	6	1.28	0.0	11	Stable	75.3	108
Arab. Med.	0	<0	<-24	2.70	0.1	53	Stable	85.5	1.06E+03
Arab. Med.	31.35	142	0	3.71	0.0	<10	Stable	75.8	975
DOBA	0	>60	-5	0.12	4.0	10	Entrained	43.0	47
DOBA	14.13	166	6	0.13	0.0	<10	Entrained	33.9	102
Dos Cuadras HE-05	0	0	-27	1.22	0.5	67	Unstable	NM	NM
Dos Cuadras HE-05	23.40	135	13	1.55	0.1	<10	Stable	76.4	457
Dos Cuadras HE-26	0	-1	-5	0.51	2.6	69	Unstable	NM	NM
Dos Cuadras HE-26	32.20	132	25	0.74	0.1	11	Stable	76.3	759
Ellen A038	0	40	-21	3.28	1.9	<10	Entrained	20.7	44
Ellen A038	15.88	154	12	3.69	0.5	<10	DNF	NM	NM
Ellen A040	0	104	-15	3.89	5.2	<10	Entrained	24.5	42
Ellen A040	14.57	161	3	4.25	0.9	<10	DNF	NM	NM
Endicott [2011]	0	<0	6	1.04	0.3	62	Unstable	NM	NM
Endicott [2011]	18.56	125	15	1.29	0.0	49	Entrained	71.6	676
Endicott [2011]	21.41	141	18	1.33	0.0	<10	Entrained	74.0	992
Gail E010	0	48	-6	5.94	4.3	<10	Entrained	43.9	258
Gail E010	16.92	147	9	6.79	1.4	<10	DNF	NM	NM
Gail E019	0	22	-3	1.90	3.7	43	Unstable	NM	NM
Gail E019	24.42	139	12	2.39	0.5	<10	Stable	77.9	752
Harmony	0	18	-9	4.73	0.3	<10	Entrained	59.5	942
Harmony	17.11	145	24	5.20	0.3	<10	DNF	NM	NM
Heritage HE 05	0	77	-3	7.20	6.6	<10	DNF	NM	NM
Heritage HE 05	16.27	150	33	7.64	1.3	<10	DNF	NM	NM
Heritage HE 26	0	72	-18	6.28	5.1	<10	DNF	NM	NM
Heritage HE 26	14.48	149	30	6.67	0.4	<10	DNF	NM	NM
IFO-120 [2011]	0	91	-9	0.96	0.3	12	Stable	69.6	171
IFO-120 [2011]	9.54	146	6	1.03	0.2	<10	Stable	59.6	505
IFO-180 [2011]	0	>60	15	0.46	1.7	<10	Entrained	42.1	144
IFO-180 [2011]	6.86	160	18	0.48	0.0	<10	Entrained	44.4	366
Ind. Hub Atwater Valley 37	0	40	<-30	0.65	0.1	77	Unstable	NM	NM
Ind. Hub Atwater Valley 37	22.07	124	<-30	0.72	0.0	66	Unstable	NM	NM
Irene [Lompoc O&G Fac.]	0	40	-9	5.21	2.6	<10	Entrained	48.9	381
Irene [Lompoc O&G Fac.]	17.41	150	33	5.85	1.4	<10	DNF	NM	NM
Irene Comingled	0	62	0	5.54	5.9	<10	Entrained	35.7	784
Irene Comingled	20.26	148	27	6.08	1.5	<10	DNF	NM	NM
Neptune [2011]	0	22	<-30	2.88	0.9	<10	Stable	80.5	171
Neptune [2011]	17.30	153	-6	3.47	0.2	<10	Stable	65.5	674
North Star	0	<-5	-16	0.70	0.0	74	Unstable	NM	NM
North Star	35.41	127	-3	1.06	0.0	43	Stable	78.3	416
Rock	0	42	-15	3.97	0.4	<10	Entrained	59.5	232
Rock	9.06	151	6	4.22	0.0	<10	Entrained	58.9	811
Terra Nova	0	<-5	9	0.57	0.0	43	Unstable	NM	NM
Terra Nova	28.55	136	21	0.80	0.0	<10	Stable	75.6	1.23E+03

Table 5b.Summary of the physical and chemical properties of the 24 new oil samples
analyzed in this study and listed in Table 4 (continue)

DNF: Do Not Form

NM: Not Measurable because the emulsion did not form or was unstable.

Oil Sample	%Evap		Hydrocarb	on Groups	Wax	% Evaporated	
-	Loss	Saturates	Aromatics	omatics Resins Asph.			Equation
	(%w/w)	(%w/w)	(%w/w)	(%w/w)	(%w/w)	(%w/w)	(%Evap =)
ANS [2011]	0	58.7	31.3	7.6	2.4	4.9	-1.01 + 0.92 Ln(t+0.99)
ANS [2011]	20.86	56.6	26.3	13.7	3.4	7.3	-4.75 + 0.76 Ln(t+562.1)
ANS [2011]	30.67	50.1	26.5	20.2	3.2		
Arab. Med.	0	49.7	36.5	10.4	3.4	5.2	-1.27 +0.94 Ln(t+2.08)
Arab. Med.	31.35	47.2	29.1	17.8	5.9	_	
DOBA	0	65.2	20.2	10.2	4.5	2.7	-2.53 + 0.45 Ln(t+255.9)
DOBA	14.13	61.8	18.1	16.0	4.0		
Dos Cuadras HE-05	0	49.2	29.5	14.5	6.7	4.3	-1.72 + 0.87 Ln(t+5.83)
Dos Cuadras HE-05	23.40	33.6	28.6	26.7	11.1	-	(,
Dos Cuadras HE-26	0	57.2	31.0	8.9	2.8	6.4	-1.32 + 0.92 Ln(t+4.05)
Dos Cuadras HE-26	32.20	57.7	26.0	13.4	3.0	-	
Ellen A038	0	39.2	22.5	24.1	14.3	1.6	-14.5 + 3.03 Ln(t+152.2)
Ellen A038	15.88	35.2	22.1	27.5	15.2		
Ellen A040	0	42.6	18.6	24.5	14.3	1.2	-17.3 + 2.63 Ln(t+896.2)
Ellen A040	14.57	27.1	19.6	35.7	17.6		
Endicott [2011]	0	60.5	29.8	7.2	2.5	12.0	-1.34 + 0.64 Ln(t+8.11)
Endicott [2011]	18.56	50.1	32.2	14.4	3.4	15.6	-4.31 ± 0.54 Ln(t+273.5)
Endicott [2011]	21 41	52.6	27.4	16.1	3.9		
Gail E010	0	37.4	14.2	25.4	23.1	2.3	-19.4 +3.43 Ln(t+350.0)
Gail E010	16.92	26.1	16.0	33.9	24.1	2.0	
Gail E019	0	64 1	18.8	11.4	5.8	15.0	-10.0 + 3.41 ln(t+16.9)
Gail E019	24 42	59.2	20.8	12.5	7.5	1010	
Harmony	0	36.8	20.6	31.2	11.4	58	-1.67 ± 0.54 l n(t+23.1)
Harmony	17.11	28.2	23.6	33.0	15.2	0.0	
Heritage HE 05	0	37.0	19.2	33.5	10.2	2.0	-5.0 + 0.97 Ln(t+271.6)
Heritage HE 05	16.27	22.1	12.7	50.8	14.4		
Heritage HE 26	0	35.9	24.9	28.5	10.7	3.1	-0.7 + 0.35 Ln(t+14.2)
Heritage HE 26	14.48	34.7	23.5	31.0	10.8		
IFO-120 [2011]	0	43.8	42.6	10.4	3.2	9.0	-4.17 + 0.63 Ln(t+807.5)
IFO-120 [2011]	9.54	45.7	32.5	18.7	3.1		
IFO-180 [2011]	0	49.3	31.9	14.8	4.0	20.0	-4.5 + 0.57 Ln(t+3184.0)
IFO-180 [2011]	6.86	39.5	33.4	21.2	5.9		
Ind. Hub Atwater Valley 37	0	72.6	22.8	4.6	0.0	0.2	-19.9 + 4.21 Ln(t+159.1)
Ind. Hub Atwater Valley 37	22.07	67.7	27.1	5.2	0.0		
Irene [Lompoc O&G Fac.]	0	37.7	10.6	32.7	19.0	1.7	-11.1 + 2.78 Ln(t+52.7)
Irene [Lompoc O&G Fac.]	17.41	23.1	12.8	37.7	26.4		
Irene Comingled	0	38.7	20.3	24.8	16.2	3.0	-26.0 + 4.0 Ln(t+787.0)
Irene Comingled	20.26	24.0	15.0	32.4	28.6		· · · · · · · · · · · · · · · · · · ·
Neptune [2011]	0	58.0	13.3	18.6	10.1	2.0	-7.6 + 2.48 Ln(t+23.5)
Neptune [2011]	17.30	55.2	15.0	18.7	11.2		, , , , , , , , , , , , , , , , , , ,
North Star	0	67.3	24.7	6.1	1.9	4.8	-1.38 + 1.07 Ln(t+1.14)
North Star	35.41	60.1	25.8	9.5	4.6		
Rock	0	29.5	23.5	40.5	6.5	3.0	-2.25 + 0.44 Ln(t+193.8)
Rock	9.06	28.7	21.3	41.1	8.9		· · · · · ·
Terra Nova	0	67.8	19.1	12.4	0.7	20.5	-0.66 + 0.71 Ln(t+0.96)
Terra Nova	28.55	48.6	28.3	22.0	1.1		

Table 5c.Summary of the physical and chemical properties of the 24 new oil samples
analyzed in this study and listed in Table 4 (continue)

5.2 Results from OILMAP simulations

Physical properties listed in Table 5 were introduced into OILMAP oil properties database and used to calculate the corresponding time-window considering the weather and spill conditions used in the previous SL Ross study. Version 6.9.3 of OILMAP oil spill model was used to run the simulations. Weather and spill conditions were kept the same to those used in the SL Ross study. For each of the additional 22 oil non weathered samples listed in Table 4, two oil spill scenarios (1,000 and 10,000 barrel) were run using average environmental conditions for the US GOM; 23 °C (73 °F) water temperature, 6 m/s (12 knots) wind speed (SL Ross 2007) and Cutoff viscosity of 7,500 cP. All simulations were run considering a GIS basemap for the Gulf of Mexico, a wind drift factor of 3.5% and a simulation duration of 1000 hours. Detailed modelling results are shown in Appendix E. and summary results are shown in Table 6.

	Time-window (Hours)			
Oil Name	SLROSS Correlation Models		Present OILMAP Model	
	1000 bbl	10,000 bbl	1000 bbl	10,000 bbl
Alaska North Slope	5	30	10	15
Arabian Medium	0	2	6	8
DOBA	96	223	1000	1000
Dos Cuadras HE-05	1	14	5	6
Dos Cuadras HE-26	6	30	7	10
Endicott	0	4	12	21
Harmony	0	0	1	2
IFO-120	0	4	1	2
IFO-180	0	0	0	0
North Star	19	65	53	99
Rock	0	0	3	3
Terra Nova	0	1	13	22
Independence Hub A.V. Block 37	166	339	9999	9999
Irene Sampled from Lompoc	0	0	1	1
Neptune	0	5	4	5
Ellen A038	0	1	4	9
Ellen A040	0	1	0	0
Gail E010	0	0	1	1
Gail E019	0	1	7	10
Heritage HE 05	0	0	0	0
Heritage HE 26	0	0	0	0
Irene Comingled	0	0	0	0

Table 6.Time-window predicted using OILMAP oil spill model for the 24 new oil samples
analyzed in this study and listed in Tables 4 and 5.

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cutoff viscosity during the 1000 hours of simulation.

5.3 Comparison with SL Ross Correlation Models (Eqs. 1 & 2)

Figure 5 shows a comparison between time-window predicted by the correlation models (equations 1 and 2) and time-window predicted by OILMAP for the new oils shown in Table 6. Here again, the results show that for most oils the correlation models (Eqs. 1 & 2) underestimate the time-window predicted by OILMAP.

Time Window Predicted by the OILMAP Oil Spill Model (Hour)

Figure 5: Comparison between time-window predicted by the correlation models (equations 1 and 2) and time-window predicted by the OILMAP oil spill model for the new oils shown in Table 6 (Task 3).

5.4 Conclusion for Task 3

Conclusions from the completion of Task 3 are:

- 1. For most of the new oils studied in Task 3 and listed in Table 6, the two correlations models proposed by SL Ross (2007) underestimated the time-window predicted by OILMAP.
- Values of the time-window predicted by OILMAP will be used to develop new models in Task 4.

6 Model development and sensitivity analysis (Task 4)

The goals of this Task 4 are:

- to use the data on time-window generated in Task 1 to 3 using OILMAP to develop new models to predict the time-window.
- to use OILMAP to generate a much lager database on time-window by conducting new simulations using all non-weathered oils studies in Task 1 to 3 (70 in total), various wind speeds and air temperatures typical for the Gulf of Mexico water system, various spill volumes and various values for the cutoff viscosity.
- 3. to integrate the effects of spill volume, wind speed, air temperature and cutoff viscosity into the new models to predict the time-window.

6.1 Development of new predictive models using time-window data generated in Task 1 to 3.

Development of the new predictive models is presented in details in Appendix F. In summary, simple correlations and Principal Component Analysis of the multivariable problem have shown that the time-window calculated by the OILMAP oil spill model in Tasks 1 to 3 for spill volume of 1000 bbl can be predicted as a function of the oil viscosity only. Based on orthogonal regression using PCA analysis, the following models were developed to predict the time-window for application of chemical dispersant:

$\ln(\tau) = -3.4201 \ln(\mu)$, or	$TW_1 = TW_r \mu^{3.4201}$	for $0 \le \mu \le 1$ at 15 °C	(3)
$\ln(\tau) = -0.3556 \ln(\mu)$, or	$TW_2 = TW_r \mu^{-0.3556}$	for $1 \le \mu \le K$ at 15 °C	(4)

where

, represent the dimensionless time-window

(5)

epresent a constant that depends mainly on the cutoff viscosity (7)

TW represents the time-window in hours, μ_o oil dynamic viscosity measured at 15 °C in cP, and *TW_r* and μ_{or} represent the reference time-window and reference oil dynamic viscosity, respectively, at which the data change the trend (slope). Precisely, this reference point is defined by the intersection of the regression models developed for the two regions before normalization of the variables (oil viscosity and the time-window). In represents the natural logarithm function.

For the series of the data analyzed in Appendix F, the conditions used to generate the time-window data used to develop the models are as follows:

Oil spill volume = 1000 bbl Water temperature = 23 °C Wind speed = 12 knots $\mu_{co} = 7500 \text{ cP}$

For these conditions, key parameters in equations (3) and (4) are:

 $\mu_{or} = 33.468 \text{ cP}$ $TW_r = 8.754 \text{ Hour}$

The calculations of TW_I (time-window for the first region (group) of the oil viscosity) using equation (3) were limited to 1000 hours as imposed in the post-processing of the data generated from OILMAP simulations in which the cutoff viscosity was not reached during the 1000 hours simulation period. Furthermore, the applicability of the models shown by equations (3) and (4) to other spill conditions than those for which the models were developed is discussed in section 6.3 of this report.

Details on the orthogonal regression and the fitting to the data are shown on Figure 6.

Figure 6: Fitting linear models using orthogonal regression and principal components analysis on the two different groups of time-window data.

6.2 Comparison between predicted time-window and the original data

Equations (3) and (4) were used to predict the time-window using oil viscosity data listed in Tables 5abc, wind speed of 12 knots, a spill volume of 1000 bbl, water temperature of 23 °C, and a cutoff viscosity of 7500 cP. The predictions were compared with the original data obtained by the OILMAP oil spill model using the same parameters. As it was done with the original data, the time-window was set to 1000 hour when the predictions exceeded this value. Results are shown in Figure 7.

While the agreement between the two predictions is not perfect, Figure 7 shows that overall the data show better agreement than with the previous correlations models. The results also show that further work is needed to improve the predictive models. What is also important to note is that the new models shown by equations (3) and (4) use oil viscosity only to predict the time-window with the goodness shown in Figure 7.

Figure 7: Comparison between predicted time-window using equations (3) and (4) and the original data predicted by OILMAP considering a spill volume of 1000 bbl, wind speed of 12 knots, water temperature of 23 °C, and cutoff viscosity of 7500 cP.

6.3 Sensitivity Analysis

The sensitivity of the new models shown by equations (3) and (4) to variations of the oil spill volume, wind speed, air temperature, and the cutoff viscosity was studied extensively in this project. Table 7 shows the values of the four variables used in this study. For each combination of these variables, the time-window was calculated using OILMAP oil spill model for all the non-weathered oil samples discussed in Tasks 1 to 3 (70 oils in total). The variables were then normalized using equation (5) and (6). In total, 9450 simulations were performed in this study. The results for all these simulations are shown in Appendices B, C and E. Results from these OILMAP simulations were then post-processed for the three cutoff viscosities shown in Table 7.

Variable	Values used in the sensitivity analysis study
Oil Spill Volume (bbl)	1000, 10000, 25000, 50000, 100000
Wind speed (knots)	8, 12, 15
Water temperature (°C)	13, 23, 29
Cutoff viscosity (cP)	5000, 7500, 10000

 Table 7.
 Values of the variables used in the sensitivity analysis.

6.3.1 Effects of oil spill volume

As shown in Table 7, five oil spill volumes of 1000; 10,000; 25,000; 50;000 and 100;000 were used to study the sensitivity of the new models to this parameter. Wind speed, temperature and cutoff viscosity were kept constant to 12 knots, 23 °C and 7500 cP, respectively.

Results are shown in Figure 8. Overall the data showed that the time-window increases with the spill volume. The overall trend and the distinct separation between the two groups discussed previously are still shown by the additional four series of data obtained with spill volumes of 10,000; 25,000; 50,000; and 100,000 bbl. Ellen A038 and Santa Clara oils showed an unexpected increase of the time-window with oil viscosity.

A closer look at the results showed that the increase in the time-window with the spill volume is more important at viscosity lower than the reference viscosity μ_{or} . To clarify this, the same data shown in Figure 8 were normalized using the time-window data obtained with a spill volume of 1000 bbl and the reference viscosity μ_{or} discussed above. The results are shown in Figure 9. The following observations are made:

- The increase of the time-window with the spill volume is higher in the first region of the data defined by oil viscosity smaller than the reference viscosity of 33.468 cP discussed above. In this region, most of the data showed that the increase is independent of oil viscosity.
- 2. In the second region defined by oil viscosity higher than 33.468 cP, the increase in timewindow decreases with oil viscosity to finally vanish when oil viscosity reaches the cutoff viscosity of 7500 cP.

For oils with dynamic viscosity up to 33.468 cP and for which the time-window calculated with OILMAP was not cut to 1000 hours, effects of the spill volume are shown in Figure 10. The oils are identified by their initials in this figure. The time-window TW and the spill volume V_o were normalized by TW_I and V_{oI} , the values of the same variables obtained with spill volume of 1000 bbl and the other parameters kept constant as discussed above. All the oils show similar trend of the spill volume effects on the time-window. The median increase is shown by the solid line in Figure 10. As shown on that figure, the equation of this fitting line is given by:

(8)

Comparisons between predicted time-window data using the new models given by equations (3), (4) and (8) and those predicted by OILMAP are shown on Figure 11.

Figure 8: Effects of the spill volume on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the different spill volume indicated on the Figure, wind speed of 12 knots, water temperature of 23 °C, and cutoff viscosity of 7500 cP.

$$\frac{TW}{TW_{1}} = 1.00 \left(\frac{V_{o}}{V_{o1}}\right)^{0.25}$$

Figure 9: Data from Figure 8 with the time-window and oil viscosity normalized by the time-window obtained with a spill volume of 1000 bbl and the reference viscosity discussed above, respectively.

Figure 10: Variations of the increase of time-window with the spill volume for oils that have dynamic viscosity less than the reference viscosity of 33.468 cP. Each data series relates to different oil. The oils are referred by their initials. The solid line represents a curve fitting to the median variations.

Figure 11: Comparisons between predicted time-window using new models (equations 3, 4 and 8) and the original data predicted by OILMAP for different spill volumes wind speed of 12 knots, water temperature of 23 °C, and cutoff viscosity of 7500 cP.

While the agreement between the predictions is not perfect, Figure 11 shows that the proposed models capture the overall effects of the spill volume. The improvement is obvious when comparing results shown in Figures 7 and 10. The results also show that additional research work is needed to improve the predictive models. Here again, it is important to note is that the new models shown by equations (3), (4) and (8) use oil viscosity only to predict the time-window with the goodness shown in Figures 7 and 10 for a wide variation of the spill volume.

6.3.2 Effects of water temperature

As shown in Table 7, three oil temperature of 13, 23, and 29 were used to study the sensitivity of the new models to this parameter. Wind speed, spill volume and cutoff viscosity were kept constant to 12 knots, 1000 bbl and 7500 cP, respectively. The 23 °C temperature was used in SL Ross (2007) study and the two other temperatures represent the monthly means (based on hourly data measurements) air temperature measured at the NDBC (BURL1) weather station of the NOAA National Data Buoy Center (<u>http://www.ndbc.noaa.gov/</u>). The 13 °C corresponds to the monthly average for the month of January and 29 °C is monthly average for August for that station. These values were obtained from processing hourly air temperature data observed from 1984 to 2007.

Results are shown in Figure 12. Overall the data showed that the time-window increases with the temperature. The overall trend and the distinct separation between the two groups discussed previously are still shown by the additional two series of data obtained with temperatures of 13 and 29 °C.

Figure 12: Effects of temperature on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the three temperatures indicated on the Figure, spill volume of 1000 bbl, wind speed of 12 knots, and cutoff viscosity of 7500 cP.

Results shown in Figure 12 were normalized using the time-window data obtained with the temperature of 23 °C and the reference viscosity μ_{or} discussed above. The results are shown in Figure 13. Except for the Malongo, Petronius Block VK87A, and Lucula oils, the data showed similar increase of the time-window with temperature for most of the oils. For oils for which the time-window calculated with OILMAP was not cut to 1000 hours, effects of the temperature are shown in Figure 14. The oils are identified by their initials in this figure. The time-window *TW* and the air temperature *T* were normalized by *TW*₁ and *T*₁=23 °C, respectively. Most of the oils show similar trend of the temperature effects on the time-window. The median increase is shown by the solid line in Figure 14. As shown on that figure, the equation of this fitting line is given by:

$$\frac{TW}{TW_1} = 0.561 \, e^{0.573 \left(\frac{T}{T_1}\right)} \tag{9}$$

Comparisons between predicted time-window data using the new models given by equations (3), (4) and (9) those predicted using OILMAP are shown in Figure 15.

Figure 13: The same data as in Figure 12 with the time-window and oil viscosity normalized by the time-window obtained with a temperature of 23 °C and the reference viscosity discussed above, respectively.

While the agreement between the predictions is not perfect, Figure 15 shows that the proposed models capture the overall effects of temperature. The improvement is more obvious when comparing results shown in Figures 7 and 15. The results also show that further work is needed to improve the predictive models. Here again, it is important to note that the new models shown by equations (3), (4) and (9) use oil viscosity only to predict the time-window with the goodness shown in Figures 7 and 15 for different temperatures.

6.3.3 Effects of wind speed

As shown in Table 7, three wind speeds of 8, 12, and 15 knots were used to study the sensitivity of the new models to this parameter. Water temperature, spill volume and cutoff viscosity were kept constant to 23 °C, 1000 bbl and 7500 cP, respectively. The 12 knots wind speed was used in SL Ross (2007) study and the two other wind speeds represent the monthly means (based on hourly data measurements) wind speed measured at the NDBC (BURL1) weather station of the NOAA National Data Buoy Center (<u>http://www.ndbc.noaa.gov/</u>). The 8 knots is close to the monthly average for the month of August and 15 knots is close to the monthly average for January for that station. These values were obtained from processing hourly wind speed data observed from 1984 to 2007.

Results are shown in Figure 16. The data showed that the time-window decreases with wind speed. The overall trend and the distinct separation between the two groups discussed previously are still shown by the additional two series of data obtained with wind speeds of 8 and 15 knots.

Figure 16: Effects of wind speed on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the three wind speeds indicated on the Figure, spill volume of 1000 bbl, water temperature of 23 °C, and cutoff viscosity of 7500 cP.

The data shown in Figure 16 were normalized using the time-window data obtained with the wind speed of 12 knots and the reference viscosity μ_{or} of 33.468 cP, respectively. The results are shown in Figure 17. For oils for which the time-window calculated with OILMAP was not cut to 1000 hours, effects of the wind speed are shown in Figure 18. The oils are identified by their initials in this figure. The time-window *TW* and the wind seed W_s were normalized by TW_I and W_{sI} =12 knots, respectively.

Figure 17: The same data as in Figure 15 with the time-window and oil viscosity normalized by the time-window obtained with a wind speed of 12 knots and the reference viscosity discussed above, respectively.

Most of the oils show similar trend of the wind effects on the time-window. The median effect is shown by the solid line in Figure 18. As shown on that figure, the equation of this fitting line is given by:

$$\frac{TW}{TW_1} = 2.64 \ e^{-0.97 \left(\frac{W_s}{W_{s1}}\right)} \tag{10}$$

Constant 2.8 was adjusted to 2.64 to obtain TW_1 when $W_s = W_{s1}$.

Comparisons between predicted time-window data using the new models given by equations (3), (4) and (10) and those predicted with OILMAP are shown on Figure 19.

While the agreement between the predictions is not perfect, Figure 19 shows that the proposed model capture the overall effects of wind speed. The improvement is more obvious when comparing results shown in Figures 7 and 19. The results also show that further work is needed to improve the predictive models. Here again, it is important to note that the new models shown by equations (3), (4) and (10) use oil viscosity only to predict the time-window with the goodness shown in Figures 7 and 19 for different wind speeds.

Figure 18: Variations of the time-window with the wind speed for oils for which the timewindow calculated with OILMAP was not cut to 1000 hours. Each data series relates to different oil. The oils are referred by their initial. The solid line represents a curve fitting to the median variations.

Figure 19: Comparisons between predicted time-window using new models (equations 3, 4 and 10) and the original data predicted by OILMAP for different wind speed, spill volume of 1000 bbl, temperature of 23 °C, and cutoff viscosity of 7500 cP.

6.3.4 Effects of the cutoff viscosity

As shown in Table 7, three cutoff viscosities of 5000, 7500 and 10,000 cP were used to study the sensitivity of the new models to this parameter. Water temperature, spill volume and temperature were kept constant at 12 knots, 1000 bbl and 23 °C, respectively. The 7500 cP cutoff viscosity was used in the SL Ross (2007) study and the two other cutoff viscosity represent lower and higher values of this parameter discussed in the literature (SL Ross, 2007).

Results are shown in Figure 20. As expected, the data showed that the time-window increases with the cutoff viscosity. The overall trend and the distinct separation between the two groups discussed previously are still shown by the additional two series of data obtained with cutoff viscosity of 5000 and 10,000 cP.

Figure 20: Effects of cutoff viscosity on the variations of the time-window with oil viscosity. The data were obtained from OILMAP simulations using the three cutoff viscosities indicated on the Figure, spill volume of 1000 bbl, water temperature of 23 °C, and temperature of 23 °C.

For oils for which the time-window calculated with OILMAP was not cut to 1000 hours, effects of the cutoff viscosity are shown in Figure 21. The oils are identified by their initials in this figure. The time-window *TW* and the cutoff viscosity μ_{co} were normalized by *TW*₁ and μ_{co1} =7500 cP.

Most of the oils show similar trend of the effects the cutoff viscosity on the time-window. The median effect is shown by the solid line in Figure 21. As shown on the figure, the equation of this fitting line is given by:

Comparisons between predicted time-window data using the new models given by equations (3), (4) and (11) and those predicted with OILMAP are shown on Figure 22.

While the agreement between the predictions is not perfect, Figure 22 shows that the proposed models capture the overall effects of the cutoff viscosity. The improvement is more obvious when comparing results shown in Figures 7 and 22. The results also show that further work is needed to improve the predictive models. Here again, it is important to note that the new models shown by equations (3), (4) and (11) use oil viscosity only to predict the time-window with the goodness shown in Figures 7 and 22 for different cutoff viscosity.

Figure 21: Variations of the time-window with the cutoff viscosity for oils for which the timewindow calculated with OILMAP was not cut to 1000 hours. Each data series relates to different oil. The oils are referred by their initial. The solid line represents a curve fitting to the median variations.

 $\frac{TW}{TW_1} = \frac{\mu_{co}}{\mu_{co1}}$

Figure 22: Comparisons between predicted time-window using new models (equations 3, 4 and 11) and the original data predicted by OILMAP for different cutoff viscosities, spill volume of 1000 bbl, temperature of 23 °C, and wind speed of 12

6.3.5 Simultaneous effects of spill volume, temperature, wind speed and cutoff viscosity.

knots.

The new models given by equations (3), (4), and (8) to (11) were tested by varying the four variables of spill volume, temperature, wind speed and cutoff viscosity in their entire ranges shown in Table 7. The predictions were compared to the time-window predicted using OILMAP and presented in Appendices B,C, and E. A total of 9450 simulations were run and processed to generate the same number of time-window data points. Results are shown in Figure 23.

As expected, the predictions using the new models are not in perfect agreement with the timewindow data predicted using OILMAP. Specifically, two groups of data away from the perfect agreement line are clearly shown in the figure. In these groups of data the new models underestimate or overestimate in a consistent trend (almost parallel to the line of perfect agreement) the timewindow predicted by OILMAP. This grouping is also shown in Figure 11, 15, 19, and 22. Apparently, these grouping are related to the data that were initially under or above the fitting line using orthogonal regression, as shown in Figure 24. More research work is needed to improve the models to capture the spreading of the data around the regression lines shown in Figure 24. The same remarks apply for the prediction of small values of the time widow (less than about 10 hours). The models overestimate the small values of the time-window in most of the simulations run in this study.

However, the predictions by the new models are in good agreement with the majority of the data shown in Figure 23. Considering the simplicity of the structure of the models, the wide ranges used in which the four parameters were varied, and the fact that the original data are in fact a prediction of OILMAP oil spill model, which not immune from uncertainty, the new models offered a new opportunity to improve the previous models (Eqs. 1 and 2) developed for very specific and limited conditions.

7 Validation of the new models (Tasks 5 and 6)

The goals of this Tasks 5 and 6 are:

- 1. to validate the final models to predict the time-window for application dispersant using existing data
- to validate the final models to predict the time-window for application dispersant using the new data obtained in this study on dispersant effectiveness from the Swirling Flask Test (SWT).

Figure 23: Comparisons between predicted time-window using new models (equations 3, 4 and 8 to 11) and the original data predicted by OILMAP for all the spill volumes, temperatures, wind speeds and cutoff viscosities shown in Table 7. A total of 9450 simulations were performed and the results were processed to generate the same number of points shown in this figure.

Figure 24: Illustration of the two group of the original data for which the new models overestimate or underestimate the time-window predicted by OILMAP oil spill model.

7.1 Validation of the final models using existing data

This study focused on using large tank dispersant effectiveness testing where weathering of the oil is tracked continuously for a long period of time (few days) and dispersant effectiveness was performed on the weathered oil periodically and used to determine the time-window. Such series of data are very rare. Related to this project, SL Ross (2012) conducted a series of large tank testing at Ohmsett – The National Oil Spill Response Research & Renewable Energy Test Facility (http://www.ohmsett.com/) to generate such data to validate their correlation models shown by equations (1) and (2). To our knowledge, these are the only series of large tank tests that provide most of the parameter needed to validate the new models. Data from the SL Ross report (SL Ross, 2012) were used to validate the new models described by equations (3), (4) and (8) to (11).

Conditions of the SL Ross Ohomsett tests and the corresponding measured and predicted values of the time-window are listed in Table 8. Values listed in this were obtained as follows:

- Dynamic viscosity of fresh oils measured at 15 °C was obtained from this study. Some inconsistencies were found between the values listed in Table 1 in SL Ross (2012) and those obtained in this study (Tablees 5a and 5b above).
- Values of the oil volumes used in each test (second column in Table 8) were obtained from SL Ross via US-BSEE and converted to bbl.
- Average air temperature and wind speed were calculated in this study using information about the dates and times during which each test was run (Figures C1 to C7 in SL Ross, 2012) and weather conditions recorded at the Ohmsett Facility weather station. This information was also provided by SL Ross via US. BSEE.
- 4. The measured time-window was recalculated in this study using the data listed in Table 2 in SL Ross (2012). In most of the tests, the time-window was estimated form the data using extrapolation of the trend defined by the last two points in each series. As set in SL Ross (2012), the time-window was determined when dispersant effectiveness reaches 30%. These calculations were needed because some inconsistencies were found between the data listed in Table 2 and those shown in Figure 5 of the SLR (2012) report. A good example of relates to Anadarko oil. The measured time-window for this oil was set to 60 hours in Figure 5. A closer look at the related data in Table 2 in the SL Ross (2012) report showed that the average dispersant effectiveness for this oil reach 41.8% when 61.25 hours has elapsed. Then, it is clear that at 30% effectiveness, the time elapsed (time-window) would be much higher than 60 hours indicated in Figure 5. Our calculations showed that time-window for this oil is 86 hours or more.
- 5. The time-window predicted using the new models (last column in Table 8 below) was calculated using equations (3), (4) and (8) to (11). As such, the models take into account the effect of spill volume, air temperature, wind speed and the cutoff viscosity. Again, a closer look at the data in Table 2 of the SL Ross (2012) report showed that the cutoff viscosity is higher than 10,000 for all oils. This is the highest values of the cutoff viscosity we used in the development of the new models. As such, this value was used for the calculation of the time-window shown in the last column in Table 8.

Comparisons between measured and predicted values of the time-window are shown in Figure 24. The results shown in this figure and in Table 8 showed substantial improvements of the new models to predict the time-window compared to the correlation models given by equation (1) and (2). While many remarks can be made regarding the procedures used to conduct the large tank tests and the estimate the time-window from the Exdet dispersant effectiveness test, the following observations are worth mentioning:

- The estimation of the time-window for Oseberg oil from the results of the tank tests listed in Table 2 of the SL Ross report is questionable. The dispersant effectiveness tests were stopped 22 hours only after the start of the test. At that time the dispersant effectiveness was still high at 78.8%. Extrapolation of the data to 30% cannot be accurate, especially given that this oil is the less viscous oil. As such, a time-window higher than what is estimated in Table 8 is expected for this oil. This means that the high value estimated by the new models is possibly much closer to the experimental value than what is shown in Figure 25.
- 2. Various techniques were used to contain the slick during the large tank experiment as indicated in the SL Ross (2012) report. This means that the spreading and dispersion of the oil was limited. While this may not have a significant impact on the two less viscous oils (Anadarko and Oseberg), it is expected to affect the predictions using the new models for the viscous oils because the volume of the spill is used as a parameter in the calculation and small volumes were used in most of the tests. Containment has similar effects than increasing the volume of the spill in term of thickness of the slick. As such, the small volumes used to predict the time-window for the viscous oils may not be appropriate, which may explains the underestimation of the time-window for these oil by the new models.

Table 8.Conditions of the large tank testing conducted by SL Ross (2012) at Ohmsett
Facility and measured and predicted time-window for application of chemical
dispersant.

Oil Tested	Dynamic viscosity of fresh oil measured at 15 °C (cP)	Volume spilled (bbl)	Average air temperature during the test (°C)	Average wind speed during the tests (knot)	Time- window measured at Ohmsett (Hour)	Time-window predicted using SL Ross correlations models (equation 1 and 2) (Hour)	Time-window predicted using the new models (equation 3,4 and 8 to 11) (Hour)
Endicott	46.4	2.38	24.3	3.5	22	3	4.7
Anadarko	13.5	1.90	21.1	7.3	86	178	75.5
Neptune	402	1.90	23.6	7.9	7	0.42	1.4
Venoco E-19 (Gail E019)	51.7	1.19	18.1	6.2	9	24	2.6
Oseberg	10	1.31	14.2	10.3	64	30	126.8
PER 038 (Ellen A038)	3100	0.95	18.6	2.9	2	0.03	0.8
Sockeye 2000	761	0.88	20.2	3.3	2	0	1.2

Figure 25: Comparisons between measured time-window at the Ohmsett tank tests conducted by Sl Ross (2012) and the predictions using SL Ross correlation models (equations 1 and 2) and the new models (equation 3, 4 and 8 to 11)

7.2 Validation of the final models using the new data obtained from the Swirling Flask Test (SFT)

While conscious of the limitations of using the results of the Swirling Flask Test (SFT) to estimate the time-window for application of chemical dispersant, an attempt was made to combine the results from the SFT experiments performed on two weathering percentages and the equation of evaporation to estimate the time-window and compare with the predictions of the new models. The procedure includes the following steps:

- 1. Using linear interpolation, estimate evaporation loss $EL_{30\%}$ at which dispersant effectiveness (DE) reaches 30% as suggested in SL Ross (2012). For this, results (Appendix B) of the SFT and the two weathering percentages tested in the lab were used.
- 2. Using the equation for the evaporation loss (Appendix B), calculate the time at which the evaporation loss reaches $EL_{30\%}$ and use this time as the experimental time-window for application dispersant.
- 3. Use the new models given equations (3) (4) and (8) to (11) to predict the time-window and compare it with the experimental time-window obtained from the previous step. For this, air temperature was set to 15 °C as used in the experiment, wind speed to 0 knots, spill volume to 1000 bbl as the evaporation experiment was conducted using pen procedure (oil contained), and cutoff viscosity to 7500 cP.

Key parameters used, the estimated experimental time-window and the predictions using the new models are shown in Table 9. As shown from the last two columns, while there is some agreement between the data and the predictions, it is difficult to conclude on the validation of the models using such a series of data. As discussed above, the use of data from the SFT tests remain questionable. For instance, the use of 30% effectiveness to determine the time-window is not necessarily valid with this test. Also, as shown in the SL Ross (2012) study, dispersant effectiveness does not necessarily decreases linearly with time as it was assumed here. But, with further testing and calibration, the results of the SFT test can be made useful to generate data on the time-window and to validate the models. Further research is needed to explore this possibility.

Oil Name	Dynamic Viscosity at 15 °C (cP)	Evaporative loss at weathering 1 (%)	Evaporative loss at weathering 2 (%)	DE at weathering 1 (%)	DE at weathering 2 (%)	Estimated weathering at DE of 30% (%)	Estimated time-window estimated using the equation to predict evaporation (Hours)	Time- window predicted using the new models (Hours)
Alaska North Slope	15	0	30.67	67	11	20.3	10	268
Arabian Medium	22	0	31.35	53	10	16.8	6	84
DOBA	3110	0	14.13	10	<10	N/A	0	4
Dos Cuadras HE-05	70	0	23.4	67	10	15.2	13	14
Dos Cuadras HE-26	21	0	32.2	69	11	21.7	15	99
Endicott	46	0	21.41	62	10	13.2	10	17
Harmony	3080	0	17.11	<10	<10	N/A	0	4
North Star	9	0	35.41	74	43	50.3	18906	1748
Rock	4360	0	9.06	<10	<10	N/A	0	3
Terra Nova	18	0	28.55	43	10	11.2	1	173
Neptune	402	0	17.3	<10	<10	N/A	0	8
Ellen A038	3100	0	15.88	<10	<10	N/A	0	4

Table 9.Time-window estimated using the results of the SFT tests and the equation of
evaporation loss compared to time-window predicted using the new models.

8 Conclusions

This study included two major parts. In first one physicochemical properties of 24 oils from the Gulf of Mexico and California were measured for further use in the validation of the two correlations models developed in a previous study conducted by SL Ross (2007) to predict the time-window for application of chemical dispersant for spill volumes of 1000 and 10,000 bbl. The second part was to validate and improve these correlation models using a total of 70 oils and to conduct a sensitivity analysis for the improved/new models to spill volume, temperature, wind speed, and cutoff viscosity. The main conclusions of this study are:

- 1. Time-window predicted using the SL Ross oil spill model SLROSM and the two correlation models were very different from the time-window predicted using OILMAP oil spill model.
- 2. Time-window predicted using OILMAP is not correlated with wax and sulfur contents and shows some correlation with saturates content.
- 3. Simple correlation and Principal Component Analysis (PCA) techniques showed that the time-window predicted using OILMAP is strongly correlated with oil viscosity measured at

15 °C. The data showed two distinct trends for viscous and less viscous oils. The separation occurs at a viscosity of about 33.5 cP. Based on orthogonal regression using PCA analysis, two models were developed to predict the time-window for oils with oil viscosity below and higher than this reference viscosity. The models are shown by equations (3) to (7).

- 4. Sensitivity study of the new models to oil spill volume, wind speed, temperature and cutoff viscosity was conducted. A total of 9450 OILMAP simulations were run and the data processed to develop models to take into account the effects of these parameters on the prediction of the time-window. These models are shown by equation (8) to (11). These models were tested using the 9450 data points for the time-window.
- The new models were validated using dispersant effectiveness tests conducted by SL Ross (2012) at the Ohmsett facility. Results showed that the new models perform better than the original correlation equations proposed by SL Ross (2007).
- 6. This study showed also that further research is needed to improve the prediction of the timewindow using physicochemical properties of the oil. This requires, among others, conducting additional large tank tests where both the weathering and the effectiveness of oil are tracked for a long period of time.
- 7. More importantly, it is of paramount importance to note that that development of the new models shown by equations (3) to (11) was based on the data generated using OILMAP oil spill model. As such, the accuracy of the new models to predict the time-window for application of chemical dispersant is directly related to the accuracy of this model oil weathering under different weather conditions and for different oils.

8 References

Applied Science Associates, 2008. OILMAP software, Narragansett, RI. <u>http://www.appsci.com/OILMAP/moreinfo.htm</u>.

Chapman, H., Purnell, K., Robin J.Law, and Kirby, M.F., (2007). The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe. Marine Pollution Bulletin, Vol. 54, pp. 827-838.

- Env. Can. 2006. Environment Canada's Online Spill Technology Database. Oil properties database. http://www.etc-cte.ec.gc.ca/databases/spills_e.html
- Jokuty, P., Whiticar, S., Wang, Z., Fingas, M., Fieldhouse, B., Lambert, P., and J. Mullin. Properties of Crude Oils and Oil Products Volume 1 (A-K). Whiticar Scientific, Ottawa, ON. Emergencies Science Division, Environment Canada, Ottawa, ON. 1999
- National Research Council (2005). Understanding Oil Spill Dispersants: Efficacy and Effects. National Academy Press, Washington D. C., USA.
- SL Ross, 2012. Validation of Dispersant Window of opportunity Model for U.S. ICS Crude Oils. Report submitted to U.S. Bureau of Safety and Environmental Enforcement, 33 p.
- SL Ross, 2007. Identification of Window of Opportunity for Chemical Dispersants on Gulf of Mexico Crude Oils. Report to Minerals Management Service, Engineering and Research Branch, Herndon, VA, 2000. <u>http://www.mms.gov/tarprojects/595.htm</u>.
- SL Ross, 2000. Technology Assessment of the Use of Dispersants on Spills from Drilling and Production Facilities in the Gulf of Mexico Outer Continental Shelf, Report to Minerals Management Service, Engineering and Research Branch, Herndon, VA, 2000.

Appendix A

List of fresh oil properties used in the SL Ross study (Table 2 in SL Ross, 2007)

							Fre	sh Oil I	Propert	ies							Tii Win (h	me dow ur)
Oil Filename	API Gravity	Sulfur (w1 %)	Flash point $(^{\circ}C)^{\dagger}$	Pour Point (°C)	Viscosity (cP)	Saturates (wt %)	Aromatics (wt %)	Resin (wt %)	Asphaltenes (w(%)	Wax (wt %)	BP<200 °C (wt %)	BP<250 °C (wt %)	BP<300 °C (wt %)	BP<350 °C (wt %)	BP < 400 °C (wt %)	BP<450 °C (wt %)	1,000 Barrel	10,000 Barrel
Green Canyon Block 65	19.5	1.9	-4	-28	102	38	40	14	8	1	11	18	26	34	43	52	5.2	6
West Delta Block 143	29.1			÷	20	61	27	9	3.6	:					-		9.1	13.6
Morpeth Block EW921	25.1	1.73	-10	-65	30	71	17	8	4	0.7	14	20	26	34	40	48	12.1	16.7
Garden Banks Block 386	29.5	1.52	-28	-39	19	53	36	10	1		17	24	33	43	53	62	16.2	23.6
Viosca Knoll Block 826	31.6	0.29	-2	-4	11	66	26	6	2	-	19	29	40	51	62	72	20.2	30
Mississippi Canyon Block 72	32	0.39	-5	-28	12	64	27	7	2		20	29	39	49	59	68	27	46
Green Canyon Block 109	27	1.89	0	-36	25	51	39	9	1	2	15	22	30	39	48	57	30	46.5
Mars TLP (2004)	27.6	2.1	-26	-28	24	60	24	11	5.5	1.5	11	16	22	28	35	42	31.5	53
South Pass Block 60	35.8	0.28	-4	-9	5	71	20	8	1	7	27	39	51	62	71	79	50	82.6
Eugene Island Block 43	36.8	0.18	12	0	7	81	16	3	0	8	16	27	43	58	71	83	60.6	87
Garden Banks Block 426	40.8	0.94	-24	-22	5	70	24	5	1		29	39	49	59	67	75	65.6	109
Mississippi Canyon Block 807	27.5	2.2	-35	-34	29	47	35	12	6		21	28	36	45	53	62	76.5	146
Mississippi Canyon Block 194	35.2	0.21	-6	-40	5	71	25	4	0	5	23	37	52	66	75	84	102	169
Green Canyon Block 200	33.9	0.87	0	-10	11.4	82	10	6.9	0.8	1.7	27	35	44	53	61	69	177	296
Viosca Knoll Block 990	38.1	0.22	-17	-32	5	73	22	4	1	2.2	26	36	46	57	66	74	200.4	335
Petronius Block VK87A	30	0.34	-10	-19	20	84	9	6	1.6	2.7	17	25	34	44	53	61	473	473
Eugene Island Block 32	36.9	0.02	21	7	6	84	14	2	1	P	10	23	46	69	82	91	1000	1000
Green Canyon Block 184	39.4	0.94	-18	-44	4	69	24	6	1	1000	29	39	48	58	66	74	1000	1000
South Louisiana Crude	34.5	0.45	-11	-28	5	73	21	4	1	4	21	33	46	59	69	78	1000	1000
Main Pass Block 306	32.8	0.28	-35	-53	7	65	29	5	1	3	26	37	49	60	70	79	1000	1000
Main Pass Block 37	33	0.16	-6	-3	4	73	21	5	1	8	29	41	53	65	74	83	1000	1000
Ship Shoal Block 269	38.7	0.41	-7	-42	4	79	15	6	0	5	30	43	56	68	77	84	1000	1000
South Timbalier Block 130	35.1	0.32	5	-27	5	78	16	5	0	4	25	39	54	66	76	84	1000	1000
West Delta Block 97	50.2	0.07	-35	-27	1	92	7	1	0	4	55	72	86	95	99	100	1000	1000
$^{1} \circ C * (9/5) + 32 = \circ F$											100	for other			-			

Appendix B

Time-Window (in Hours) for Dispersant Application Predicted Using Oilmap Version 6.9.3 and the 24 oils from Task 1 and Different Oil Spill Volume, Water Temperature, Wind Speed, and Cutoff Viscosity for Sensitivity Analysis (Task4)

Table C1: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Willia Speed= 8 knotWater Temperature= 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____
 EUGENE ISLAND BLOCK 32
 190
 343
 432
 515
 612

 EUGENE ISLAND BLOCK 43
 190
 343
 432
 515
 612

 GARDEN BANKS BLOCK 387
 148
 268
 338
 402
 479

 GARDEN BANKS BLOCK 426
 1000
 1000
 1000
 1000
 1000

 GREEN CANYON BLOCK 65
 6
 8
 9
 9
 9

 GREEN CANYON BLOCK 109
 12
 15
 16
 17
 18

 GREEN CANYON BLOCK 184
 12
 15
 16
 17
 18

 GREEN CANYON BLOCK 200
 66
 122
 154
 183
 218

 LOUISIANA
 856
 1000
 1000
 1000
 1000

 MAIN PASS BLOCK 37
 354
 638
 804
 957
 1000

 MAIN PASS BLOCK 72
 46
 85
 107
 127
 151

 MISSISSIPPI CANYON BLOCK 72
 46
 85
 107
 127
 151

 MISSISSIPPI CANYON BLOCK 807
 46
 85
 1 EUGENE ISLAND BLOCK 32 190 343 432 515 612 WEST DELTA BLOCK 143 17 21 23 24 26 _____ 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table C2: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____
 EUGENE
 ISLAND
 BLOCK
 32
 390
 702
 884
 1000

 EUGENE
 ISLAND
 BLOCK
 43
 390
 702
 884
 1000
 1000 1000

GARDEN BANKS BLOCK 387	155	280	353	421	500
GARDEN BANKS BLOCK 426	1000	1000	1000	1000	1000
GREEN CANYON BLOCK 65	7	9	10	10	11
GREEN CANYON BLOCK 109	12	16	17	18	19
GREEN CANYON BLOCK 184	12	16	17	18	19
GREEN CANYON BLOCK 200	142	258	325	387	461
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	281	507	639	761	906
MAIN PASS BLOCK 37	917	1000	1000	1000	1000
MARS TLP	88	160	202	240	286
MISSISSIPPI CANYON BLOCK 72	73	134	169	201	239
MISSISSIPPI CANYON BLOCK 194	73	134	169	201	239
MISSISSIPPI CANYON BLOCK 807	73	134	169	201	239
Morpeth Block EW921	17	22	24	26	28
Petronius Block VK786A	44	79	100	119	141
SHIP SHOAL BLOCK 269	1000	1000	1000	1000	1000
SOUTH PASS BLOCK 60	170	309	390	464	552
SOUTH TIMBALIER BLOCK 130	1000	1000	1000	1000	1000
VIOSCA KNOLL BLOCK 826	128	233	294	350	416
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000
WEST DELTA BLOCK 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	17	21	24	26	28
9999 means that the spilled oil	has natu	urally o	dispersed	and/or	evaporated

before reaching the Cut-off viscosity during the 1000 hours of simulation.

Table C3: Time Window (in Hours	s) for D	ispersant following	Applica Paramet	tion Pre	edicted
Cutoff Viscosity= 5000 cWind Speed= 8 knotWater Temperature= 29 oC	cP ts		j raramet	215	
Oil Spill Volume (bbl) = 1000,	10000,	25000, 50	0000, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32	567	1000	1000	1000	1000
EUGENE ISLAND BLOCK 43	567	1000	1000	1000	1000
GARDEN BANKS BLOCK 387	156	282	356	423	503
GARDEN BANKS BLOCK 426	1000	1000	1000	1000	1000
GREEN CANYON BLOCK 65	8	10	11	11	12
GREEN CANYON BLOCK 109	12	16	17	18	19
GREEN CANYON BLOCK 184	12	16	17	18	19
GREEN CANYON BLOCK 200	210	380	479	570	678
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	284	513	646	769	915
MAIN PASS BLOCK 37	1000	1000	1000	1000	1000
MARS TLP	108	195	246	293	349
MISSISSIPPI CANYON BLOCK 72	92	169	213	253	301
MISSISSIPPI CANYON BLOCK 194	92	169	213	253	301
MISSISSIPPI CANYON BLOCK 807	92	169	213	253	301
Morpeth Block EW921	21	29	33	37	42
Petronius Block VK786A	261	472	594	708	842
SHIP SHOAL BLOCK 269	1000	1000	1000	1000	1000
SOUTH PASS BLOCK 60	212	385	486	578	688
SOUTH TIMBALIER BLOCK 130	1000	1000	1000	1000	1000
VIOSCA KNOLL BLOCK 826	158	288	363	432	513
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000

WEST DELTA BLOCK 97 WEST DELTA BLOCK 143	9999 17	9999 22	9999 24	9999 26	9999 28
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	rally di ring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table C4: Time Window (in Hours)) for Dis	persant	Applicat	tion Pre	edicted
Using Oilmap 6.9.3 ar	nd the fo	llowing	Paramete	ers	
CutoII Viscosity = 5000 CP	- a				
Water Temperature = 13 oC	-0				
Oil Spill Volume (bbl) = 1000, 1	L0000, 25	000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32	156	280	352	419	498
EUGENE ISLAND BLOCK 43	156	280	352	419	498
GARDEN BANKS BLOCK 387	120	217	274	326	387
GARDEN BANKS BLOCK 426	1000	1000	1000	1000	1000
GREEN CANYON BLOCK 65	3	4	4	5	5
GREEN CANYON BLOCK 109	6	8	9	9	10
GREEN CANYON BLOCK 184	6	8	9	9	10
GREEN CANYON BLOCK 200	54	99	125	148	176
LOUISIANA	707	1000	1000	1000	1000
MAIN PASS BLOCK 306	218	391	492	585	695
MAIN PASS BLOCK 37	290	520	654 110	1/8	924
MARS TLP	4/	87	110	102	155 100
MISSISSIPPI CANYON BLOCK 72	37 27	69	0/ 97	103	122
MISSISSIPPI CANION BLOCK 194 MISSISSIPPI CANYON BLOCK 907	ז כ רכ	69	07	103	122
MISSISSIPPI CANION BLOCK 807 Morpeth Block FW921	57	8	٥ <i>١</i> ۵	0 201	122
Petronius Block WK786A	6	7	8	8	8
SHIP SHOAL BLOCK 269	9999	9999	9999	9999	9999
SOUTH PASS BLOCK 60	89	162	205	243	289
SOUTH TIMBALIER BLOCK 130	9999	9999	9999	9999	9999
VIOSCA KNOLL BLOCK 826	68	124	156	186	221
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000
west delta block 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	9	12	13	15	16
9999 means that the spilled oil	has natu	rally di	.spersed	and/or	evaporated
before reaching the Cut-off visc	cosity du	ring the	e 1000 ho	ours of	simulation.
Table OF: Time Window (in Neuro	for Die	novgont	Appliant	ion Dra	diatod
India Colore Colored C	d the fo	llowing	Daramete	ra ra	aictea
Cutoff Viscosity = 5000 cm		/IIOWINg	rarameee		
Wind Speed = 12 knot	Ts				
Water Temperature = 23 oC					
Oil Spill Volume (bbl) = 1000, 1	L0000, 25	5000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32	 324	579	728	 865	1000
EUGENE ISLAND BLOCK 43	324	579	728	865	1000
GARDEN BANKS BLOCK 387	125	227	286	340	405

GARDEN BANKS BLOCK 426	9999	1000	1000	1000	1000
GREEN CANYON BLOCK 65	4	5	5	5	5
GREEN CANYON BLOCK 109	6	8	9	10	11
GREEN CANYON BLOCK 184	б	8	9	10	11
GREEN CANYON BLOCK 200	115	209	264	314	373
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	230	413	520	618	735
MAIN PASS BLOCK 37	765	1000	1000	1000	1000
MARS TLP	71	130	163	194	231
MISSISSIPPI CANYON BLOCK 72	59	109	137	163	193
MISSISSIPPI CANYON BLOCK 194	59	109	137	163	193
MISSISSIPPI CANYON BLOCK 807	59	109	137	163	193
Morpeth Block EW921	9	12	14	16	19
Petronius Block VK786A	34	64	81	96	114
SHIP SHOAL BLOCK 269	9999	9999	9999	9999	9999
SOUTH PASS BLOCK 60	139	251	317	376	447
SOUTH TIMBALIER BLOCK 130	9999	9999	9999	9999	9999
VIOSCA KNOLL BLOCK 826	104	189	238	284	337
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000
WEST DELTA BLOCK 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	9	12	14	16	18
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot	for Dig d the fo s	spersant	Applicat Paramete	cion Prec ers	licted
Table C6: Time Window (in Hours)Using Oilmap 6.9.3 andCutoff Viscosity= 5000 cPWind Speed= 12 knotWater Temperature= 29 oCOil Spill Volume (bbl)= 1000, 1	for Dig d the fo s 0000, 25	spersant ollowing 5000, 500	Applicat Paramete 00, and	ion Precers	bbl
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000	spersant ollowing 5000, 500 10000	Applicat Paramete 00, and 25000	ion Precers 100000 B 50000	bbl 100000
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Di: d the fo s 0000, 25 1000 474	5000, 500 10000 845	Applicat Paramete 00, and 25000 	100000 H	bbl 100000
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Di: d the fo s 0000, 25 1000 474 474	5000, 500 10000 845 845	Applicat Paramete 00, and 25000 1000 1000	100000 B 50000 1000 1000	bbl 100000 1000 1000
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387	for Di: d the fo s 0000, 29 1000 474 474 126	5000, 500 5000, 500 10000 845 845 229	Applicat Paramete 00, and 25000 1000 1000 288	100000 H 50000 1000 1000 1000 343	bbl 100000 1000 1000 407
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 29 1000 474 474 126 9999	5000, 500 5000, 500 10000 845 845 229 1000	Applicat Paramete 00, and 25000 1000 1000 288 1000	100000 H 50000 1000 1000 343 1000	bbl 100000 1000 1000 407 1000
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 474 474 126 9999 4	5000, 500 5000, 500 10000 845 845 229 1000 5	Applicat Paramete 00, and 25000 1000 1000 288 1000 5	100000 B 50000 1000 1000 343 1000 6	bbl 100000 1000 1000 407 1000 6
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 474 474 126 9999 4 6	5000, 500 5000, 500 10000 845 845 229 1000 5 8	Applicat Paramete 00, and 25000 1000 288 1000 5 9	100000 B 50000 1000 1000 343 1000 6 10	bbl 100000 10000 1000 407 1000 6 11
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 474 474 126 9999 4 6 6	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8	Applicat Paramete 00, and 25000 1000 1000 288 1000 5 9 9	100000 B 50000 1000 1000 343 1000 6 10 10	bbl 100000 10000 1000 407 1000 6 11 11
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 474 474 126 9999 4 6 6 171	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309	Applicat Paramete 00, and 25000 1000 288 1000 5 9 9 9 389	100000 Precess	bbl 100000 1000 1000 407 1000 6 11 11 549
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000	Applicat Paramete 00, and 25000 1000 1000 288 1000 5 9 9 389 1000	100000 Precess	bbl 100000 1000 407 1000 6 11 11 549 1000
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 437 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306	for Dis d the fo s 0000, 29 1000 474 474 126 9999 4 6 6 171 1000 232	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417	Applicat Paramete 00, and 25000 1000 1000 288 1000 5 9 9 389 1000 525	100000 Precess	bbl 100000 1000 407 1000 6 11 11 549 1000 742
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 29 1000 474 474 126 9999 4 6 6 171 1000 232 1000	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000	Applicat Paramete 00, and 25000 1000 288 1000 5 9 9 9 389 1000 525 1000	100000 Precess	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159	Applicat Paramete 00, and 25000 1000 1000 288 1000 5 9 9 9 389 1000 525 1000 200	100000 P 50000 1000 1000 1000 343 1000 6 10 462 1000 625 1000 238	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 282
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137	Applicat Paramete 00, and 25000 1000 1000 288 1000 5 9 9 9 389 1000 525 1000 200 172	100000 Precess 100000 P 50000 1000 1000 343 1000 6 10 462 1000 625 1000 238 205	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 282 243
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137	Applicat Paramete 00, and 25000 1000 1000 288 1000 59 9 389 1000 525 1000 200 172 172	100000 P 50000 1000 1000 1000 343 1000 6 10 462 1000 625 1000 625 1000 238 205 205	bbl 100000 1000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 417 1000 159 137 137	Applicat Paramete 00, and 25000 1000 1000 288 1000 59 9 389 1000 525 1000 200 172 172 172	100000 P 50000 1000 1000 1000 343 1000 6 10 10 462 1000 625 1000 625 1000 238 205 205	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243 243
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 437 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 37 MAIN PASS BLOCK 37 MAIN PASS BLOCK 37 MAIN PASS BLOCK 37 MAIN PASS BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 75	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137 137 137	Applicat Paramete 00, and 25000 1000 1000 288 1000 525 1000 525 1000 200 172 172 172 172 24	100000 P 50000 1000 1000 1000 343 1000 6 10 10 462 1000 625 1000 625 1000 238 205 205 28	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243 243 243 33
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 75 12 214	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137 137 137 137	Applicat Paramete 00, and 25000 1000 1000 288 1000 525 1000 525 1000 200 172 172 172 172 24 484	100000 Precents	bbl 100000 1000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243 243 243 33 685
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 37 MAIN PASS BLOCK 37 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 MORPETH BLOCK 269	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 75 12 214 9999	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137 137 137 137 137 137 9999	Applicat Paramete 00, and 25000 1000 288 1000 525 1000 200 172 172 172 172 24 484 9999	<pre>ion Precents 1000000 B 50000 1000 1000 343 1000 6 10 10 462 1000 625 1000 238 205 205 205 205 28 576 9999</pre>	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243 243 243 243 243 33 685 9999
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 75 75 12 214 9999 173	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137 137 137 137 137 137 137 137 137	Applicat Paramete 00, and 25000 1000 288 1000 525 1000 525 1000 200 172 172 172 172 172 24 484 9999 395	<pre>ion Precents 1000000 B 50000 1000 1000 343 1000 6 10 10 462 1000 625 1000 238 205 205 205 205 28 576 9999 469</pre>	bbl 100000 1000 407 1000 6 11 11 549 1000 742 1000 282 243 243 243 243 243 33 685 9999 558
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 75 12 214 9999 173 9999	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137 137 137 137 137 137 137 137 137	Applicat Paramete 00, and 25000 1000 288 1000 288 1000 525 1000 200 172 172 172 172 24 484 9999 395 9999	<pre>ion Precents 1000000 P 50000 1000 1000 343 1000 6 10 10 462 1000 625 1000 238 205 205 205 205 28 576 9999 469 9999 469 9999</pre>	bbl 100000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243 243 243 243 243 243 33 685 9999 558 9999
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 12 214 9999 173 9999 129	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 159 137 137 137 137 137 137 137 137 137 137	Applicat Paramete 00, and 25000 1000 288 1000 288 1000 525 1000 525 1000 200 172 172 172 172 24 484 9999 395 9999 294	<pre>ion Precents 1000000 P 50000 1000 1000 343 1000 6 10 10 462 1000 625 1000 238 205 205 205 205 28 576 9999 469 9999 350</pre>	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 282 243 243 243 243 243 243 243 243 243 24
Table C6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 474 474 126 9999 4 6 6 171 1000 232 1000 87 75 75 75 12 214 9999 173 9999 129 1000	5000, 500 5000, 500 10000 845 845 229 1000 5 8 8 309 1000 417 1000 417 1000 159 137 137 137 137 137 137 137 137 137 137	Applicat Paramete 00, and 25000 1000 1000 288 1000 525 1000 525 1000 200 172 172 172 172 172 24 484 9999 395 9999 294 1000	<pre>ion Precents 1000000 P 50000 1000 1000 343 1000 6 10 10 462 1000 625 1000 238 205 205 205 205 28 576 9999 469 9999 350 1000</pre>	bbl 100000 1000 1000 407 1000 6 11 11 549 1000 742 1000 742 1000 742 1000 282 243 243 243 243 33 685 9999 558 9999 558 9999 416 1000

WEST DELTA BLOCK 143 9 12 14 16 19

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____

Table C7: Time Window (in Hours)	for Dis	spersant	Applicat	cion Pred	licted
Cutoff Viggogity - 5000 gp	a the id	bilowing	Paramete	ers	
Wind Speed = 15 knot	c				
Water Temperature $= 13 \text{ cm}$	5				
Oil Spill Volume (bbl) = 1000 1	0000 25	5000 500	00 and	100000 1	hl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32	141	252	317	376	447
EUGENE ISLAND BLOCK 43	141	252	317	376	447
GARDEN BANKS BLOCK 387	108	195	245	292	346
GARDEN BANKS BLOCK 426	9999	9999	9999	9999	9999
GREEN CANYON BLOCK 65	2	3	3	3	3
GREEN CANYON BLOCK 109	4	6	6	7	7
GREEN CANYON BLOCK 184	4	6	6	7	7
GREEN CANYON BLOCK 200	48	88	111	132	157
LOUISIANA	650	1000	1000	1000	1000
MAIN PASS BLOCK 306	197	351	441	525	623
MAIN PASS BLOCK 37	263	468	588	698	830
MARS TLP	42	78	98	116	138
MISSISSIPPI CANYON BLOCK 72	33	61	77	92	109
MISSISSIPPI CANYON BLOCK 194	33	61	77	92	109
MISSISSIPPI CANYON BLOCK 807	33	61	77	92	109
Morpeth Block EW921	4	5	6	6	б
Petronius Block VK786A	4	5	5	5	б
SHIP SHOAL BLOCK 269	9999	9999	9999	9999	9999
SOUTH PASS BLOCK 60	80	145	183	217	258
SOUTH TIMBALIER BLOCK 130	9999	9999	9999	9999	9999
VIOSCA KNOLL BLOCK 826	61	111	140	166	197
VIOSCA KNOLL BLOCK 990	9999	1000	1000	1000	1000
WEST DELTA BLOCK 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	6	9	10	12	14
9999 means that the spilled oil	has nati	irally di	spersed	and/or e	evaporated
before reaching the Cut-off visc	osity di	iring the	e 1000 ho	ours of s	simulation.
mable CO: mime Window (in House)	fan Di		7	ian Duar	المعدما
Table C8. Time Window (In Hours)	TOL DIS	spersant	Applicat	lon prec	licted
Cutoff Wiggogity - 5000 gp	a the ro	DITOWING	Parallete	ers	
Wind Speed = 15 knot	a				
Will Speed $= 15$ knot	5				
water remperature = 23 OC Oil Grill Volume (bbl) = 1000 1	0000 20		00 and	100000 1	-h1
OII SpIII VOIUNE (DDI) = 1000, I	0000, 23	5000, 500	iou, and	100000 1	
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32	298	528	664	788	937
EUGENE ISLAND BLOCK 43	298	528	664	788	937
GARDEN BANKS BLOCK 387	113	204	256	305	362
GARDEN BANKS BLOCK 426	9999	9999	9999	9999	9999

GREEN CANYON BLOCK 65	3	3	3	4	4
GREEN CANYON BLOCK 109	4	6	7	7	8
GREEN CANYON BLOCK 184	4	6	7	7	8
GREEN CANYON BLOCK 200	104	187	236	280	333
LOUISIANA	981	1000	1000	1000	1000
MAIN PASS BLOCK 306	208	371	467	554	659
MAIN PASS BLOCK 37	711	1000	1000	1000	1000
MARS TLP	64	116	146	174	206
MISSISSIPPI CANYON BLOCK 72	53	97	122	145	172
MISSISSIPPI CANYON BLOCK 194	53	97	122	145	172
MISSISSIPPI CANYON BLOCK 807	53	97	122	145	172
Morpeth Block EW921	б	10	12	14	16
Petronius Block VK786A	30	57	72	86	101
SHIP SHOAL BLOCK 269	9999	9999	9999	9999	9999
SOUTH PASS BLOCK 60	125	225	283	337	400
SOUTH TIMBALIER BLOCK 130	9999	9999	9999	9999	9999
VIOSCA KNOLL BLOCK 826	94	170	213	254	301
VIOSCA KNOLL BLOCK 990	9999	9999	9999	9999	9999
west delta block 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	б	9	12	13	16
			Dural i nat	i en Dere	dicted
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot	for Dis d the fo s	spersant	Paramete	ers	areeca
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 	5000, 500 10000, 500 10000	Paramete 100, and 25000	100000 1	bbl 100000
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000	5000, 500 1000, 500 10000	25000	1000000 1 50000	bbl 100000
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442	5000, 500 1000, 500 10000 781	25000 982	1000000 1 50000 1000	bbl 100000 10000
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442	5000, 500 10000 10000 781 781	25000 982 982	1000000 1 50000 1000 1000	bbl 100000
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387	for Dis d the fo s 0000, 25 1000 442 442 113	5000, 500 10000 781 781 205	25000 982 982 258	100000 1 50000 1000 1000 307	bbl 100000 1000 1000 365
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999	5000, 500 5000, 500 	Applicat Paramete 25000 982 982 258 9999	1000000 1 50000 1000 307 9999	bbl 100000 1000 1000 365 9999
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s .0000, 29 	5000, 500 5000, 500 10000 781 781 205 9999 3	Applicat Paramete 25000 982 982 258 9999 4	1000000 1 50000 1000 1000 307 9999 4	bbl 100000 1000 365 9999 4
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 29 1000 442 442 113 9999 3 4	5000, 500 5000, 500 10000 781 781 205 9999 3 6	Applicat Paramete 25000 982 982 258 9999 4 7	1000000 1 50000 1000 1000 307 9999 4 7	bbl 100000 1000 1000 365 9999 4 8
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6	Applicat Paramete 25000 982 982 258 9999 4 7 7	1000000 1 50000 1000 1000 307 9999 4 7 7	bbl 100000 1000 1000 365 9999 4 8 8
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154	5000, 500 5000, 500 	Applicat Paramete 25000 982 982 258 9999 4 7 7 348	1000000 1 50000 1000 1000 307 9999 4 7 7 413	bbl 100000 1000 365 9999 4 8 8 8 491
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 6 277 1000 275	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471	1000000 1 50000 1000 1000 307 9999 4 7 7 413 1000	bbl 100000 1000 1000 365 9999 4 8 8 8 491 1000 665
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210	5000, 500 5000, 500 	Applicat Paramete 25000 	1000000 1 50000 1000 1000 307 9999 4 7 7 413 1000 560	bbl 100000 1000 365 9999 4 8 8 491 1000 665
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 70	5000, 500 5000, 500 10000 781 205 9999 3 6 6 277 1000 375 1000	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000	1000000 1 50000 1000 1000 307 9999 4 7 7 413 1000 560 1000	bbl 100000 1000 365 9999 4 8 8 491 1000 665 1000 252
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 29 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 277 1000 375 1000 142 122	Applicat Paramete 25000 982 982 258 9999 4 7 348 1000 471 1000 179	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 182	bbl 100000 1000 365 9999 4 8 8 491 1000 665 1000 252 217
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 29 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 277 1000 375 1000 142 122	Applicat Paramete 25000 982 982 258 9999 4 7 348 1000 471 1000 179 154	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183	bbl 100000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67 67	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 277 1000 375 1000 142 122 122	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000 179 154 154	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67 67	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 277 1000 375 1000 142 122 122 122 122	Applicat Paramete 25000 982 982 258 9999 4 7 348 1000 471 1000 179 154 154 154 21	1000000 1 50000 1000 1000 307 9999 4 7 7 413 1000 560 1000 212 183 183 183 25	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217 217 20
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67 67 67 67	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 6 277 1000 375 1000 375 1000 142 122 122 122 122 122 17 345	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000 179 154 154 154 154 21 434	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183 183 25 517	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217 217 29 615
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67 67 67 67 9 192 9999	5000, 500 5000, 500 	Applicat Paramete 25000 	1000000 1 50000 1000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183 183 183 25 517 9999	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217 217 217 29 615 9999
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo .s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67 67 67 67 67 9 192 9999 156	5000, 500 5000, 500 	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000 179 154 154 154 154 154 21 434 9999 353	1000000 1 50000 1000 1000 307 9999 4 7 7 413 1000 560 1000 212 183 183 183 183 183 25 517 9999 420	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217 217 217 217 29 615 9999 499
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 79 67 67 67 67 67 67 67 9 192 9999 156 9999	5000, 500 5000, 500 	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000 179 154 154 154 154 21 434 9999 353 9999	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183 183 183 25 517 9999 420 9999	bbl 100000 1000 1000 365 9999 4 8 491 1000 665 1000 252 217 217 217 217 217 217 217 29 615 9999 499 9999
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 210 1000 79 67 67 67 67 67 67 67 67 9 192 9999 156 9999 116	5000, 500 5000, 500 10000 781 205 9999 3 6 6 277 1000 375 1000 142 122 122 122 122 122 122 122 122 17 345 9999 281 9999 281	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000 179 154 154 154 154 21 434 9999 353 9999 263	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183 183 183 25 517 9999 420 9999 313	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217 217 217 217 217 21
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 210 1000 79 67 67 67 67 67 67 67 67 67 67 67 9 9999 156 9999 116 9999	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 6 277 1000 375 1000 142 122 122 122 122 122 122 122 122 122	Applicat Paramete 25000 982 982 258 9999 4 7 348 1000 471 1000 179 154 154 154 154 154 21 434 9999 353 9999 263 9999	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183 183 183 25 517 9999 420 9999 313 9999	bbl 100000 1000 1000 365 9999 4 8 491 1000 665 1000 252 217 217 217 217 217 217 217 21
Table C9: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 442 442 113 9999 3 4 4 154 1000 210 1000 210 1000 79 67 67 67 67 67 67 67 67 9 192 9999 156 9999 156 9999 116 9999	5000, 500 5000, 500 10000 781 781 205 9999 3 6 6 277 1000 375 1000 142 122 122 122 122 122 122 122 122 122	Applicat Paramete 25000 982 982 258 9999 4 7 7 348 1000 471 1000 179 154 154 154 154 154 154 21 434 9999 353 9999 263 9999 9999	1000000 1 50000 1000 1000 307 9999 4 7 413 1000 560 1000 212 183 183 183 183 183 25 517 9999 420 9999 420 9999 313 9999 313	bbl 100000 1000 1000 365 9999 4 8 8 491 1000 665 1000 252 217 217 217 217 217 217 217 21

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table C10: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 8 knots Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____ EUGENE ISLAND BLOCK 3238869887910001000EUGENE ISLAND BLOCK 4338869887910001000GARDEN BANKS BLOCK 387277498627747888GARDEN BANKS BLOCK 42610001000100010001000GREEN CANYON BLOCK 65810101111CDEEN CANYON BLOCK 1001410202122

 GREEN CANYON BLOCK 05
 8
 10
 10
 11

 GREEN CANYON BLOCK 109
 14
 18
 20
 21

 GREEN CANYON BLOCK 184
 14
 18
 20
 21

 GREEN CANYON BLOCK 200
 207
 375
 473
 563

 LOUISIANA
 1000
 1000
 1000
 1000

 MAIN PASS BLOCK 306
 724
 1000
 1000
 1000

 MAIN PASS BLOCK 37
 1000
 1000
 1000
 1000

 23 23 670 1000 1000 1000 MARS TLP 118 214 269 321 381 MISSISSIPPI CANYON BLOCK 72 111 203 256 305 363 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 111 203 256 305 363

 SSISSIPPI CANYON BLOCK 194
 111
 203
 256
 305
 363

 SSISSIPPI CANYON BLOCK 807
 111
 203
 256
 305
 363

 Morpeth Block EW921
 15
 19
 20
 21
 23

 Petronius Block VK786A
 14
 17
 18
 19
 20

 SHIP SHOAL BLOCK 269
 1000
 1000
 1000
 1000
 1000

 SOUTH PASS BLOCK 60
 293
 530
 668
 795
 946

 SOUTH TIMBALIER BLOCK 130
 1000
 1000
 1000
 1000
 1000

 VIOSCA KNOLL BLOCK 826
 178
 321
 405
 482
 574

 VIOSCA KNOLL BLOCK 990
 1000
 1000
 1000
 1000
 1000

 WEST DELTA BLOCK 143
 21
 28
 32
 36
 41

 _____ 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table C11: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP = 8 knots Wind Speed Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____ EUGENE ISLAND BLOCK 32 786 1000 1000 1000 1000

 EUGENE ISLAND BLOCK 43
 786
 1000
 1000
 1000
 1000

 GARDEN BANKS BLOCK 387
 284
 510
 643
 765
 910

 GARDEN BANKS BLOCK 426
 1000
 1000
 1000
 1000
 1000

 GREEN CANYON BLOCK 65
 9
 11
 12
 12
 13

GREEN CANYON BLOCK 109	15	19	21	22	24
GREEN CANYON BLOCK 184	15	19	21	22	24
GREEN CANYON BLOCK 200	424	763	961	1000	1000
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	744	1000	1000	1000	1000
MAIN PASS BLOCK 37	1000	1000	1000	1000	1000
MARS TLP	171	310	390	465	553
MISSISSIPPI CANYON BLOCK 72	172	312	393	468	557
MISSISSIPPI CANYON BLOCK 194	172	312	393	468	557
MISSISSIPPI CANYON BLOCK 807	172	312	393	468	557
Morpeth Block EW921	21	29	33	38	43
Petronius Block VK786A	80	146	185	220	262
SHIP SHOAL BLOCK 269	1000	1000	1000	1000	1000
SOUTH PASS BLOCK 60	443	797	1000	1000	1000
SOUTH TIMBALIER BLOCK 130	1000	1000	1000	1000	1000
VIOSCA KNOLL BLOCK 826	266	479	604	718	855
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000
WEST DELTA BLOCK 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	21	29	33	38	44
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	urally di uring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Using Oilmap 6.9.3 an Cutoff Viscosity Wind Speed = 8 knots	d the fo	ollowing	Paramete	ers	
Oil Spill Volume (bbl) = 1000, 1	.0000, 29	5000, 500	00, and	100000	bbl
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl)	1000, 25	5000, 500 10000	000, and 25000	100000	bbl 100000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32	1000 29	5000, 500 10000 10000	000, and 25000 1000	100000 50000 1000	bbl 100000 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43	1000, 25 1000 1000 1000 1000	5000, 500 10000 10000 1000 1000	000, and 25000 1000 1000	100000 50000 1000 1000	bbl 100000 1000 1000 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387	1000, 25 1000 1000 1000 282	5000, 500 10000 10000 1000 1000 508	000, and 25000 1000 1000 640	100000 50000 1000 1000 762	bbl 100000 1000 1000 906
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426	1000, 29 1000 1000 282 1000	5000, 500 10000 1000 1000 508 1000	000, and 25000 1000 1000 640 1000	100000 50000 1000 1000 762 1000	bbl 100000 1000 1000 906 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65	1000, 29 1000 1000 282 1000 9	5000, 500 10000 1000 508 1000 12	000, and 25000 1000 640 1000 12	100000 50000 1000 1000 762 1000 13	bbl 100000 1000 1000 906 1000 14
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109	1000, 29 1000 1000 1000 282 1000 9 15	5000, 500 10000 1000 1000 508 1000 12 19	000, and 25000 1000 1000 640 1000 12 21	100000 50000 1000 762 1000 13 23	bbl 100000 1000 906 1000 14 25
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184	1000, 29 1000 1000 1000 282 1000 9 15 15	5000, 500 10000 1000 1000 508 1000 12 19 19	000, and 25000 1000 1000 640 1000 12 21 21 21	100000 50000 1000 1000 762 1000 13 23 23	bbl 100000 1000 906 1000 14 25 25
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200	1000, 29 1000 1000 282 1000 9 15 15 15 613	5000, 500 10000 1000 1000 508 1000 12 19 19 19	000, and 25000 1000 640 1000 12 21 21 21 1000	100000 50000 1000 1000 762 1000 13 23 23 23 1000	bbl 100000 1000 1000 906 1000 14 25 25 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA	1000, 29 1000 1000 282 1000 9 15 15 613 1000	5000, 500 10000 1000 1000 508 1000 12 19 19 19 1000 1000 1000	000, and 25000 1000 640 1000 12 21 21 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000	bbl 100000 1000 1000 906 1000 14 25 25 1000 1000 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306	10000, 29 1000 1000 282 1000 9 15 15 613 1000 740	5000, 500 10000 1000 508 1000 12 19 19 19 1000 1000 1000 1000	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000	bbl 100000 1000 1000 906 1000 14 25 25 1000 1000 1000 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37	1000, 29 1000 1000 282 1000 9 15 15 613 1000 740 1000	5000, 500 10000 1000 508 1000 12 19 19 19 1000 1000 1000 1000 1000	000, and 25000 1000 640 1000 12 21 21 1000 1000 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000	bbl 100000 1000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP	00000, 29 1000 1000 282 1000 282 1000 9 15 15 613 1000 740 1000 207	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 373	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 471	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560	bbl 100000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 666
Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72	1000, 29 1000 1000 282 1000 9 15 15 613 1000 740 1000 207 213	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 373 386	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 471 486	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579	bbl 100000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 666 689
<pre>Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 194</pre>	10000, 29 1000 1000 282 1000 9 15 15 613 1000 740 1000 207 213 213	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 373 386 386	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 471 486 486	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579	bbl 100000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 666 689 689
<pre>Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807</pre>	10000, 29 1000 1000 282 1000 9 15 15 613 1000 740 1000 207 213 213 213	5000, 500 10000 1000 508 1000 12 19 19 19 1000 1000 1000 1000 1000 373 386 386 386	000, and 25000 1000 640 1000 12 21 21 21 21 1000 1000 1000 10	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579	bbl 100000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 666 689 689 689
<pre>Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 MOrpeth Block EW921</pre>	10000, 29 1000 1000 282 1000 9 15 15 613 1000 740 1000 207 213 213 213 213 28	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 1000 373 386 386 386 386 42	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579 579	bbl 100000 1000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 1000 666 689 689 689 689 73
<pre>value lemperature = 29 oc oil spill Volume (bbl) = 1000, 1</pre>	0000, 29 1000 1000 282 1000 282 1000 9 15 15 613 1000 740 1000 207 213 213 213 213 28 478	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 1000 373 386 386 386 386 42 858	000, and 25000 1000 640 1000 12 21 21 1000 1000 1000 1000 471 486 486 486 486 52 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 1000	bbl 100000 1000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 1000 666 689 689 689 689 73 1000
<pre>value lemperature = 29 oc oil spill Volume (bbl) = 1000, 1</pre>	0000, 29 1000 1000 282 1000 282 1000 282 1000 283 15 613 1000 740 1000 207 213 213 213 213 28 478 1000	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 1000 1000 373 386 386 386 386 42 858 1000	000, and 25000 1000 640 1000 12 21 21 1000 1000 1000 1000 471 486 486 486 486 52 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579 579 579 579 62 1000 1000	bbl 100000 1000 906 1000 14 25 25 1000 1000 1000 1000 1000 666 689 689 689 73 1000 1000 1000
<pre>value lemperature = 29 GC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 100 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60</pre>	00000, 29 1000 1000 282 1000 207 213 213 213 288 478 1000 544	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 12 19 19 19 19 19 19 1000 100	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579 579 579 62 1000 1000 1000	bbl 100000 1000 906 1000 14 25 25 1000 1000 1000 1000 666 689 689 689 689 73 1000 1000 1000 1000 1000
<pre>Water Temperature = 29 Oc Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 MAIN PASS BLOCK 306 MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130</pre>	00000, 29 1000 1000 282 1000 207 213 213 213 288 478 1000 544 1000 544 1000	5000, 500 10000 1000 508 1000 1000 12 19 19 19 1000 1000 1000 1000 1000 1000 1000 1000 373 386 386 386 386 386 386 386 38	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579 579 579 62 1000 1000 1000 1000	bbl 100000 1000 906 1000 1000 14 25 25 1000 1000 1000 1000 666 689 689 689 689 689 73 1000 1000 1000 1000 1000 1000
<pre>value lemperature = 29 GC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 MAIN PASS BLOCK 306 MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130 VIOSCA KNOLL BLOCK 826</pre>	00000, 29 1000 1000 282 1000 207 213 213 213 288 478 1000 544 1000 324	5000, 500 10000 1000 508 1000 12 19 19 19 1000 100	000, and 25000 1000 640 1000 12 21 21 1000 1000 1000 1000 100	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579 579 579 62 1000 1000 1000 1000 1000	bbl 100000 1000 906 1000 1000 14 25 25 1000 1000 1000 1000 1000 666 689 689 689 689 73 1000 1000 1000 1000 1000 1000
<pre>Water Temperature = 29 Gt Oil Spill Volume (bbl) = 1000, 1 </pre>	00000, 29 1000 1000 282 1000 207 213 213 213 288 478 1000 544 1000 324 1000	5000, 500 10000 1000 508 1000 12 19 19 1000 1000 1000 1000 1000 1000 373 386 386 386 386 42 858 1000 979 1000 583 1000	000, and 25000 1000 640 1000 12 21 21 21 1000 1000 1000 1000	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 560 579 579 579 579 579 579 579 579 579 579	bbl 100000 1000 906 1000 1000 14 25 25 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
<pre>value lemperature = 29 oc oil spill Volume (bbl) = 1000, 1</pre>	0000, 29 1000 1000 282 1000 282 1000 9 15 15 613 1000 740 1000 207 213 213 213 213 213 213 213 213	5000, 500 10000 1000 1000 508 1000 12 19 19 1000 1000 1000 1000 1000 1000 373 386 386 386 386 42 858 1000 979 1000 583 1000 9999 20	000, and 25000 1000 640 1000 12 21 21 1000 1000 1000 1000 471 486 486 486 486 52 1000 1000 1000 1000 1000 1000 1000 1	100000 50000 1000 762 1000 13 23 23 1000 1000 1000 1000 579 579 579 579 579 62 1000 1000 1000 1000 1000 1000 1000	bbl 100000 1000 906 1000 14 25 25 1000

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table C13: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000
 Oil Name \ OilVolume (bbl)
 1000
 10000
 25000
 50000
 100000

 EUGENE ISLAND BLOCK 32
 319
 570
 717
 852
 1000

 GARDEN BANKS BLOCK 43
 319
 570
 717
 852
 1000

 GARDEN BANKS BLOCK 426
 1000
 1000
 1000
 1000
 1000
 1000

 GREEN CANYON BLOCK 65
 4
 5
 5
 6
 6
 719

 GREEN CANYON BLOCK 65
 4
 5
 5
 6
 6
 6
 7
 10
 11
 12
 14

 GREEN CANYON BLOCK 109
 7
 10
 11
 12
 14
 14
 6
 6
 542
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 10 _____ _____ 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table C14: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP = 12 knots Wind Speed Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____
 EUGENE
 ISLAND
 BLOCK
 32
 656
 1000
 1000
 1000

 EUGENE
 ISLAND
 BLOCK
 43
 656
 1000
 1000
 1000
 1000

 EUGENE ISLAND BLOCK 43
 656
 1000
 1000
 1000
 1000

 GARDEN BANKS BLOCK 387
 230
 414
 521
 620
 737

 GARDEN BANKS BLOCK 426
 9999
 1000
 1000
 1000
 1000

 GREEN CANYON BLOCK 65
 5
 6
 6
 6
 7

 GREEN CANYON BLOCK 109
 8
 11
 12
 13
 15

GREEN CANYON BLOCK 184	8	11	12	13	15
GREEN CANYON BLOCK 200	346	620	780	928	1000
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	610	1000	1000	1000	1000
MAIN PASS BLOCK 37	1000	1000	1000	1000	1000
MARS TLP	139	251	316	376	447
MISSISSIPPI CANYON BLOCK 72	140	253	318	379	450
MISSISSIPPI CANYON BLOCK 194	140	253	318	379	450
MISSISSIPPI CANYON BLOCK 807	140	253	318	379	450
Morpeth Block EW921	12	19	24	28	33
Petronius Block VK786A	65	119	150	178	212
SHIP SHOAL BLOCK 269	9999	9999	9999	9999	9999
SOUTH PASS BLOCK 60	362	648	816	971	1000
SOUTH TIMBALIER BLOCK 130	9999	9999	9999	9999	9999
VIOSCA KNOLL BLOCK 826	216	389	490	582	693
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000
west delta block 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	12	20	25	29	34
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	urally di aring the	spersed 1000 hc	and/or e ours of s	evaporated simulation.
Ilging Oilman 6 9 3 and		JTTOWTII	raramete	.1.5	
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1	s 0000, 25	5000, 500	00, and	100000 }	obl
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl)	s 0000, 25 1000	5000, 500 10000	00, and 25000	100000 }	obl 100000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knot; Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32	s 0000, 25 1000 956	5000, 500 10000 	00, and 25000 1000	100000 B 	obl 100000 10000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956	5000, 500 10000 1000 1000 1000	00, and 25000 1000 1000	100000 B 50000 1000	bbl 100000 1000 1000 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229	5000, 500 10000 1000 1000 412	00, and 25000 1000 1000 519	100000 B 50000 1000 1000 617	2001 100000 1000 1000 734
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999	5000, 500 10000 1000 412 1000	00, and 25000 1000 1000 519 1000	100000 } 50000 1000 1000 617 1000	2001 100000 1000 1000 734 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5	5000, 500 10000 1000 1000 412 1000 6	00, and 25000 1000 1000 519 1000 6	100000 } 50000 1000 1000 617 1000 7	100000 10000 1000 734 1000 7
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109	s 0000, 25 1000 956 956 229 9999 5 8	5000, 500 10000 1000 1000 412 1000 6 11	00, and 25000 1000 1000 519 1000 6 12	100000 B 50000 1000 617 1000 7 14	2001 100000 1000 1000 734 1000 7 15
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8	5000, 500 10000 1000 412 1000 6 11 11	000, and 25000 1000 1000 519 1000 6 12 12	100000 B 50000 1000 617 1000 7 14 14	bbl 100000 1000 734 1000 7 15 15
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 184	s 0000, 25 1000 956 956 229 9999 5 8 8 8 502	5000, 500 10000 1000 412 1000 6 11 11 895	000, and 25000 1000 519 1000 6 12 12 12 1000	100000 B 50000 1000 617 1000 7 14 14 14 1000	2001 100000 1000 1000 734 1000 7 15 15 15 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	s 00000, 25 1000 956 956 229 9999 5 8 8 8 502 1000	5000, 500 10000 1000 412 1000 6 11 11 895 1000	00, and 25000 1000 519 1000 6 12 12 12 1000 1000	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000	bbl 100000 1000 734 1000 7 15 15 15 1000 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607	5000, 500 10000 1000 1000 412 1000 6 11 11 895 1000 1000 1000	00, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000 1000	bbl 100000 1000 734 1000 7 15 15 15 1000 1000 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000	00, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000 1000 1000	bbl 100000 1000 734 1000 7 15 15 15 1000 1000 1000 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 8 502 1000 607 1000 168	5000, 500 10000 1000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303	00, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 381	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000 1000 1000 454	obl 100000 1000 734 1000 7 15 15 15 1000 1000 1000 1000 539
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174	5000, 500 10000 1000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303 313	000, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 381 394	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000 1000 1000 1	obl 100000 1000 734 1000 7 15 15 15 1000 1000 1000 1000 539 557
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303 313 313	000, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 381 394 394	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000 1000 1000 1	bbl 100000 1000 734 1000 7 15 15 15 1000 1000 1000 1000 539 557 557
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303 313 313	000, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 381 394 394 394	100000 B 50000 1000 617 1000 7 14 14 14 1000 1000 1000 1000 1	bbl 100000 1000 734 1000 7 15 15 15 1000 1000 1000 539 557 557 557
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 43 GARDEN BANKS BLOCK 436 GREEN CANYON BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 37 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174	5000, 500 10000 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303 313 313	000, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 381 394 394 394 42	$ \begin{array}{c} 100000 \\ 50000 \\ \hline 50000 \\ 1000 \\ 617 \\ 1000 \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 50 \\ \end{array} $	bbl 100000 1000 734 1000 7 15 15 15 1000 1000 1000 1000 539 557 557 557 557
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 18 392	5000, 500 10000 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303 313 313 313 313	000, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 381 394 394 394 394 394 2882	$ \begin{array}{c} 100000 \\ 50000 \\ \hline 50000 \\ \hline 1000 \\ 617 \\ 1000 \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 1000 \\ \end{array} $	bbl 100000 1000 734 1000 734 15 15 15 1000 1000 1000 1000 539 557 557 557 557 557 59 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174 9999	5000, 500 10000 1000 412 1000 6 11 11 895 1000 1000 1000 1000 303 313 313 313 313	000, and 25000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 100	$ \begin{array}{c} 100000 \\ 50000 \\ 000 \\ 1000 \\ 617 \\ 1000 \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 9999 \\ \end{array} $	bbl 100000 1000 1000 734 1000 734 1000 15 15 1000 1000 1000 1000 539 557 557 557 557 59 1000 9999
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	s 00000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174	5000, 500 10000 1000 1000 412 1000 6 11 11 895 1000 1000 1000 1000 1000 303 313 31	000, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 1000 381 394 394 394 394 394 394 394 394	$ \begin{array}{c} 100000 \\ 50000 \\ 000 \\ 1000 \\ 000 \\ 000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 9999 \\ 1000 \\ \end{array} $	bbl 100000 1000 734 1000 734 1000 75 15 1000 1000 1000 1000 539 557 557 557 557 59 1000 9999 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174 9999 446 9999	5000, 500 10000 1000 412 1000 6 11 11 895 1000 1000 1000 1000 1000 303 313 31	00, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 1000 381 394 394 394 394 394 394 394 394	$ \begin{array}{c} 100000 \\ 50000 \\ 1000 \\ 1000 \\ 617 \\ 1000 \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 9999 \\ 1000 \\ 999 \\ 1000 \\ 999 \\ 1000 \\ 999 \\ 1000 \\ 900 \\ 100$	obl 100000 1000 734 1000 734 1000 75 15 15 1000 1000 1000 1000 539 557 557 557 557 557 557 59 1000 9999 1000 9999
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174 174	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 1000 303 313 31	00, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 1000 1000 381 394 394 394 394 42 882 9999 1000 9999 596	100000 B 50000 1000 617 1000 7 14 14 14 14 1000 1000 1000 100	obl 100000 1000 734 1000 734 1000 7 15 15 1000 1000 1000 1000 539 557 557 557 557 59 1000 9999 1000 9999 844
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174 174	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 1000 1000 303 313 31	00, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 1000 1000 381 394 394 394 42 882 9999 1000 9999 596 1000	$ \begin{array}{c} 100000 \\ 50000 \\ 1000 \\ 1000 \\ 617 \\ 1000 \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 9999 \\ 1000 \\ 9999 \\ 710 \\ 1000 \\ 1000 \\ 9999 \\ 710 \\ 1000 \\ 1000 \\ 9999 \\ 710 \\ 1000 \\ 9999 \\ 710 \\ 1000 \\ 9$	bbl 100000 1000 734 1000 734 1000 7 15 15 1000 1000 1000 1000 539 557 557 557 557 59 1000 9999 1000 9999 844 1000
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174 174	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 1000 1000 1000 303 313 31	00, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 1000 1000 381 394 394 394 394 42 882 9999 1000 9999 596 1000 9999	$ \begin{array}{c} 100000 \\ 50000 \\ 1000 \\ 617 \\ 1000 \\ 617 \\ 1000 \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 9999 \\ 1000 \\ 9999 \\ 710 \\ 1000 \\ 999 \\ 900 \\$	bbl 100000 1000 734 1000 734 1000 7 15 15 1000 1000 1000 1000 539 557 557 557 557 557 557 557 55
Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	s 0000, 25 1000 956 956 229 9999 5 8 8 502 1000 607 1000 168 174 174 174 174 174 174 174 174 174 174	5000, 500 10000 1000 412 1000 412 1000 6 11 11 895 1000 1000 1000 1000 1000 1000 303 313 31	000, and 25000 1000 1000 519 1000 6 12 12 12 1000 1000 1000 1000 1000 381 394 394 394 394 394 394 394 394	$\begin{array}{c} 100000 & 1 \\ 50000 \\ \hline \\ 50000 \\ \hline \\ 1000 \\ 1000 \\ \hline \\ 7 \\ 14 \\ 14 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 454 \\ 469 \\ 469 \\ 469 \\ 469 \\ 469 \\ 50 \\ 1000 \\ 9999 \\ 1000 \\ 9999 \\ 710 \\ 1000 \\ 9999 \\ 30 \end{array}$	bbl 100000 1000 1000 734 1000 7 15 15 1000 1000 1000 1000 539 557 557 557 557 557 557 557 55

9999 means that the spilled oil has naturally dispersed and/or evaporated

Uning O	ndow (in Hours) for Di	spersant	Applica	ation Pr	redicted
Cutoff Wiggosity	-7500 and	a the it	DITOMIUD	Paramete	ers	
Wind Speed	= 15 knot	a				
Water Temperature	= 13 Alloc	0				
Oil Spill Volume (!	bbl) = 1000, 1	0000, 25	5000, 500	00, and	100000	bbl
Oil Name \ Oil	Volume (bbl)	1000	10000	25000	 50000	10000
EUCENE TO		201	 E14	 сле		
EUGENE ISLA FUCENE ISLA	AND BLOCK 32	291 201	514 514	646 646	767	91 01
CARDEN RAN	KG BLOCK 387	291	362	455	542	91 64
CARDEN BAN	KS BLOCK 307	202 0000	9999	9999	0000	010
CDEEN CAN	VON DIOCK 420	2	2	9999 1	9999 1	222
CDEEN CAN	ION BLOCK 05	5	3 7	4	10	1
CREEN CANT	ON BLOCK 109	5	7	9	10	1
CDEEN CANY	ON BLOCK 104	150	י רדר	240	107	10
GREEN CANT	I OUITETANA	1000	1000	1000	1000	100
MATN DA	DOOLDIANA	E20	1000 954	1000	1000	100
MAIN PA. MAIN D	AGG BLOCK 300	765	1000	1000	1000	100
MAIN FA	MARC TI.D	86	155	195	231	27
MISSISSIPPI CAN	YON BLOCK 72	81	147	185	220	26
MISSISSIIII CANY	ON BLOCK 194	81	147	185	220	26
MISSISSIPPI CANY	ON BLOCK 807	81	147	185	220	26
Morpeth	Block EW921	5	7	8	220	1
Petronius	Block VK786A	5	, 6	6	2 7	-
SHIP SHO	AL BLOCK 269	9999	9999	9999	9999	999
SOUTH P	ASS BLOCK 60	216	385	484	576	68
SOUTH TIMBALT	ER BLOCK 130	9999	9999	9999	9999	999
VIOSCA KNO	LIL BLOCK 826	130	233	2.93	348	41
VIOSCA KNO	LL BLOCK 990	9999	1000	1000	1000	100
WEST DE	LTA BLOCK 97	9999	9999	9999	9999	999
WEST DEL'	TA BLOCK 143	9	16	20	24	2
0000 means that the	.	uas nali	iraiiy ui	spersed	and/or	gimulat
9999 means that the before reaching the	e spilled oll l e Cut-off visc	osity du	iring the	e 1000 ha	ours of	
9999 means that the before reaching the	e spilled oil i e Cut-off visc	osity du	uring the	e 1000 ha	ours of	
9999 means that the before reaching the	e Spilled oll i e Cut-off visco	osity du	aring the	e 1000 ho	ours of	
9999 means that the before reaching the Table C17: Time Win Using O	e Spilled oll i e Cut-off visco ndow (in Hours ilmap 6.9.3 and) for Did the fo	spersant	2 1000 ho 2 Applica Paramete	ation Pr	redicted
9999 means that the before reaching the 	e Cut-off visc ndow (in Hours ilmap 6.9.3 and = 7500 cP) for Did the fo	spersant	2 1000 ho 2 Applica Paramete	ation Pr	redicted
9999 means that th before reaching th Table C17: Time Win Using O Cutoff Viscosity Wind Speed	ndow (in Hours ilmap 6.9.3 and = 7500 cP = 15 knot) for Di d the fo	spersant	2 1000 ho 2 Applica Paramete	ation Pr	redicted
9999 means that the before reaching the Table C17: Time Win Using O Cutoff Viscosity Wind Speed Water Temperature	ndow (in Hours = 7500 cP = 15 knots = 23 oC) for Di d the fo	spersant	Applica Paramete	ation Pr	redicted
9999 means that the before reaching the Table C17: Time Win Using O Cutoff Viscosity Wind Speed Water Temperature Oil Spill Volume (1	e Spilled oll i e Cut-off visc ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo	spersant ollowing	Applica Paramete	ation Press	bbl
9999 means that the before reaching the 	e Spilled oll i e Cut-off visco ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo s 0000, 25 1000	spersant ollowing 0000, 500	2 1000 ho Applica Paramete 000, and 25000	100000 50000	bbl 10000
9999 means that the before reaching the Table C17: Time Wing Cutoff Viscosity Wind Speed Water Temperature Oil Spill Volume (1 Oil Name \ Oil	e Cut-off visc e Cut-off visc ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo 0000, 25 1000	spersant ollowing 10000, 500	2 1000 ho Applica Paramete 000, and 25000	100000 50000	bbl
9999 means that th before reaching th 	ndow (in Hours ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo s 0000, 25 1000 608 608	spersant ollowing 5000, 500 10000	2 1000 ho Applica Paramete 000, and 25000 1000	100000 10000 1000	bbl 10000
9999 means that th before reaching th 	ndow (in Hours = Cut-off visco = Cut-off visco = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo s 0000, 25 1000 608 608 207	spersant ollowing 5000, 500 10000 1000 271	2 1000 ho Paramete 000, and 25000 1000 1000 467	100000 100000 50000 1000 1000	bbl 10000 1000
9999 means that th before reaching th 	ndow (in Hours ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo s 0000, 25 1000 608 608 207 9999	spersant 0000, 500 0000, 500 10000 1000 371 9999	2 1000 ho Applica Paramete 000, and 25000 1000 1000 467 9999	ation Press	bbl 10000 1000 66
9999 means that th before reaching th 	ndow (in Hours ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo s 0000, 25 1000 608 608 207 9999 2	spersant ollowing 5000, 500 10000 1000 371 9999 A	2 1000 ho Applica Paramete 000, and 25000 1000 1000 467 9999 4	ation Pr ers 100000 50000 1000 1000 555 9999 4	bbl 10000 100 100 66 999
9999 means that th before reaching th 	ndow (in Hours ilmap 6.9.3 and = 7500 cP = 15 knot = 23 oC bbl) = 1000, 1) for Di d the fo s 0000, 25 1000 608 608 207 9999 3 5	spersant ollowing 5000, 500 10000 1000 371 9999 4 8	2 1000 ho 2 Applica Paramete 000, and 25000 1000 1000 1000 467 9999 4 9	ation Pr ers 100000 50000 1000 1000 555 9999 4 11	bbl 10000 100 66 999

WEST DELTA BLOCK 143 9 17 22 26 30 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table C18: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 15 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl	GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130 VIOSCA KNOLL BLOCK 826 VIOSCA KNOLL BLOCK 990 WEST DELTA BLOCK 97	312 1000 554 1000 125 126 126 126 126 99 9999 327 9999 195 9999 9999	555 1000 981 1000 225 226 226 226 226 17 106 9999 582 9999 349 9999 349 9999	698 1000 1000 283 284 284 284 284 21 134 9999 731 9999 438 9999 9999	830 1000 1000 336 338 338 338 25 159 9999 869 9999 521 9999 521	986 1000 1000 399 401 401 401 401 30 188 9999 1000 9999 619 9999 9999
9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. 	WEST DELTA BLOCK 143	9	17	22	26 	30
Table C18: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 15 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl 	9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du 	arally di aring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 EUGENE ISLAND BLOCK 32 903 1000 1000 1000 1000 EUGENE ISLAND BLOCK 43 903 1000 1000 1000 1000 GARDEN BANKS BLOCK 387 206 369 465 553 658 GARDEN BANKS BLOCK 426 9999 9999 9999 9999 9999 9999 GREEN CANYON BLOCK 65 3 4 4 5 5 GREEN CANYON BLOCK 109 5 8 10 11 13 GREEN CANYON BLOCK 200 453 804 1000 1000 1000 MIN PASS BLOCK 306 551 977 1000 1000 1000 MAIN PASS BLOCK 37 1000 1000 1000 1000 1000 MISSISSIPPI CANYON BLOCK 72 156 280 352 419 497 MISSISSIPPI CANYON BLOCK 72 156 280 352 419 497 Morpeth Blo	Table C18: Time Window (in Hours Using Oilmap 6.9.3 anCutoff Viscosity= 7500 cPWind Speed= 15 knotWater Temperature= 29 oCOil Spill Volume (bbl)= 1000, 1) for Di d the fo s 0000, 25	Spersant Sollowing	Applica Paramete 00, and	ation Pr ers 100000	bbl
EUGENE ISLAND BLOCK 32 903 1000 1000 1000 1000 EUGENE ISLAND BLOCK 43 903 1000 1000 1000 1000 GARDEN BANKS BLOCK 387 206 369 465 553 658 GARDEN BANKS BLOCK 426 9999 9999 9999 9999 9999 9999 GREEN CANYON BLOCK 65 3 4 4 5 5 GREEN CANYON BLOCK 109 5 8 10 11 13 GREEN CANYON BLOCK 184 5 8 10 11 13 GREEN CANYON BLOCK 200 453 804 1000 1000 1000 LOUISIANA 1000 1000 1000 1000 1000 1000 MAIN PASS BLOCK 306 551 977 1000 1000 1000 1000 MAIN PASS BLOCK 37 1000 1000 1000 1000 1000 1000 MISSISSIPPI CANYON BLOCK 72 156 280 352 419 497	Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
	EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 130 VIOSCA KNOLL BLOCK 826 VIOSCA KNOLL BLOCK 990 WEST DELTA BLOCK 97	903 903 206 9999 3 5 453 1000 551 1000 152 156 156 156 156 156 156 2353 9999 404 9999 238 9999 9999 9999	$ \begin{array}{r} 1000\\ 1000\\ 369\\ 9999\\ 4\\ 8\\ 804\\ 1000\\ 977\\ 1000\\ 271\\ 280\\ 280\\ 280\\ 280\\ 30\\ 631\\ 9999\\ 718\\ 9999\\ 425\\ 9999 9999\\ 9999 9999 9999 $	$ \begin{array}{r} 1000\\ 1000\\ 465\\ 9999\\ 4\\ 10\\ 100\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 341\\ 352\\ 9999\\ 903 9999 535 9999 9999 9999 $	$\begin{array}{c} 1000\\ 1000\\ 553\\ 9999\\ 5\\ 11\\ 11\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 406\\ 419\\ 419\\ 419\\ 419\\ 419\\ 419\\ 419\\ 419$	1000 1000 658 9999 5 13 13 1000 1000 1000 1000 482 497 497 497 497 52 1000 9999 1000 9999 756 9999 9999
	0000 means that the spilled oil	had not	malle di	anonand	and (an	orronometod

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

Table C19: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 8 knots Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____
 EUGENE ISLAND BLOCK 32
 645
 1000
 1000
 1000

 EUGENE ISLAND BLOCK 43
 645
 1000
 1000
 1000

 GARDEN BANKS BLOCK 387
 430
 772
 972
 1000
 1000

 GARDEN BANKS BLOCK 426
 1000
 1000
 1000
 1000
 1000

 GREEN CANYON BLOCK 65
 9
 11
 12
 12
 13

 GREEN CANYON BLOCK 109
 16
 21
 24
 26
 28

 GREEN CANYON BLOCK 184
 16
 21
 24
 26
 28

 GREEN CANYON BLOCK 306
 1000
 1000
 1000
 1000
 1000

 MAIN PASS BLOCK 37
 1000
 1000
 1000
 1000
 1000

 MAIN PASS BLOCK 37
 1000
 1000
 1000
 1000
 1000

 MAIN PASS BLOCK 194
 208
 376
 474
 565
 672

 MISSISSIPPI CANYON BLOCK 72
 208
 376
 474
 565
 672

 MISSISSIPPI CANYON BLOCK 194
 208
 376
 474<
 EUGENE
 ISLAND
 BLOCK
 32
 645
 1000
 1000
 1000

 EUGENE
 ISLAND
 BLOCK
 43
 645
 1000
 1000
 1000
 1000
 WEST DELTA BLOCK 97
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999
 9999</ _____ 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table C20: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 8 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____ EUGENE ISLAND BLOCK 321000100010001000EUGENE ISLAND BLOCK 431000100010001000GARDEN BANKS BLOCK 38743578098310001000GARDEN BANKS BLOCK 42610001000100010001000GREEN CANYON BLOCK 651012131415GREEN CANYON BLOCK 1091722252730GREEN CANYON BLOCK 1841722252730GREEN CANYON BLOCK 2009181000100010001000

1000 1000 882 1000 1000 64 404 1000 1000 1000 1000 10
1000 882 1000 1000 64 404 1000 1000 1000 1000 9999 67
882 1000 1000 64 404 1000 1000 1000 1000 9999 67 aporated mulatior icted
1000 1000 64 404 1000 1000 1000 1000 100
1000 1000 64 404 1000 1000 1000 1000 9999 67 aporated mulatior
1000 64 404 1000 1000 1000 1000 9999 67 aporated mulatior
64 404 1000 1000 1000 1000 9999 67 aporated mulatior icted
404 1000 1000 1000 1000 9999 67 aporated mulatior icted
1000 1000 1000 1000 1000 9999 67 aporated mulatior icted 1 100000
1000 1000 1000 1000 9999 67 aporated mulatior icted 1 100000
1000 1000 1000 9999 67 aporated mulatior icted 1 100000
1000 1000 1000 9999 67 aporated mulation icted 1 100000
1000 1000 9999 67 aporated mulation icted 1 100000
1000 9999 67 aporated mulatior icted 1 100000
9999 67 aporated mulatior icted 1 100000
67 aporated mulatior icted 1 100000
aporated mulatior icted 1 100000
icted 1 100000 1000
1 100000 1000
1 100000 1000
1 100000 1000
1 100000 1000
100000 1000
100000 1000
1000
1000
1000
1000
16
30
30
1000
1000
1000
1000
1000
1000
1000
1000
1000
110
1000
1000
1000
1000
1000
1000
T000
u a a a
9999

Table C22: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP								
Wind Speed = 12 knots	5							
Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10	0000, 2	5000, 5000)0, and	100000	bbl			
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000			
EUGENE ISLAND BLOCK 32	531	945	1000	1000	1000			
EUGENE ISLAND BLOCK 43	531	945	1000	1000	1000			
GARDEN BANKS BLOCK 387	349	626	788	938	1000			
GARDEN BANKS BLOCK 426	T000 E	1000	1000	1000	1000			
CREEN CANYON BLOCK 05	D Q	12	15	0 17	19			
GREEN CANYON BLOCK 184	9	12	15	17	19			
GREEN CANYON BLOCK 200	376	673	847	1000	1000			
LOUISIANA	1000	1000	1000	1000	1000			
MAIN PASS BLOCK 306	1000	1000	1000	1000	1000			
MAIN PASS BLOCK 37	1000	1000	1000	1000	1000			
MARS TLP	156	281	353	421	500			
MISSISSIPPI CANYON BLOCK 72	169	305	384	457	543			
MISSISSIPPI CANYON BLOCK 194	169	305	384	457	543			
MISSISSIPPI CANYON BLOCK 807	169	305	384	457	543			
Morpeth Block EW921	9	12	14	16	18			
Petronius Block VK/86A	8	10		12	13			
SHIP SHOAL BLOCK 269	9999 401	9999	1000	1000	9999			
SOUTH PASS BLOCK OU	401	0000	1000 1000	2000	1000			
VIOSCA KNOLL BLOCK 826	245	440	555	660	785			
VIOSCA KNOLL BLOCK 990	1000	1000	1000	1000	1000			
WEST DELTA BLOCK 97	9999	9999	9999	9999	9999			
WEST DELTA BLOCK 143	15	28	36	42	50			
9999 means that the spilled oil h before reaching the Cut-off visco	as nat	urally dis uring the	spersed 1000 h	and/or ours of	evaporated simulation.			
Table C23: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cF Wind Speed = 12 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10	for D the for	ispersant ollowing B 5000, 5000	Applic Paramet	ation Pr ers 100000	cedicted bbl			
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000			
EUGENE ISLAND BLOCK 22	1000	1000	1000	 1000	1000			
EUGENE ISLAND BLOCK 43	1000	1000	1000	1000	1000			
GARDEN BANKS BLOCK 387	353	633	797	948	1000			
GARDEN BANKS BLOCK 426	9999	1000	1000	1000	1000			
GREEN CANYON BLOCK 65	5	б	7	7	8			
GREEN CANYON BLOCK 109	9	13	16	18	21			
GREEN CANYON BLOCK 184	9	13	16	18	21			
GREEN CANYON BLOCK 200	750	1000	1000	1000	1000			
LOUISTANA	T000	T000	T000	T000	TUUU			
9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation Table C24: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl	MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130 VIOSCA KNOLL BLOCK 826 VIOSCA KNOLL BLOCK 990 WEST DELTA BLOCK 97	1000 1000 223 256 256 16 101 9999 714 9999 362 1000 9999 16	1000 1000 401 459 459 29 184 9999 1000 9999 648 1000 9999 30	1000 1000 504 578 578 36 231 9999 1000 9999 816 1000 9999 38	1000 600 688 688 43 275 9999 1000 9999 971 1000 9999 45	1000 1000 713 818 818 818 51 327 9999 1000 9999 1000 1000 9999 54		
--	---	--	---	---	---	---		
Table C24: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 12 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl 	9999 means that the spilled oil before reaching the Cut-off vis	has natu cosity du	urally di uring the	spersed	and/or ours of	evaporated simulation.		
Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 EUGENE ISLAND BLOCK 32 1000 1000 1000 1000 1000 1000 GARDEN BANKS BLOCK 43 1000 1000 1000 1000 1000 1000 GARDEN BANKS BLOCK 426 9999 1000 1000 1000 1000 GREEN CANYON BLOCK 65 5 7 7 8 8 GREEN CANYON BLOCK 109 9 13 16 18 21 GREEN CANYON BLOCK 200 1000 1000 1000 1000 LOUISIANA 1000 1000 1000 1000 MAIN PASS BLOCK 37 1000 1000 1000 1000 MAIN PASS BLOCK 37 1000 1000 1000 1000 MAIN PASS BLOCK 72 314 562 708 842 1000 MISSISSIPPI CANYON BLOCK 72 314 562 708 842 1000 MISSISSIPPI CANYON BLOCK 807 314 562 <t< td=""><td>Table C24: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 10000 Wind Speed = 12 knc Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000,</td><td>rs) for Di and the fo CP ots 10000, 25</td><td>spersant bllowing</td><td>Applica Paramete</td><td>ation Pr ers 100000</td><td>bbl</td></t<>	Table C24: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 10000 Wind Speed = 12 knc Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000,	rs) for Di and the fo CP ots 10000, 25	spersant bllowing	Applica Paramete	ation Pr ers 100000	bbl		
EUGENE ISLAND BLOCK 32 1000 1000 1000 1000 1000 EUGENE ISLAND BLOCK 43 1000 1000 1000 1000 1000 GARDEN BANKS BLOCK 387 348 625 787 936 1000 GARDEN BANKS BLOCK 426 9999 1000 1000 1000 1000 GREEN CANYON BLOCK 65 5 7 7 8 8 GREEN CANYON BLOCK 109 9 13 16 18 21 GREEN CANYON BLOCK 184 9 13 16 18 21 GREEN CANYON BLOCK 200 1000 1000 1000 1000 1000 LOUISIANA 1000 1000 1000 1000 1000 1000 MAIN PASS BLOCK 37 1000 1000 1000 1000 1000 1000 MISSISSIPPI CANYON BLOCK 72 314 562 708 842 1000 MISSISSIPPI CANYON BLOCK 807 314 562 708 842 1000 MISSISS	Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000		
SOUTH TIMBALTER BLOCK 130 9999	EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 43 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 306 MAIN PASS BLOCK 307 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130 VIOSCA KNOLL BLOCK 826 VIOSCA KNOLL BLOCK 97	$ \begin{array}{r} 1000\\ 1000\\ 348\\ 9999\\ 5\\ 9\\ 9\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 267\\ 314\\ 314\\ 314\\ 26\\ 601\\ 9999\\ & 874\\ 9999\\ & 874\\ 9999\\ 438\\ 1000\\ 9999 \end{array} $	$ \begin{array}{r} 1000\\ 1000\\ 625\\ 1000\\ 7\\ 13\\ 13\\ 1000\\ 1000\\ 1000\\ 1000\\ 479\\ 562\\ 562\\ 562\\ 562\\ 562\\ 500\\ 1000\\ 9999\\ 1000\\ 9999\\ 783\\ 1000\\ 9999 \end{array} $	1000 1000 787 1000 7 16 16 1000 1000 1000 1000 1000	1000 1000 936 1000 8 18 18 1000 1000 1000 1000 1000	1000 1000 1000 21 21 1000 1000 1000 100		

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

Table C25: Time Window (in Hours) Using Oilmap 6.9.3 and	for I the f	Dispersant Collowing F	Applic Paramet	cation Pi cers	redicted
Cutoff Viscosity = 10000 CP Wind Speed = 15 knots					
Water Temperature = 13 MiOUS					
Oil Spill Volume (bbl) = 1000, 10	000, 2	25000, 5000)0, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32	484	854	1000	1000	1000
EUGENE ISLAND BLOCK 43	484	854	1000	1000	1000
GARDEN BANKS BLOCK 387	314	561	706	841	1000
GARDEN BANKS BLOCK 426	9999	9999	9999	9999	9999
GREEN CANYON BLOCK 65	3	4	4	4	4
GREEN CANYON BLOCK 109	6	10	12	14	17
GREEN CANYON BLOCK 184	6	10	12	14	17
GREEN CANYON BLOCK 200	339	602	757	900	1000
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	1000	1000	1000	1000	1000
MAIN PASS BLOCK 37	1000	1000	1000	1000	1000
MARS TLP	140	251	316	375	446
MISSISSIPPI CANYON BLOCK 72	152	273	343	407	484
MISSISSIPPI CANYON BLOCK 194	152	273	343	407	484
MISSISSIPPI CANYON BLOCK 807	152	273	343	407	484
Morpeth Block EW921	6	9	11	13	15
CUID CUOM DIOCK VK/86A	5	/	8	9	0000
SHIP SHOAL BLOCK 209	9999	9999	9999	1000	9999
SOUTH PASS BLOCK 00	434	9999	900	2000	2000
VIOSCA KNOLL BLOCK 826	220	394	496	589	700
VIOSCA KNOLL BLOCK 920	9999	1000	1000	1000	1000
WEST DELTA BLOCK 97	9999	9999	9999	9999	9999
WEST DELTA BLOCK 143	13	25	32	38	44
9999 means that the spilled oil h before reaching the Cut-off visco	as nat sity c	urally dis luring the	spersed 1000 ł	d and/or nours of	evaporated simulation.
Table C26: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10	for I the f 000, 2	Dispersant Collowing F 25000, 5000	Applic Paramet	cation Pr cers 100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43	1000 1000	1000 1000	$1000 \\ 1000$	1000 1000	1000 1000
GARDEN BANKS BLOCK 387	317	567	714	850	1000
GARDEN BANKS BLOCK 426	9999	9999	9999	9999	9999
GREEN CANYON BLOCK 65	3	4	5	5	5
GREEN CANYON BLOCK 109	6	11	13	16	18
GREEN CANYON BLOCK 184	6	11	13	16	18
GREEN CANYON BLOCK 200	678	1000	1000	1000	1000
LOUISIANA	1000	1000	1000	1000	1000
MAIN PASS BLOCK 306	1000	1000	1000	1000	1000

MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130 VIOSCA KNOLL BLOCK 826 VIOSCA KNOLL BLOCK 990 WEST DELTA BLOCK 97 WEST DELTA BLOCK 143	1000 201 230 230 13 90 9999 646 9999 326 9999 326 9999 9999 14	1000 358 411 411 26 164 9999 1000 9999 581 9999 9999 27	1000 451 516 516 32 206 9999 1000 9999 731 9999 9999 34	$ \begin{array}{r} 1000 \\ 536 \\ 614 \\ 614 \\ 38 \\ 245 \\ 9999 \\ 1000 \\ 9999 \\ 869 \\ 9999 \\ 9999 \\ 9999 \\ 40 \\ \end{array} $	1000 637 730 730 45 291 9999 1000 9999 1000 9999 9999 48
9999 means that the spilled oil before reaching the Cut-off vis	has natu cosity du	urally di uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table C27: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 10000 Wind Speed = 15 knc Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000,	rs) for Di and the fo cP ots 10000, 25	Spersant	Applica Paramete 00, and	ation Pr ers 100000	edicted
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
EUGENE ISLAND BLOCK 32 EUGENE ISLAND BLOCK 43 GARDEN BANKS BLOCK 387 GARDEN BANKS BLOCK 426 GREEN CANYON BLOCK 65 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 109 GREEN CANYON BLOCK 184 GREEN CANYON BLOCK 200 LOUISIANA MAIN PASS BLOCK 306 MAIN PASS BLOCK 306 MAIN PASS BLOCK 37 MARS TLP MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 72 MISSISSIPPI CANYON BLOCK 194 MISSISSIPPI CANYON BLOCK 807 Morpeth Block EW921 Petronius Block VK786A SHIP SHOAL BLOCK 269 SOUTH PASS BLOCK 60 SOUTH TIMBALIER BLOCK 130 VIOSCA KNOLL BLOCK 826	$ \begin{array}{r} 1000 \\ 1000 \\ 313 \\ 9999 \\ 4 \\ 6 \\ 971 \\ 1000 \\ 1000 \\ 1000 \\ 241 \\ 282 \\ 282 \\ 282 \\ 282 \\ 24 \\ 543 \\ 9999 \\ 795 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 9999 \\ 395 \\ 395 \\ 3999 \\ 395 \\ 395 \\ 395 \\ 395 \\ 395 \\ 395 \\ 395 \\ 305 \\ 305 \\ 305 \\ 305 \\ 305 \\ 305 \\ 305 \\ 305 \\ 305 \\ 305 \\ 3$	1000 1000 561 9999 5 11 11 1000 1000 1000 1000 1000	$ \begin{array}{r} 1000\\ 1000\\ 706\\ 9999\\ 5\\ 14\\ 14\\ 1000\\ 1000\\ 1000\\ 1000\\ 539\\ 633\\ 633\\ 56\\ 1000\\ 9999\\ 1000\\ 9999\\ 885\\ 885\\ 885\\ 885\\ \end{array} $	$ \begin{array}{r} 1000\\ 1000\\ 839\\ 9999\\ 5\\ 16\\ 16\\ 1000\\ 1000\\ 1000\\ 1000\\ 641\\ 752\\ 752\\ 752\\ 752\\ 67\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9999\\ 1000\\ 9009\\ 1000\\ 9009\\ 1000\\ 9009\\ 1000\\ 9009\\ 1000\\ 9009\\ 1000\\ 9009\\ 1000\\ 9000\\ 9000\\ 9000\\ 9000\\ 9000\\ 1000\\ 9000\\ 9000\\ 1000\\ 9000\\ 1000\\ 9000\\ 9000\\ 1000\\ 9000\\ 1000\\ 9000\\ 1000\\ 9000\\ 1000\\ 9000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 9000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 9000\\ 100$	1000 1000 998 9999 6 19 19 1000 1000 1000 1000 1000 762 894 894 894 894 894 79 1000 9999 1000 9999
WEST DELTA BLOCK 97 WEST DELTA BLOCK 143	9999 14	9999 27	9999 35	9999 41	9999 48

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

Appendix C

Time-Window (in Hours) for Dispersant Application Predicted Using Oilmap Version 6.9.3 and the 24 oils from Task 2 and Different Oil Spill Volume, Water Temperature, Wind Speed, and Cutoff Viscosity for Sensitivity Analysis (Task4)

Table D1: Time Window (in Hours Using Oilmap 6.9.3 aCutoff Viscosity= 5000 cWind Speed= 8 knotWater Temperature= 13 oC	s) for Dia and the for CP cs	spersant ollowing	Applicat Paramete	cion Prec	licted
Oil Spill Volume (bbl) = 1000,	10000, 2	5000, 500 	000, and	1000001	L
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	21	23	24	25	25
BARROW ISLAND	1000	1000	1000	1000	1000
CARPINTERIA	5	7	7	8	8
Chayvo#6	1000	1000	1000	1000	1000
EMPIRE	129	236	297	354	421
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	142	257	324	386	459
GULLFAKS	74	137	172	205	244
HEIDRUN	20	26	29	32	36
HONDO MONTEREY	2	3	3	3	3
IRANIAN HEAVY	24	33	39	45	52
LUCULA	10	12	13	13	14
MALONGO	8	10	11	11	12
Odoptu	1000	1000	1000	1000	1000
OSEBERG	29	43	53	63	74
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	4	5	б	б	б
Prudhoe Bay (1995)	13	15	16	16	17
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	5	7	8	8	8
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	1000	1000	1000	1000	1000
WEST TEXAS INTERMEDIATE	536	964	1000	1000	1000
ZAIRE	1	1	1	1	1

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

 Table D2: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters

 Cutoff Viscosity
 = 5000 cP

 Wind Speed
 = 8 knots

 Water Temperature
 = 23 oC

 Oil Spill Volume (bbl)
 = 1000, 10000, 25000, 50000, and 100000 bbl

 Oil Name \ OilVolume (bbl)
 1000
 10000
 25000
 50000
 100000

 ARABIAN Light (2000)
 25
 27
 29
 30
 30

 BARROW ISLAND
 1000
 1000
 1000
 1000
 1000

 CARPINTERIA
 7
 9
 10
 11
 11

Chayvo#6 FMDIDE	1000	1000	1000 418	1000	1000
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	177	321	404	481	572
GULLFAKS	107	196	247	294	350
HEIDRIN	22	2.9	217	37	42
HONDO MONTEREY	4	5	55	6	6
TRANTAN HEAVY	30	48	59	70	83
LUCIII.A	17	23	26	28	31
MALONGO	32	55	69	82	97
	1000	1000	1000	1000	1000
OSEBERG	28	42	52	£000	72
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	6	8	8	8	9
Drudhoe Bay (1995)	14	16	16	17	18
Sakhai.in	1000	1000	1000	1000	1000
SAUIALIN SAUIA CLARA	8	10	11	12	12
	1000	1000	1000	1000	1000
TUEVENAD ISLAND	1000	1000	1000	1000	1000
MECT TEVENARD ISLAND	010	1000	1000	1000	1000
ZAIRE	2	3	4	4	4
before reaching the Cut-off visc	osity dı 	iring the	e 1000 ho	ours of a	simulation.
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP	for Dis d the fo	spersant	Applicat Paramete	cion Pred ers	dicted
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1	for Dis d the fo	spersant bllowing	Applicat Paramete	rs 100000 l	dicted
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo 0000, 25 	5000, 500 10000	Applicat Paramete 000, and 25000	ion Pree ers 1000000 1 50000	dicted bbl 100000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27	spersant 5000, 500 10000 31	Applicat Paramete 000, and 25000 	100000 1 50000 34	dicted bbl 100000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND	for Dis d the fo 0000, 25 1000 27 1000	5000, 500 10000 31 1000	Applicat Paramete 000, and 25000 	100000 1 100000 1 50000 34 1000	dicted bbl 100000 35 1000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA	for Dis d the fo 0000, 25 1000 27 1000 9	5000, 500 10000 31 1000 11	Applicat Paramete 000, and 25000 32 1000 12	100000 1 50000 34 1000 12	dicted bbl 100000 35 1000 13
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6	for Dis d the fo 0000, 25 1000 27 1000 9 1000	5000, 500 5000, 500 10000 31 1000 11 1000	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000	dicted bbl 100000 35 1000 13 1000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216	5000, 500 5000, 500 10000 	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000 587	dicted bbl 100000 35 1000 13 1000 699
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000	5000, 500 5000, 500 10000 31 1000 11 1000 391 1000	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000 587 1000	dicted bbl 100000 35 1000 13 1000 699 1000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 197	5000, 500 5000, 500 10000 31 1000 11 1000 391 1000 356	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000 587 1000 533	dicted bbl 100000 13 1000 699 1000 635
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 197 129	5000, 500 5000, 500 	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000 587 1000 533 352	dicted bbl 100000 13 1000 699 1000 635 418
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 197 129 23	5000, 500 5000, 500 	Applicat Paramete 25000 	100000 1 50000 12 1000 587 1000 533 352 40	dicted bbl 100000 13 1000 699 1000 635 418 46
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 216 1000 197 129 23 6	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000 587 1000 533 352 40 8	dicted bbl 100000 13 1000 699 1000 635 418 46 8
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 216 1000 197 129 23 6 35	5000, 500 5000, 500 10000 11 1000 391 1000 356 234 31 7 60	Applicat Paramete 25000 225000 12 1000 12 1000 493 1000 448 295 35 7 75	100000 1 50000 12 1000 587 1000 533 352 40 8 90	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA	for Dis d the fo 0000, 29 1000 27 1000 9 1000 216 1000 197 129 23 6 35 27	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7 60 43	Applicat Paramete 25000 	100000 1 50000 12 1000 587 1000 533 352 40 8 90 64	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO	for Dis d the fo 0000, 25 1000 27 1000 216 1000 197 129 23 6 35 27 211	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7 60 43 381	Applicat Paramete 000, and 25000 32 1000 12 1000 493 1000 448 295 35 7 75 54 481	100000 1 50000 34 1000 12 1000 587 1000 533 352 40 8 90 64 572	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu	for Dis d the for 0000, 25 1000 27 1000 216 1000 197 129 23 6 35 27 211 1000	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7 60 43 381 1000	Applicat Paramete 000, and 25000 12 1000 493 1000 448 295 35 7 75 54 481 1000	100000 1 50000 34 1000 12 1000 587 1000 533 352 40 8 90 64 572 1000	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo 0000, 25 1000 27 1000 216 1000 197 129 23 6 35 27 211 1000 28	5000, 500 5000, 500 10000 31 1000 391 1000 391 1000 356 234 31 7 60 43 381 1000 41	Applicat Paramete 25000 25000 12 1000 493 1000 448 295 35 7 75 54 481 1000 51	1000000 1 50000 34 1000 12 1000 587 1000 533 352 40 8 90 64 572 1000 60	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7 60 43 381 1000 41 9999	Applicat Paramete 25000 	100000 1 50000 34 1000 12 1000 587 1000 533 352 40 8 90 64 572 1000 60 9999	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70 9999
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999 7	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7 60 43 381 1000 41 9999 9	Applicat Paramete 25000 	ion Preesers	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70 9999 10
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo 0000, 25 1000 27 1000 216 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999 7 14	5000, 500 5000, 500 10000 31 1000 391 1000 356 234 31 7 60 43 381 1000 41 9999 9 16	Applicat Paramete 25000 32 1000 12 1000 493 1000 448 295 35 7 75 54 481 1000 51 9999 10 17	100000 1 50000 12 1000 12 1000 587 1000 533 352 40 8 90 64 572 1000 64 572 1000 64 572 1000 64	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70 9999 10 18
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999 7 14 1000	5000, 500 5000, 500 10000 31 1000 391 1000 391 1000 356 234 31 7 60 43 381 1000 41 9999 9 16 1000	Applicat Paramete 25000 25000 12 1000 493 1000 493 1000 448 295 35 7 75 54 481 1000 51 9999 10 17 1000	100000 1 50000 12 1000 12 1000 587 1000 533 352 40 8 90 64 572 1000 64 572 1000 64 572 1000 60 9999 10 17 1000	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70 9999 10 18 1000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN	for Dis d the fo 0000, 25 1000 27 1000 9 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999 7 14 1000 28	5000, 500 5000, 500 10000 31 1000 31 1000 391 1000 391 1000 391 1000 391 1000 391 1000 391 1000 41 9999 9 16 1000 12	Applicat Paramete 25000 25000 12 1000 493 1000 448 295 35 7 75 54 481 1000 51 9999 10 17 1000 13	100000 1 50000 12 1000 587 1000 587 1000 533 352 40 8 90 64 572 1000 64 572 1000 64 572 1000 60 9999 10 17 1000 15	dicted bbl 100000 13 1000 699 1000 635 418 46 8 1000 681 1000 70 9999 10 18 1000 18
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for 0000, 25 1000 27 1000 216 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999 7 14 1000 28 9999 7 14	5000, 500 5000, 500 10000 31 1000 391 1000 41 9999 9 16 1000 12 1000	Applicat Paramete 25000 25000 12 1000 493 1000 493 1000 448 295 35 7 75 54 481 1000 51 9999 10 17 1000 13 1000	100000 1 50000 12 1000 587 1000 587 1000 533 352 40 8 90 64 572 1000 64 572 1000 60 9999 10 17 1000 15 1000	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70 9999 10 18 1000 18 1000 16 1000
Table D3: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for 0000, 29 1000 27 1000 216 1000 197 129 23 6 35 27 211 1000 28 9999 7 14 1000 28 9999 7 14 1000 9900 1000	5000, 500 5000, 500 10000 31 1000 391 1000 391 1000 356 234 31 7 60 43 381 1000 41 9999 9 16 1000 12 1000 1000 12 1000 1000	Applicat Paramete 25000 25000 12 1000 493 1000 493 1000 448 295 35 7 75 54 481 1000 51 9999 10 17 1000 13 1000 13 1000	100000 1 50000 12 1000 587 1000 533 352 40 533 352 40 64 572 1000 60 9999 10 17 1000 17 1000 15 1000	dicted bbl 100000 13 1000 699 1000 635 418 46 8 106 76 681 1000 70 9999 10 18 1000 70 9999 10 18 1000 16 1000 16

ZAIRE	3	5	5	5	б
9999 means that the spilled oil	has nat	urally di	lspersed	and/or	evaporated
before reaching the Cut-off vis	cosity d	uring the	e 1000 ho	ours of	simulation.
Table D4: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c) for Dia nd the fo	spersant ollowing	Applica Paramete	tion Pre ers	edicted
Wind Speed $= 12$ kno $= 12$ cm	LS				
Oil Spill Volume (bbl) = 1000,	10000, 2	5000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	10	11	11	11	12
BARROW ISLAND	9999	9999	9999	1000	1000
CARPINTERIA	3	4	4	4	4
Chayvo#6	1000	1000	1000	1000	1000
EMPIRE	105	191	241	287	341
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	115	208	262	312	371
GULLFAKS	60	111	140	166	197
HEIDRUN	11	16	19	22	26
HONDO MONTEREY	1	2	2	2	2
IRANIAN HEAVY	14	24	30	35	41
LUCULA	5	6	6	7	7
MALONGO	4	5	5	б	6
Odoptu	1000	1000	1000	1000	1000
OSEBERG	18	34	43	51	60
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	2	3	3	3	3
Prudhoe Bay (1995)	б	7	8	8	8
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	3	4	4	4	4
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	441	787	990	1000	1000
ZAIRE	1	1	1	1	1
9999 means that the spilled oil before reaching the Cut-off vis	has nat cosity d	urally di uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table D5: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 12 kno Water Temperature = 23 oC) for Dia nd the fo P ts	spersant ollowing	Applicat Paramete	tion Pre ers	edicted
Oil Spill Volume (bbl) = 1000,	10000, 2	5000, 500)00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000) BARROW ISLAND	12 9999	13 9999	14 9999	14 9999	15 9999
CARPINTERTA	4	5	5	5	6
Chayvo#6	9999	9999	9999	9999	1000

EMPIRE	149	269	339	403	479
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	144	260	327	389	463
GULLFAKS	87	159	200	238	283
HEIDRUN	12	19	24	28	33
HONDO MONTEREY	2		3	3	3
IRANIAN HEAVY	20	38	48	57	67
LUCULA	9	14	16	19	22
MALONGO	23	44	56	66	79
	1000	1000	1000	1000	1000
OSEBERG	17	33	42	49	58
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	3	4	4	4	4
Prudhoe Bay (1995)	7	8	8	8	9
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	4	5	6	6	7
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	783	1000	1000	1000	1000
ZAIRE	1	2	2	2	2
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	urally di uring the	spersed 1000 ho	and/or of a	evaporated simulation.
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot	for Dis d the fo	spersant	Applicat Paramete	cion Preders	licted
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 anCutoff Viscosity= 5000 cPWind Speed= 12 knotWater Temperature= 29 oCOil Spill Volume (bbl)= 1000, 1	for Dis d the fo s 0000, 25	spersant ollowing	Applicat Paramete	ion Preers	dicted
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl)	for Dis d the fo s 0000, 29 1000	5000, 500 10000	Applicat Paramete 00, and 25000	2100 Preders	bbl 100000
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 29 1000 13	5000, 500 10000 10000	Applicat Paramete 000, and 25000 	100000 1 50000	bbl 100000 18
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the fo s 0000, 25 1000 13 9999	5000, 500 10000 10000 15 9999	Applicat Paramete 000, and 25000 	100000 1 100000 1 50000 17 9999	bbl 100000 18 9999
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 13 9999 4	5000, 500 10000 15 9999 6	Applicat Paramete 200, and 25000 16 9999 6	100000 1 50000 17 9999 6	bbl 100000 18 9999 7
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 13 9999 4 9999	5000, 500 10000 10000 15 9999 6 9999	Applicat Paramete 200, and 25000 16 9999 6 9999	100000 1 50000 17 9999 6 9999	bbl 100000 18 9999 7 9999
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 29 1000 13 9999 4 9999 176	5000, 500 10000 15 9999 6 9999 318	Applicat Paramete 000, and 25000 	100000 1 50000 17 9999 6 9999 476	bbl 100000 18 9999 7 9999 566
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 29 1000 13 9999 4 9999 176 1000	5000, 500 10000 15 9999 6 9999 318 1000	Applicat Paramete 000, and 25000 16 9999 6 9999 400 1000	100000 1 50000 17 9999 6 9999 476 1000	bbl 100000 18 9999 7 9999 566 1000
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS	for Dis d the fo s 0000, 29 1000 13 9999 4 9999 176 1000 160	5000, 500 10000 15 9999 6 9999 318 1000 289	Applicat Parameter 000, and 25000 16 9999 6 9999 400 1000 363	100000 1 50000 17 9999 6 9999 476 1000 432	bbl 100000 18 9999 7 9999 566 1000 514
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS	for Dis d the fo s 0000, 29 1000 13 9999 4 9999 176 1000 160 105	5000, 500 5000, 500 10000 15 9999 6 9999 318 1000 289 190	Applicat Parameter 25000 16 9999 6 9999 400 1000 363 240	100000 1 50000 17 9999 6 9999 476 1000 432 285	bbl 100000 18 9999 7 9999 566 1000 514 338
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN	for Dis d the fo s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12	5000, 500 5000, 500 10000 15 9999 6 9999 318 1000 289 190 21	Applicat Parameter 25000 	100000 1 50000 17 9999 6 9999 476 1000 432 285 31	bbl 100000 18 9999 566 1000 514 338 36
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY	for Dis d the for s 0000, 25 1000 13 9999 4 9999 176 1000 160 105 12 3	5000, 500 5000, 500 10000 15 9999 6 9999 318 1000 289 190 21 4	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4	100000 1 50000 17 9999 476 1000 432 285 31 4	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the fo s 0000, 25 1000 13 9999 176 1000 160 105 12 3 25	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48	Applicat Parameter 25000 	100000 1 50000 17 9999 476 1000 432 285 31 4 72	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18	5000, 500 5000, 500 10000 15 9999 6 9999 318 1000 289 190 21 4 4 8 34	Applicat Parameter 25000 16 9999 6 9999 400 1000 363 240 26 4 61 43	100000 1 50000 17 9999 476 1000 432 285 31 4 72 52	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172	5000, 500 5000, 500 10000 15 9999 6 9999 318 1000 289 190 21 4 4 8 34 311	Applicat Parameter 25000 16 9999 6 9999 400 1000 363 240 26 4 61 43 392	100000 1 50000 17 9999 476 1000 432 285 31 4 72 52 466	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000	Applicat Parameter 25000 16 9999 69999 400 1000 363 240 26 4 61 43 392 1000	100000 1 50000 17 9999 6 9999 476 1000 432 285 31 4 72 52 466 1000	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000 32	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40	100000 1 50000 17 9999 6 9999 476 1000 432 285 31 4 72 52 466 1000 48	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000 32 9999	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40 9999	100000 1 50000 17 9999 6 9999 476 1000 432 285 31 4 72 52 466 1000 48 9999	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000 32 9999 5	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40 9999 5	ion Preesers	bbl 100000 18 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4 7	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000 32 9999 5 8	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40 9999 5 8	100000 1 50000 17 9999 476 1000 432 285 31 4 72 52 466 1000 48 9999 5 9	bbl 100000 18 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5 9
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4 7 1000	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 4 8 34 311 1000 32 9999 5 8 1000	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40 9999 5 8 1000	100000 1 50000 17 9999 476 1000 432 285 31 4 72 52 466 1000 48 9999 5 9 1000	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5 9 9999 5 9 91000
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 25 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4 7 1000 5	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 4 8 34 311 1000 32 9999 5 8 1000 7	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40 9999 5 8 1000 8	100000 1 50000 17 9999 476 1000 432 285 31 4 72 52 466 1000 48 9999 5 9 900 8	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5 9 9999 5 9 1000 9
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4 7 1000 5 9999	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 4 8 34 311 1000 32 9999 5 8 1000 7 9999	Applicat Parameter 25000 	ion Presers	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5 9 1000 9 1000
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4 7 1000 5 9999 9999 9999	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000 32 9999 5 8 1000 7 9999 9999 9999	Applicat Parameter 25000 16 9999 400 1000 363 240 26 4 61 43 392 1000 40 9999 5 8 1000 8 1000 8 1000 9999	ion Preders 100000 1 50000 17 9999 476 1000 432 285 31 4 72 52 466 1000 48 9999 5 9 1000 8 1000 8 1000 9999	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5 9 9000 9999 5 91000 9999
Table D6: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1 Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND WEST TEXAS INTERMEDIATE	for Dis d the for s 0000, 29 1000 13 9999 4 9999 176 1000 160 105 12 3 25 18 172 1000 17 9999 4 7 1000 5 9999 9999 1000	5000, 500 5000, 500 10000 15 9999 318 1000 289 190 21 4 48 34 311 1000 32 9999 5 8 1000 7 9999 9999 1000	Applicat Parameter 25000 	100000 1 50000 17 9999 476 1000 432 285 31 4 72 52 466 1000 48 9999 5 91000 8 1000 8 1000 9999 1000	bbl 100000 18 9999 7 9999 566 1000 514 338 36 4 86 61 554 1000 56 9999 5 9 9000 56 9999 5 9 9000 9999 1000 9999 1000

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table D7: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 5000 cP Wind Speed = 15 knots Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000

 11 Name \ OilVolume (bb1)
 1000
 10000
 25000
 50000
 100000

 ARABIAN Light (2000)
 6
 7
 7
 7
 7

 BARROW ISLAND
 9999
 9999
 9999
 9999
 9999
 9999

 CARPINTERIA
 2
 3
 3
 3
 3
 3
 3

 Chayvo#6
 9999
 9999
 1000
 1000
 1000
 1000

 EMPIRE
 95
 171
 215
 256
 304

 FEDERATED (1998)
 1000
 1000
 1000
 1000
 1000

 GENESIS
 104
 187
 235
 279
 332

 GULLFAKS
 54
 99
 125
 148
 176

 HEIDRUN
 8
 13
 17
 20
 23

 HONDO MONTEREY
 1
 1
 1
 1
 1

 IRANIAN HEAVY
 11
 21
 26
 31
 37

 LUCULA
 3
 4
 4
 4
 6
 63

 Odoptu
 1000
 1000
 1000
 1000
 _____ WEST TEXAS INTERMEDIATE 401 711 894 1000 1000 ZAIRE 1 1 1 1 1 _____ 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table D8: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 5000 cP = 15 knots Wind Speed Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____ ARABIAN Light (2000) 7 8 9 9 10
 BARROW ISLAND
 9999
 9999
 9999
 9999
 9999
 9999

 CARPINTERIA
 3
 3
 4
 4
 4

 Chayvo#6
 9999
 9999
 9999
 9999
 9999

 EMPIRE
 134
 241
 303
 360
 428

GENESIS GULLFAKS HEIDRUN	130				±000
GULLFAKS HEIDRUN		233	293	349	414
HEIDRUN	78	142	179	213	252
	9	17	21	25	29
HONDO MONTEREY	2	2	2	2	2
IRANIAN HEAVY	18	34	43	51	60
LUCULA	7	11	14	17	19
MALONGO	21	39	50	59	70
Odoptu	1000	1000	1000	1000	1000
OSEBERG	15	29	37	44	52
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	2	3	3	3	3
Prudhoe Bay (1995)	4	5	5	5	б
SAKHALIN	9999	1000	1000	1000	1000
SANTA CLARA	3	4	4	4	5
STATEJORD	9999	9999	9999	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	727	1000	1000	1000	1000
ZATRE	, 2,	1	2000	2000	2
9999 means that the spilled oil before reaching the Cut-off vis	has natu cosity du	urally di uring the	lspersed e 1000 ho	and/or ours of	evaporated simulation.
Wind Speed= 15 knoWater Temperature= 29 oCOil Spill Volume (bbl)= 1000,	ts 10000, 25	5000, 500)00, and	100000	bbl
Oil Name \setminus OilVolume (bbl)	1000	10000	25000	50000	100000
Oil Name \ OilVolume (bbl)	1000	10000	25000 11	50000	100000
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND	1000 8 9999	10000 10 9999	25000 11 9999	50000 12 9999	100000 13 9999
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND	1000 	10000 10 9999 4	25000 11 9999 4	50000 12 9999 4	100000 13 9999 5
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chavyro#6	1000 	10000 10 9999 4 9999	25000 11 9999 4 9999	50000 12 9999 4	100000 13 9999 5 9999
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 FMDIRE	1000 8 9999 3 9999 159	10000 10 9999 4 9999 285	25000 11 9999 4 9999 358	50000 12 9999 4 9999 426	100000 13 9999 5 9999 506
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998)	1000 	10000 10 9999 4 9999 285 1000	25000 11 9999 4 9999 358 1000	50000 12 9999 4 9999 426 1000	100000 13 9999 5 9999 506 1000
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS	1000 	10000 10 9999 4 9999 285 1000 259	25000 11 9999 4 9999 358 1000 326	50000 12 9999 4 9999 426 1000 387	100000 13 9999 5 9999 506 1000 460
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS CULLEAKS	1000 8 9999 3 9999 159 9999 145 94	10000 10 9999 4 9999 285 1000 259 170	25000 11 9999 4 9999 358 1000 326 214	50000 12 9999 4 9999 426 1000 387 254	100000 13 9999 5 9999 506 1000 460 302
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDPIN	1000 8 9999 3 9999 159 9999 145 94 9	10000 10 9999 4 9999 285 1000 259 170 18	25000 11 9999 4 9999 358 1000 326 214 23	50000 12 9999 4 9999 426 1000 387 254 27	100000 13 9999 5 9999 506 1000 460 302 32
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY	1000 8 9999 3 9999 159 9999 145 94 9 2	10000 10 9999 4 9999 285 1000 259 170 18 2	25000 11 9999 4 9999 358 1000 326 214 23 3	50000 12 9999 4 9999 426 1000 387 254 27 2	100000 13 9999 5 9999 506 1000 460 302 32 3
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IDANIAN HEAVY	1000 8 9999 3 9999 159 9999 145 94 9 2 23	10000 10 9999 4 9999 285 1000 259 170 18 2 43	25000 11 9999 4 9999 358 1000 326 214 23 3 54	50000 12 9999 4 9999 426 1000 387 254 27 3 64	100000 13 9999 5 9999 506 1000 460 302 32 3 76
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY	1000 8 9999 3 9999 159 9999 145 94 9 2 23 16	10000 10 9999 4 9999 285 1000 259 170 18 2 43 21	25000 11 9999 4 9999 358 1000 326 214 23 3 54 29	50000 12 9999 4 9999 426 1000 387 254 27 3 64 46	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA	1000 8 9999 3 9999 159 9999 145 94 9 2 23 16	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 252	50000 12 9999 426 1000 387 254 27 3 64 46 418	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 408
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Oderty	1000 8 9999 3 9999 159 9999 145 94 9 2 23 16 155	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu	1000 8 9999 159 9999 145 94 9 2 23 16 155 1000	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 26	50000 12 9999 4 9999 426 1000 387 254 27 3 64 46 418 1000 42	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000 50
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG	1000 8 9999 3 9999 159 9999 145 94 9 2 23 16 155 1000 14 022	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 000	$\begin{array}{c} 25000\\ 11\\ 9999\\ 4\\ 9999\\ 358\\ 1000\\ 326\\ 214\\ 23\\ 3\\ 54\\ 39\\ 352\\ 1000\\ 36\\ 0002\\ \end{array}$	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 000	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000 50 0002
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT	1000 8 9999 3 9999 159 9999 145 94 9 2 23 16 155 1000 14 9999	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 9999	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 2	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000 50 9999
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED	$ \begin{array}{r} 1000 \\ 8 \\ 9999 \\ 3 \\ 9999 \\ 159 \\ 9999 \\ 145 \\ 94 \\ 9 \\ 2 \\ 23 \\ 16 \\ 155 \\ 1000 \\ 14 \\ 9999 \\ 3 \\ 4 \\ 9999 \\ 3 \\ 5 \\ 1000 \\ 14 \\ 9999 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 9999 3	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 3 -	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000 50 9999 3
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995)	$ \begin{array}{c} 1000 \\ 8 \\ 9999 \\ 3 \\ 9999 \\ 159 \\ 9999 \\ 145 \\ 94 \\ 9 \\ 2 \\ 23 \\ 16 \\ 155 \\ 1000 \\ 14 \\ 9999 \\ 3 \\ 4 \\ 00022 \end{array} $	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 9999 3 5	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 3 5 1000	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3 6 1000	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000 50 9999 3 6
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN	$ \begin{array}{c} 1000 \\ 8 \\ 9999 \\ 3 \\ 9999 \\ 159 \\ 9999 \\ 145 \\ 94 \\ 9 \\ 2 \\ 23 \\ 16 \\ 155 \\ 1000 \\ 14 \\ 9999 \\ 3 \\ 4 \\ 9999 \\ 2 \end{array} $	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 9999 3 5 1000	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 3 5 1000	50000 12 9999 4 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3 6 1000	100000 13 9999 5 9999 506 1000 460 302 32 3 76 54 498 1000 50 9999 3 6 1000
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA	1000 8 9999 3 9999 159 9999 145 94 9 2 23 16 155 1000 14 9999 3 4 9999 3	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 9999 3 5 1000 5	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 3 5 1000 6 2025	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3 6 1000 6	$\begin{array}{c} 100000\\ 13\\ 9999\\ 5\\ 9999\\ 506\\ 1000\\ 460\\ 302\\ 32\\ 32\\ 3\\ 76\\ 54\\ 498\\ 1000\\ 50\\ 9999\\ 3\\ 6\\ 1000\\ 7\\ 2001\end{array}$
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD	$ \begin{array}{c} 1000 \\ $	$ \begin{array}{r} 10000\\ 10\\ 9999\\ 4\\ 9999\\ 285\\ 1000\\ 259\\ 170\\ 18\\ 2\\ 43\\ 31\\ 279\\ 1000\\ 28\\ 9999\\ 3\\ 5\\ 1000\\ 5\\ 9999 \end{array} $	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 3 5 1000 6 9999	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3 6 1000 6 9999	$\begin{array}{c} 100000\\ 13\\ 9999\\ 5\\ 9999\\ 506\\ 1000\\ 460\\ 302\\ 32\\ 32\\ 3\\ 76\\ 54\\ 498\\ 1000\\ 50\\ 9999\\ 3\\ 6\\ 1000\\ 7\\ 9999\end{array}$
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND	$ \begin{array}{c} 1000 \\ & 8 \\ 9999 \\ & 3 \\ 9999 \\ 159 \\ 9999 \\ 145 \\ 94 \\ 9 \\ 2 \\ 23 \\ 16 \\ 155 \\ 1000 \\ 14 \\ 9999 \\ 3 \\ 4 \\ 9999 \\ 3 \\ 9999 \\ 3 \\ 9999 \\ 999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 9999 \\ 999 \\ 999 \\ 999 \\ 999 \\ 900 \\ 90$	10000 10 9999 4 9999 285 1000 259 170 18 2 43 31 279 1000 28 9999 3 5 1000 5 9999 9999 999 9999 9999 999 999 999 99 99 99 99 9 9 9 9 9 9 9	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 35 1000 6 9999 9999 9999	50000 12 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3 6 1000 6 9999 9999	$\begin{array}{c} 100000\\ 13\\ 9999\\ 5\\ 9999\\ 506\\ 1000\\ 460\\ 302\\ 32\\ 32\\ 3\\ 76\\ 54\\ 498\\ 1000\\ 50\\ 9999\\ 3\\ 6\\ 1000\\ 7\\ 9999\\ 9999\\ 9999\\ 9999\end{array}$
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND WEST TEXAS INTERMEDIATE	$ \begin{array}{c} 1000 \\ & 8 \\ 9999 \\ & 3 \\ 9999 \\ 159 \\ 9999 \\ 145 \\ 94 \\ 9 \\ 2 \\ 23 \\ 16 \\ 155 \\ 1000 \\ 14 \\ 9999 \\ 3 \\ 4 \\ 9999 \\ 3 \\ 9999 \\ 9999 \\ 9999 \\ 9995 \\ \end{array} $	$\begin{array}{c} 10000 \\ \\ 10 \\ 9999 \\ 4 \\ 9999 \\ 285 \\ 1000 \\ 259 \\ 170 \\ 18 \\ 2 \\ 43 \\ 31 \\ 279 \\ 1000 \\ 28 \\ 9999 \\ 3 \\ 5 \\ 1000 \\ 5 \\ 9999 \\ 9999 \\ 9999 \\ 1000 \end{array}$	25000 11 9999 4 9999 358 1000 326 214 23 3 54 39 352 1000 36 9999 3 5 1000 6 9999 9999 1000	$\begin{array}{c} 50000\\ 12\\ 9999\\ 4\\ 9999\\ 426\\ 1000\\ 387\\ 254\\ 27\\ 3\\ 64\\ 46\\ 418\\ 1000\\ 43\\ 9999\\ 3\\ 6\\ 1000\\ 6\\ 9999\\ 9999\\ 1000\\ \end{array}$	$\begin{array}{c} 100000\\ 13\\ 9999\\ 5\\ 9999\\ 506\\ 1000\\ 460\\ 302\\ 32\\ 32\\ 3\\ 76\\ 54\\ 498\\ 1000\\ 50\\ 9999\\ 3\\ 6\\ 1000\\ 7\\ 9999\\ 9999\\ 9999\\ 9999\\ 1000\\ \end{array}$
Oil Name \ OilVolume (bbl) ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND WEST TEXAS INTERMEDIATE ZAIRE	$ \begin{array}{c} 1000 \\ $	$\begin{array}{c} 10000\\ \\ 10\\ 9999\\ 4\\ 9999\\ 285\\ 1000\\ 259\\ 170\\ 18\\ 2\\ 43\\ 31\\ 279\\ 1000\\ 28\\ 9999\\ 3\\ 5\\ 1000\\ 5\\ 9999\\ 3\\ 5\\ 1000\\ 5\\ 9999\\ 9999\\ 1000\\ 2\end{array}$	$\begin{array}{c} 25000\\ 11\\ 9999\\ 4\\ 9999\\ 358\\ 1000\\ 326\\ 214\\ 23\\ 3\\ 54\\ 39\\ 352\\ 1000\\ 36\\ 9999\\ 3\\ 5\\ 1000\\ 36\\ 9999\\ 3\\ 5\\ 1000\\ 6\\ 9999\\ 9999\\ 9999\\ 1000\\ 2\end{array}$	50000 12 9999 4 9999 426 1000 387 254 27 3 64 46 418 1000 43 9999 3 6 1000 6 9999 9999 1000 2	$\begin{array}{c} 100000\\ 13\\ 9999\\ 5\\ 9999\\ 506\\ 1000\\ 460\\ 302\\ 32\\ 32\\ 3\\ 76\\ 54\\ 498\\ 1000\\ 50\\ 9999\\ 3\\ 6\\ 1000\\ 50\\ 9999\\ 3\\ 6\\ 1000\\ 7\\ 9999\\ 9999\\ 9999\\ 1000\\ 2\\ \end{array}$

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table D10: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 8 knots Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000

 11 Name \ OilVolume (bbl)
 1000
 10000
 25000
 50000
 100000

 ARABIAN Light (2000)
 25
 28
 29
 30
 31

 BARROW ISLAND
 1000
 1000
 1000
 1000
 1000

 CARPINTERIA
 7
 8
 9
 9
 10

 Chayvo#6
 1000
 1000
 1000
 1000
 1000

 EMPIRE
 360
 647
 816
 971
 1000

 GENESIS
 318
 571
 719
 856
 1000

 GULLFAKS
 202
 365
 460
 547
 651

 HEIDRUN
 28
 42
 52
 61
 72

 HONDO MONTEREY
 3
 4
 4
 4
 5

 IRANIAN HEAVY
 39
 68
 86
 103
 122

 LUCULA
 11
 14
 15
 16
 17

 MALONGO
 10
 100
 1000
 1000
 1000

 OSEBERG
 55
 102
 129
 154
 182

 PITAS POINT
 9999
 9999 _____ _____ 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. _____ Table D11: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP = 8 knots Wind Speed Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl _____ Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 _____

 ARABIAN Light (2000)
 30
 35
 37
 39
 41

 BARROW ISLAND
 1000
 1000
 1000
 1000
 1000

 CARPINTERIA
 9
 11
 12
 13
 13

 Chayvo#6
 1000
 1000
 1000
 1000
 1000

 EMPIRE
 491
 883
 1000
 1000
 1000

 FEDERATED (1998)
 1000
 1000
 1000
 1000

WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 3 4 5 5 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D12: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) 1000 10000 25000 Oil Name \ OilVolume (bbl) 1000 1000 1000 10000 CARPINTERIA 10 13 14 15 16 Chayvo#6 1000 1000 1000 1000 1000 GENESIS 422 758 954 1000 1000 GENESIS 422 758 954 1000 1000 GENESIS 422 758 959 1000 GENESIS 422 758 959 1000 HERINN HEAVY 72	GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND	386 281 31 5 58 22 51 1000 53 9999 7 16 1000 10 1000 1000	693 507 50 7 107 30 93 1000 97 9999 9 18 1000 13 1000 1000	873 639 62 7 134 36 118 1000 123 9999 9 19 1000 14 1000 1000	1000 761 74 7 160 41 140 1000 146 9999 10 20 1000 15 1000 1000	1000 905 88 190 48 167 1000 173 9999 10 21 1000 16 1000 1000
Particle Particle	WEST TEXAS INTERMEDIATE	1000 3	1000 4	1000 5	1000 5	1000
Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 ARABIAN Light (2000) 34 42 46 50 56 BARROW ISLAND 1000 1000 1000 1000 1000 CARPINTERIA 10 13 14 15 16 Chayvo#6 1000 1000 1000 1000 1000 FEDERATED (1998) 1000 1000 1000 1000 1000 GULLFAKS 330 595 750 893 1000 1000 GULLFAKS 330 595 950 1000 1000 1000 1000 MALONGO 355 639 805<	9999 means that the spilled oil before reaching the Cut-off visc Table D12: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 7500 cP Wind Speed = 8 knots Water Temperature = 29 oC	has natu osity du) for Di d the fo	arally di aring the spersant ollowing	spersed 1000 hc Applica Paramete	and/or e ours of s nution Pre ers	evaporated simulation.
ARABIAN Light (2000) 34 42 46 50 56 BARROW ISLAND 1000 1000 1000 1000 1000 CARPINTERIA 10 13 14 15 16 Chayvo#6 1000 1000 1000 1000 1000 EMPIRE 571 1000 1000 1000 1000 FEDERATED (1998) 1000 1000 1000 1000 1000 GENESIS 422 758 954 1000 1000 GULLFAKS 330 595 750 893 1000 HONDO MONTEREY 7 8 9 9 10 IRANIAN HEAVY 72 133 168 200 238 LUCULA 39 71 90 107 127 MALONGO 355 639 805 959 1000 Odoptu 1000 1000 1000 1000 1000 OSEBERG 50 93 117 140 166 PITAS POINT 9999 999	Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 ZAIRE 4 6 6 7 7	ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND	$\begin{array}{c} 34\\ 1000\\ 10\\ 100\\ 571\\ 1000\\ 422\\ 330\\ 32\\ 7\\ 72\\ 39\\ 355\\ 1000\\ 50\\ 9999\\ 9\\ 16\\ 1000\\ 12\\ 1000\\ 1000\\ 1000\\ \end{array}$	$\begin{array}{c} 42\\ 1000\\ 13\\ 1000\\ 1000\\ 1000\\ 758\\ 595\\ 54\\ 8\\ 133\\ 71\\ 639\\ 1000\\ 93\\ 9999\\ 10\\ 19\\ 1000\\ 16\\ 1000\\ 16\\ 1000\\ 1000\\ \end{array}$	$\begin{array}{c} 46\\ 1000\\ 14\\ 1000\\ 1000\\ 1000\\ 954\\ 750\\ 68\\ 9\\ 168\\ 90\\ 805\\ 1000\\ 117\\ 9999\\ 11\\ 20\\ 1000\\ 18\\ 1000\\ 1000\\ 1000\\ \end{array}$	$\begin{array}{c} 50\\ 1000\\ 15\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 107\\ 959\\ 1000\\ 140\\ 9999\\ 12\\ 20\\ 1000\\ 1000\\ 20\\ 1000\\ 1000\\ 1000\\ 1000\\ \end{array}$	56 1000 16 1000 1000 1000 1000 1000 238 127 1000 1000 1000 166 9999 12 21 1000 22 1000 22 1000
	WEST TEXAS INTERMEDIATE ZAIRE	1000 4	1000 6	1000 6	1000 7	1000 7

9999 means that the spilled oil has naturally dispersed and/or evaporated

before reaching the Cut-off visc	osity du	ring the	e 1000 ho	ours of	simulation.
Table D13: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knots) for Di d the fo s	spersant	Applica Paramete	ation Pr ers	edicted
Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 1	0000, 25	5000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED	$ \begin{array}{c} 12\\ 9999\\ 4\\ 1000\\ 294\\ 1000\\ 258\\ 164\\ 18\\ 2\\ 29\\ 6\\ 5\\ 1000\\ 44\\ 9999\\ 3\\ 7\end{array} $	$ \begin{array}{r} 13 \\ 9999 \\ 4 \\ 1000 \\ 526 \\ 1000 \\ 463 \\ 296 \\ 33 \\ 2 \\ 55 \\ 7 \\ 6 \\ 1000 \\ 83 \\ 9999 \\ 3 \\ 3 \\ 2 \\ 5 \\ 7 \\ 6 \\ 1000 \\ 83 \\ 9999 \\ 3 $	$ \begin{array}{r} 14 \\ 9999 \\ 5 \\ 1000 \\ 662 \\ 1000 \\ 583 \\ 373 \\ 41 \\ 2 \\ 70 \\ 8 \\ 6 \\ 1000 \\ 104 \\ 9999 \\ 4 \\ 2 \\ 70 \\ 8 \\ 6 \\ 1000 \\ 104 \\ 9999 \\ 4 \\ 2 \\ 2 \\ 7 \\ 8 \\ 6 \\ 1000 \\ 104 \\ 9999 \\ 4 \\ 2 \\ 2 \\ 7 \\ 104 \\ 2 \\ 9999 \\ 4 \\ 2 \\ 2 \\ 7 \\ 104 \\ 2 \\ 9999 \\ 4 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 2 \\ 7 \\ 8 \\ 6 \\ 1000 \\ 104 \\ 9999 \\ 4 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 2 \\ 7 \\ 3 \\ 4 \\ 2 \\ 7 \\ 3 \\ 4 \\ 2 \\ 7 \\ 104 \\ 3 \\ 999 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 5 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 5$	$ \begin{array}{r} 14 \\ 1000 \\ 5 \\ 1000 \\ 787 \\ 1000 \\ 693 \\ 443 \\ 49 \\ 2 \\ 83 \\ 8 \\ 7 \\ 1000 \\ 124 \\ 9999 \\ 4 \\ 2 \end{array} $	$ \begin{array}{r} 15\\ 1000\\ 5\\ 1000\\ 936\\ 1000\\ 824\\ 527\\ 58\\ 2\\ 98\\ 9\\ 7\\ 1000\\ 147\\ 9999\\ 4\\ 10 \end{array} $
Frudnoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND WEST TEXAS INTERMEDIATE ZAIRE	1000 4 1000 9999 1000 1	8 1000 5 1000 9999 1000 1	9 1000 5 1000 9999 1000 1	9 1000 5 1000 9999 1000 1	100 6 1000 9999 1000 1
9999 means that the spilled oil i before reaching the Cut-off visc	has natu osity du	irally di iring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table D14: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 12 knot Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 1) for Di d the fo s 0000, 25	spersant bllowing	Applica Paramete	ation Pr ers 100000	edicted
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998) GENESIS	14 9999 5 9999 401 1000 314	18 9999 6 9999 718 1000 562	20 9999 6 9999 903 1000 708	22 9999 7 9999 1000 1000 842	24 9999 7 1000 1000 1000 1000

GULLFAKS HEIDRUN HONDO MONTEREY IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND WEST TEXAS INTERMEDIATE	229 21 3 47 13 41 1000 42 9999 4 8 1000 5 1000 9999 1000	412 40 3 86 22 76 1000 79 9999 5 9 1000 7 1000 9999 1000	518 50 4 109 27 95 1000 9999 5 9 1000 8 1000 9999 1000	616 60 4 129 32 113 1000 118 9999 5 10 1000 9999 1000	$\begin{array}{c} 733\\ 71\\ 4\\ 154\\ 38\\ 135\\ 1000\\ 140\\ 9999\\ 5\\ 10\\ 1000\\ 10\\ 1000\\ 9999\\ 1000\\ \end{array}$
ZAIRE	2	2	3	3	3
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	urally di aring the	spersed 1000 ho	and/or e ours of s	evaporated simulation.
Table D15: Time Window (in Hours Using Oilmap 6.9.3 arCutoff Viscosity= 7500 cFWind Speed= 12 knotWater Temperature= 29 oCOil Spill Volume (bbl)= 1000, 1	s) for Di nd the fo cs 10000, 25	spersant llowing	Applica Paramete 00, and	100000 ł	edicted obl
Oil Name \setminus OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE	17 9999 5 9999 467	25 9999 7 9999 834	31 9999 7 9999 1000	36 9999 8 9999 1000	42 9999 8 9999 1000
FEDERATED (1998) GENESIS GULLFAKS HEIDRUN HONDO MONTEREY	1000 343 269 23	1000 615 483 44 4	1000 774 608 55 4	1000 921 724 65	1000 1000 860 77
IRANIAN HEAVY LUCULA MALONGO Odoptu OSEBERG	59 31 291 1000 40	108 58 522 1000 75	136 73 657 1000 95	162 87 782 1000 113	192 103 930 1000 134
PITAS POINT POINT ARGUELLO COMINGLED Prudhoe Bay (1995) SAKHALIN SANTA CLARA STATFJORD THEVENARD ISLAND	9999 4 8 1000 6 9999 9999	5 9 1000 10 9999 9999	6 10 1000 11 1000 9999	6 10 1000 13 1000 9999	6 11 1000 15 1000 9999
WEST TEXAS INTERMEDIATE ZAIRE	1000	1000	1000	1000	1000 4

means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

Table D16: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity= 7500 cPWind Speed= 15 knotsWater Temperature= 13 oC) for D: d the fo	ispersant ollowing :	Applica Paramete	ation Pr ers	redicted
Oil Spill Volume (bbl) = 1000, 10	0000, 25	5000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	7	8	9	9	10
BARROW ISLAND	9999	9999	9999	9999	9999
CARPINIERIA Chaumathé	2	3	1000	1000	1000
	9999	9999 171	1000 E02	1000 704	1000
	205	4/1	1000	1000	1000
FEDERAIED (1990) CENECIC	1000 1000	115	±000	£20	1000
CILLEAKS	148	265	222	395	470
HEIDRIN	15	205	333	44	52
HONDO MONTEREY	1	29	2	2	2
TRANTAN HEAVY	26	49	62	74	87
INALIAN IIIAVI I.IICIII.A	4	5	5	6	6
MALONGO	3	4	4	5	5
utgob0	1000	1000	1000	1000	1000
OSEBERG	40	74	93	111	131
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	2	2	2	2	2
Prudhoe Bay (1995)	5	6	6	6	б
SAKHALIN	9999	1000	1000	1000	1000
SANTA CLARA	2	3	3	4	4
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	1	1	1	1	1
9999 means that the spilled oil before reaching the Cut-off visco	has natu osity du	urally di uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table D17: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10) for D: d the fo s 0000, 29	ispersant ollowing	Applica Paramete	ation Pr ers 100000	redicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARARTAN T.jaht (2000)	 1∩	 1 २	 15	 17	 2∩
RARROW ISLAND	9999	9999	9999	9999	9999
CARPINTERIA	3	4	4	4	5
Chavvo#6	9999	9999	9999	9999	9999
EMPIRE	362	644	810	963	1000
FEDERATED (1998)	9999	1000	1000	1000	1000
GENESIS	283	505	634	754	897
GULLFAKS	206	368	463	551	654

HEIDRUN	18	36	45	53	63
HONDO MONTEREY	2	2	2	2	3
IRANIAN HEAVY	42	77	97	115	137
LUCULA	10	19	24	29	34
MALONGO	36	67	85	101	120
Odoptu	1000	1000	1000	1000	1000
OSEBERG	37	70	88	105	124
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	3	3	3	3	3
Prudhoe Bay (1995)	5	6	б	б	7
SAKHALIN	9999	1000	1000	1000	1000
SANTA CLARA	3	5	б	7	8
STATFJORD	9999	9999	9999	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	1	2	2	2	2
9999 means that the spilled oil i before reaching the Cut-off visc	has natı osity dı 	urally di uring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table D18: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity = 7500 cP Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1) for Di d the fo s 0000, 25	ispersant ollowing 5000, 500	Applica Paramete 00, and	tion Pr ers 100000	edicted
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	 12	 21	27	32	37
BARROW ISLAND	9999	9999	9999	9999	9999
CARPINTERIA	4	5	5	5	6
Chayvo#6	9999	9999	9999	9999	9999
EMPIRE	422	749	942	1000	1000
FEDERATED (1998)	9999	1000	1000	1000	1000
GENESIS	310	552	694	825	981
GULLFAKS	242	433	544	647	769
HEIDRIN	20	39	49	58	68
	2	3	3	3	3
TRANTAN HEAVY	52	96	121	144	171
	27	52	65	±11 77	91
MALONGO	262	469	591	704	838
Odontu	1000	1000	1000	1000	1000
OGEBERC	36	£000 67	2000	100	119
USEBERG	0000	0000	0000	0000	0000
PIIAS POINI	9999	2222	9999	9999	9999
FOINI ARGUELLO COMINGLED	<u>з</u>	3	4	4 7	4
Prudhoe Bay (1995)	5	б 1000	0 1000	1000	/
SAKHALIN	9999 -	TUUU	TUUU	TOOO	TUUU
SANTA CLARA	5	8	10	11	13
STATFJORD	9999	9999	9999	9999	9999
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE ZAIRE	1000 2	1000 2	1000 2	1000 2	1000 2
9999 means that the spilled oil is before reaching the Cut-off visc	has natu osity du	urally di uring the	spersed 1000 ho	and/or ours of	evaporated simulation.

Table D19: Time Window (in Hours Using Oilmap 6.9.3 arCutoff Viscosity= 10000 cWind Speed= 8 knotsWater Temperature= 13 oCOil Spill Volume (bbl)= 1000, 1	s) for Di nd the fo P s	spersant llowing	Applica Paramete	tion Prers	redicted
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	29	32	34	36	37
BARROW ISLAND	1000	1000	1000	1000	1000
CARPINTERIA	8	10	10	11	11
Chayvo#6	1000	1000	1000	1000	1000
EMPIRE	740	1000	1000	1000	1000
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	560	1000	1000	1000	1000
GULLFAKS	406	730	920	1000	1000
HEIDRUN	40	71	89	106	126
HONDO MONTEREY	4	5	5	5	6
IRANIAN HEAVY	68	125	157	187	222
LUCULA	13	16	17	18	19
MALONGO	11	13	14	15	16
OSEBERG	105	192	242	288	343
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	6	7	8	8	8
Prudhoe Bay (1995)	17	19	20	21	22
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	8	10	11	12	13
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	1000	1000	1000	1000	1000
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	2	2	3	3	3
9999 means that the spilled oil	has natu	urally di	spersed	and/or	evaporated
before reaching the Cut-off visc	cosity du	uring the	1000 hc	ours of	simulation.
Table D20: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 10000 c Wind Speed = 8 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 1	s) for Di nd the fo P .0000, 25	spersant llowing	Applica Paramete	tion Prers	redicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	36	45	51	58	66
BARROW ISLAND	1000	1000	1000	1000	1000
CARPINTERIA	10	13	14	14	15
Chayvo#6	1000	1000	1000	1000	1000
EMPIRE	989	1000	1000	1000	1000
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	668	1000	1000	1000	1000
GULLFAKS	554	994	1000	1000	1000
HEIDRUN	46	84	106	126	150

HONDO MONTEREY	б	8	8	9	9
IRANIAN HEAVY	104	190	239	285	339
LUCULA	26	40	50	59	70
MALONGO	74	136	172	204	243
Odoptu	1000	1000	1000	1000	1000
OSEBERG	98	179	226	269	320
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	8	10	11	11	11
Prudhoe Bay (1995)	17	20	21	22	23
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	11	15	17	19	20
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	1000	1000	1000	1000	1000
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	4	5	5	6	6
9999 means that the spilled oil h before reaching the Cut-off visco	nas natu Dsity du	urally di uring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table D21: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cF Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 10	for D: 1 the fo	ispersant ollowing 5000, 500	Applica Paramete 00, and	ntion Pr ers 100000	redicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	45	66	83	98	116
BARROW ISLAND	1000	1000	1000	1000	1000
CARPINTERIA	12	15	16	17	18
Chayvo#6	1000	1000	1000	1000	1000
EMPIRE	1000	1000	1000	1000	1000
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	723	1000	1000	1000	1000
GULLFAKS	643	1000	1000	1000	1000
HEIDRUN	49	91	115	136	162
HONDO MONTEREY	8	10	10	11	11
IRANIAN HEAVY	129	235	296	352	419
LUCULA	56	103	130	155	184
MALONGO	514	922	1000	1000	1000
Odoptu	1000	1000	1000	1000	1000
OSEBERG	92	170	214	255	303
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	10	12	12	13	13
Prudhoe Bay (1995)	18	21	22	23	24
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	14	20	23	26	29
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	1000	1000	1000	1000	1000
WEST TEXAS INTERMEDIATE 7atrf	1000 ج	1000 7	1000 7	1000 7	1000 8
	J	1	/	1	U

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

Table D22: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cP Wind Speed = 12 knots Water Temperature = 13 oC	for D the f	ispersant ollowing E	Applic Paramet	ation Pr ers	redicted
Oil Spill Volume (bbl) = 1000, 10	000, 2	5000, 5000	0, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000) BARROW ISLAND CARPINTERIA	 14 9999 4	16 9999 5	17 9999 5	18 1000 6	20 1000 6
Chayvo#6 EMPIRE FEDERATED (1998) GENESIS	1000 604 1000 455	1000 1000 1000 814	1000 1000 1000 1000	1000 1000 1000 1000	1000 1000 1000 1000
GULLFAKS HEIDRUN HONDO MONTEREY	331 30 2	592 57 3	745 72 3	887 86 3	1000 100 101 3
IRANIAN HEAVY LUCULA MALONGO	55 7 5	101 8 7	127 9 7	151 10 8	179 11 8
OGOPLU OSEBERG PITAS POINT POINT ARGUELLO COMINGLED	85 9999 3	156 9999 4	1000 196 9999 4	233 9999 4	277 9999 4
Prudhoe Bay (1995) SAKHALIN SANTA CLARA	8 1000 4	9 1000 5	10 1000 6	10 1000 6	11 1000 7
STATFJORD THEVENARD ISLAND WEST TEXAS INTERMEDIATE ZAIRE	1000 9999 1000 1	1000 9999 1000 2	1000 9999 1000 2	1000 9999 1000 2	1000 9999 1000 2
9999 means that the spilled oil h before reaching the Cut-off visco	as nat sity d	urally dis uring the	spersed 1000 h	and/or ours of	evaporated simulation.
Table D23: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cP Wind Speed = 12 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10	for D the f	ispersant ollowing F 5000, 5000	Applic Paramet	ation Pr ers 100000	redicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000) BARROW ISLAND CARPINTERIA Chayvo#6 EMPIRE FEDERATED (1998)	19 9999 5 9999 808 1000	30 9999 7 9999 1000 1000	37 9999 7 9999 1000 1000	44 9999 8 9999 1000 1000	52 9999 8 1000 1000 1000
GENESIS GULLFAKS HEIDRUN HONDO MONTEREY	544 452 36 3	971 807 68 4	1000 1000 86 4	1000 1000 102 4	1000 1000 121 4

IRANIAN HEAVY	84	154	194	230	274
LUCULA	17	32	40	47	56
MALONGO	60	110	139	165	196
Odoptu	1000	1000	1000	1000	1000
OSEBERG	79	145	183	217	258
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	4	5	5	5	б
Prudhoe Bay (1995)	8	10	11	11	12
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	6	9	10	12	14
STATFJORD	1000	1000	1000	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	2	3	3	3	3
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	urally di uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table D24: Time Window (in Hours Using Oilmap 6.9.3 ar Cutoff Viscosity = 10000 o Wind Speed = 12 knot	s) for D: nd the fo cP cs	ispersant ollowing	Applica Paramete	ation Pr ers	redicted
Water remperature = 2900 Oil Spill Volume (bbl) = 1000	10000 25	5000 500	100 and	100000	bbl
				100000	
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	28	 53	67	 79	94
BARROW ISLAND	9999	9999	9999	9999	9999
CARPINTERIA	б	8	9	9	10
Chayvo#6	9999	9999	9999	9999	9999
EMPIRE	929	1000	1000	1000	1000
FEDERATED (1998)	1000	1000	1000	1000	1000
GENESIS	588	1000	1000	1000	1000
GULLFAKS	524	936	1000	1000	1000
HEIDRUN	39	73	93	110	131
HONDO MONTEREY	4	5	5	5	5
IRANIAN HEAVY	105	190	239	285	338
LUCULA	45	83	105	125	148
MALONGO	421	753	948	1000	1000
Odoptu	1000	1000	1000	1000	1000
OSEBERG	75	137	173	206	245
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	5	б	б	б	7
Prudhoe Bay (1995)	9	10	11	12	12
SAKHALIN	1000	1000	1000	1000	1000
SANTA CLARA	8	13	16	19	23
STATFJORD	9999	9999	1000	1000	1000
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	3	4	4	4	4
9999 means that the spilled oil	has natu	urally di	.spersed	and/or	evaporated

before reaching the Cut-off viscosity during the 1000 hours of simulation.

011 Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl 011 Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 ARABIAN Light (2000) 9 11 12 13 15 BARROW ISLAND 9999 9999 9999 9999 9999 9999 OCAPPINTERIA 3 3 4 4 4 ChayvoH6 9999 9999 1000 1000 1000 1000 EMPIRE 545 967 1000 1000 1000 1000 GENESIS 410 730 918 1000 1000 GULLFAKS 298 530 666 792 942 HEIDRUN 27 51 64 76 90 HONDO MONTEREY 2 2 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSEBEG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT AROUELLO COMINGLED 2 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 7 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVEMARD ISLAND 9999 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 THEVEMARD ISLAND 9999 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 EATRE 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated Defore reaching the Cut-off viscosity during the 1000 hours of simulation. TARDERIA (200) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 9999 WIND Speed = 15 knots Water Temperature = 23 0C Oil Name \ OilVolume (bbl) 1000 1000 1000 1000 1000 FEDERARD 15LAND 9999 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 7 ARABIAN Light (200) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 9999 9999 9	Table D25: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity= 10000 cWind Speed= 15 knotWater Temperature= 13 oC) for Di d the fo P s	ispersant ollowing	Applica Paramete	ation Pr ers	redicted
0il Name \ Oilvolume (bbl) 1000 25000 50000 100000 ARABIAN Light (2000) 9 11 12 13 15 BARROW ISLAND 9999 1000	Oil Spill Volume (bbl) = 1000, 1	0000, 29	5000, 500	00, and	100000	bbl
ARABIAN Light (2000) 9 11 12 13 15 BARROW ISLAND 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 1000 1	Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
HARKOW ISLAND 9999 9999 9999 9999 9999 9999 CARPINTERIA 3 3 4 4 4 Chayvo#6 9999 9999 1000 1000 1000 EMPIRE 545 967 1000 1000 1000 1000 GULEFAS 298 530 666 792 942 HEIDRUN 27 51 64 76 90 HONDO MONTEREY 2 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSEBEG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 7 SARHALIN 9999 1000 1000 1000 1000 THEVENARD 1995 5 6 7 7 7 7 SARHALIN 9999 1000 1000 1000 1000 1000 THEVENARD 15LARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 1000 THEVENARD 15LARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 1000 THEVENARD 15LARD 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. TAIDE 25 00 5000 50000, and 100000 bb1 	ARABIAN Light (2000)	9	11	12	13	15
CARPINIERIA 3 3 3 4 4 4 Chayowi 6 9999 999 1000 1000 1000 FEDERATED (1998) 1000 1000 1000 GENESIS 410 730 918 1000 1000 GULLFAKS 298 530 666 792 942 HEIDRN 27 51 64 76 90 HONDO MONTEREY 2 2 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 7 SARHALIN 9999 1000 1000 1000 1000 INOU SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 WEST TEXAS INTEREDIATE 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTEREDIATE 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. 	BARROW ISLAND	9999	9999	9999	9999	9999
EMBRE 545 9579 1000 1000 1000 FEDERATED (1998) 1000 1000 1000 1000 1000 GENRSIS 410 730 918 1000 1000 1000 GENRSIS 410 730 918 1000 1000 1000 HEIDRUN 27 51 64 76 90 HONDO MONTEREY 2 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSENEG 76 139 175 208 246 PTTAS POINT 9999 9999 9999 9999 9999 POINT ARGUELO COMINGLED 2 3 3 3 3	CARPINIERIA Charmate	0000	0000	4 1000	1000	4
Internet Display <	CHAYVO#0 FMDIRF	545	9999	1000	1000	1000
GENERAL 1000 1000 1000 GULLFARS 298 530 666 792 942 HEIDRUN 27 51 64 76 90 HONDO MONTEREY 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 3 3 3 3 SAKHALIN 9999 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 LINCURAR <	FEDERATED (1998)	1000	1000	1000	1000	1000
GULLFAKS 298 530 666 792 942 HEIDRUN 27 51 64 76 90 HONDO MONTEREY 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 6 Odoptu 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PTTAS POINT 9999 9999 9999 9999 9999 9999 POINT ARGUELLO COMINCLED 2 3 3 3 3 3 Bruchoe Bay (1995) 5 6 7 7 7 SAKHALIN 9999 9999 9999 9999 9999 WHO Sold 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999	GENESIS	410	730	918	1000	1000
HEIDRUN 27 51 64 76 90 HONDO MONTEREY 2 <td>GULLFAKS</td> <td>298</td> <td>530</td> <td>666</td> <td>792</td> <td>942</td>	GULLFAKS	298	530	666	792	942
HONDO MONTEREY 2 2 2 2 2 2 IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 3 3 3 Prudhoe Bay (195) 5 6 7 7 7 7 SAKHALIN 9999 1000 1000 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATTJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 THEVENARD TSLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 hours of simulation. ZAIRE 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. 	HEIDRUN	27	51	64	76	90
IRANIAN HEAVY 49 90 113 135 160 LUCULA 4 6 7 7 8 MALONGO 4 5 5 6 Odoptu 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 999 999 9999 <td>HONDO MONTEREY</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td>	HONDO MONTEREY	2	2	2	2	2
LUCULA 4 6 7 7 8 MALONGO 4 5 5 5 6 Odoptu 1000 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT ARGUELO COMINGLED 2 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 7 SAKHALIN 9999 1000 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 CAIRE 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC 0il Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl 	IRANIAN HEAVY	49	90	113	135	160
MALONGO 4 5 5 6 Odoptu 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT ARGUELLO COMINCLED 2 3 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 SAKHALIN 9999 1000 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 MEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP 1000 10000 10000 10000 10000 10000	LUCULA	4	6	7	7	8
Odoptu 1000 1000 1000 1000 1000 OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 SARHALIN 9999 1000 1000 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Cutoff Viscosity = 1000	MALONGO	4	5	5	5	б
OSEBERG 76 139 175 208 246 PITAS POINT 9999 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 </td <td>Odoptu</td> <td>1000</td> <td>1000</td> <td>1000</td> <td>1000</td> <td>1000</td>	Odoptu	1000	1000	1000	1000	1000
PITAS POINT 9999 9999 9999 9999 POINT ARGUELLO COMINGLED 2 3 3 3 Prudhoe Bay (1995) 5 6 7 7 SAKHALIN 9999 1000 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.	OSEBERG	76	139	175	208	246
POINT ARGUELLO COMINGLED 2 3 3 3 3 Prudhoe Bay (1995) 5 6 7 7 7 SAKHALIN 9999 1000 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.	PITAS POINT	9999	9999	9999	9999	9999
Prudhoe Bay (1995) 5 6 7 7 7 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 Chayvo#6 9999 999	POINT ARGUELLO COMINGLED	2	3	3	3	3
SARHALIN 9999 1000 1000 1000 SANTA CLARA 3 4 4 4 5 STATFJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 ZARE 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.	Prudhoe Bay (1995)	5	б	7	7	7
SANTA CLARA 3 4 4 4 5 STATEJORD 1000 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl 	SAKHALIN	9999	1000	1000	1000	1000
STATEJORD 1000 1000 1000 1000 THEVENARD ISLAND 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) 1000 10000 25000 50000 Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 Chayvo#6 9999 9999 9999 9999 9999 9999 9999	SANTA CLARA	3	4	4	4	5
THEVENARD ISLAND 9999 9999 9999 9999 9999 9999 9999 WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 1 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) 1000 10000 25000 50000 100000 ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 Chayvo#6 9999 9999 9999 9999 9999 EMEIRE 732 1000 1000 1000 GENESIS 491 872 1000 1000 GEN	STATFJORD	1000	1000	1000	1000	1000
WEST TEXAS INTERMEDIATE 1000 1000 1000 1000 ZAIRE 1 1 1 1 9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 MEMPIRE 732 1000 1000 1000 1000 1000 1000 FEDERATED (1998) 9999 1000 1000 1000 1000 1000 1000 GENESIS 491 872 1000 1000 1000 1000 1000 GULLFAKS 407 723 908 1000 1000 1000 1000 HONDO MONTEREY 2 3 3 3 IRANIAN HEAVY 76 137 173 205 244 24 24	THEVENARD ISLAND	9999	9999	9999	9999	9999
ParkeIIIIII9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following ParametersCutoff Viscosity= 10000 cPWind Speed= 15 knotsWater Temperature= 23 oCOil Spill Volume (bbl)= 1000, 10000, 25000, 50000, and 100000 bblOil Name \ OilVolume (bbl)100010000Oil Name \ OilVolume (bbl)100010000ARABIAN Light (2000)142633Agage (Chayvo#6 999999999999Okapvo#6 999999999999Oil FEDERATED (1998)99991000MUD010001000GENESIS491872HONDO MONTEREY233IRANIAN HEAVY76137173205244	WEST TEXAS INTERMEDIATE	1000 1	1000	1000 1	1000	1000
9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation. Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl 		±	± 		±	±
Table D26: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 10000 cP Wind Speed = 15 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl Oil Name \ OilVolume (bbl) ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 Chayvo#6 9999 9999 9999 9999 9999 EMPIRE 732 1000 1000 1000 GENESIS 491 872 1000 1000 GULLFAKS 407 723 908 1000 HONDO MONTEREY 2 3 3 3 IRANIAN HEAVY 76 137 173 205 244	9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du 	rally di ring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Oil Name \ OilVolume (bbl) 1000 10000 25000 50000 100000 ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 Chayvo#6 9999 9999 9999 9999 EMPIRE 732 1000 1000 1000 FEDERATED (1998) 9999 1000 1000 1000 GENESIS 491 872 1000 1000 1000 HEIDRUN 32 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244	Table D26: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 c Wind Speed = 15 knot Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 1) for D d the fo P s 0000, 25	ispersant bllowing 5000, 500	Applica Paramete 00, and	ation Pr ers 100000	redicted bbl
ARABIAN Light (2000) 14 26 33 39 46 BARROW ISLAND 9999 9999 9999 9999 9999 CARPINTERIA 3 5 5 6 Chayvo#6 9999 9999 9999 9999 EMPIRE 732 1000 1000 1000 FEDERATED (1998) 9999 1000 1000 1000 GENESIS 491 872 1000 1000 1000 GULLFAKS 407 723 908 1000 1000 HEIDRUN 32 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244	Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
BARROW ISLAND999999999999999999999999CARPINTERIA35556Chayvo#699999999999999999999EMPIRE732100010001000FEDERATED (1998)9999100010001000GENESIS49187210001000GULLFAKS4077239081000HEIDRUN32617691107HONDO MONTEREY23333IRANIAN HEAVY76137173205244	ARABIAN Light (2000)	14	26	33	39	46
CARPINTERIA35556Chayvo#699999999999999999999EMPIRE732100010001000FEDERATED (1998)9999100010001000GENESIS49187210001000GULLFAKS4077239081000HEIDRUN32617691HONDO MONTEREY2333IRANIAN HEAVY76137173205	BARROW ISLAND	9999	9999	9999	9999	9999
Chayvoffo99999999999999999999EMPIRE7321000100010001000FEDERATED (1998)99991000100010001000GENESIS491872100010001000GULLFAKS40772390810001000HEIDRUN32617691107HONDO MONTEREY23333IRANIAN HEAVY76137173205244		د د	5	5	5	6
EMPTRE 732 1000 1000 1000 1000 FEDERATED (1998) 9999 1000 1000 1000 1000 GENESIS 491 872 1000 1000 1000 GULLFAKS 407 723 908 1000 1000 HEIDRUN 32 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244	Chayvo#6	9999 770	3999	1000	1000	9999
GENERIED (1998) 9999 1000 1000 1000 GENESIS 491 872 1000 1000 1000 GULLFAKS 407 723 908 1000 1000 HEIDRUN 32 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244	נארעדער האנגעריינייע געריייעריייערייייעריייייעריייייייייעריייייי	132	1000	1000	1000	1000
GULLFAKS 407 723 908 1000 1000 HEIDRUN 32 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244	FEDERALED (1998) CENECIC	2229 201	1000 270	1000	1000	1000
HEIDRUN 32 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244		ユシエ 407	012 702	000 1000	1000	1000
HEIDRON 52 61 76 91 107 HONDO MONTEREY 2 3 3 3 3 IRANIAN HEAVY 76 137 173 205 244	AAAJITTAA Miidulla	-107 20	د ک ۲	900 76	1000 Q1	107
IRANIAN HEAVY 76 137 173 205 244	HONDO MONTEREV	24	2	70 2	ک ۲	±07
	IRANIAN HEAVY	76	137	173	205	244

LUCULA	14	28	36	42	50
MALONGO	54	98	124	147	175
Odoptu	1000	1000	1000	1000	1000
OSEBERG	71	130	163	194	230
PITAS POINT	9999	9999	9999	9999	9999
POINT ARGUELLO COMINGLED	3	3	3	4	4
Prudhoe Bay (1995)	6	7	5	8	8
Sakhai.in	9999	1000	1000	1000	1000
	1	1000	000£	10	12
	0000	0000	وموم	1000	1000
TUEVENAD TSIAND	0000	0000	9999	2000	1000
MECT TEVAC INTEDMENTATE	1000	1000	1000	1000	1000
WEDI IEKAS INIERMEDIAIE ZAIRE	2000	2000	2000	2000	2000
9999 means that the spilled oil 1	has nati	urally di	spersed	and/or	evaporated
before reaching the Cut-off visco	osity dı	aring the	1000 ho	ours of	simulation.
Table D27: Time Window (in Hours) for Di	Ispersant	Applica	ation Pr	redicted
Using Oilmap 6.9.3 and	d the ic	llowing	Paramete	ers	
Cutoff Viscosity = 10000 c	P				
Wind Speed = 15 knot	S				
Water Temperature = 29 oC					
Oil Spill Volume (bbl) = 1000, 1	0000, 25	5000, 500	00, and	100000	ldd
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
ARABIAN Light (2000)	 25	 47	 60	 71	
BARROW ISLAND	9999	9999	9999	9999	9999
CARDINTERIA	ررر 4	6	5555	עעע ד	7 7
Chauce#6	0000	9999	9999	9999	9999
Endy VORU FMDIPF	842	1000	1000	1000	1000
FFDFRATFD (1998)	9999	1000	1000	1000	1000
CENESIS	532	944	1000	1000	1000
CULLEAKS	473	839	1000	1000	1000
	25	66	1000	0001	116
UONDO MONTEDEV	2	2	3	20	110
TDANTAN UFAUV	01	170	212	254	201
	94 40	170	213	111	301 122
	270	670	94	1000	1000
MALONGO	1000	1000	1000	1000	1000
	1000	100	154	102	210
USEBERG DIMA DOINT	1 0	123	154	183	218
PIIAS POINI	9999	9999	9999	9999	9999
POINI ARGUELLO COMINGLED	3	4	4	4	4
Prudnoe Bay (1995)	6	/	8	8	9
SAKHALIN	9999	TOOO	TUOO	T000	TOOO
SANTA CLARA	6		14	17	20
STATFJORD	9999	9999	9999	9999	9999
THEVENARD ISLAND	9999	9999	9999	9999	9999
WEST TEXAS INTERMEDIATE	1000	1000	1000	1000	1000
ZAIRE	2	2	3	3	3
9999 means that the spilled oil	has natı	urally di	spersed	and/or	evaporated
before reaching the Cut-off visc	osity du	aring the	1000 hc	ours of	simulation.

Appendix D

Detailed descriptions of the methods used to measure physical and chemical properties/process of the 24 new oil samples listed in Table 4 and related results.

1. Description of Oil Characteristics

1.1 Bulk Properties of Crude Oil

Physical properties of the almost limitless variety of crude oils are generally correlated with aspects of chemical composition. Some of these key properties for determining fate and behaviour of oil and petroleum products in the environment are viscosity, density, flash point, pour point, distillation, and interfacial tension. The properties for the oils and comparison to common fuels are listed in Table B.1.

Property	Units	Gasoline	Diesel	Light	Heavy	Intermediate	Bunker C	Crude Oil
T 7 • • 4	D	0.7	2	Crude	Clude	Fuel OII	10.000 /	20.000 t
Viscosity	m.Pa∙s	0.5	2	5 to 50	50 to	1,000 to	10,000 to	20,000 to
					50,000	15,000	50,000	100,000
Density	g/mL	0.72	0.84	0.78 to 0.88	0.88 to 1.00	0.94 to 0.99	0.96 to 1.04	0.95 to 1.0
Interfacial Tension	mN/m	27	27	10 to 30	15 to 30	25 to 30	25 to 35	N/A
Flash Point	ĉ	-35	55 to 65	-30 to 30	-30 to 60	80 to 100	>100	>80
Pour Point	c	N/A	-60	-55 to 0	-30 to 30	-10 to 10	5 to 20	>50

Table B1Typical Oil and Fuel Properties at 15°C

1.1.1 Viscosity

Viscosity is the internal resistance to flow in a liquid. The lower the viscosity, the more readily the liquid flows. The viscosity of an oil is a function of its composition, therefore crude oil has a wide range of viscosities. For example, the viscosity of Federated oil from Alberta is 5 mPa·s, while a Sockeye oil from California is 45 mPa·s at 15° C. In general, the greater the fraction of saturates and aromatics and the lower the amount of asphaltenes and resins, the lower the viscosity. As oil weathers, the evaporation of the lighter components leads to increased viscosity.

As with other physical properties, viscosity is affected by temperature, with higher temperatures reducing the viscosity. For most oils, the viscosity varies approximately exponentially with temperature. Oils that flow readily at high temperature can become a slow-moving, viscous mass at low temperature. In terms of oil spill cleanup, viscous oils do not spread rapidly, do not penetrate soils readily, and affect the ability of pumps and skimmers to handle the oil. The dynamic viscosity of an oil can be measured by a viscometer using a variety of standard cup-and-spindle sensors at controlled temperatures.

1.1.2 Density

Density is the mass of a unit volume of oil, usually expressed as grams per millilitre (g/mL) or, equivalently, as kilograms per cubic metre (kg/m^3) . It is used by the petroleum industry to grade light or heavy crude oils. Density is also important because it indicates whether a particular oil will

float or sink in water. As the density of water is 1.0 g/mL at 15°C and the density of most oils range from 0.70 to 0.99 g/mL, oils typically float on water. As the density of seawater is 1.03 g/mL, even heavier oils will usually float on it. Only a few bitumens have densities greater than water at higher temperatures. However, as water has a maximum density at 4°C and oils will continue to contract as temperature decreases, heavier oils, including heavy crudes and residual fuel oils, may sink in freezing waters. Furthermore, as density increases as the light ends of the oil evaporate off, a heavily-weathered oil, long after a spill event may sink, or be prone to overwashing, where the fresh oil, immediately after the spill, may have floated readily.

1.1.3 Interfacial Tension

Interfacial tensions are the net stresses at the boundaries between different substances. They are expressed as the increased energy per unit area (relative to the bulk materials), or equivalently as force per unit length. The SI units for interfacial tension are milliNewtons per meter (mN/m). Surface tension is thought to be related to the final size of a slick. The lower interfacial tension of oil with water, the greater the extent of spreading and thinner terminal thickness of oil. In actual practice, the interfacial tension alone does not appear account for spreading behaviour; environmental effects and other effects seem to be dominant.

1.1.4 Flash Point

The flash point of an oil is the temperature at which the vapour over the liquid can be ignited. A liquid is considered to be flammable if its flash point is less than 60°C. Flash point is an important consideration for the safety of spill cleanup operations. Gasoline and other light fuels can ignite under most ambient conditions and therefore are a serious flammability hazard when spilled. Many freshly spilled crude oils also have low flash points until the lighter components have evaporated or dispersed. On the other hand, Bunker C and heavy crude oils generally are not flammable when spilled.

1.1.5 Pour Point

The pour point of an oil is the temperature at which no flow of the oil is visible over a period of five seconds from a standard measuring vessel. The pour point of crude oils range from -60°C to 30°C. Lighter oils with low viscosities generally have lower pour points. As oils are made up of hundreds of compounds, some of which may still be liquid at the pour point, the pour point is not the temperature at which an oil will no longer flow. Due to factors such as high wax content, that may crystallize and form a "crust", the pour point does not represent the point of solidification; the bulk oil may continue to be fluid and can evaporate to a significant degree.

1.2 Chemical Composition

Crude oil is an extremely complex and variable mixture of hydrocarbons. The fate and behaviour of crude oils are strongly influenced by their chemistries. Oil hydrocarbons range from small, volatile compounds to very large, non-volatile compounds. The oil hydrocarbons are characterized and classified by their structures, including saturates, aromatics, and the polar compounds comprising the sub-groups resins and asphaltenes.

1.2.1 Saturates

Saturates are a group of hydrocarbons composed of only carbon and hydrogen with no double bonds or aromaticity. They are said to be "saturated" with hydrogen. They may by straight-chain (normal), branched or cyclic. Typically, however, the group of "saturates" refers to the aliphatics generally including alkanes, as well as a small amount of alkenes. The lighter saturates, those less than $\sim C_{18}$,

make up the components of an oil most prone to weathering. The larger saturates, generally those heavier than C_{18} , are termed waxes.

1.2.2 Aromatics

Aromatics are cyclic organic compounds that are stabilized by a delocalized π -electron system. They include such compounds as BTEX (benzene, toluene, ethylbenze and the three xylene isomers), polycyclic aromatic hydrocarbons (PAHs, such as naphthalene), and some heterocyclic aromatics such as the dibenzothiophenes. Benzene and its alkylated derivatives can constitute several percent in crude oils. PAHs and their alkylated derivatives can also make up as much as a percent in crude oils.

1.2.3 Polar Compounds: Asphaltenes and Resins

Polar compounds are those with distinct regions of positive and negative charge, as a result of bonding with atoms such as oxygen, sulphur, or nitrogen. The polarity derived from the charge that the compounds carry result in behaviour that, under some circumstances, is different from non-polar compounds. This is especially significant for the behaviour of the oil on water, as the polar compounds interact with water, which is itself a polar molecule. In the petroleum industry, the smaller polar compounds are called "resins" and the larger polar compounds are called "asphaltenes", so named because they often compose the largest percentage of the asphalt commonly used for road construction.

The resins include hetero-substituted aromatics (typically oxygen- or nitrogen-containing PAHs), acids, ketones, alcohols, monoaromatic steroids, and sulphur compounds. Because of their polarity, these compounds are more soluble in polar solvents than the non-polar compounds, such as waxes and aromatics, of similar molecular weight. Sulphur is often a very abundant element in petroleum and may be found in many forms, such as hydrogen sulphide, mercaptans, thiophenes, and dibenzothiophenes.

Asphaltenes are a complex mixture of very large organic compounds which precipitate from oils and bitumen by natural processes. Despite a considerable volume of relevant analytical data, very little is known about the molecular configuration of asphaltenes. From X-ray diffraction patterns of solid asphaltenes, it has been inferred that crystallographic organization can be represented by an asphaltene "macromolecule", in which clusters of partly ordered aromatic matter carrying aliphatic chains of varying length are associated in micelles or particles. If abundant in oil, they have a significant effect on oil behaviour.

1.3 Effects of Evaporative Weathering on Oil Properties

Long experience has shown that the physical characteristics and chemical fingerprint of a crude oil can change greatly over the course of a spill incident. These changes have a profound effect on the fate, behaviour, and effects of an oil in the environment. The oil may transmute to other states, evaporating, dissolving in water, or condensing to a semi-solid residue, each new state having unique behaviours and eventual fates. In order to aid in the estimation and prediction of spill behaviour, it is useful to know not only the characteristics of the fresh crude oil, but also those of oils at different stages of "weathering" in the environment. Previous work has shown that immediately after a spill, the dominant process of oil weathering is evaporation. The following discussion will focus on the effects of evaporative weathering on changes of oil physical properties and chemical compositions.

1.3.1 Weathering

When oil is spilled, on either water or land, a number of transformation processes operate on the oil. In general, there are two types of transformation processes: the first is weathering, and the second is a group of processes (including spreading, transport, sinking, and over-washing) related to the movement of oil in the environment. Weathering and movement processes overlap, with weathering strongly influencing how oil moves in the environment and vice versa. These processes depend very much on the type of oil spilled and the weather conditions during and after the spill. Thoroughly understanding the behaviour of spilled oil in the environment is extremely important for development of oil spill models. Today's sophisticated spill models combine the latest information on oil fate and behaviour with computer technology to predict where the oil will go, what state it will be in, and when it will get there.

"Weathering" refers to the wide variety of physical, chemical and biological processes of a spilled oil in the environment. The weathering processes include evaporation, emulsification, natural dispersion, dissolution, microbial degradation, photooxidation, and other processes such as sedimentation, and oil-suspended particle interactions.

Weathering has a very significant effect on most bulk oil properties and relative proportions of chemical compounds. Unlike the chemical compositions, however, where environmental parameters only affect the rate and type of weathering, bulk properties of the oil are also highly variable depending on the physical conditions. Most important of these is temperature, but other factors such as pressure and the materials with which the oil is in contact also play a role.

As an oil loses mass and changes in composition several general trends in physical property changes can be observed:

- Density increases approximately linearly with increasing weathering. Density decreases approximately linearly with temperature.
- Viscosity increases with increasing weathering, but a simple functional relationship is not easy to develop. Viscosity increases approximately exponentially with decreasing temperature.
- Surface and interfacial tensions tend to increase slightly with increasing weathering.

2 Summary of Quality Assurance and Quality Control (QA/QC) Plan

2.1 Quality Assurance Statement

As a federal government science and technology institute it has been one of our fundamental operating principles that the Oil Research Laboratory of the Emergencies Science and Technology Section (ESTS) of Environment Canada should set an example by adopting the most stringent standards possible for our work. A critical part of our official Mission Statement is to provide "specialized sampling and analytical expertise and services of the highest standards". Quality management has always been a fundamental element of our programs. We continue to refine our quality procedures and protocols whenever new information and processes become available. Our quality program is certified through SCC-CALA, the Standards Council of Canada/Canadian Analytical Laboratories Association. Participation in the SCC-CALA accreditation program provides us a systematic, internationally recognized quality system. A quality web site has been created which provides staff with easy and fast access to all current and approved quality system documentation. The Emergencies Science and Technology Section QA/QC system includes the following:

- Laboratory profile, mission and organization;
- Quality system;

- Personnel;
- Methodology;
- Service, equipment and supplies;
- Facilities;
- Sample management;
- Data management;
- Work load management.

2.2 Quality Assurance in Chemical Composition Methods

The Oil Research Laboratory at Emergencies Science and Technology Division presently performs the following chemical measurements for crude oils, oil products, and oil-spill-related environmental samples: total petroleum hydrocarbons (TPH), total saturates, total aromatics, *n*-alkane distribution, oil-characteristic alkylated PAH homologous series, and other EPA priority PAHs, BTEX and alkyl-benzene compounds, biomarker triterpanes and steranes. The methods of *"Analytical Method for Identification of BTEX Compounds and Alkyl Benzenes and Direct Determination of BTEX and (BTEX + C3-benzenes) in Oils and Refined Products by Gas Chromatography/Mass Spectrometry" and "Analytical Method for the Determination of Individual <i>n-Alkanes and Isoprenoids and Total Petroleum Hydrocarbons (TPH), Polycyclic Aromatic Hydrocarbons (PAHs), and Biomarker Triterpanes and Steranes in Oils, Petroleum Products, and Oil-spill-related Environmental Samples"* have been approved by SCC and CALA.

Chromatographic techniques are used for analyses of oil chemical compositions. In addition to a formal quality control program, a number of specific measures have been added to the processing of oil samples to monitor quality control and to aid in assessment of the data quality with respect to the project objectives. An important part of this is the evaluation of specific QC samples for accuracy, precision, and potential contamination. Before sample analysis, a five point initial calibration composed of the target oil components (for example, n-alkanes) are established, demonstrating the linear range of the analyses. Check standards at the mid-point of the established calibration curves are run before and after each analytical batch of samples (7-10 samples) to validate the integrity of the initial calibration. The method of internal standards using the average relative response factors (RRF) generated from the linear initial calibration is used to quantify the target oil compounds. The RRF stability is a key factor in maintaining the quality of the analysis. Mass discrimination, that is the reduced response of high molecular weight components, must be carefully monitored. If there is a problem with mass discrimination, it can be minimized by trimming the capillary column and by replacing the quartz liner in the injection port. All samples and quality control samples are spiked with appropriate surrogate compounds to measure individual sample matrix effects associated with sample preparation and analysis. Method detection limits (MDL) studies of target compounds are performed according to the procedure described in the EPA protocol titled "Definition and Procedure for the Determination of the Method Detection Limit" (Code of Federal Regulations 40 CFR Part 136). Control charts of standards are prepared and monitored. Validations of analytes in the control chart should be no more than 25% from historical average.

2.3 Quality Assurance in Physical Property Methods

The ESTS Oil Research Laboratory performed the following physical property measurements on crude oils and oil products: boiling point distribution, density, dispersibility, evaporation equation determination, flash point, hydrocarbon group analysis, sulphur content, surface and interfacial tensions, viscosity, and water content. Many of these procedures are ASTM standard methods, and must meet the reproducibility and repeatability of the appropriate method. Others, however, are

methods developed in-house and control systems are defined for them in the standard operating procedures (SOP) for those methods. Table B.2 details the measurement procedures.

Boiling Point Distribution	Commercial Package, conforming to ASTM D2887
Density	ASTM D5002
Dispersibility	ASTM F2059
Evaporation Equation	In-house method
Flash Point	ASTM D7094
Hydrocarbon Groups	In-house method
Pour Point	ASTM D5853
Sulphur Content	ASTM D4294
Interfacial Tension	Pendant drop method
Viscosity	In-house method
Water Content	ASTM D4377

 Table B2: Measurement Procedures

Pour point is considered semi-quantitative. For this method, although the range of variability in the results is closely monitored, no calibrations, blanks or check standards are preformed. Note that while pour point is measured according to ASTM D5853, no calibration or check standard is specified by that method. While the ASTM D5853 reproducibility requirements are achieved, no further controls for pour point are used in the Emergencies Science and Technology Section Oil Research Laboratory.

Several physical property methods rely on a single instrument and involve a simple measurement with little sample manipulation. These measurements include: density, the development of the evaporation equation, flash point, sulphur content, surface and interfacial tensions, viscosity and water content. For all of these methods, the instruments are calibrated as directed by the manufacturer or the appropriate ASTM method with chemical and/or gravimetric standards as appropriate. In addition, instrumental and operator performance is monitored by periodic measurement of check standards. A log is kept for each instrument, in which calibration and check standard measurements are recorded. The check standard measurements are monitored closely. Failure of the check standard measurement to fall within the smaller of either a historical 95% confidence limit or the appropriate ASTM required repeatability results in an investigation of the procedure. This investigation includes recalibration and measurement of the check standard until the desired precision and accuracy is reached.

Finally, the last class of physical property methods involve significant sample preparation, followed by a measurement by gas chromatography or gravimetry. These methods include: boiling point distribution, dispersibility, and hydrocarbon group analysis. The boiling point distribution is measured using a commercial package provided by Agilent Technologies. The quality control for this procedure involves the minimization of the variance of a check sample chromatogram. The dispersibility test is defined by ASTM F2059 and uses the calibration and standard procedure

defined by that method. The hydrocarbon group analysis is carried out under the same protocols as described for the other chromatographic techniques previously.

3 Materials and Instruments

3.1 Instruments

The major instruments used to determine the oil properties are the following:

- Oil Weathering System (Buchi Rotovapor R-220)
- GC-FID (Agilent 6890 with 7683 autosampler)
- X-ray Spectrofluorometer (Spectro Titan)
- Viscometer (ThermoHaake VT550, RheoStress RS300)
- Density meter (Anton Paar DMA 5000)
- Flash point analyzer (Grabner MiniFlash FLP and MiniFlash FLPL)
- Karl Fischer automatic titrator (Metrohm Titrino KF703)
- Pendant drop image analyzer (KSV CAM 200)

3.2 Materials

Solvents were distilled-in-glass quality and used without further purification. Calibration standards were from certified sources, traceable to the National Institute of Standards and Technology (NIST) where available. Lab grade purified water was generated from a dedicated reverse osmosis filtration system.

4 Methods

4.1 Evaporation (Weathering) of Oils

A laboratory oil-weathering technique by rotary evaporation is used by ESTS to artificially weather oils. The oil-weathering system consists of a Buchi Rotovapor R-220 with a 10 L flask, an integral water bath (capacity 14 L), a Brinkmann Lauda 3200 circulating bath and a Millipore vacuum pump. The bath temperature can be set from 20°C to 100°C \pm 0.5°C. The rotation speed can be continuously varied from 10 to 135 rpm.

The following evaporation procedure is used to evaporate oils:

- (1) The water bath of distilled water is brought to a temperature of 80° C.
- (2) The empty rotary flask is weighed, approximately 2 L of oil added and the flask reweighed.
- (3) The flask is mounted on the apparatus and the flask partially immersed in the water bath and spun at full speed, 135 rpm. A constant flow of air of 13 L/min through the flask is maintained by the vacuum pump.
- (4) At set intervals, the sample flask is removed and weighed. Periodically, a sample of about 1 g is removed for chemical analysis.
- (5) When evaporation is stopped (i.e. overnight and weekends), the flask is sealed and stored at 5°C. After removal and prior to restarting, the flask is weighed to ensure that no evaporation has occurred during storage.

The initial weathering period is 48 hours, a duration chosen to simulate a highly weathered state of an oil in the environment.

This technique allows for precise control of the evaporative weight loss for a target oil, and can be directly correlated to compositional changes of the target weathered oil. The weathering percentage

is calculated by the equation below, where, % weathering is the percentage evaporative mass-loss over the 48 hour period, m_i is the initial mass of the flask and oil, m_f is the final mass of the flask and oil, and m_e is the mass of the empty flask. A graph of % weathering as a function of time is plotted using the interval weighing data.

% weathering = $(m_i - m_f) / (m_i - m_e) \times 100\%$,

4.2 Equation for Predicting Evaporation

The evaporation kinetics, reported as percentage mass loss as a function of time, are determined for each oil by measuring the weight loss over time from a shallow dish (Fingas, 2001). Approximately 20 g of oil is weighed into a 139mm petri dish. Measurements are conducted in a climate-controlled chamber at 15 °C. Temperatures are monitored by a digital thermometer. The oil weight is recorded by an electronic Mettler Toledo balance (model Excellence XS2002S) accurate to 0.01 g at every minute and stored on a computer. All evaporation experiments were run for a minimum of five days.

The data series showing the time versus weight loss were then analyzed for best curve fit using a variety of known predefined behavior functions provided in the SigmaPlot software. The results reveal the following simple equation describe best the variations of the evaporation mass loss with time measured observed at 15 $^{\circ}$ C for all the ten oils:

where: %Ev is weight-percent evaporated, t is time (in minutes), and A, B and C are constants fitted to the measured data.

Equations proposed by Fingas (2001) were considered in this study. Both the logarithmic and power law equations he proposed did not perform better than the proposed equation above. In addition, the proposed equation gives more realistic values when the time approaches zero than in the Fingas logarithmic model. The equation of the curve fit to the evaporation data is listed as part of the oil properties.

4.3 Method for Determining Density

The density of an oil sample, in g/mL, is measured using an Anton Parr DMA 5000 digital density meter following ASTM method D 5002. Measurements are performed at 0.0°C and 15.0°C. The instrument is checked daily using air and Type 1 water at each temperature. Method and operator performance is monitored by periodic measurement of a NIST traceable standard. A method control chart is kept of these measurements. Densities are corrected for sample viscosity, as specified by the instrument manufacturer. Measurements are repeated in triplicate and the mean reported as the density.

4.4 Method for Determining Dynamic Viscosity

The dynamic viscosity of an oil sample, in mPa.s or cP, is measured using a ThermoHaake VT550 viscometer or the ThermoHaake RheoStress RS300 rheometer. Measurements are made at 0.0°C and 15.0°C. The instrument is calibrated with ASTM-traceable viscosity standards at 15.0°C. Check standards are run daily. Control charts are kept for each set of sensors.

For oils between 0 and 50,000 mPa.s, the VT550 is selected with either the NV or the SV1 sensor system. The NV sensor is used for oils with viscosities below 100 mPa.s, the SV1 sensor for oils

above 70 mPa.s. The sample is allowed to thermally equilibrate until a stable reading is observed for several minutes by the temperature monitor.

The rotational shear rate is set at 500/s for the NV sensor, the SV1 sensor at 100/s. The sensors are ramped up to speed over a period of one minute. The viscosity is measured for a subsequent five minutes, calculated once per second. The viscosity reported is the average over the constant-shear rate interval. Triplicate measurements are averaged and the mean reported as the apparent dynamic viscosity.

For samples above 50,000 mPA.s, the RheoStress RS300 rheometer is employed with a 35 mm cone-plate sensor system in controlled rate mode. Sufficient sample is loaded onto the base plate and raised to the working gap with the cone sensor. The sample is then trimmed to a square edge for measurement. At 0.0 °C, a cover is put in place to enable thermal equilibration to be reached. The shear rate is assigned at the high end of the working range of the sensor, which is typically 0.1 s⁻¹ for viscosity values in the millions, and 1 s⁻¹ for lower viscosities.

4.5 Pendant/Rising Drop Determination of Interfacial Tensions

The interfacial tension is determined by calculation with comparison to the shape of a drop hanging from the end of a needle. A camera is used to photograph a picture of a drop hanging from a needle. The digital picture is analyzed by software, then a parameterized curve shape is developed, from which the surface tension is calculated (Song 1996).

In the case of a liquid-liquid interfacial tension, the surrounding fluid must be clear, so that a good image may be generated. For oil in water this requires that the oil be suspended in water. However, as most oils are less dense than water, the rising oil bubble, rather than the pendant drop must be measured. In this case, the image is inverted in software and, instead of the force of gravity, the buoyant force, determined as the fraction of gravity based on the specific gravity of the oil is used:

$$b = g (\rho_{water} - \rho_{oil}) / \rho_{water}$$

where *b* is the buoyant force, *g* is the acceleration due to gravity, ρ_{water} is the density of water at the measurement temperature and ρ_{oil} is the oil density.

4.6 Method for Determining Sulphur Content

The mass fraction of atomic sulphur in oil is determined using X-ray fluorescence closely following ASTM method D 4294.

The XRF spectrometer is calibrated using a duplicate series of six NIST sulphur-in-oil standards. A linear calibration chart is prepared from the twelve standard measurements. Single element standards are used to calibrate and remove chlorine interference in the sulphur signal. Instrument and operator performance is monitored by a triplicate measurement of a check standard consisting of a known crude oil. Check standard measurements are tracked on a quality control chart.

Approximately 3 g of oil is weighed out into 31mm HDPE XRF cells, sealed with 0.25 mm thick mylar film. The sealed cells are measured on a Spectro Titan XRF spectrometer. Each unknown is measured in triplicate and the mean reported as the final value.

4.7 Method for Determining Water Content

The mass fraction of water in oil or an emulsion, expressed as a percentage, is determined by Karl Fischer titration using a Metrohm KF Titrino 703 automatic titrator. The method used closely follows ASTM method D 4377. The Karl Fischer reaction is an amine-catalyzed reduction of water in a methanolic solution:

$$\begin{split} CH_3OH + SO_2 + RN &\rightarrow [RNH] + [SO_3CH_3] - \\ 2RN + H_2O + I_2 + [RNH]SO_3CH_3 &\rightarrow [RNH] + [SO_4CH_3] - + 2 [RNH] + I - \end{split}$$

The amine, RN, or mixture of amines is proprietary to each manufacturer.

A sample of oil or emulsion in the range of 50 to 100 mg is accurately weighed and introduced to the reaction vessel of the autotitrator. A solution of 1:1:2 (by volume) mixture of methanol:chloroform:toluene is used as a working fluid. The autotitrator is loaded with 5-mg/mL, pyridine-free Karl Fischer reagent from a certified supplier. Samples are repeated in triplicate and the mean reported as the water percentage. The titrant value is calibrated by a series of five replicate titrations of 25 μ L of distilled, deionized water.

4.8 Method for Determining Flash Point

The flash point of the oils were determined by ASTM method D 7094 using one of two method apparatus, depending on the flash point range. Flash points below 60°C were performed on a MiniFlash FLPL by Grabner Instruments. A flow of cooling water is required to reach temperatures as low as -5°C. Flash points above 60°C were performed on a MiniFlash FLP. In both cases, a 2 mL sample is loaded into the apparatus, moved into position to form a sealed chamber, and sequentially tested for the flash point in one degree increments by automated heating and spark ignition. The flash point is reached when the vapours in the chamber combust, as detected by a spike in the internal pressure.

Samples are repeated in triplicate and the mean reported, with an allowable deviation of 2° for individual tests. Flash points below -10 ° c or above 200 ° c are confirmed in duplicate and reported as outside of the measurable temperature range.

Reagent-grade hexanol is periodically measured by both instruments as a check on instrument and operator performance. A control chart is kept of the results.

4.9 Method for Determining Pour Point

The pour point of an oil sample, in degrees Celsius, is determined by following ASTM method D 5853. Two aliquots of sample are poured into test jars (as described by ASTM D 5853), stopped and fixed with ASTM 5C or 6C thermometers, as appropriate.

Pour point is determined, as described in ASTM D5853, by tilting the test jar to the horizontal and observing the flow of the sample past the fill mark on the jar. If no flow is visible after 5 seconds, the pour point is considered to have been reached. When the pour point is reached, 3°C is added to the temperature recorded. The average of the two measurements is reported as the pour point.

4.10 Method for the Evaluation of the Stability of Emulsions Formed from Saline and Oils and Oil Products

Water-in-oil emulsions are formed in 2.2-litre fluorinated vessels on an end-over-end rotary mixer (Associated Design, VA) at a nominal rotational speed of 50 RPM (Fingas and Fieldhouse, 2009).

- (1) A 600-mL volume of salt water (3.3% w/v NaCl) is dispensed into a mixing vessel.
- (2) A 30-mL aliquot of oil is added to each vessel for a 1:20 oil:water ratio.
- (3) The vessels are sealed and placed in the rotary mixer such that the cap of each mixing vessel follows, rather than leads, the direction of rotation. The rotary mixer is kept in a temperature controlled cold room at 15° C.
- (4) The vessels and their contents are allowed to stand for approximately 4 hours before rotation begins, then mixed continuously for 12 hours.
- (5) At the conclusion of the mixing time, the emulsions are collected from the vessels for measurement of water content, viscosity and the complex modulus. The emulsions are stored in the cold room at 15°C for one week, then observed for changes in physical appearance.

Water content for the emulsions is measured using method 5.7 Method for Determining Water Content. The complex modulus is measured on an RS300 RheoStress rheometer using a 35 mm plate-plate geometry. A stress sweep is performed in the range 100 to 10,000 mPa at a frequency of 1 Hz. The complex modulus value in the linear viscoelastic region is reported. The emulsions are monitored over the week for changes and measurements repeated to assess changes and assign the stability class.

4.11 Method for Determining the Chemical Dispersibility of an Oil or Oil Product

This method determines the relative ranking of effectiveness for the dispersibility of an oil sample by the surfactant Corexit 9500. This method follows closely ASTM F2059, modified to include enhanced quantification methods and performed at 15°C at the request of MMS.

A pre-mix of 1:25 dispersant:oil is made up by adding oil to 100mg of dispersant to make approximately 2.5mL of pre-mix in total. The ratio must be within 0.5% of the target.

Six side-spout Erlenmeyer flasks, as described in ASTM F2059, containing 120 mL of 33‰ brine are placed into an incubator-shaker. An aliquot of 100 μ L of premix is added to the surface of the liquid in each flask, care being taken to not disturb the bulk brine. The flasks are mechanically mixed on an oscillating table with 2.5 cm orbit at a rotation speed of 150 rpm for exactly 20 minutes. The solutions are allowed to settle for 10 minutes.

Using the side spout, 30 mL of the oil-in-water phase is transferred to a 250 mL separatory funnel, first clearing the spout by draining 3 mL of liquid. The 30 mL aliquot is extracted with 3 volumes of 5 mL of 70:30 (v:v) dichloromethane:pentane, collected into a 25-mL graduated cylinder and made up to a 15 mL volume.

Sample analysis is performed using a gas chromatograph with flame ionization detector (GC-FID) to determine the oil concentration in the solvent. A 900 μ L aliquot of the 15-mL solvent extract is combined with 100 μ L of internal standard (200 ppm of 5- α -androstane in hexane) in a 2 mL injection vial and shaken well. Total petroleum hydrocarbon content of the sample is quantified by the internal standard method using the following equation:

 $TPH = A_{TPH} / A_{IS} / RRF^*C_{IS}^*67$

TPH =total petroleum hydrocarbon in μg , A_{TPH} =the total baseline-corrected peak area,

where:

$A_{IS} =$	the internal standard peak area,
$C_{IS} =$	concentration of the internal standard in the sample in μg
RRF =	the average relative response factor for a series of alkane standards
	covering the analytical range, determined separately

The method is calibrated using a series of six oil-in-solvent mixtures prepared from the premix for each oil. The volume of premix dispersant/oil solution for each standard is selected to represent a percentage efficiency of the dispersed oil, 100 μ L representing 100% effectiveness. The volume of the premix is carefully applied to the surface of the brine in a shaker flask and shaken exactly as one of the samples, as described previously. Upon removal from the shaker and following the settling time however, the entire contents of the flask is transferred to the separatory funnel. This is extracted with 3 volumes of 20 mL of 70:30 (v:v) dichloromethane to pentane and made up to 60 mL. Chromatographic quantitation is then performed using the same formula as for the samples above.

The %Effectiveness for the calibration set is plotted as a function of TPH to determine the linear equation. The TPH values for the samples are then substituted to determine the effectiveness of the individual samples, and averaged to provide the overall effectiveness value for the oil and dispersant.

4.12 Hydrocarbon Groups

4.12.1 Saturate and Aromatic Chromatographic Determination

This method is adapted and simplified from a previously published method (Wang 1994) for crude oil and petroleum product determination.

An 80 mg/mL solution of oil is prepared in hexane. A 3.0 g column of activated silica-gel is prepared, topped with 0.5 cm anhydrous sodium sulphate. The column is conditioned with 20 mL of hexane.

An amount of 200 μ L of the oil solution, approximately 16 mg of oil, is quantitatively transferred onto the column using an additional 3 mL of hexane to complete the transfer. The eluent is also discarded. Just prior to exposure of the sodium sulphate to the air, 12 mL of hexane is added to the column. The eluent is labeled fraction "F1". F1 is considered to contain all the saturates, including the waxy components in the oil.

The column is then eluted with 15 mL of 1:1 (volume:volume) benzene/hexane or dichloromethane/hexane. The eluent is collected and labeled fraction "F2". F2 is considered to contain the aromatic compounds in the oil, including the BTEX compounds, other akylated benzene species, PAHs and the alkylated PAH homologues.

Half of fractions F1 and F2 are combined. This composite fraction is labeled "F3". This fraction is used for analysis of total petroleum hydrocarbons (TPH).

All the three fractions are concentrated under dry nitrogen. The fractions are then spiked with the internal standard, 100 μL of 200 ppm 5- α -androstane, and made up with hexane to 1 mL .

The analysis for total petroleum hydrocarbons and saturates is performed by high resolution capillary GC/FID using the following conditions:

Column: 30 m x 0.32 mm ID HP DB5-HT fused silica column

	(0.10 μm film thickness);
Carrier Gas:	Helium, 3.0 mL/min, constant flow;
Injection volume:	1.0 μL;
Injector temperature:	290 °C;
Detector temperature:	325 °C;
Oven program:	40 °C for 2 minutes, followed by 25 °C/minute to a
	final temperature of 340 °C, then held for 15 minutes. The total run
	time is 29 minutes.

The concentration of petroleum hydrocarbons are calculated using the following equation: $Concentration (\mu g/g) = A_{S} * W_{IS} * D / A_{IS} * RRF * W_{S}$

where:

$A_{S} =$	Detector response for the analyte in the sample, units in area count
$A_{IS} =$	Detector response for the internal standard in the sample, same units
$W_{IS} =$	Mass in mg of internal standard added to the sample
$W_S =$	Mass of the sample in g
D =	Dilution factor of the solvent

To calculate the concentration of hydrocarbons in each fraction, the area response attributed to the petroleum hydrocarbons must be determined. This area includes all of the resolved peaks and unresolved "hump". This total area must be adjusted to remove the area response of the internal standards and GC column bleed (baseline)

Column bleed is the reproducible baseline shift that occurs during the oven cycle of the GC. To determine this area, a hexane blank injection is analyzed before and after every 10 samples to determine the baseline response. The integration baseline is then set at a stable reproducible point just before the solvent peak. This baseline area for the blank run is subtracted from the actual sample run.

The total areas of the chromatograms of F1, F2 and F3 are obtained by integration of all peaks, corrected by removal of the baseline and internal standard. The F3 fraction is used to calculate the total petroleum hydrocarbon (TPH) values for the oil (Wang 1994). The F1 and F2 fractions are used to calculate the total saturate (TSH) and total aromatic (TAH) contents. Note that TPH should be within 10% of TSH + TAH.

As not all the oil is passed through the GC column, a simple sum of TSH, TAH, resin and asphaltene contents will not sum to 100%. This missing portion of the oil, which does not precipitate or get analyzed by the GC method is approximated by proportionally dividing it into the saturate and aromatic portions. Thus the saturate content of the oil is comuted using:

Likewise, the aromatic content is computed using:

For crude oils or products with high water content, it is necessary to dry the sample prior to the gravimetric determination of the hydrocarbon group contents. If a Karl-Fischer water content determination can be made, then the composition of the original product can be reported, adjusted for the observed water content. If not, the values should be reported as for dried product only.

4.12.2 Resin and Asphaltene Thin-layer Chromatography Determination

A standard method is not available for this technique, however it has the advantages over previously used gravimetric methods by being much faster, requiring less oil and being more reproducible. It has the disadvantage of requiring a sophisticated instrument, a thin-layer chromatograph (TLC) with a flame ionization detector (FID).

A thin-layer chromatograph which quantifies analystes developed on silica gel-coated glass rods, such as the Iatroscan Mark 6, is necessary for this method. An aliquot of sample dissolved in dichloromethane at a concentration of 1 mg/mL is spotted at a point, the origin, near one end of a rod closest to the base of a rod rack in which the rods are mounted. The rods are then developed by immersion of the base into a series of solvents to separate the four hydrocarbon groups as the solvents travel up the rods by capillary action. The origin points must remain above the liquid surface, but the base end of the rods must be immersed sufficiently to allow solvent travel.

The first solvent used is n-hexane to develop the saturates. Toluene develops the aromatics. Finally, a 95%-dichloromethane, 5%-methanol mixture is used to develop the resins. The asphaltenes remain at the spotting origin. The hydrocarbon groups which are not quantified by this method, the saturates and aromatics, are removed by pyrolysis. A known standard is then applied to the chromarod and then quantified using a flame ionization detector (FID) and an internal standard. A sample of 1-octadecanol at 1 mg/mL concentration is a convenient internal standard. This is spotted on the rod just prior to measurement, on the part of the rod pyrolyzed to remove the saturate and aromatic fractions.

The development of the chemicals on the rods critically depends on the conditions. The rods must be developed in tanks to control the vapours in the atmosphere. Also, temperature and humidity must remain as consistent as possible to achieve reproducible results. When drying after each development, the rods must rest in a controlled humidity chamber.

Resin and asphaltene contents are determined as follows:

 $\% Resin = C_{IS} * V_{IS} * A_R / A_{IS}$

% Asphaltene = $C_{IS}*V_{IS}*A_A/A_{IS}$

Where :

- $C_{IS} =$ Internal standard concentration
- $V_{IS} =$ Internal standard volume
- A_{IS} = Internal standard area from TLC integration
- A_R = Resin area from TLC integration
- A_A = Asphaltene area from TLC integration

Note that while saturate and aromatic fractions are separated by the development process, and could, in principle be measured by TLC-FID, the drying process between development stages requires significant evaporation. This level of evaporation is of sufficient magnitude to remove most of the volatile components, which includes a large fraction of both saturates and aromatics (but not the resins or asphaltenes). For this reason this TLC-FID method is not suitable for saturate or aromatic determination.

4.13 Calculation of Total Petroleum Hydrocarbon Distributions

The quantification of total petroleum hydrocarbon (TPH) in the oil samples, the proportionality of saturates and aromatics, as well as the proportionality of TPH segments defined by *n*-alkane carbon number ranges, are determined from the same chromatograms and by the same calculations as described above for the determination of saturate and aromatic hydrocarbon groups. TPH determination is a mass quantification, while the remainder are relative percentages. The distribution of hydrocarbons within the four fractions defined by the C₈, C₁₀, C₁₆ and C₃₄ n-alkane elution times are calculated by integrating the resolved and unresolved hydrocarbon response after removing the baseline and internal standard peak. The hydrocarbon range from C₈ – C₁₀ is generally the volatile components, C₁₀ to C₁₆ the semi-volatiles, C₁₆ to C₃₄ are the non-volatiles, while the remaining fraction is high-boiling residue.

4.14 Method for Determining the Simulated Boiling Point Distribution

This analysis is performed on an Analytical Controls SIMDIS analyser, a modified Hewlett-Packard 5890 series II gas chromatograph. The system has a custom cryogenically-cooled inlet and a high-temperature column. Reference and calibration mixtures are run according to Analytical Controls specifications.

Oil samples are made up as 2% (m/m) solutions in carbon disulphide. An aliquot of 0.5 μ L is injected into the inlet. The inlet temperature program runs from 40 °C to 430 °C a 70 °C per minute. The oven temperature program runs from -20 °C for 1 min, ramp at 10 °C/min to 430 °C, and hold for 3 minutes at this final temperature. The flame ionization detector operates at 430 °C.

The Ultra Scientific Software outputs the boiling point temperature at which a cumulative fixed mass percentage of sample has been removed under this simulation.

4.15 Measurement of Wax Content

4.15.1 Analytical Procedure

The analytical procedure used to measure wax content is based on the gravimetric method (precipitation). The analysis involves the removal of asphaltenes using precipitation and filtration from *n*-pentane. The de-asphaltened oil (maltenes) is then dissolved in a 1:1 mixture of Dichloromethane (DCM) and Methyl Ethyl Ketone (MEK) and chilled overnight at -30 C. On the next day, the precipitated waxes are filtered from the cold solution, air-dried, and weighed. The following steps explain the details of the procedure.

- 1. A 5 mL sample of crude oil is mixed with 2mL of Toluene, swirled manually and left for 2 minutes.
- 2. 125mL of Pentane are added to the oil solution and shaken for 1 hour at 100 RPM at Room Temperature.
- 3. The precipitated asphaltenes are collected on a tared 0.45-μm membrane filter by vacuum filtration.
- 4. The filtered asphaltenes are left in a desiccator overnight to allow evaporation of any remaining solvent. Asphaltene content can be determined gravimetrically by dividing the mass difference of the filter by the initial mass of the oil sample.
- 5. The eluent (maltenes) is transferred to a tared 500mL boiling flask and the n-pentane removed by rotary evaporation at 30 °C.
- 6. A minimum amount of dichloromethane (DCM) is used to rinse the filtration container and ensure that all of the maltenes were transferred to the boiling flask. Rotary evaporation is used to remove the DCM at 40 °C.
- 7. The maltenes are stored loosely covered in the fume hood overnight.
- 8. The de-asphaltened oil is transferred to a 250 mL Teflon Erlenmeyer flask using 50mL of a 1:1 volume mixture of DCM and methyl ethyl ketone (MEK). The flask is stoppered and put on the shaker for 30 minutes.
- 9. The sample is then stored in a freezer at -30 °C overnight, along with additional filtration apparatus and solvent, including a Buchner funnel, filtering flask, and a squeeze bottle of DCM/MEKOn the following day, a tared Whatman GF/C 5.5cm glass microfiber filter is placed in the chilled Buchner filtration apparatus. Working as quickly as possible to minimize warming, the precipitated wax crystals are filtered from the oil solution and rinsed with chilled solvent.
- 10. The Teflon flask is rinsed with chilled DCM/MEK and poured onto the filter to ensure complete transfer of the waxes. Aspiration continues for five minutes following filtration to dry the filter. A final weight of the waxes from the oil sample is obtained by mass difference of the filter.
- 11. The percentage wax content is determined gravimetrically by dividing the mass of wax by the initial mass of the oil sample.

4.15.2 Quality Control

- 1. A duplicate test is performed for each sample and the wax content is calculated as the average of the weight percents of precipitated wax to original oil weight. A third measurement was conducted to validate the results of the first two measurements when relatively large difference was obtained from the first measurements.
- 2. Each laboratory that uses this method is required to operate a formal quality control program. The minimum requirements of this program consist of an initial demonstration of laboratory capability and the analysis of reference standards as a continuing check on performance.
- 3. The laboratory is required to maintain performance records to define the quality of data that is generated. Ongoing performance checks must be compared with established performance criteria to determine if the results of analyses are within accuracy and precision limits expected of the method.
- 4. Before performing any analysis, the analyst must demonstrate the ability to generate acceptable accuracy and precision with this method. This involves performing a test measuring the wax content of the check standard, Western Sweet Blend crude oil, to determine both the precision and accuracy of the operator and method.

5 References

ASTM F 2059, American Society for Testing and Materials (ASTM), "Standard test method for Laboratory Oil Spill Dispersant Effectiveness Using The Swirling Flask", in *Annual Books of ASTM Standards* Section 11 - Water and Environmental Technology, Volume 11.04, ASTM, West Conshohocken, PA, 2009.

ASTM D 2887, American Society for Testing and Materials (ASTM), "Standard test method for boiling range distribution of petroleum fractions by gas chromatography", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.02, ASTM, West Conshohocken, PA, 2009.

ASTM D 4294, American Society for Testing and Materials (ASTM), "Standard test method for sulfur in petroleum products by energy-dispersive x-ray fluorescence spectroscopy", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.02, ASTM, West Conshohocken, PA, 2009.

ASTM D 4377, American Society for Testing and Materials (ASTM), "Standard test method for water in crude oils by potentiometric Karl Fischer titration", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.02, ASTM, West Conshohocken, PA, 2009.

ASTM D 5002, American Society for Testing and Materials (ASTM), "Standard test method for density and relative density of crude oils by digital density analyzer", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.03, ASTM, West Conshohocken, PA, 2009.

ASTM D 5853, American Society for Testing and Materials (ASTM), "Standard Test Method for Pour Point of Crude Oils" in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.03, ASTM, West Conshohocken, PA, 2009.

ASTM D 7094, American Society for Testing and Materials (ASTM), "Standard Test Method for Flash Point by Modified Continuously Closed Tester", in *Annual Books of ASTM Standards* Section 5 – Petroleum Products and Lubricants (IV), Volume 05.04, ASTM, West Conshohocken, PA, 2009.

Fingas, M., "Studies on the Evaporation of Crude Oil and Petroleum Products: I. The Relationship Between Evaporation Rate and Time", *J. Haz. Mat.*, 56:227-236, 1997.

Fingas, M., and B. Fieldhouse, "Studies on crude oil and petroleum product emulsions: water resolution and rheology", *J. Colloids Surf. A.* 333, 67–81, 2009.

Song, B., and J. Springer, "Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing", *Journal of Colloid and Interface Science*, 184 (1):64-76, 1996.

Wang, Z. D., M. Fingas and K. Li, "Fractionation of ASMB Oil, Identification and Quantitation of Aliphatic Aromatic and Biomarker Compounds by GC/FID and GC/MSD (Parts I and II)", *Journal of Chromatographic Science*, Vol. 32, pp 361-382, 1994.

6 Oil Properties of Select Oils

The tables below summarize the properties of the 24 new U.S. outer continental shelf oils analyzed as part of this project.

Table B3 Oil Properties of Alaska North Slope

	0	%Evaporative	Mass Loss
		0.0%	30.67%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -1.01 + 0.92 Ln(t+0	.99)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (2.47 + 0.045T) ln(t)	
Density (g/mL)	0°C	0.8870	0.9439
	15ºC	0.8754	0.9316
Dynamic Viscosity (mPa-s)	0°C	30.2	4.80E+3
	15ºC	15.4	546
Surface Tension (mN/m)	0°C	28.4	NM*
	15ºC	27.9	30.1
Interfacial Tension - Oil/Water (mN/m)	0°C	21.7	NM*
	15ºC	21.2	20.7
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	21.1	NM*
	15ºC	20.1	20.5
Sulfur Content (%w/w)		0.91	1.28
Water Content (%w/w)		0.1	0
Flash Point (ºC)		<-5	136
Pour Point (°C)		-15	6
Emulsion Formation	Visual Stability	Unstable	Meso
	Complex Modulus (Pa)	NM	108
	Water Content (%w/w)	NM	75.3
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	67%	11%
Hydrocarbon Groups (%w/w)	Saturates	58.7	50.1
	Aromatics	31.3	26.5
	Resins	7.6	20.2
	Asphaltenes	2.4	3.2
Wax Content (%w/w)		4.9	
GC-TPH Distributions	Total GC-TPH (mg/g)	511	515
	GC-Saturates/GC-TPH (%) 65.2	65.4
	GC-Aromatics/GC-TPH (%	5) 34.8	34.6
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	12.3	1.3
(%w/w)	$nC_{10} < to \le nC_{16}$	28.1	23.3
	$nC_{16} < to \le nC_{34}$	50.5	65.5
	<i>n</i> C ₃₄ +	9.1	10.0
Note: NM - Not Measured *Too viscous			

%Evaporative Mass Loss	
 0.0%	30.67%

-

	% Mass	°C	°C
Boiling Point Distribution	IBP	34	216
(Cumulative Weight Fraction)	5	86	247
	10	111	264
	15	133	278
	20	151	293
	25	174	305
	30	200	318
	35	224	332
	40	247	346
	45	267	361
	50	287	375
	55	308	390
	60	329	404
	65	351	419
	70	372	433
	75	394	447
	80	417	462
	85	439	479
	90	462	497
	95	488	515
	99.5	512	535

Note: IBP - Initial Boiling Point

Table B4 Oil Properties of Alaska North Slope weathered 20.86%

		0.0%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	6Ev = -4.75 + 0.76 Ln(t+56	52.1)
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 % equations	ώEv = (-0.57 + 0.045T) ln(t)
Density (g/mL)	0°C	0.9269
	15ºC	0.9159
Dynamic Viscosity (mPa-s)	0°C	561
	15ºC	133
Surface Tension (mN/m)	0°C	31.9
	15ºC	29.9
Interfacial Tension - Oil/Water (mN/m)	0°C	25.5
	15ºC	22.7
Interfacial Tension - Oil/Brine, 33‰ NaCI (mN/m)	0°C	24.5
	15ºC	22.3
Sulfur Content (%w/w)		1.13
Water Content (%w/w)		0.1
Flash Point (ºC)		90
Pour Point (°C)		0
Emulsion Formation Vi	isual Stability	Meso
Co	complex Modulus (Pa)	17
W	Vater Content (%w/w)	75.5
Chemical Dispersibility by Swirling Flask Test Co	orexit 9500	49%
Hydrocarbon Groups (%w/w) Sa	aturates	56.6
Ar	romatics	26.3
Re	lesins	13.7
As	sphaltenes	3.4
Wax Content (%w/w)		7.3
GC-TPH Distributions To	otal GC-TPH (mg/g)	639
G	C-Saturates/GC-TPH (%)	68.3
G	C-Aromatics/GC-TPH (%)	31.7
GC-TPH in Ranges: nC	$C_8 \le to \le nC_{10}$	4.2
(%w/w) nC	$C_{10} < to \le nC_{16}$	28.3
nC	$C_{16} < to \le nC_{34}$	55.6
nC	C ₃₄ +	11.9

	%Evaporative Mass Loss
	0.0%
% Mass	°C

Boiling Point Distribution	IBP	150
(Cumulative Weight Fraction)	5	191
	10	215
	15	233
	20	251
	25	266
	30	282
	35	299
	40	314
	45	330
	50	345
	55	362
	60	379
	65	396
	70	413
	75	431
	80	448
	85	466
	90	486
	95	507
	99.5	528

Note: IBP - Initial Boiling Point

%Evaporative Mass Loss 0.0% 31.35% Equation for predicting evaporation (mass loss) based on best fit of the data to the three-%Ev = -1.27 + 0.94 Ln(t+2.08)parameter logarithmic function Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 $%Ev = (2.18 + 0.045T) \ln(t)$ equations Density (g/mL) 0°C 0.8849 0.9582 15⁰C 0.8738 0.9454 0°C Dynamic Viscosity (mPa-s) 62.6 2.23E+4 15⁰C 21.6 2.07E+3 Surface Tension (mN/m) 0°C 29.3 NM* 15°C 27.4 NM* 0°C Interfacial Tension - Oil/Water (mN/m) 24.9 NM* 15⁰C 26.7 NM* Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m) 0°C 25.7 NM* 15⁰C 27.0 NM* Sulfur Content (%w/w) 2.70 3.71 Water Content (%w/w) 0.1 0 Flash Point (°C) <0 142 Pour Point (°C) <-24 0 **Emulsion Formation** Visual Stability Stable Stable Complex Modulus (Pa) 1062 975 75.8 Water Content (%w/w) 85.5 Chemical Dispersibility by Swirling Flask Test Corexit 9500 53% <10% Hydrocarbon Groups (%w/w) Saturates 49.7 47.2 Aromatics 36.5 29.1 Resins 10.4 17.8 Asphaltenes 3.4 5.9 Wax Content (%w/w) 5.2 **GC-TPH Distributions** Total GC-TPH (mg/g) 412 544 GC-Saturates/GC-TPH (%) 57.6 61.8 GC-Aromatics/GC-TPH (%) 42.4 38.2 GC-TPH in Ranges: $nC_8 \le to \le nC_{10}$ 0.8 5.3 $nC_{10} < to \le nC_{16}$ 28.4 19.2 (%w/w) 69.7 $nC_{16} < to \le nC_{34}$ 57.1 *n*C₃₄ + 9.3 10.3 Note: NM - Not Measured *Too viscous

Table B5 OII Properties of Arabian Medic	ədium	Arabian	of	Oil Properties	Table B5
--	-------	---------	----	-----------------------	----------

%Evaporative Mass Los	
0.0%	31.35%

	% Mass	°C	°C
Boiling Point Distribution	IBP	57	87
(Cumulative Weight Fraction)	5	97	206
	10	125	249
	15	148	269
	20	170	285
	25	192	300
	30	215	315
	35	235	329
	40	257	343
	45	279	357
	50	302	372
	55	322	388
	60	344	403
	65	366	419
	70	388	434
	75	411	450
	80	434	465
	85	457	482
	90	481	499
	95	507	517
	99.5	534	536

Note: IBP - Initial Boiling Point

Table B6: Oil Properties of DOBA

	%	Evaporative	Mass Loss
		0.0%	14.13%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -2.53 + 0.45 Ln(t+25	55.9)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (-0.11 + 0.013T) √t		
Density (g/mL)	0°C	0.9423	0.9483
	15⁰C	0.9271	0.9372
Dynamic Viscosity (mPa•s)	0°C	3.66E+4	6.10E+4
	15ºC	3.11E+3	7.30E+3
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	28.2	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15ºC	27.2	NM*
Sulfur Content (%w/w)		0.12	0.13
Water Content (%w/w)		4.0	0
Flash Point (ºC)		>60	166
Pour Point (°C)		-5	6
Emulsion Formation	Visual Stability	Entrained	Entrained
	Complex Modulus (Pa)	47	102
	Water Content (%w/w)	43.0	33.9
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	10%	<10%
Hydrocarbon Groups (%w/w)	Saturates	65.2	61.8
	Aromatics	20.2	18.1
	Resins	10.2	16.0
	Asphaltenes	4.5	4.0
Wax Content (%w/w)		2.7	
GC-TPH Distributions	Total GC-TPH (mg/g)	382	363
	GC-Saturates/GC-TPH (%)	76.4	77.4
	GC-Aromatics/GC-TPH (%)	23.6	22.6
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	3.2	1.7
(%w/w)	$nC_{10} < to \le nC_{16}$	19.0	12.6
	$nC_{16} < to \le nC_{34}$	63.8	65.4
	<i>n</i> C ₃₄ +	14.0	20.3
Note: NM - Not Measured *Too viscous			
	%	Evaporative	Mass Loss

0.0%

14.13%

	% Mass	°C	°C
Boiling Point Distribution	IBP	94	120
(Cumulative Weight Fraction)	5	199	260
	10	239	285
	15	264	307
	20	284	325
	25	306	342
	30	326	358
	35	344	373
	40	361	388
	45	378	403
	50	395	416
	55	410	428
	60	424	440
	65	437	451
	70	450	462
	75	462	472
	80	474	484
	85	487	495
	90	499	506
	95	512	518
	99.5	525	532

Note: IBP - Initial Boiling Point

Table B7: Oil Properties of Dos Cuadras HE-05

	%	Evaporative	Mass Loss
		0.0%	23.40%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -1.72 + 0.87 Ln(t+5.	83)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (1.61 + 0.045T) ln(t)		
Density (g/mL)	0°C	0.9184	0.9607
	15ºC	0.9078	0.9491
Dynamic Viscosity (mPa•s)	0°C	199	2.77E+4
	15⁰C	70.3	2.85E+3
Surface Tension (mN/m)	0°C	31.1	NM*
	15ºC	29.1	32.6
Interfacial Tension - Oil/Water (mN/m)	0°C	25.7	NM*
	15ºC	23.7	29.8
Interfacial Tension - Oil/Brine, 33‰ NaCI (mN/m)	0°C	23.8	NM*
	15ºC	23.5	26.9
Sulfur Content (%w/w)		1.22	1.55
Water Content (%w/w)		0.5	0.1
Flash Point (ºC)		0	135
Pour Point (°C)		-27	13
Emulsion Formation	Visual Stability	Unstable	Entrained
	Complex Modulus (Pa)	NM	457
	Water Content (%w/w)	NM	76.4
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	67%	<10%
Hydrocarbon Groups (%w/w)	Saturates	49.2	33.6
	Aromatics	29.5	28.6
	Resins	14.5	26.7
	Asphaltenes	6.7	11.1
Wax Content (%w/w)		4.3	
GC-TPH Distributions	Total GC-TPH (mg/g)	477	460
	GC-Saturates/GC-TPH (%)	62.6	54.0
	GC-Aromatics/GC-TPH (%)) 37.4	46.0
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	5.1	0.4
(%w/w)	$nC_{10} < to \le nC_{16}$	15.0	22.4
	$nC_{16} < to \le nC_{34}$	63.8	67.3
	<i>n</i> C ₃₄ +	16.1	10.0
Note: NM - Not Measured *Too viscous			
	%	Evaporative	Mass Loss

0.0%

23.40%

	% Mass	°C	°C
Boiling Point Distribution	IBP	69	196
(Cumulative Weight Fraction)	5	108	242
	10	137	260
	15	166	277
	20	191	294
	25	217	305
	30	238	318
	35	259	333
	40	280	349
	45	302	364
	50	318	380
	55	340	395
	60	361	411
	65	383	425
	70	405	438
	75	426	450
	80	443	463
	85	461	479
	90	483	495
	95	505	510
	99.5	525	525

Note: IBP - Initial Boiling Point

Table B8: Oil Properties of Dos Cuadras HE-26

	%	Evaporative	Mass Loss
		0.0%	32.20%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -1.32 + 0.92 Ln(t+4.0	05)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (2.52 + 0.045T) ln(t)		
Density (g/mL)	0°C	0.8902	0.9487
	15ºC	0.8785	0.9353
Dynamic Viscosity (mPa•s)	0°C	56.2	2.66E+4
	15ºC	20.6	1.14E+3
Surface Tension (mN/m)	0°C	28.3	NM*
	15ºC	28.6	33.3
Interfacial Tension - Oil/Water (mN/m)	0°C	13.1	NM*
	15ºC	16.1	16.0
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	12.6	NM*
	15ºC	16.1	17.5
Sulfur Content (%w/w)		0.51	0.74
Water Content (%w/w)		2.6	0.1
Flash Point (°C)		-1	132
Pour Point (°C)		-5	25
Emulsion Formation	Visual Stability	Unstable	Stable
	Complex Modulus (Pa)	NM	759
	Water Content (%w/w)	NM	76.3
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	69%	11%
Hydrocarbon Groups (%w/w)	Saturates	57.2	57.7
	Aromatics	31.0	26.0
	Resins	8.9	13.4
	Asphaltenes	2.8	3.0
Wax Content (%w/w)		6.4	
GC-TPH Distributions	Total GC-TPH (mg/g)	546	554
	GC-Saturates/GC-TPH (%)	64.8	68.9
	GC-Aromatics/GC-TPH (%)	35.2	31.1
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	13.0	1.2
(%w/w)	$nC_{10} < to \le nC_{16}$	17.7	23.8
	$nC_{16} < to \le nC_{34}$	31.9	67.6
	<i>n</i> C ₃₄ +	37.4	7.4
Note: NM - Not Measured *Too viscous			<u> </u>
	%	Evaporative	Mass Loss

0.0%

32.20%

	% Mass	°C	°C
Boiling Point Distribution	IBP	60	148
(Cumulative Weight Fraction)	5	95	234
	10	118	253
	15	139	270
	20	162	286
	25	184	300
	30	210	311
	35	232	324
	40	253	340
	45	275	355
	50	300	369
	55	318	384
	60	342	400
	65	366	415
	70	390	429
	75	414	441
	80	436	454
	85	456	469
	90	481	486
	95	509	503
	99.5	539	518

Note: IBP - Initial Boiling Point

Table B9: Oil Properties of Endicott

	%	Evaporative	Mass Loss
		0.0%	21.41%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -1.34 + 0.64 Ln(t+8.4	11)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (1.39 + 0.045T) ln(t)		
Density (g/mL)	0°C	0.9142	0.9518
	15⁰C	0.9024	0.9397
Dynamic Viscosity (mPa•s)	0°C	235	1.50E+4
	15ºC	46.4	1.36E+3
Surface Tension (mN/m)	0°C	31.0	NM*
	15ºC	29.3	31.2
Interfacial Tension - Oil/Water (mN/m)	0°C	20.9	NM*
	15ºC	20.1	22.4
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	17.2	NM*
	15ºC	13.0	20.3
Sulfur Content (%w/w)		1.04	1.33
Water Content (%w/w)		0.3	0
Flash Point (°C)		<0	141
Pour Point (°C)		6	18
Emulsion Formation	Visual Stability	Unstable	Entrained
	Complex Modulus (Pa)	NM	992
	Water Content (%w/w)	NM	74.0
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	62%	<10%
Hydrocarbon Groups (%w/w)	Saturates	60.5	52.6
	Aromatics	29.8	27.4
	Resins	7.2	16.1
	Asphaltenes	2.5	3.9
Wax Content (%w/w)		12.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	517	522
	GC-Saturates/GC-TPH (%)	67.0	65.7
	GC-Aromatics/GC-TPH (%)	33.0	34.3
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	10.5	0.9
(%w/w)	$nC_{10} < to \le nC_{16}$	24.5	21.2
	$nC_{16} < to \le nC_{34}$	58.6	68.8
	<i>n</i> C ₃₄ +	6.4	9.2
Note: NM - Not Measured *Too viscous	0/	Evanorativa	Massiloss
	%	⊏vaporative	wass Loss

0.0%

21.41%

	% Mass	°C	°C
Boiling Point Distribution	IBP	72	97
(Cumulative Weight Fraction)	5	120	224
	10	154	253
	15	185	271
	20	215	287
	25	238	304
	30	261	319
	35	281	334
	40	302	350
	45	320	365
	50	340	380
	55	359	394
	60	378	410
	65	397	424
	70	416	438
	75	434	452
	80	452	468
	85	472	484
	90	493	501
	95	516	520
	99.5	543	541

Note: IBP - Initial Boiling Point

Table B10:	Oil Properties of Endicott weathered 18.56%	

%Ev = - 4.31+ 0.54 Ln(t+. %Ev = (-0.16 + 0.013T) $√$ 0°C 15°C 0°C	273.5) t 0.9474 0.9357
%Ev = (-0.16 + 0.013T) √ 0°C 15°C 0°C	t 0.9474 0.9357
0°C 15°C 0°C	0.9474 0.9357
15ºC 0ºC	0.9357
0°C	
	9.57E+3
15⁰C	866
0°C	NM*
15⁰C	31.2
0°C	NM*
15⁰C	22.4
0°C	NM*
15⁰C	20.3
	1.29
	0
	125
	15
Visual Stability	Entrained
Complex Modulus (Pa)	676
Water Content (%w/w)	71.6
Corexit 9500	49%
Saturates	50.1
Aromatics	32.2
Resins	14.4
Asphaltenes	3.4
	15.6
Total GC-TPH (mg/g)	534
GC-Saturates/GC-TPH (%	%) 60.9
GC-Aromatics/GC-TPH (%) 39.1
$nC_8 \le to \le nC_{10}$	0.6
$nC_{10} < to \le nC_{16}$	22.3
$nC_{16} < to \le nC_{34}$	68.8
<i>n</i> C ₃₄ +	8.3
	$15^{\circ}C$ $0^{\circ}C$ $15^{\circ}C$ $0^{\circ}C$ $15^{\circ}C$ $15^{\circ}C$ Visual Stability Complex Modulus (Pa) Water Content (%w/w) Corexit 9500 Saturates Aromatics Resins Asphaltenes Total GC-TPH (mg/g) GC-Saturates/GC-TPH (%GC-Aromatics/GC-TPH (%GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-TPH (%GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/GC-Aromatics/Aromatics/GC-Aromatics/Aro

0.0%

	% Mass	°C	
Boiling Point Distribution	IBP	106	
(Cumulative Weight Fraction)	5	216	
	10	243	
	15	262	
	20	279	
	25	297	
	30	312	
	35	328	
	40	343	
	45	358	
	50	373	
	55	389	
	60	404	
	65	419	
	70	434	
	75	448	
	80	464	
	85	480	
	90	498	
	95	516	
	99.5	539	

Note: IBP - Initial Boiling Point

Table B11: Oil Properties of Harmony

	%	Evaporative	Mass Loss
		0.0%	17.11%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = - 1.67+ 0.54 Ln(t+23	3.1)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (0.85 + 0.045T) ln(t)		
Density (g/mL)	0°C	0.9588	0.9996
	15ºC	0.9456	0.9911
Dynamic Viscosity (mPa•s)	0°C	2.20E+4	7.86E+7
	15⁰C	3.08E+3	1.82E+6
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	23.8	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15ºC	16.6	NM*
Sulfur Content (%w/w)		4.73	5.20
Water Content (%w/w)		0.3	0.3
Flash Point (°C)		18	145
Pour Point (°C)		-9	24
Emulsion Formation	Visual Stability	Entrained	DNF
	Complex Modulus (Pa)	942	NM
	Water Content (%w/w)	59.5	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10%	<10%
Hydrocarbon Groups (%w/w)	Saturates	36.8	28.2
	Aromatics	20.6	23.6
	Resins	31.2	33.0
	Asphaltenes	11.4	15.2
Wax Content (%w/w)		5.8	
GC-TPH Distributions	Total GC-TPH (mg/g)	380	167
	GC-Saturates/GC-TPH (%)	64.1	54.4
	GC-Aromatics/GC-TPH (%)) 35.9	45.6
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	11.5	3.4
(%w/w)	$nC_{10} < to \le nC_{16}$	25.6	20.2
	$nC_{16} < to \le nC_{34}$	51.4	58.5
	<i>n</i> C ₃₄ +	11.6	17.9
Note:			

DNF – Did not form

NM - Not Measured

*Too viscous

		0.0%	17.11%
	% Mass	°C	°C
Boiling Point Distribution	IBP	64	99
(Cumulative Weight Fraction)	5	110	146
	10	138	184
	15	163	217
	20	186	245
	25	209	266
	30	230	286
	35	251	305
	40	271	323
	45	293	343
	50	312	361
	55	332	380
	60	353	398
	65	373	416
	70	409	434
	75	432	451
	80	453	468
	85	475	486
	90	498	504
	95	520	520
	99.5	543	534

Note: IBP - Initial Boiling Point

Table B12: Oil Properties of IFO-120

	9	Evaporative	Mass Loss
		0.0%	9.54%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = - 4.17+ 0.63 Ln(t+8	07.5)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (-0.11 + 0.013T) √t		
Density (g/mL)	0°C	0.9683	0.9811
	15ºC	0.9567	0.9701
Dynamic Viscosity (mPa•s)	0°C	9.16E+3	1.38E+5
	15ºC	1.54E+3	1.46E+4
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	30.8	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	31.9	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15ºC	29.3	NM*
Sulfur Content (%w/w)		0.962	1.03
Water Content (%w/w)		0.3	0.2
Flash Point (ºC)		91	146
Pour Point (°C)		-9	6
Emulsion Formation	Visual Stability	Stable	Stable
	Complex Modulus (Pa)	171	505
	Water Content (%w/w)	69.6	59.6
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	12%	<10%
Hydrocarbon Groups (%w/w)	Saturates	43.8	45.7
	Aromatics	42.6	32.5
	Resins	10.4	18.7
	Asphaltenes	3.2	3.1
Wax Content (%w/w)		9.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	313	291
	GC-Saturates/GC-TPH (%) 50.7	58.5
	GC-Aromatics/GC-TPH (%) 49.3	41.5
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	6.1	1.5
(%w/w)	$nC_{10} < to \le nC_{16}$	32.2	25.6
	$nC_{16} < to \le nC_{34}$	44.0	55.6
	<i>n</i> C ₃₄ +	17.7	17.4
Note: NM - Not Measured *Too viscous		(F	Mana 1
	9	6Evaporative	Mass Loss

0.0%

9.54%

	% Mass	°C	°C
Boiling Point Distribution	IBP	109	81
(Cumulative Weight Fraction)	5	180	178
	10	204	231
	15	225	253
	20	238	268
	25	253	281
	30	268	295
	35	281	305
	40	295	317
	45	305	329
	50	318	342
	55	330	356
	60	344	371
	65	360	390
	70	379	412
	75	403	440
	80	439	470
	85	479	497
	90	507	517
	95	526	537
	99.5	545	559

Note: IBP - Initial Boiling Point

Table B13: Oil Properties of IFO-180

	%	Evaporative	Mass Loss
		0.0%	6.86%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = - 4.5 + 0.57 Ln(t+31	84.0)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (-0.15 + 0.013T) √t		
Density (g/mL)	0°C	0.9794	0.9849
	15ºC	0.9664	0.9782
Dynamic Viscosity (mPa•s)	0°C	1.24E+5	1.41E+6
	15⁰C	1.92E+4	1.19E+5
Surface Tension (mN/m)	0°C	NM*	NM*
	15⁰C	NM*	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Sulfur Content (%w/w)		0.46	0.48
Water Content (%w/w)		1.7	0
Flash Point (ºC)		>60	160
Pour Point (°C)		15	18
Emulsion Formation	Visual Stability	Entrained	Entrained
	Complex Modulus (Pa)	144	366
	Water Content (%w/w)	42	44
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10%	<10%
Hydrocarbon Groups (%w/w)	Saturates	49.3	39.5
	Aromatics	31.9	33.4
	Resins	14.8	21.2
	Asphaltenes	4.0	5.9
Wax Content (%w/w)		20.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	312	320
	GC-Saturates/GC-TPH (%)	60.7	54.2
	GC-Aromatics/GC-TPH (%)) 39.3	45.8
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	3.4	1.5
(%w/w)	$nC_{10} < to \le nC_{16}$	17.8	26.7
	$nC_{16} < to \le nC_{34}$	59.0	60.4
	<i>n</i> C ₃₄ +	19.8	11.3
Note: NM - Not Measured *Too viscous			
	%	Evaporative	Mass Loss

0.0%

6.86%

	% Mass	°C	°C
Boiling Point Distribution	IBP	80	70
(Cumulative Weight Fraction)	5	167	129
	10	213	167
	15	243	201
	20	264	231
	25	283	256
	30	302	278
	35	320	298
	40	339	316
	45	355	334
	50	368	352
	55	381	368
	60	394	383
	65	406	398
	70	420	413
	75	433	429
	80	449	445
	85	466	463
	90	487	484
	95	508	505
	99.5	528	525

Note: IBP - Initial Boiling Point

Table B14: Oil Properties of North Star

	%	Evaporative	Mass Loss
		0.0%	35.41%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -1.38 + 1.07 Ln(t+1.	14)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (2.93 + 0.045T) ln(t)		
Density (g/mL)	0°C	0.8687	0.9284
	15ºC	0.8573	0.9165
Dynamic Viscosity (mPa•s)	0°C	17.4	3.75E+3
	15ºC	8.9	201
Surface Tension (mN/m)	0°C	28.6	NM*
	15ºC	26.6	30.3
Interfacial Tension - Oil/Water (mN/m)	0°C	20.8	NM*
	15ºC	22.1	21.4
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	20.8	NM*
	15ºC	21.8	20.8
Sulfur Content (%w/w)		0.70	1.06
Water Content (%w/w)		0	0
Flash Point (ºC)		<-5	127
Pour Point (°C)		-16	-3
Emulsion Formation	Visual Stability	Unstable	Stable
	Complex Modulus (Pa)	NM	416
	Water Content (%w/w)	NM	78.3
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	74%	43%
Hydrocarbon Groups (%w/w)	Saturates	67.3	60.1
	Aromatics	24.7	25.8
	Resins	6.1	9.5
	Asphaltenes	1.9	4.6
Wax Content (%w/w)		4.8	
GC-TPH Distributions	Total GC-TPH (mg/g)	672	591
	GC-Saturates/GC-TPH (%)	73.1	69.9
	GC-Aromatics/GC-TPH (%)	26.9	30.1
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	15.0	1.4
(%w/w)	$nC_{10} < to \le nC_{16}$	26.7	25.1
	$nC_{16} < to \le nC_{34}$	51.0	64.0
	<i>n</i> C ₃₄ +	7.2	9.5
Note: NM - Not Measured *Too viscous			
	%	Evaporative	Mass Loss

0.0%

35.41%

	% Mass	°C	°C
Boiling Point Distribution	IBP	56	168
(Cumulative Weight Fraction)	5	93	235
	10	113	253
	15	134	267
	20	155	279
	25	175	292
	30	198	304
	35	220	317
	40	240	330
	45	260	344
	50	279	357
	55	301	372
	60	318	388
	65	342	404
	70	365	421
	75	389	438
	80	416	456
	85	444	475
	90	474	497
	95	510	520
	99.5	555	547

Note: IBP - Initial Boiling Point

Table B15: Oil Properties of Rock

	%	Evaporative	Mass Loss
		0.0%	9.06%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = - 2.25 + 0.44 Ln(t+1	93.8)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (-0.11 + 0.013T) √t		
Density (g/mL)	0°C	0.9776	0.9964
	15ºC	0.9674	0.9859
Dynamic Viscosity (mPa•s)	0°C	2.57E+4	7.88E+5
	15⁰C	4.36E+3	7.14E+4
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	26.1	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15°C	25.3	NM*
Sulfur Content (%w/w)		3.97	4.22
Water Content (%w/w)		0.4	0
Flash Point (°C)		42	151
Pour Point (°C)		-15	6
Emulsion Formation	Visual Stability	Entrained	Entrained
	Complex Modulus (Pa)	232	811
	Water Content (%w/w)	59.5	58.9
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10%	<10%
Hydrocarbon Groups (%w/w)	Saturates	29.5	28.7
	Aromatics	23.5	21.3
	Resins	40.5	41.1
	Asphaltenes	6.5	8.9
Wax Content (%w/w)		3.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	317	312
	GC-Saturates/GC-TPH (%)	55.6	57.4
	GC-Aromatics/GC-TPH (%) 44.4	42.6
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	3.9	2.5
(%w/w)	$nC_{10} < to \le nC_{16}$	20.8	22.1
	$nC_{16} < to \le nC_{34}$	58.9	60.9
	<i>n</i> C ₃₄ +	16.5	14.5
Note: NM - Not Measured *Too viscous		· ••• • • • • • •	
	%	Evaporative	Mass Loss

0.0%

9.06%

	% Mass	°C	°C
Boiling Point Distribution	IBP	74	74
(Cumulative Weight Fraction)	5	142	151
	10	185	204
	15	217	242
	20	241	265
	25	263	286
	30	284	304
	35	304	321
	40	322	339
	45	342	356
	50	360	373
	55	379	390
	60	397	407
	65	415	423
	70	432	437
	75	448	452
	80	463	466
	85	480	482
	90	497	497
	95	513	512
	99.5	528	525

Note: IBP - Initial Boiling Point

Table B16: Oil Properties of Terra Nova

	%	Evaporative	Mass Loss
		0.0%	28.55%
Equation for predicting evaporation (mass loss) based on best fit of the data to the three- parameter logarithmic function	%Ev = -0.66 + 0.71 Ln(t+0.4	96)	
Equation for predicting evaporation (mass loss) based on best fit of the data to Fingas 01 equations	%Ev = (2.32 + 0.045T) ln(t)		
Density (g/mL)	0°C	0.8752	0.9216
	15ºC	0.8624	0.9114
Dynamic Viscosity (mPa•s)	0°C	47.6	1.65E+4
	15⁰C	17.5	1.37E+3
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	27.9	32.6
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	24.4	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15ºC	23.1	NM*
Sulfur Content (%w/w)		0.571	0.8
Water Content (%w/w)		0	0
Flash Point (°C)		<-5	136
Pour Point (°C)		9	21
Emulsion Formation	Visual Stability	Unstable	Stable
	Complex Modulus (Pa)	NM	1230
	Water Content (%w/w)	NM	75.6
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	43%	<10%
Hydrocarbon Groups (%w/w)	Saturates	67.8	48.6
	Aromatics	19.1	28.3
	Resins	12.4	22.0
	Asphaltenes	0.7	1.1
Wax Content (%w/w)		20.5	
GC-TPH Distributions	Total GC-TPH (mg/g)	512	539
	GC-Saturates/GC-TPH (%)	78.0	63.2
	GC-Aromatics/GC-TPH (%)	22.0	36.8
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	15.7	0.9
(%w/w)	$nC_{10} < to \le nC_{16}$	27.7	19.3
	$nC_{16} < to \le nC_{34}$	46.7	66.7
	<i>n</i> C ₃₄ +	9.9	13.2
Note: NM - Not Measured *Too viscous/below pour point			<u>.</u>
	%	Evaporative	Mass Loss

0.0% 28.55%

	% Mass	°C	°C
Boiling Point Distribution	IBP	56	189
(Cumulative Weight Fraction)	5	97	243
	10	124	261
	15	150	276
	20	174	290
	25	198	304
	30	223	317
	35	246	331
	40	267	346
	45	287	361
	50	308	376
	55	329	391
	60	351	406
	65	372	421
	70	394	434
	75	416	448
	80	437	462
	85	457	478
	90	479	495
	95	503	513
	99.5	526	531

Note: IBP - Initial Boiling Point

	%	Evaporative	Mass Loss
		0.0%	22.07%
Equation for predicting evaporation	%Evaporated = -19.9 + 4.21	Ln(t+159.1),	, t in minute
Density (g/mL)	0°C	0.9255	0.9471
	15ºC	0.9148	0.9370
Dynamic Viscosity (mPa-s)	0°C	23.4	126
	15ºC	13.5	40.2
Surface Tension (mN/m)	0°C	29.3	29.6
	15ºC	30.6	31.4
Interfacial Tension - Oil/Water (mN/m)	0°C	23.9	19.2
	15ºC	24.3	15.5
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	25.1	17.0
	15ºC	26.5	18.0
Sulfur Content (%w/w)		0.65	0.72
Water Content (%w/w)		0.1	0
Flash Point (°C)		40	124
Pour Point (°C)		<-30	<-30
Emulsion Formation	Visual Stability	Unstable	Unstable
	Complex Modulus (Pa)	NM	NM
	Water Content (%w/w)	NM	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	77%	66%
Hydrocarbon Groups (%w/w)	Saturates	72.6	67.7
	Aromatics	22.8	27.1
	Resins	4.6	5.2
	Asphaltenes	0	0
Wax Content (%w/w)		0.2	
GC-TPH Distributions	Total GC-TPH (mg/g)	707	785
	GC-Saturates/GC-TPH (%)	76.1	71.4
	GC-Aromatics/GC-TPH (%)	23.9	28.6
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	3.9	0
(%w/w)	$nC_{10} < to \le nC_{16}$	37.4	29.2
	$nC_{16} < to \le nC_{34}$	56.6	68.4
	<i>n</i> C ₃₄ +	2.1	2.4
Note:			

Table B17: Oil Properties of Independence Hub Atwater Valley Block 37

NM - Not Measured

		%Evaporative Mass Loss	
		0.0%	22.07%
	% Mass	°C	°C
Boiling Point Distribution	IBP	77	213
(Cumulative Weight Fraction)	5	156	237
	10	189	250
	15	213	258

20	231	266
25	243	274
30	254	282
35	263	292
40	272	301
45	282	310
50	294	319
55	305	330
60	317	342
65	330	356
70	346	372
75	365	390
80	388	411
85	415	435
90	440	447
95	455	458
99.5	490	494

Note: IBP - Initial Boiling Point

	9	&Evaporativ	e Mass Loss
		0.0%	17.41%
Equation for predicting evaporation	%Evaporated = -11.1 + 2.7	78 Ln(t+52.7)	, t in minute
Density (g/mL)	0°C	0.9700	1.0163
	15ºC	0.9591	1.0073
Dynamic Viscosity (mPa-s)	0°C	6.83E+4	3.15E+8
	15ºC	8.51E+3	8.34E+6
Surface Tension (mN/m)	0°C	30.2	NM*
	15ºC	28.7	NM*
Interfacial Tension – Oil/Water (mN/m)	0°C	20.8	NM*
	15ºC	19.6	NM*
Interfacial Tension – Oil/Brine, 33‰ NaCl (mN/m)	0°C	19.0	NM*
	15ºC	23.4	NM*
Sulfur Content (%w/w)		5.21	5.85
Water Content (%w/w)		2.6	1.2
Flash Point (ºC)		40	150
Pour Point (ºC)		-9	33
Emulsion Formation	Visual Stability	Entrained	DNF
	Complex Modulus (Pa)	381	NM
	Water Content (%w/w)	48.9	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10	<10
Hydrocarbon Groups (%w/w)	Saturates	37.7	23.1
	Aromatics	10.6	12.8
	Resins	32.7	37.7
	Asphaltenes	19.0	26.4
Wax Content (%w/w)		1.7	
GC-TPH Distributions	Total GC-TPH (mg/g)	294	305
	GC-Saturates/GC-TPH (%) 78.0	64.4
	GC-Aromatics/GC-TPH (%	5) 22.0	35.6
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	8.4	0.3
(%w/w)	$nC_{10} < to \le nC_{16}$	22.2	13.2
	$nC_{16} < to \le nC_{34}$	50.7	63.2
	<i>n</i> C ₃₄ +	18.7	23.3
Note: DNF - Did not form			

Table B18: Oil Properties of Irene Sampled from Lompoc O&G Facility

NM - Not Measured * - Too viscous

		%Evaporative Mass Loss	
		0.0%	17.41%
	% Mass	°C	°C
Boiling Point Distribution	IBP	29	189
(Cumulative Weight Fraction)	5	93	236
	10	125	255
	15	152	271
	20	181	286
	25	209	299
	30	233	311

35	258	323
40	282	336
45	305	349
50	328	362
55	351	375
60	373	388
65	396	402
70	417	415
75	436	427
80	454	438
85	473	450
90	493	462
95	512	474
99.5	530	486

Note: IBP - Initial Boiling Point

Table B19: Oil Prop	perties of Neptune
---------------------	--------------------

	9	%Evaporative Mass Loss	
		0.0%	17.30%
Equation for predicting evaporation	%Evaporated = -7.6 + 2.48	3 Ln(t+23.5), 1	t in minute
Density (g/mL)	0°C	0.9354	0.9758
	15°C	0.9244	0.9622
Dynamic Viscosity (mPa•s)	0°C	1.33E+3	1.36E+5
	15°C	402	2.07E+4
Surface Tension (mN/m)	0°C	30.1	29.9
	15ºC	30.4	31.0
Interfacial Tension - Oil/Water (mN/m)	0°C	35.3	21.8
	15°C	31.6	19.4
Interfacial Tension - Oil/Brine, 33‰ NaCI (mN/m)	0°C	31.7	19.1
	15ºC	30.7	18.7
Sulfur Content (%w/w)		2.88	3.47
Water Content (%w/w)		0.9	0.2
Flash Point (°C)		22	153
Pour Point (°C)		<-30	-6
Emulsion Formation	Visual Stability	Stable	Stable
	Complex Modulus (Pa)	171	674
	Water Content (%w/w)	80.6	65.5
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10	<10
Hydrocarbon Groups (%w/w)	Saturates	58.0	55.2
	Aromatics	13.3	15.0
	Resins	18.6	18.7
	Asphaltenes	10.1	11.2
Wax Content (%w/w)		2.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	478	243
	GC-Saturates/GC-TPH (%) 81.4	78.7
	GC-Aromatics/GC-TPH (%) 18.6	21.4
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	5.7	0.2
(%w/w)	$nC_{10} < to \le nC_{16}$	20.3	9.6
	$nC_{16} < to \le nC_{34}$	53.7	64.3
	<i>n</i> C ₃₄ +	20.4	25.9
	%	Evaporative	Mass Loss
		0.0%	17.30%
	% Mass	°C	°C
Boiling Point Distribution	IBP	31	227
(Cumulative Weight Fraction)	5	103	262
	10	138	281
	15	173	298
	20	207	313
	25	233	328
	30	257	343
	35	279	356
	40	301	370
	45	321	384
	50	342	398
	55	361	411

60	380	423
65	400	435
70	418	447
75	435	458
80	451	471
85	468	484
90	486	497
95	505	511
 99.5	525	526

Note: IBP - Initial Boiling Point
%Evaporative Mass Loss 0.0% 15.88% Equation for predicting evaporation %Evaporated = -14.5 + 3.03 Ln(t+152.2), t in minute Density (g/mL) 0°C 0.9694 1.0071 15°C 0.9587 0.9981 Dynamic Viscosity (mPa-s) 0°C 1.52E+4 2.31E+7 15⁰C 3.10E+3 1.09E+6 Surface Tension (mN/m) 0°C 29.3 NM* 15ºC 29.6 NM* Interfacial Tension - Oil/Water (mN/m) 0°C 20.8 NM* 15°C NM* 24.0 Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m) 0°C NM* 20.7 15°C 22.3 NM* Sulfur Content (%w/w) 3.28 3.69 Water Content (%w/w) 1.9 0.5 Flash Point (°C) 40 154 Pour Point (°C) -21 12 **Emulsion Formation** Visual Stability Entrained DNF Complex Modulus (Pa) 44 NM Water Content (%w/w) 20.7 NM Chemical Dispersibility by Swirling Flask Test Corexit 9500 <10 <10 Hydrocarbon Groups (%w/w) Saturates 35.2 39.2 Aromatics 22.5 22.1 Resins 24.1 27.5 Asphaltenes 14.3 15.2 1.6 Wax Content (%w/w) **GC-TPH Distributions** Total GC-TPH (mg/g) 348 257 GC-Saturates/GC-TPH (%) 61.4 63.6 GC-Aromatics/GC-TPH (%) 36.4 38.6 GC-TPH in Ranges: $nC_8 \le to \le nC_{10}$ 5.9 0.3 $nC_{10} < to \le nC_{16}$ 20.4 10.3 (%w/w) $nC_{16} < to \le nC_{34}$ 55.2 67.0 22.4 18.5 *n*C₃₄ +

Table B20: Oil Properties of Ellen A038

^{*}Too viscous

		%Evaporative Mass Loss	
		0.0%	15.88%
	% Mass	°C	°C
Boiling Point Distribution	IBP	37	219
(Cumulative Weight Fraction)	5	112	258
	10	147	279
	15	182	297
	20	215	312
	25	240	326
	30	265	342
	35	287	356

Note: DNF - Did not form NM - Not Measured

40	307	370
45	327	384
50	348	398
55	368	412
60	387	424
65	406	435
70	423	445
75	438	455
80	452	467
85	467	480
90	484	494
95	503	508
99.5	521	524

Note: IBP - Initial Boiling Point

%Evaporative Mass Loss 0.0% 14.57% Equation for predicting evaporation %Evaporated = -17.3 + 2.63 Ln(t+896.2), t in minute Density (g/mL) 0°C 0.9889 1.0141 15°C 0.9790 1.0058 Dynamic Viscosity (mPa-s) 0°C 1.24E+5 4.63E+7 15⁰C 1.97E+4 1.74E+6 Surface Tension (mN/m) 0°C 27.5 NM* 15⁰C NM* 30.7 Interfacial Tension - Oil/Water (mN/m) 0°C NM* NM* 15°C 15.3 NM* Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m) 0°C NM* NM* 15°C 21.6 NM* Sulfur Content (%w/w) 4.25 3.89 Water Content (%w/w) 5.2 0.9 Flash Point (°C) 104 161 Pour Point (°C) -15 3 **Emulsion Formation** Visual Stability Entrained DNF Complex Modulus (Pa) 42 NM Water Content (%w/w) 24.5 NM Chemical Dispersibility by Swirling Flask Test Corexit 9500 <10 <10 Hydrocarbon Groups (%w/w) Saturates 42.6 27.1 Aromatics 18.6 19.6 Resins 24.5 35.7 Asphaltenes 14.3 17.6 Wax Content (%w/w) 1.2 **GC-TPH Distributions** Total GC-TPH (mg/g) 364 334 GC-Saturates/GC-TPH (%) 69.6 58.0 GC-Aromatics/GC-TPH (%) 30.4 42.0 GC-TPH in Ranges: $nC_8 \le to \le nC_{10}$ 4.6 0 $nC_{10} < to \le nC_{16}$ 19.0 9.7 (%w/w) $nC_{16} < to \le nC_{34}$ 57.0 67.7 19.4 22.6 *n*C₃₄ +

Table B21: Oil Properties of Ellen A040

Note: DNF - Did not form NM - Not Measured

*Too viscous

		%Evaporative Mass Loss	
		0.0%	14.57%
	% Mass	°C	°C
Boiling Point Distribution	IBP	65	186
(Cumulative Weight Fraction)	5	138	259
	10	183	283
	15	221	303
	20	247	318
	25	270	335
	30	293	352
	35	311	367

40	330	383
45	349	398
50	367	412
55	384	425
60	402	436
65	418	446
70	432	456
75	444	468
80	455	480
85	469	493
90	485	503
95	502	514
99.5	522	524

Note: IBP - Initial Boiling Point

Table B22: Oil Properties of Gail E010

	%	Evaporative	Mass Loss
		0.0%	16.92%
Equation for predicting evaporation	%Evaporated = -19.4 + 3.43	3 Ln(t+350.0)	, t in minute
Density (g/mL)	0°C	0.9814	1.0177
	15ºC	0.9709	1.0086
Dynamic Viscosity (mPa•s)	0°C	6.72E+4	9.65E+7
	15°C	1.16E+4	3.25E+6
Surface Tension (mN/m)	0°C	29.0	NM*
	15°C	29.8	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	19.0	NM*
	15°C	21.8	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	22.0	NM*
	15ºC	23.7	NM*
Sulfur Content (%w/w)		5.94	6.79
Water Content (%w/w)		4.3	1.4
Flash Point (°C)		48	147
Pour Point (ºC)		-6	9
Emulsion Formation	Visual Stability	Entrained	DNF
	Complex Modulus (Pa)	258	NM
	Water Content (%w/w)	43.9	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10	<10
Hydrocarbon Groups (%w/w)	Saturates	37.4	26.1
	Aromatics	14.2	16.0
	Resins	25.4	33.9
	Asphaltenes	23.1	24.1
Wax Content (%w/w)		2.3	
GC-TPH Distributions	Total GC-TPH (mg/g)	350	310
	GC-Saturates/GC-TPH (%)	72.5	62.0
	GC-Aromatics/GC-TPH (%)	27.5	38.0
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	6.5	0.1
(%w/w)	$nC_{10} < to \le nC_{16}$	22.7	12.6
	$nC_{16} < to \le nC_{34}$	51.4	63.9
	<i>n</i> C ₃₄ +	19.4	23.4
Note:			

DNF - Did not form NM - Not Measured

*Too viscous

		%Evaporative Mass Loss	
		0.0%	16.92%
	% Mass	°C	°C
Boiling Point Distribution	IBP	34	200
(Cumulative Weight Fraction)	5	112	244
	10	147	262
	15	179	275
	20	208	289
	25	232	302
	30	254	315
	35	278	326

40	301	339
45	321	352
50	343	364
55	363	377
60	384	390
65	404	403
70	424	416
75	441	429
80	458	441
85	477	452
90	496	465
95	512	479
99.5	529	491

Note: IBP - Initial Boiling Point

Table B23: Oil Properties of Gail E019

	9	%Evaporative	Mass Loss
		0.0%	24.42%
Equation for predicting evaporation	%Evaporated = -10.0+ 3.4	1 Ln(t+16.9), t	t in minute
Density (g/mL)	0°C	0.9124	0.9480
	15ºC	0.8996	0.9346
Dynamic Viscosity (mPa•s)	0°C	147	1.55E+4
	15ºC	51.7	1.36E+3
Surface Tension (mN/m)	0°C	28.3	NM*
	15ºC	26.4	31.0
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	15.3	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCI (mN/m)	0°C	NM*	NM*
	15ºC	17.6	NM*
Sulfur Content (%w/w)		1.90	2.39
Water Content (%w/w)		3.7	0.5
Flash Point (ºC)		22	139
Pour Point (°C)		-3	12
Emulsion Formation	Visual Stability	Unstable	Stable
	Complex Modulus (Pa)	NM	752
	Water Content (%w/w)	NM	77.9
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	43%	<10%
Hydrocarbon Groups (%w/w)	Saturates	64.1	59.2
	Aromatics	18.8	20.8
	Resins	11.4	12.5
	Asphaltenes	5.8	7.5
Wax Content (%w/w)		15.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	652	475
	GC-Saturates/GC-TPH (%) 77.3	74.0
	GC-Aromatics/GC-TPH (%	o) 22.7	26.0
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	6.4	0.1
(%w/w)	$nC_{10} < to \le nC_{16}$	26.0	14.6
	$nC_{16} < to \le nC_{34}$	51.8	65.3
	<i>n</i> C ₃₄ +	15.9	20.0
Note: DNF - Did not form			

NM - Not Measured

*Too viscous

		%Evaporative Mass Loss	
		0.0%	24.42%
	% Mass	°C	°C
Boiling Point Distribution	IBP	37	218
(Cumulative Weight Fraction)	5	119	250
	10	154	268
	15	179	283
	20	204	298
	25	227	310
	30	247	323
	35	265	337

40	284	351
45	303	365
50	320	379
55	341	392
60	359	408
65	379	422
70	400	436
75	421	449
80	440	464
85	460	480
90	482	496
95	506	513
99.5	532	533

Note: IBP - Initial Boiling Point

		%Evaporative	Mass Loss
		0.0%	16.27%
Equation for predicting evaporation	%Evaporated = -5.0 + 0.9	97 Ln(t+271.6),	t in minute
Density (g/mL)	0°C	1.0032	1.0253
	15ºC	0.9922	1.0172
Dynamic Viscosity (mPa·s)	0°C	3.03E+6	1.46E+9
	15⁰C	3.59E+5	3.80E+7
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	16.8	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCl (mN/m)	0°C	NM*	NM*
	15ºC	13.5	NM*
Sulfur Content (%w/w)		7.20	7.64
Water Content (%w/w)		6.6	1.3
Flash Point (ºC)		77	150
Pour Point (°C)		-3	33
Emulsion Formation	Visual Stability	DNF	DNF
	Complex Modulus (Pa)	NM	NM
	Water Content (%w/w)	NM	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10	<10
Hydrocarbon Groups (%w/w)	Saturates	37.0	22.1
	Aromatics	19.2	12.7
	Resins	33.5	50.8
	Asphaltenes	10.2	14.4
Wax Content (%w/w)		2.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	247	216
	GC-Saturates/GC-TPH (%	%) 65.8	63.5
	GC-Aromatics/GC-TPH (9	%) 34.2	36.5
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	6.8	0.4
(%w/w)	$nC_{10} < to \le nC_{16}$	22.0	13.5
	nC_{16} < to $\leq nC_{34}$	51.8	62.7
	<i>n</i> C ₃₄ +	19.4	23.5
Note:			

Table B24: Oil Properties of Heritage HE 05

		%Evaporative Mass Loss	
		0.0%	16.27%
	% Mass	°C	°C
Boiling Point Distribution	IBP	49	178
(Cumulative Weight Fraction)	5	126	240
	10	156	265
	15	185	284
	20	215	302
	25	237	317
	30	261	331
	35	282	347

DNF - Did not form NM - Not Measured *Too viscous

40	303	361
45	320	376
50	342	390
55	359	404
60	377	417
65	395	429
70	412	441
75	428	452
80	442	463
85	456	476
90	471	488
95	486	500
99.5	499	510

Note: IBP - Initial Boiling Point

		%Evaporative	Mass Loss
		0.0%	14.48%
Equation for predicting evaporation	%Evaporated = $-0.7 + 0.3$	85 Ln(t+14.2), t	in minute
Density (g/mL)	0°C	0.9973	1.0213
	15ºC	0.9859	1.0123
Dynamic Viscosity (mPa-s)	0°C	1.91E+6	9.42E+8
	15ºC	1.86E+5	2.74E+7
Surface Tension (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCI (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Sulfur Content (%w/w)		6.28	6.67
Water Content (%w/w)		5.1	0.4
Flash Point (°C)		72	149
Pour Point (°C)		-18	30
Emulsion Formation	Visual Stability	DNF	DNF
	Complex Modulus (Pa)	NM	NM
	Water Content (%w/w)	NM	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10	<10
Hydrocarbon Groups (%w/w)	Saturates	35.9	34.7
	Aromatics	24.9	23.5
	Resins	28.5	31.0
	Asphaltenes	10.7	10.8
Wax Content (%w/w)		3.1	
GC-TPH Distributions	Total GC-TPH (mg/g)	240	214
	GC-Saturates/GC-TPH (%	%) 59.0	59.6
	GC-Aromatics/GC-TPH (9	%) 41.0	40.4
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	0.7	0.4
(%w/w)	$nC_{10} < to \le nC_{16}$	22.5	13.5
	$nC_{16} < to \le nC_{34}$	55.7	62.5
	<i>n</i> C ₃₄ +	21.2	23.5
Note:			

Table B25: Oil Properties of Heritage HE 26

Note: DNF - Did not form NM - Not Measured *Too viscous

		%Evaporative	Mass Loss
		0.0%	14.48%
	% Mass	°C	°C
Boiling Point Distribution	IBP	56	189
(Cumulative Weight Fraction)	5	132	242
(**************************************	10	165	265
	15	197	285
	20	226	302
	25	251	317
	30	272	333
	35	296	350

40	316	366
45	337	381
50	357	396
55	376	412
60	395	426
65	414	439
70	431	451
75	447	464
80	462	478
85	479	491
90	495	502
95	510	511
99.5	524	518

Note: IBP - Initial Boiling Point

	9	Evaporative	e Mass Loss
		0.0%	20.26%
Equation for predicting evaporation	%Evaporated = -26.0 + 4.0	Ln(t+787.0)	, t in minute
Density (g/mL)	0°C	0.9890	1.0191
	15ºC	0.9787	1.0107
Dynamic Viscosity (mPa·s)	0°C	445,133	6.164E+08
	15ºC	57,347	2.209E+07
Surface Tension (mN/m)	0°C	27.1	NM*
	15ºC	26.6	NM*
Interfacial Tension - Oil/Water (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Interfacial Tension - Oil/Brine, 33‰ NaCI (mN/m)	0°C	NM*	NM*
	15ºC	NM*	NM*
Sulfur Content (%w/w)		5.54	6.08
Water Content (%w/w)		5.9	1.5
Flash Point (°C)		62	148
Pour Point (°C)		0	27
Emulsion Formation	Visual Stability	Entrained	DNF
	Complex Modulus (Pa)	784	NM
	Water Content (%w/w)	35.7	NM
Chemical Dispersibility by Swirling Flask Test	Corexit 9500	<10	<10
Hydrocarbon Groups (%w/w)	Saturates	38.7	24.0
	Aromatics	20.3	15.0
	Resins	24.8	32.4
	Asphaltenes	16.2	28.6
Wax Content (%w/w)		3.0	
GC-TPH Distributions	Total GC-TPH (mg/g)	245	231
	GC-Saturates/GC-TPH (%) 65.6	61.6
	GC-Aromatics/GC-TPH (%) 34.4	38.4
GC-TPH in Ranges:	$nC_8 \le to \le nC_{10}$	6.8	0.3
(%w/w)	$nC_{10} < to \le nC_{16}$	22.5	13.2
	$nC_{16} < to \le nC_{34}$	53.4	64.4
	<i>n</i> C ₃₄ +	17.3	22.1
Note:			

Table B26: Oil Properties of Irene Comingled

Note: DNF - Did not form NM - Not Measured

*Too viscous %Evaporative Mass Loss 0.0% 20.26% °C % Mass °C **Boiling Point Distribution** IBP (Cumulative Weight Fraction)

40	300	341
45	319	354
50	340	368
55	361	381
60	381	395
65	401	409
70	419	422
75	436	434
80	452	446
85	469	457
90	487	470
95	504	483
99.5	522	495

Note: IBP - Initial Boiling Point

6 References

ASTM F 2059, American Society for Testing and Materials (ASTM), "Standard test method for Laboratory Oil Spill Dispersant Effectiveness Using The Swirling Flask", in *Annual Books of ASTM Standards* Section 11 - Water and Environmental Technology, Volume 11.04, ASTM, West Conshohocken, PA, 2009.

ASTM D 2887, American Society for Testing and Materials (ASTM), "Standard test method for boiling range distribution of petroleum fractions by gas chromatography", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.02, ASTM, West Conshohocken, PA, 2009.

ASTM D 4294, American Society for Testing and Materials (ASTM), "Standard test method for sulfur in petroleum products by energy-dispersive x-ray fluorescence spectroscopy", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.02, ASTM, West Conshohocken, PA, 2009.

ASTM D 4377, American Society for Testing and Materials (ASTM), "Standard test method for water in crude oils by potentiometric Karl Fischer titration", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.02, ASTM, West Conshohocken, PA, 2009.

ASTM D 5002, American Society for Testing and Materials (ASTM), "Standard test method for density and relative density of crude oils by digital density analyzer", in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.03, ASTM, West Conshohocken, PA, 2009.

ASTM D 5853, American Society for Testing and Materials (ASTM), "Standard Test Method for Pour Point of Crude Oils" in *Annual Books of ASTM Standards* Section 5 - Petroleum Products, Lubricants and Fossil Fuels, Volume 05.03, ASTM, West Conshohocken, PA, 2009.

ASTM D 7094, American Society for Testing and Materials (ASTM), "Standard Test Method for Flash Point by Modified Continuously Closed Tester", in *Annual Books of ASTM Standards* Section 5 – Petroleum Products and Lubricants (IV), Volume 05.04, ASTM, West Conshohocken, PA, 2009.

Fingas, M., "Studies on the Evaporation of Crude Oil and Petroleum Products: I. The Relationship Between Evaporation Rate and Time", *J. Haz. Mat.*, 56:227-236, 1997.

Fingas, M., Fieldhouse, B., "Studies on crude oil and petroleum product emulsions: water resolution and rheology", *J. Colloids Surf. A.* 333, 67–81, 2009.

Song, B., Song, J. Springer, "Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing", *Journal of Colloid and Interface Science*, 184 (1):64-76, 1996.

Wang 1991, Wang, Z. D., M. Fingas and K. Li, "Fractionation of ASMB Oil, Identification and Quantitation of Aliphatic Aromatic and Biomarker Compounds by GC/FID and GC/MSD (Parts I and II)", *Journal of Chromatographic Science*, Vol. 32, pp 361-382, 1994.

Appendix E

Time-Window (in Hours) for Dispersant Application Predicted Using Oilmap Version 6.9.3 and the 24 oils from Task 3 and Different Oil Spill Volume, Water Temperature, Wind Speed, and Cutoff Viscosity for Sensitivity Analysis (Task 4)

Table E1: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters						
Cutoff Viscosity = 5000 cP		/110W1119	r ar and ee			
Wind Speed = 8 knots						
Water Temperature = 13 oC						
Oil Spill Volume (bbl) = 1000, 1	0000, 25	5000, 500	00, and	100000 k	bl	
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000	
Alaska North Slope [2011]	16	20	22	24	26	
Arabian Medium	11	13	14	15	16	
DOBA	1	1	1	1	1	
DOS Cuadras HE-05	8	11	12	13	14	
DOS Cuadras HE-26	12	15	16	17	18	
Endicott	16	23	26	28	32	
Harmony	1	1	1	1	1	
IFO-120	1	1	2	2	2	
IFO-180	0	0	0	0	0	
North Star	31	47	59	69	82	
Rock	0	0	0	0	0	
Terra Nova	18	23	25	27	30	
Independence Hub A.V. Block 37	1000	1000	1000	1000	1000	
Irene Sampled from Lompoc	0	0	0	0	0	
Nepturne	6	7	8	8	8	
Ellen A038	1	1	2	2	2	
Ellen AU40	0	0	0	0	0	
Gail EUl0	0	0	0	0	0	
Gall EU19	13	17	18	20	21	
Heritage HE US	0	0	0	0	0	
Heritage HE 26	0	0	0	0	0	
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du 	arally di aring the	spersed 1000 ho	and/or e ours of s	evaporated simulation.	
Table E2: Time Window (in Hours) Using Oilmap 6.9.3 an Cutoff Viscosity = 5000 cP Wind Speed = 8 knots Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 1	for Dis d the fo 0000, 25	persant llowing	Applicat Paramete 00, and	ion Prec ers 100000 ł	licted obl	
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000	
Alaska North Slope [2011]	15	19	21	23	24	
Arabian Medium	11	14	15	15	16	
DOBA	1000	1000	1000	1000	1000	
DOS Cuadras HE-05	7	10	11	12	13	
DOS Cuadras HE-26	12	15	17	18	19	
Endicott	16	23	27	30	35	

Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	1 0 34 5 18 1000 1 6 4 0 1 11 0 0 0	2 0 55 23 1000 1 8 7 0 1 15 0 0 0	2 0 69 5 26 1000 1 8 9 0 1 17 0 0 0	2 3 0 82 5 29 1000 1 9 10 0 1 18 0 0 0	2 3 0 97 5 32 1000 1 9 12 0 1 9 12 0 1 9 0 0 0 0
9999 means that the spilled oil before reaching the Cut-off vis	has natu scosity du	urally di uring the	lspersed e 1000 ho	and/or e ours of s	evaporated simulation.
Table E3: Time Window (in Hours Using Oilmap 6.9.3 aCutoff Viscosity= 5000 cWind Speed= 8 knotWater Temperature= 29 oCOil Spill Volume (bbl)= 1000,	s) for Dis and the for 2P 2S 10000, 2	spersant ollowing	Applicat Paramete	ion Prec rs 100000 ł	dicted
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	15 11 1000 7 12 16 1 1 1 35 7 18 1000 1 5 4 1 1 0 0 0 0 0	19 14 1000 9 16 23 2 2 1 59 8 24 1000 1 7 8 1 2 14 0 0 0 0 1	20 15 1000 10 17 26 2 3 1 74 8 27 1000 1 8 11 1 2 15 0 0 0 0	22 15 1000 11 18 30 3 1 88 8 8 29 1000 1 9 12 1 2 16 0 0 0	24 16 1000 12 19 34 3 1 104 8 33 1000 2 9 14 1 2 18 0 0 0
9999 means that the spilled oil before reaching the Cut-off vis	has natu scosity du	urally di uring the	lspersed 2 1000 ho	and/or e ours of s	evaporated simulation.

Table E4: Time Window (in Hours Using Oilmap 6.9.3 a	s) for Dis and the fo	spersant ollowing	Applicat Paramete	cion Pre ers	dicted
Cutoff Viscosity = 5000 c Wind Speed = 12 kpc	2P				
Water Temperature = 13 oC					
Oil Spill Volume (bbl) = 1000,	10000, 25	5000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	8	11	13	14	16
Arabian Medium	б	7	7	7	8
DOBA	1	1	1	1	1
DOS Cuadras HE-05	5	6	7	7	7
DOS Cuadras HE-26	6	8	8	9	10
Endicott	9	1	17	20	23
	1	1	1	⊥ 1	1
IFO-120 TEO-180	1		1		
North Star	20	37	47	56	66
Rock	0	0	0	0	0
Terra Nova	9	13	15	18	20
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	0	0	0	0	0
Nepturne	3	4	4	4	4
Ellen A038	1	1	1	1	1
Ellen A040	0	0	0	0	0
Gail E010	0	0	0	0	0
Gail E019	7	9	10	11	11
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled					U
9999 means that the spilled oil before reaching the Cut-off vis	l has natu scosity du	urally di uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table E5: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 12 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000,	s) for Dis and the for P ots 10000, 25	spersant ollowing 5000, 500	Applicat Paramete	ion Preers	dicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	8	11	12	13	15
Arabian Medium	6	7	7	8	8
DOBA	1000	1000	1000	1000	1000
DOS Cuadras HE-05	4	6	6	/	10
DOS Cuadras HE-26	6 1 0	8	10	9	10
Harmony	1	1	19	۵۵ 1	27
TEO-120	⊥ 1	⊥ 1	⊥ 2	⊥ 2	⊥ 2
TFO-180	<u> </u>	n U	0	0	n n
North Star	2.3	44	56	66	78
Rock	2	2	2	2	2
Terra Nova	10	14	17	19	22
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999

Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled 9999 means that the spilled oil before reaching the Cut-off vis	1 3 0 1 6 0 0 0 0 has natu scosity du	1 4 6 0 1 8 0 0 0 urally di aring the	1 4 7 0 1 9 0 0 0 0 spersed 1000 hc	1 5 8 0 1 10 0 0 0 0 and/or ours of	1 5 9 0 1 11 0 0 0 evaporated simulation.	
Cutoff Viscosity= 5000 cWind Speed= 12 kncWater Temperature= 29 oCOil Spill Volume (bbl)= 1000,	10000, 25	5000, 500	Paramete	1000000	bbl	
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000	
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	8 6 1000 4 6 9 1 1 1 1 24 3 10 9999 1 3 3 1 1 6 0 0 0	10 7 1000 5 8 15 1 2 1 47 4 1 4 9999 1 4 7 1 1 8 0 0 0	12 7 1000 6 9 19 2 2 2 1 60 4 17 9999 1 4 8 1 1 9999 1 4 8 1 1 9 0 0 0	13 8 1000 6 10 22 2 2 2 2 1 71 4 20 9999 1 5 10 1 1 9 9099 0 0 0 0	14 8 1000 7 10 26 2 2 1 84 4 23 9999 1 5 11 1 5 11 1 1 0 0 0 0	
Ineme commigred00 <th0< th="">0000<</th0<>						

Oil Name \setminus OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	б	8	10	 12	13
Arabian Medium	4	5	5	5	5
DOBA	1	1	1	1	1
DOS Cuadras HE-05	- 3	4	5	5	5
DOS Cuadras HE-26	4	5	5	5	5
Endicatt		10	15	19	21
	1	1	10	10	21
Harmony	1	1	1	1	1
IFO-120	Ţ	Ţ	Ţ	1 Q	l
IFO-180	0	0	0	0	0
North Star	17	33	42	50	59
Rock	0	0	0	0	0
Terra Nova	б	10	13	15	18
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	0	0	0	0	0
Nepturne	2	3	3	3	3
Ellen A038	1	1	1	1	1
Ellen A040	0	0	0	0	0
Cail F010	0	0	0	0	0
Coil E010	5	6	0 7	9	Q
Uaritage UE OF	0	0	,	0	0
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
before reaching the cut-off vis					
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC) for Dis nd the fo P ts	spersant ollowing	Applica Parameto	tion Preers	dicted
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000,) for Dis nd the fo P ts 10000, 25	spersant ollowing	Applicat Parameto	tion Preers	dicted bbl
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl)	() for Dis nd the fo P ots 10000, 29 1000	spersant ollowing 5000, 500 10000	Applicat Parameto 00, and 25000	tion Preers 100000 50000	dicted bbl 100000
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011]	<pre>c) for Dis nd the fo P ots 10000, 29 </pre>	spersant bllowing 5000, 500 10000 8	Applicat Parameto 00, and 25000 9	100000 50000	dicted bbl 100000 12
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011]	<pre>c) for Dis nd the fo p its 10000, 29 </pre>	spersant bllowing 5000, 500 10000 	Applicat Parameto 00, and 25000 9 5	tion Preers 100000 50000 11	dicted bbl 100000 12 5
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium	<pre>c) for Dis nd the fo P its 10000, 29 </pre>	5000, 500 10000 8 5000	Applicat Parameto 00, and 25000 9 5	tion Preers 100000 50000 11 51000	dicted bbl 100000 12 5 1000
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA	<pre>c) for Dis nd the fo P its 10000, 29 </pre>	5000, 500 10000 8 5 1000	Applicat Parameto 00, and 25000 9 5 1000	tion Preers 100000 50000 11 5 1000	dicted bbl 100000 12 5 1000
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05	<pre>c) for Dis nd the fo P its 10000, 29 1000 5 4 1000 3 4</pre>	5000, 500 10000 8 5 1000 4 6	Applicat Paramete 000, and 25000 9 5 1000 4	tion Preers 100000 50000 11 5 1000 5 7	dicted bbl 100000 12 5 1000 5 7
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-26	<pre>c) for Dis nd the for P sts 10000, 29 </pre>	5000, 500 10000 8 5 1000 4 6	Applicat Paramete 000, and 25000 9 5 1000 4 6	tion Preers 100000 50000 11 5 1000 5 7	dicted bbl 100000 12 5 1000 5 7
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott	<pre>c) for Dis nd the for P ots 10000, 29 </pre>	5000, 500 5000, 500 10000 8 5 1000 4 6 14	Applicat Paramete 200, and 25000 9 5 1000 4 6 17	tion Preers 100000 50000 11 5 1000 5 7 20	dicted bbl 100000 12 5 1000 5 7 24
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony	e) for Dis nd the for Pots 10000, 29 	5000, 500 5000, 500 10000 8 5 1000 4 6 14 1	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1	tion Preers 100000 50000 11 5 1000 5 7 20 1	dicted bbl 100000 12 5 1000 5 7 24 1
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120	<pre>c) for Dis nd the for pots 10000, 29 1000 5 4 1000 3 4 7 1 1 1</pre>	spersant bllowing 5000, 500 	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1	tion Preers 100000 50000 11 5 1000 5 7 20 1 1	dicted bbl 100000 12 5 1000 5 7 24 1 1
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180	e) for Dis nd the for P ots 10000, 29 	5000, 500 5000, 500 10000 8 5 1000 4 6 14 1 1 0	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1 0	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0	dicted bbl 100000 12 5 1000 5 7 24 1 1 0
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star	<pre>c) for Dis nd the for P ots 10000, 29 </pre>	spersant bllowing 5000, 500 	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1 0 49	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock	e) for Dis nd the for Pots 10000, 29 	spersant bllowing 5000, 500 10000 	Applicat Paramete 25000 25000 9 5 1000 4 6 17 1 1 0 49 1	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock	e) for Dis nd the for Pots 10000, 29 	spersant bllowing 5000, 500 10000 	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1 0 49 1 14	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova	e) for Dis nd the for Pots 10000, 29 	spersant bllowing 5000, 500 10000 	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 kno Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999	spersant ollowing 5000, 500 	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999 1 2	spersant ollowing 5000, 500 	Applicat Paramete 200, and 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1 2	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1 2	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1 2
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999 1 2 2	spersant bllowing 5000, 500 10000 	Applicat Paramete 25000 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1 3 6	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1 3 7	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1 3
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999 1 2 2 2	spersant 5000, 500 5000, 500 10000 	Applicat Paramete 25000 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1 3 6	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1 3 7 20	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1 3 8
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999 1 2 2 0	spersant 5000, 500 5000, 500 10000 	Applicat Paramete 25000 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1 3 6 0	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1 3 7 0	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1 3 8 0
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999 1 2 2 0 1	spersant 5000, 500 5000, 500 10000 	Applicat Paramete 25000 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1 3 6 0 1	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1 3 7 0 1 3 7 0 1	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1 3 8 0 1
Table E8: Time Window (in Hours Using Oilmap 6.9.3 a Cutoff Viscosity = 5000 c Wind Speed = 15 knc Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 	e) for Dis nd the for Pots 10000, 29 1000 5 4 1000 3 4 7 1 1 0 20 1 7 9999 1 2 2 0 1 4	spersant 5000, 500 10000 8 5 1000 4 6 14 1 0 39 1 12 9999 1 3 5 0 1 6	Applicat Paramete 25000 9 5 1000 4 6 17 1 1 0 49 1 14 9999 1 3 6 0 1 7	tion Preers 100000 50000 11 5 1000 5 7 20 1 1 0 59 1 17 9999 1 3 7 0 1 8	dicted bbl 100000 12 5 1000 5 7 24 1 1 0 69 1 20 9999 1 3 8 0 1 8

Heritage HE 26 Irene Comingled	0 0	0 0	0 0	0 0	0 0	
9999 means that the spilled oi before reaching the Cut-off vi	l has nat scosity d	urally di luring the	spersed 1000 hc	and/or ours of	evaporated simulation.	
Table E9: Time Window (in Hours Using Oilmap 6.9.3 Cutoff Viscosity = 5000 Wind Speed = 15 km Water Temperature = 29 oC	s) for Di and the f cP ots	spersant ollowing	Applicat Paramete	tion Preers	edicted	
Oil Name \ OilVolume (bbl)	10000, 2	10000	25000	50000	100000	
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	5 4 1000 3 4 7 1 1 2 2 7 9999 9 9999 1 2 3 1 1 4 0 0 0 0	7 5 1000 4 6 13 1 1 1 42 2 12 9999 1 3 6 1 1 6 0 0 0	9 5 1000 4 6 17 1 1 53 2 15 9999 1 3 7 1 1 6 0 0 0	10 5 1000 4 7 20 1 2 1 63 2 1 8 9999 1 3 9999 1 3 9999 1 1 7 0 0 0 0	11 5 1000 5 8 23 1 2 1 74 2 20 9999 1 3 10 1 1 8 0 0 0 0	
9999 means that the spilled oi before reaching the Cut-off vi	l has nat scosity d	urally di luring the	spersed 1000 ho	and/or ours of	evaporated simulation.	
Table E10: Time Window (in Hours) for Dispersant Application Predicted Using Oilmap 6.9.3 and the following Parameters Cutoff Viscosity = 7500 cP Wind Speed = 8 knots Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 10000, 25000, 50000, and 100000 bbl						
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000	
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26	19 13 3 10 14	26 15 3 13 18	29 16 3 14 19	32 17 3 15 21	36 18 3 16 22	

Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	19 1 0 57 2 21 1000 0 7 3 0 0 15 0 0 0	28 1 2 0 106 2 29 1000 0 9 4 0 0 19 0 0 0 0	34 1 2 0 133 2 34 1000 0 9 5 0 0 22 0 0 0 0 0 0	39 2 0 159 2 39 1000 0 10 5 0 0 23 0 0 0 0	45 2 0 189 2 45 1000 0 10 6 0 0 25 0 0 0
9999 means that the spilled oil before reaching the Cut-off vis	has natu cosity du	urally di uring the	spersed 1000 hc	and/or e ours of s	evaporated simulation.
Table Ell: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 7500 c Wind Speed = 8 knot Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000,	s) for Di nd the fo P s 10000, 25	spersant llowing	Applica Paramete	tion Preers 100000 k	edicted
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	18 13 1000 8 14 19 1 2 0 66 7 22 1000 1 7 6 0 1 13 0 0 0 0	24 16 1000 12 18 28 2 3 0 122 7 31 1000 1 9 11 0 1 17 0 0 0 0 0	27 17 1000 13 20 34 3 0 154 7 36 1000 1 10 14 0 2 19 0 0 0	$\begin{array}{c} 30\\ 17\\ 1000\\ 14\\ 21\\ 39\\ 3\\ 3\\ 0\\ 183\\ 7\\ 42\\ 1000\\ 1\\ 10\\ 17\\ 0\\ 2\\ 21\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$	34 18 1000 15 23 46 3 0 218 7 48 1000 1 11 20 0 2 22 0 0 2 22 0 0 0 0 0 0 0 0

9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.

Table E12: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 7500 c Wind Speed = 8 knot Water Temperature = 29 oC	rs) for Di and the fo P s	lspersant ollowing B	Applica Paramete	ation Pr ers	redicted
Oil Spill Volume (bbl) = 1000,	10000, 25	5000, 500	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	18	23	26	29	32
Arabian Medium	13	16	17	17	18
DOBA	1000	1000	1000	1000	1000
DOS Cuadras HE-05	8	11	12	13	14
DOS Cuadras HE-26	14	18	20	22	23
Endicott	18	27	32	37	44
Harmony	1	3	3	3	3
IFO-120	2	3	3	4	4
IFU-180 Newth Stew		1 2 O	1 - 1	105	1
North Star	70	13U	104	195	232
ROCK Torra Nova	10	11 21	12 27	12	12
Ierra Nova	1000	31 1000	1000	1000	49
Independence Hub A.V. BIOCK 37	1000	2000	1000	1000	2000
Nepturne	1 6	9	2 Q	10	10
Filen A038	6	12	15	18	21
Ellen A030	4	12 A	13	10	
Cail F010	1	2	2	2	3
Gail E010	11	16	17	19	20
Heritage HE 05	0	0		0	20
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off vis	has natu scosity du	arally dia aring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table E13: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 7500 c Wind Speed = 12 knc Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000,	rs) for Di and the fo P ots 10000, 25	Spersant	Applica Paramete	ation Pr ers 100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	11	16	20	23	27
Arabian Medium	6	8	8	9	9
DOBA	1	1	1	1	1
DOS Cuadras HE-05	5	7	8	8	9
DOS Cuadras HE-26	7	10	11	12	13
Endicott	12	20	26	30	36
Harmony	1	1	1	1	1
IFO-120	1	1	1	1	2
IFO-180	0	0	0	0	0
North Star	46	86	108	128	152
Rock	1	1	1	1	1
Terra Nova	12	20	25	30	35

Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	0	0	0	0	0
Nepturne	4	4	5	5	5
Ellen A038	1	2	3	3	4
Ellen A040	0	0	0	0	0
Gail E010	0	0	0	0	0
Gail E019	8	11	13	14	16
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	urally dia uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table E14: Time Window (in Hours Using Oilmap 6.9.3 arCutoff Viscosity= 7500 cFWind Speed= 12 knotWater Temperature= 23 oCOil Spill Volume (bbl)= 1000, 1	s) for Dind the for	ispersant bllowing 1 5000, 500	Applica Paramete 00, and	ation Pr ers 100000	edicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	 10		 18	 21	24
Arabian Medium	±0 6		8	9	9
DOBA	1000	1000	1000	1000	1000
DOS Cuadras HE-05	5	6		8	8
DOS Cuadras HE-26	7	10	11	12	14
Endicott	12	21	26	31	37
Harmony	1	2	2	2	2
IFO-120	1	2	2	2	2
IFO-180	0	0	0	0	0
North Star	53	99	125	148	176
Rock	3	3	3	3	3
Terra Nova	13	22	27	32	38
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	1	1	1	1	1
Nepturne	4	5	5	5	5
Ellen A038	4	9	12	14	16
Ellen A040	0	0	0	0	0
Gail E010	1	1	1	1	1
Gail E019	7	10	11	12	14
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	urally dia uring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table E15: Time Window (in Hours Using Oilmap 6.9.3 ar Cutoff Viscosity = 7500 cF Wind Speed = 12 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1	s) for Di nd the fo es	ispersant bllowing 1 5000, 500	Applica Paramete 00, and	ation Pr ers 100000	bbl

Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]		 14	17	 19	22
Arabian Medium	б	8	8	9	9
DOBA	1000	1000	1000	1000	1000
DOS Cuadras HE-05	4	б	7	7	8
DOS Cuadras HE-26	8	10	11	13	14
Endicott	11	20	25	29	35
Harmony	1	2	2	2	2
IFO-120	1	2	2	2	2
IFO-180	1	1	1	1	1
North Star	56	105	133	158	187
Rock	5			5	5
Terra Nova	13	22	28	22	39
Independence Hub A V Block 37	9999	9999	9999	9999	9999
Irono Compled from Lempor	1	1	1	1	1
Monturne	1				
Nepturne	4 r	5 1 0	5 1 0	C ۱ ۸	0
Eilen AU38	5	TO	12	⊥4	⊥ /
Ellen A040	1	1	Ţ	1	1 2
Gail E010	1	1	2	2	2
Gail E019	6	9	10	11	12
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
Cutoff Viscosity= 7500 cFWind Speed= 15 knotWater Temperature= 13 oC	id the id s	ollowing	Paramete	ers	
Oil Spill Volume (bbl) = 1000, 1	.0000, 25	5000, 500	00, and	100000	
Oil Name \ OilVolume (bbl)	1000	10000			bbl
Alaska North Slope [2011]		10000	25000	50000	bbl 100000
Arabian Medium	8	10000 14	25000 17	50000 21	bbl 100000 24
DOBA	8 4	10000 14 5	25000 17 5	50000 21 6	bbl 100000 24 6
DOS Cuadras HE-05	8 4 1	10000 14 5 1	25000 17 5 1	50000 21 6 1	bbl 100000 24 6 1
DOS CUADIAS IIE 05	8 4 1 4	10000 14 5 1 5	25000 17 5 1 6	50000 21 6 1 6	bbl 100000 24 6 1 6
DOS Cuadras HE-26	8 4 1 4 5	10000 14 5 1 5 7	25000 17 5 1 6 8	50000 21 6 1 6 9	bbl 100000 24 6 1 6 10
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott	8 4 1 4 5 9	10000 14 5 1 5 7 18	25000 17 5 1 6 8 23	50000 21 6 1 6 9 27	bbl 100000 24 6 1 6 10 32
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony	8 1 4 5 9 1	10000 14 5 1 5 7 18 1	25000 17 5 1 6 8 23 1	50000 21 6 1 6 9 27 1	bbl 100000 24 6 1 6 10 32 1
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony TEO-120	8 4 5 9 1	10000 14 5 1 5 7 18 1 1	25000 17 5 1 6 8 23 1 1	50000 21 6 1 6 9 27 1 1	bbl 100000 24 6 1 6 10 32 1 1
DOS Cuadras HE-26 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180	8 4 5 9 1 1	10000 14 5 1 5 7 18 1 1 0	25000 17 5 1 6 8 23 1 1 0	50000 21 6 1 6 9 27 1 1 0	bbl 100000 24 6 1 6 10 32 1 1 0
DOS Cuadras HE-26 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star	8 4 5 9 1 1 0 41	10000 14 5 1 5 7 18 1 1 0 76	25000 17 5 1 6 8 23 1 1 0 96	50000 21 6 1 6 9 27 1 1 0 114	bbl 100000 24 6 1 6 10 32 1 1 1 0 136
DOS Cuadras HE-26 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star	8 4 5 9 1 1 0 41	10000 14 5 1 5 7 18 1 1 0 76 1	25000 17 5 1 6 8 23 1 1 0 96	50000 21 6 1 6 9 27 1 1 0 114	bbl 100000 24 6 1 6 10 32 1 1 1 0 136 1
DOS Cuadras HE-OS DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock	8 4 5 9 1 1 0 41 1	10000 14 5 1 5 7 18 1 1 0 76 1	25000 17 5 1 6 8 23 1 1 0 96 1 22	50000 21 6 1 6 9 27 1 1 0 114 1 26	bbl 100000 24 6 10 32 1 1 0 136 1 21
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova	8 4 5 9 1 1 0 41 1 9	10000 14 5 1 5 7 18 1 1 0 76 1 18 0	25000 17 5 1 6 8 23 1 1 0 96 1 22 0000	50000 21 6 1 6 9 27 1 1 0 114 1 26 0000	bbl 100000 24 6 1 6 10 32 1 1 0 136 1 31 0000
DOS Cuadras HE-26 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37	8 4 5 9 1 1 0 41 1 9 9999	10000 14 5 1 5 7 18 1 1 0 76 1 18 9999	25000 17 5 1 6 8 23 1 1 0 96 1 22 99999	50000 21 6 1 6 9 27 1 1 0 114 1 26 9999	bbl 100000 24 6 1 6 10 32 1 1 0 136 1 31 9999
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc	8 4 5 9 1 1 0 41 1 9 9999 0	10000 14 5 1 5 7 18 1 1 0 76 1 18 9999 0 0	25000 17 5 1 6 8 23 1 1 0 96 1 22 9999 0 0	50000 21 6 1 6 9 27 1 1 0 114 1 26 9999 0	bbl 100000 -24 6 1 6 10 32 1 1 0 136 1 31 9999 0 0
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne	8 4 5 9 1 1 0 41 1 9 9999 0 3	10000 14 5 1 5 7 18 1 1 0 76 1 18 9999 0 3	25000 17 5 1 6 8 23 1 1 0 96 1 22 99999 0 3	50000 21 6 1 6 9 27 1 1 0 114 1 26 9999 0 3	bbl 100000 24 6 1 6 10 32 1 1 0 136 1 31 9999 0 3
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038	8 4 5 9 1 1 0 41 1 9 9999 0 3 1	10000 14 5 1 5 7 18 1 1 0 76 1 18 99999 0 3 2	25000 17 5 1 6 8 23 1 1 0 96 1 22 99999 0 3 3	50000 21 6 1 6 9 27 1 1 0 114 1 26 9999 0 3 3 3	bbl 100000 24 6 1 6 10 32 1 1 0 136 1 31 9999 0 3 3 3
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040	8 4 5 9 1 1 0 41 1 9 99999 0 3 1 0	10000 14 5 1 5 7 18 1 1 0 76 1 18 9999 0 3 2 0	25000 17 5 1 6 8 23 1 1 0 96 1 22 99999 0 3 3 0	50000 21 6 1 6 9 27 1 1 0 114 1 26 9999 0 3 3 0	bbl 100000 24 6 1 6 10 32 1 1 0 136 1 31 9999 0 3 3 0
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010	8 4 5 9 1 1 0 41 1 9 99999 0 3 1 0 0	10000 14 5 1 5 7 18 1 1 0 76 1 18 99999 0 3 2 0 0 0	25000 17 5 1 6 8 23 1 1 0 96 1 22 9999 0 3 3 0 0 0	50000 21 6 1 6 9 27 1 1 0 114 1 26 9999 0 3 3 0 0	bbl 100000 24 6 1 6 10 32 1 1 0 136 1 31 9999 0 3 3 0 0 0

Heritage HE 05 Heritage HE 26 Irene Comingled	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	rally dia ring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table E17: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 7500 cF Wind Speed = 15 knot Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 1	s) for Di nd the fo cs .0000, 25	spersant llowing F 000, 5000	Applica Paramete	tion Pr rs 100000	edicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	7 4 1000 3 5 10 1 1 0 47 2 10 9999 1 3 4 0 1 5 0 0 0 0	12 5 1000 5 7 19 1 1 0 88 2 19 9999 1 3 8 0 1 7 0 0 0 0	16 6 1000 5 8 23 1 1 0 111 2 24 9999 1 3 10 0 1 9 9999 1 3 10 0 1 9 900 0 0 0 0	18 6 1000 6 10 28 1 2 0 132 2 29 9999 9999 1 4 12 0 1 10 0 0 0 0 0	21 6 1000 6 11 33 1 2 0 157 2 34 9999 1 4 14 0 1 14 0 1 11 0 0 0 0
9999 means that the spilled oil before reaching the Cut-off visc	has natu cosity du	rally dia ring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table E18: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 7500 cF Wind Speed = 15 knot Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 1	s) for Di nd the fo s	spersant llowing H 000, 5000	Applica Paramete	tion Pr ers 100000	edicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05	7 4 1000 3	12 5 1000 4	14 6 1000 5	17 6 1000 5	20 6 1000 6

DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05	5 9 1 1 50 3 10 9999 1 3 4 1 1 5 0	7 18 1 2 1 94 3 20 9999 1 3 8 1 1 7 0	9 22 1 2 118 3 25 9999 1 3 11 1 1 8 0	10 26 2 1 140 3 30 9999 1 4 13 1 1 9 0	11 31 2 1 166 3 5 9999 1 4 15 1 1 10 0			
Heritage HE 26	0	0	0	0	0			
9999 means that the spilled oil before reaching the Cut-off visco	9999 means that the spilled oil has naturally dispersed and/or evaporated before reaching the Cut-off viscosity during the 1000 hours of simulation.							
Table E19: Time Window (in Hours Using Oilmap 6.9.3 and Cutoff Viscosity= 10000 clWind Speed= 8 knotsWater Temperature= 13 oCOil Spill Volume (bbl)= 1000, 10) for Di d the fo P 0000, 25	spersant llowing 000, 500	Applica Paramete 00, and	tion Pre rs 100000 b	dicted bl			
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000			
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	23 14 5 11 16 22 1 1 0 103 3 26 1000 0 8 5 0 0 0 16 0 0 0	32 17 5 14 20 34 2 2 0 190 3 8 1000 0 10 10 10 10 0 0 22 0 0 0	38 18 5 16 22 42 2 3 0 240 3 46 1000 0 10 12 0 0 25 0 0 0 0	44 19 5 17 24 49 2 3 0 285 3 54 1000 0 11 14 0 0 27 0 0 0	52 20 5 18 26 58 2 3 0 339 3 64 1000 0 11 16 0 0 30 0 0 30 0 0			
9999 means that the spilled oil before reaching the Cut-off visco	has natu osity du 	rally di ring the	spersed 1000 ho 	and/or e urs of s 	vaporated imulation.			

Table E20: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cP Wind Speed = 8 knots	for D the f	ispersant ollowing H	Applica Paramete	ation Pr ers	redicted
Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 10	000, 2	5000, 5000	00, and	100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA	22 14 1000	30 17 1000	35 18 1000	40 19 1000	46 20 1000
DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock	9 16 21 2 2 1 118 9	13 21 33 3 1 216 9	14 23 41 3 4 1 273 9	15 25 48 3 4 1 325 9	16 27 57 3 4 1 386 9
Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Horitage ME 05	26 1000 1 7 8 1 1 14	40 1000 1 10 15 1 2 19 0	50 1000 2 11 19 1 2 21 0	58 1000 2 11 23 1 2 23 0	69 1000 2 12 26 1 2 25 0
Heritage HE 05 Heritage HE 26 Irene Comingled	0	0 0 0	0 0 0	0 0 0	0 0 0
9999 means that the spilled oil h before reaching the Cut-off visco	as nat sity d	urally dis uring the	spersed 1000 ho	and/or ours of	evaporated simulation.
Table E21: Time Window (in Hours) Using Oilmap 6.9.3 and Cutoff Viscosity = 10000 cP Wind Speed = 8 knots Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, 10	for D the f	ispersant ollowing H 5000, 5000	Applica Paramete	ation Press	redicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120	21 14 1000 9 16 20 2 2	28 17 1000 12 21 31 3 4	33 18 1000 13 24 38 3 4	37 19 1000 14 26 45 4 4	43 20 1000 15 28 53 4 5
IFO-180 North Star Rock	1 124 13	1 228 15	2 287 16	2 342 16	2 407 17

Terra Nova	26	41	50	60	70
Independence Hub A.V. Block 37	1000	1000	1000	1000	1000
Irene Sampled from Lompoc	1	2	2	2	2
Nepturne	7	9	10	11	12
Ellen A038	8	15	19	22	26
Ellen A040	18	34	43	51	61
Gall EUIU	2	3	3	3	4
Gall EU19	13	1/	19	21	23
Heritage HE US	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	rally di ring the	spersed 1000 ho	and/or e ours of s	vaporated imulation.
Table E22: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 10000 c Wind Speed = 12 knot Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 1) for Di d the fo P s 0000, 25	spersant llowing 3	Applica Paramete 00, and	ation Pre ers 100000 b	dicted bl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	13	23	 29	35	41
Arabian Medium	7	8	9	9	10
DOBA	2	2	2	2	2
DOS Cuadras HE-05	б	8	9	10	10
DOS Cuadras HE-26	8	11	13	15	16
Endicott	14	26	33	39	46
Harmony	1	1	1	1	1
IFO-120	1	2	2	2	2
IFO-180	0	0	0	0	0
North Star	84	154	194	231	274
Rock	1	1	1	1	1
Terra Nova	16	29	37	44	52
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	0	0	0	0	0
Nepturne	4	5	5	5	5
Ellen A038	4	8	9	11	13
Ellen A040	0	0	0	0	0
Gail E010	0	0	0	0	0
Gail E019	9	13	16	18	21
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	rally di	spersed 1000 ho	and/or e ours of s	vaporated imulation.
Table E23: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 10000 c Wind Speed = 12 knot Water Temperature = 23 oC) for Di d the fo P s	spersant llowing :	Applica Paramete	ation Pre ers	dicted

Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	12	21	26	31	36
Arabian Medium	7	9	9	10	10
DOBA	1000	1000	1000	1000	1000
DOS Cuadras HE-05	5	7	8	9	9
DOS Cuadras HE-26	9	12	14	16	18
Endicott	14	26	32	38	45
Harmony	1	2	2	2	2
IFO-120	1	2	2	2	2
IFO-180	1	1	1	1	1
North Star	96	175	221	263	312
Rock	4	4	4	4	4
Terra Nova	17	31	40	47	55
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	1	1	1	1	1
Nepturne	4	5	6	6	6
Ellen A038	6	12	15	18	21
Ellen A040	1	1	1	1	1
Gail E010	1	1	1	1	1
Gail E019	8	11	13	15	17
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
Table E24: Time Window (in Hou: Using Oilmap 6.9.3 aCutoff Viscosity= 10000Wind Speed= 12 kps	rs) for I and the i	Dispersant	t Applic	ation Di	
Water Temperature = 29 oC	CP ots	rollowing	Paramet	ers	realctea
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000,	cP ots 10000, 2	25000, 50	Paramet 000, and	100000	bbl
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl)	cP ots 10000, 2 	25000, 50 10000	Paramet 000, and 25000	100000 50000	bbl 100000
Walter Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011]	CP ots 10000, 2 1000 1000	25000, 50 10000 	Paramet 000, and 25000 24	100000 50000 	bbl 100000 33
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium	CP 10000, 2 1000 1000 12 7	25000, 50 10000 19 9	Paramet 000, and 25000 24 9	100000 50000 28 10	bbl 100000 33 10
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA	CP 10000, 2 1000 1000 12 7 1000	25000, 50 10000 19 9 1000	Paramet 000, and 25000 24 9 1000	100000 50000 28 10 1000	bbl 100000 33 10 1000
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05	CP 10000, 2 1000 1000 12 7 1000 5	25000, 50 10000 19 9 1000 7	Paramet 000, and 25000 24 9 1000 7	100000 50000 28 10 1000 8	bbl 100000 33 10 1000 9
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26	CP 10000, 2 1000 120 7 1000 5 9	25000, 50 10000 19 9 1000 7 12	Paramet 000, and 25000 24 9 1000 7 14	100000 50000 28 10 1000 8 16	bbl 100000 33 10 1000 9 18
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott	CP 10000, 2 1000 1000 12 7 1000 5 9 13	25000, 50 10000 19 9 1000 7 12 24	Paramet 000, and 25000 24 9 1000 7 14 30	100000 50000 28 10 1000 8 16 36	bbl 100000 33 10 1000 9 18 42
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony	CP 10000, 2 1000 12 7 1000 5 9 13 1	25000, 50 10000 19 9 1000 7 12 24 2	Paramet 000, and 25000 24 9 1000 7 14 30 2	100000 50000 28 10 1000 8 16 36 2	bbl 100000 33 10 1000 9 18 42 2
Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120	CP 10000, 2 1000 12 7 1000 5 9 13 1 1	25000, 500 10000 19 9 1000 7 12 24 24 2 2	Paramet 000, and 25000 24 9 1000 7 14 30 2 2	100000 50000 28 10 1000 8 16 36 2 3	bbl 100000 33 10 1000 9 18 42 2 3
Willd Speed = 12 km Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180	CP 10000, 2 1000 12 7 1000 5 9 13 1 1 1	25000, 500 10000 19 9 1000 7 12 24 2 2 1	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1	100000 50000 28 10 1000 8 16 36 2 3 1	bbl 100000 33 10 1000 9 18 42 2 3 1
Willd Speed = 12 km Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star	CP 10000, 2 1000 12 7 1000 5 9 13 1 1 1 101	25000, 500 10000 19 9 1000 7 12 24 2 2 1 185	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233	100000 50000 28 10 1000 8 16 36 2 3 1 277	bbl 100000 33 10 1000 9 18 42 2 3 1 329
Willd Speed = 12 KH Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock	CP pts 10000, 2 1000 12 7 1000 5 9 13 1 1 1 101 6	25000, 50 10000 19 9 1000 7 12 24 2 2 1 185 7	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7	100000 50000 28 10 1000 8 16 36 2 3 1 277 7	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7
Willd Speed = 12 km Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova	CP pts 10000, 2 1000 12 7 1000 5 9 13 1 1 101 6 17	25000, 50 10000 19 9 1000 7 12 24 2 1 185 7 32	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7 40	100000 50000 28 10 1000 8 16 36 2 3 1 277 7 48	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7 57
Willd Speed = 12 km Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37	CP pts 10000, 2 1000 12 7 1000 5 9 13 1 1 101 6 17 9999	25000, 50 10000 19 9 1000 7 12 24 2 1 185 7 32 9999	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7 40 9999	100000 50000 28 10 1000 8 16 36 2 3 1 277 7 48 9999	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7 57 9999
Walter Temperature = 29 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc	CP pts 10000, : 1000 12 7 1000 5 9 13 1 1 101 6 17 9999 1	25000, 50 10000 19 9 1000 7 12 24 2 1 185 7 32 9999 1	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7 40 9999 1	100000 50000 28 10 1000 8 16 36 2 3 1 277 7 48 9999 2	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7 57 9999 2
Waiter Temperature = 29 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne	CP pts 10000, : 1000 12 7 1000 5 9 13 1 101 6 17 9999 1 4	25000, 50 10000 19 9 1000 7 12 24 2 1 185 7 32 9999 1 5	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7 40 9999 1 6	100000 50000 28 10 1000 8 16 36 2 3 1 277 7 48 9999 2 6	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7 57 9999 2 6
Willd Speed = 12 km Water Temperature = 29 oC Dil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038	CP pts 10000, : 1000 12 7 1000 5 9 13 1 101 6 17 9999 1 4 6	25000, 50 10000 19 9 1000 7 12 24 2 1 185 7 32 9999 1 5 12	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7 40 9999 1 6 15	100000 50000 28 10 1000 8 16 36 2 3 1 277 7 48 9999 2 6 18	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7 57 9999 2 6 21
Willd Speed = 12 km Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000, Oil Name \ OilVolume (bbl) Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040	CP 10000, : 1000 12 7 1000 5 9 13 1 101 6 17 9999 1 4 6 14	25000, 50 10000 19 9 1000 7 12 24 2 2 1 185 7 32 9999 1 5 12 27	Paramet 000, and 25000 24 9 1000 7 14 30 2 2 1 233 7 40 9999 1 6 15 35	100000 50000 28 10 1000 8 16 36 2 3 1 277 7 48 9999 2 6 18 41	bbl 100000 33 10 1000 9 18 42 2 3 1 329 7 57 9999 2 6 21 48

oil Spill Volume (bbl) - 1000 10000 25000 50000 and 100000 bbl

Gail E019	7	10	12	13	14
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	rally dia ring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table E25: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 10000 c Wind Speed = 15 knot Water Temperature = 13 oC Oil Spill Volume (bbl) = 1000, 1) for Di d the fo P .s .0000, 25	spersant llowing 3	Applica Paramete 00, and	tion Pr rs 100000	redicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA DOS Cuadras HE-05 DOS Cuadras HE-26 Endicott Harmony IFO-120 IFO-120 IFO-180 North Star Rock Terra Nova Independence Hub A.V. Block 37 Irene Sampled from Lompoc Nepturne Ellen A038 Ellen A040 Gail E010 Gail E019 Heritage HE 05 Heritage HE 26 Irene Comingled	11 5 1 4 6 12 1 1 0 75 1 1 3 9999 0 3 3 0 0 0 6 0 0 0 0 0	21 6 1 6 9 23 1 1 0 138 1 26 9999 0 3 7 0 0 3 7 0 0 11 0 0 0	26 6 1 6 10 30 1 1 0 173 1 33 9999 0 3 8 0 0 3 8 0 0 13 0 0 0 0	31 6 1 7 12 35 1 1 0 206 1 39 9999 0 3 10 0 3 10 0 16 0 0 0 0	36 7 1 8 14 41 1 1 0 244 1 46 9999 0 3 11 0 0 3 11 0 0 18 0 0 0
9999 means that the spilled oil before reaching the Cut-off visc	has natu osity du	rally dia	spersed 1000 hc	and/or ours of	evaporated simulation.
Table E26: Time Window (in Hours Using Oilmap 6.9.3 an Cutoff Viscosity = 10000 c Wind Speed = 15 knot Water Temperature = 23 oC Oil Spill Volume (bbl) = 1000, 1	e) for Di d the fo P .s .0000, 25	Spersant	Applica Paramete 00, and	tion Pr rs 100000	bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011] Arabian Medium DOBA	9 5 1000	18 6 1000	23 6 1000	27 7 1000	32 7 1000

DOS Cuadras HE-05	4	5	6	6	7
DOS Cuadras HE-26	6	9	11	13	15
Endicott	12	23	29	34	40
Harmony	1	1	1	2	2
IFO-120	1	2	2	2	2
IFO-180	1	1	1	1	1
North Star	86	157	197	234	278
Rock	2	2	2	2	2
Terra Nova	14	28	35	42	49
Independence Hub A.V. Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	1	1	1	1	1
Nepturne	3	4	4	4	4
Ellen A038	5	11	13	16	19
Ellen A040	1	1	1	1	1
Gail E010	1	1	1	1	1
Gail E019	6	9	11	12	14
Heritage HE 05	0	0	0	0	0
Heritage HE 26	0	0	0	0	0
Irene Comingled	0	0	0	0	0
9999 means that the spilled oil before reaching the Cut-off vis	has natu cosity du 	urally di uring the	spersed 1000 hc	and/or ours of	evaporated simulation.
Table E27: Time Window (in Hour Using Oilmap 6.9.3 a Cutoff Viscosity = 10000 Wind Speed = 15 kno Water Temperature = 29 oC Oil Spill Volume (bbl) = 1000,	s) for Di nd the fo cP ts 10000, 25	ispersant ollowing 5000, 500	Applica Paramete	tion Prers	edicted bbl
Oil Name \ OilVolume (bbl)	1000	10000	25000	50000	100000
Alaska North Slope [2011]	 Q	 17	21	25	29
Arabian Medium	5	<u>т</u> ,	5	23 7	25
DOBA	1000	1000	1000	1000	1000
DOS Cuadras HE-05	±000	5	5	1000	1000
DOS Cuadras HE-26	5	10	12	14	16
Endicott	11	21	27	32	38
Harmony	1	1	27	2	2
TEO-120	1	2	2	2	2
IFO 120 IFO-180	1	1	1	1	1
North Star	90	165	208	247	293
Rock	4	4	4	4	4
Terra Nova	14	28	36	43	50
Independence Hub A V Block 37	9999	9999	9999	9999	9999
Irene Sampled from Lompoc	1	1	1	1	1
Nepturne	3	4	4	4	4
Ellen A038	5	11	13	16	18
Film X040	12	 24	- J 21	3K 10	43
Coil E010	1	1	1	1	1
Gall EULU	<u>т</u>	⊥ 0	L L	⊥ 11	⊥ 1 0
Gall EULS	5	0	9	11	12
Heritage HE 05	0	0	0	0	0
Heritage HE 26	U	U	U	U	U
	U	U	U	U	U
9999 means that the spilled oil before reaching the Cut-off vis	has natu cosity du	irally di iring the	spersed 1000 hc	and/or ours of	evaporated simulation.

Appendix F

Identification of the key variables controlling variations of the time-window and development of new predictive models (Task 4)

1 Correlation of the time window with the key oil properties

Data on time window (TW) for spill volumes of 1000 discussed in Tasks 1 to 3 were used to search for possible correlation of this variable with the following oil properties: API gravity, sulfur content, dynamic viscosity at 15 oC, saturates content, aromatics content, resin content, asphaltenes content and median boiling point (MBP). The time window data are those discussed in Tasks 1 to 3 for oil volume 1000 bbl, water temperature of 23 oC, wind speed of 12 knots and a cut-of viscosity of 7500 cP. Simple plots of the variations of the TW with each of these oil properties are shown in Figures F1 to F8.

Figure F1: Variations of the time window with API, sulfur content and oil viscosity.

Figure F2: Variations of the time window with saturates content, aromatics content and resin content.

Figure F3: Variations of the time window with asphaltenes content, and wax content and median boiling point.

Figures F1 to F3 show some evidence that the time window (TM) is mostly correlated with the API gravity and oil viscosity, with some correlation with saturates, asphaltenes and resins. No evidence of existing correlation between TM and sulphur and wax.

2 Principal Component Analysis

As many of the variables discussed above are dependant, principal component analysis (PCA) technique was used to investigate further on possible reduction of the number of variables and to identify key oil properties that control the variations of the time window.

First, PCS has been applied considering the sulfur, saturates and wax as the controlling variables as suggested by SL Ross (2007). The TM was set as the fourth variable in the analysis.

Table F1 show the coefficients obtained for the four principal components. The percent of the total variability explained by each component is also shown in the last row of the table. A projection of the data onto the first two principal components (main ones) is shown in Figure F4. No useful information can be concluded from this analysis except that wax content is showing the least impact on the variability of the data as opposed to fulfur.

Principal component #	1 st PC	2 nd PC	3 rd PC	4 th PC
Coefficient	0.6182 -0.6111 -0.1686 -0.4648	-0.1209 0.0245 0.8553 -0.5033	0.244 -0.4356 0.4738 0.7254	0.7373 0.6605 0.1248 0.0671
Percent of the total variability explained by each component	54.6	28.4	11.4	5.6

Table F1:principal components obtained from the PCA analysis considering sulfur,saturates wax, and TM variables.

Figure F4: Sulfur, saturates, wax and TM data projected onto the first two principal components shown in Table D1.

Several additional PCS analyses have been performed considering the whole set of variables. The most interesting results where obtained when considering API gravity and oil viscosity with TM. Figure F5 shows API and TM data projected onto the two principal components obtained from the OCS analysis using these two variables only. Equivalent data are shown in Figure F6 for the results obtained from PCA analysis using oil viscosity and TM data.

This PCA analysis confirms that TM is mostly correlated with the oil viscosity and API data, as it was shown from the simple plots discussed above (Figure F1 to F3). Figure F5 shows that the variations of TM with API can be grouped in three categories: two are shown by the linear correlation and the third one relates to the data shown by the scatter points located between the two first groups. However, results obtained with the oil viscosity and TM data (Figure F6) showed a clear grouping of the data into two categories defined by the linear trend in Figure 6 (Group 1 and Group 2), except for DOBA oil which is outside of these two groups. Furthermore, it is well established that oil viscosity and API are highly correlated. As shown in Figure F7, the present data do show such strong correlation between these two variables. From this, it is concluded that the correlations of TM data with API gravity and with oil viscosity represent the same information. Based on these results, efforts have been concentrated on developing the new models to predict the time window as a function of oil viscosity. This is discussed in more details in the next section.

Figure F5: API gravity and TM data projected onto the first two principal components calculated using these two variables.

Figure F6: Oil viscosity and TM data projected onto the first two principal components calculated using these two variables.

Figure F7: Variations of API gravity as a function of the oil viscosity

3 Development of the new predictive models

Further investigation of the results of the PCA analysis shown in Figure F6 showed that the grouping of the oils into two distinct groups is exactly the same as the grouping shown on the simple plot of TM vs oil viscosity shown in Figure F8. Based on this finding, orthogonal regression using PCA analysis was performed on each group separately. DOBA and green Canyon Block 184 oils were not considered in this regression. Figure F9 illustrate in more details the results and how the data were separated in two different groups shown by the red and blue symbols. These equations obtained from the orthogonal regression constitute the backbone of the new models developed in this study to predict the time window as a function of the oil viscosity measured at 15 oC. Results are summarized in Table F2.

Figure F8: Simple plot of the variations of the time window data with oil viscosity to show evidence of distinct grouping of the data and its relationship with the grouping obtained from PCA analysis shown in Figure F6

For consistency with the dimensional analysis and considering the distinct two linear (in log scale) trends shown by the data in Figures F6 and F8, the controlling variables were normalized as follows:

Dimensionless Time Window,
$$\tau = \frac{TW}{TW_r}$$
 (F1)

Dimensionless Oil Viscosity, $\mu = \frac{\mu_o}{\mu_{or}}$ (F2)

where *TW* represents the time window in hours, μ_o is the oil dynamic viscosity measured at 15 oC, and *TW_r* and μ_{or} represent the reference time window and reference oil dynamic viscosity, respectively, at which the data change the trend (slope). Precisely, this reference point is defined by the intersection of the regression models developed for the two regions before normalization of the variables (oil viscosity and the time window).

Based on this normalization of the controlling variables and as shown in Table F2 and Figure F9, the new models to predict the time window for application of chemical dispersant are as follows:

$$\ln(\tau) = -3.4201 \ln(\mu), \text{ or } TW_I = TW_r \mu^{-3.4201} \qquad \text{for } \mu \le 1 \text{ at } 15 \text{ oC}$$
(F4)
$$TW_I = 1000 \text{ Hours} \qquad \text{if } TW_r \mu^{-3.4201} > 1000 \text{ Hours}$$

$$\ln(\tau) = -0.3556 \ln(\mu)$$
, or $TW_2 = TW_r \mu^{-0.3556}$

for
$$1 \le \mu \le \frac{\mu_{co}}{\mu_{or}}$$
 at 15 oC (F5)

where μ_{co} if the cut-of viscosity used to calculate the time window data. For the series of data analyzed in this Appendix F, the conditions used to generate the time window data used to develop the models are as follows:

Oil spill volume = 1000 bbl Water temperature = 23 oC Wind speed = 12 knots $\mu_{co} = 7500 \text{ cP}$

For these conditions, key parameters in equations F4 and F5 are: $\mu_{or} = 33.468 \text{ cP}$ $TW_r = 8.754 \text{ H}$

The limitation of TW_I (time window for the first region (group) of the oil viscosity) to 1000 hours is as imposed in the post-processing of the data generated from Oilmap simulations in which the cut-of viscosity was not reached during the 1000 hours simulation period. Furthermore, the applicability of the models shown by equations F4 and F5 to other spill conditions is discussed in section 6.3 of the main report.

Region	Main principal component considering μ_r and τ variables	Variance covered by the main principal component (%)	Linear fitting using orthogonal regression	Range of validity
First region: low oil viscosity	-0.281 0.960	93.3	$TW_1 = TW_r \mu^{-3.4201}$	$ \mu \le 1 \\ at 15 \text{ oC} $
Second region: high oil viscosity	0.942 -0.335	97.3	$TW_2 = TW_r \mu^{-0.3556}$	$1 \le \mu \le \frac{\mu_{co}}{\mu_{or}}$ at 15 oC where μ_{co} represent the cut-of viscosity used to calculate the time window

 Table F2: New Models Developed using Principal Components Analysis and Orthogonal Regression.

Figure F9: Fitting Linear Models using Orthogonal Regression and Principal Components Analysis on the two different groups.

4 Comparison between predicted time window and the original data

Equations F4 and F5 were used to predict the time window using oil viscosity, wind speed of 12 knots, a spill volume of 1000 bbl, water temperature of 23 oC, and a cut-of viscosity of 7500 cP. The predictions were compared with the original data obtained by the Oilmap oil spill model using the same parameters. As it was done with the original data, the time window was set to 1000 hour when the predictions exceed this value. Results are shown in Figure F10.

While the agreement between the two predictions is not prefect, Figure F10 shows that overall the data show better agreement than with the previous correlations models. The results also show that further work is needed to improve the predictive models. What is also important to note is that the new models shown by equations F4 and F5 use only oil viscosity to predict the time window with the goodness shown in Figure F10.

Figure F10: Comparison between predicted time window using equations F4 and F5 and the original data predicted by Oilmap considering a spill volume of 1000 bbl, wind speed of 12 knots, water temperature of 23 oC, and cut-of viscosity of 7500 cP.