The Evaporation of Oil Spills

Merv Fingas Department of Renewable Resources and Environmental Sciences Macdonald Campus McGill University St. Anne de Bellevue, Ouebec

Abstract

An experimental method has been devised to measure the evaporation of oil products using weight loss from a pan. This method has been used to explore oil evaporation. Approximately 250 runs averaging 1 ½ days each have been conducted. The scope of the experimentation to date has included varying the data collection methods and 12 specific physical studies.

The major finding to date is that oil is not strictly boundary-layer regulated. This has profound implications for most oils including:

1. area of the spill is not important to evaporation prediction in most situations

2. wind speed is not important

3. temperature is the most important environmental consideration

4. evaporation can be predicted for mass loss by an equation of the form:

 $Ev = MT \ln t$

where: Ev is the mass evaporating per unit time, t

M is the mass

T is the temperature

t is the time

5. evaporation can be predicted even more simply by an equation of the form: $Ev = T \ln t$

where: Ev is the percentage evaporating per unit time, t

T is the temperature

t is the time

6. the constant parameters for the above can be calculated accurately from physical properties.

Introduction

Evaporation is a very important process for most oil spills. In a few days, light crude oils can be reduced by up to 75% of their initial volume and medium crudes up to 40% of their volume. Heavy or residual oils will only lose about 5% of their volume in the first few days following a spill. Most oil spill behaviour models include evaporation as a component of the process and output of the model. Despite the importance of the field, relatively little work has been conducted on the basic physics and chemistry of oil spill evaporation (Fingas, 1995). The particular difficulty with oil evaporation is that oil is a mixture of hundreds of compounds and this mixture varies from source to source and even over time. Much of the work described in the literature focuses on 'calibrating' equations originally developed for water evaporation. Similarly very little empirical data on oil evaporation is published.

Scientific and quantitative work on water evaporation is decades old (Brutsaert,

1982; Jones 1992). The basis for the oil work in the literature is also water evaporation. There are several fundamental differences between the evaporation of a pure liquid such as water and for a multi-component system such as crude oil. First, the evaporation rate for a single liquid such as water is a constant with respect to time. Evaporative loss, by total weight or volume, is logarithmic with time for crude oils and other multi-component fuel mixtures. This is due to the depletion of more volatile components. These are exponentially depleted with time. The second major difference is the effect of atmospheric conditions. Water evaporation is strongly dependent on wind speed and relative humidity. Air can only hold a certain volume of water. The boundary layer above an evaporating water mass governs the rate at which the evaporation occurs. Once this air layer is saturated with water (or any other evaporating component), evaporation ceases. Normal air does not contain a high level of benzene and similar oil components and furthermore, the saturation level of these in air is often well above concentrations that can be achieved from an evaporating slick.

Physics of Evaporation

Evaporation of a liquid can be considered as the movement of molecules from the surface into the vapour phase above it. The layer of air directly above the evaporation surface is known as the boundary layer. The characteristics of this air layer can influence evaporation. In the case of water, the air regulates the evaporation rate. Air is capable of holding a variable amount of water, depending on temperature. This is known as relative humidity. At constant temperature, and constant removal of the water vapour from the boundary layer, the evaporation rate of water is a constant. Under conditions where the boundary layer is not moving (no wind) or has a low turbulence, the air immediately above the water quickly becomes saturated and evaporation slows or ceases. In practice, the actual evaporation of water proceeds at a small fraction of the maximum rate because of the saturation of the boundary layer. The boundary layer physics are then said to regulate the evaporation of water. Water is then 'boundary-layer regulated'. This regulation manifests itself by the variability in evaporation when wind or turbulence is or is not present. When there is little or no turbulence present, the evaporation can slow by several orders-of-magnitude. The diffusion of water molecules is said to be 10³ times slower than turbulent diffusion (Jones, 1992).

Evaporation can then be viewed as consisting of two fundamental components, basic evaporation itself and regulatory mechanisms. Basic evaporation is that process consisting of the evaporation of the liquid directly into the vapour phase without any regulation other than dictated by the thermodynamic properties of the liquid itself. Regulatory mechanisms are those processes which serve to regulate the final evaporation rate into the environment. For water, the main regulation factor is the boundary layer regulation alluded to above. The boundary layer regulation is by means of the limited rate of diffusion, both molecular and turbulent diffusion, and by saturation dynamics. Molecular diffusion is the movement of molecules through still air. The rate of molecular diffusion for water is about 10⁵ slower than that the maximum rate of evaporation would permit (Jones, 1992). The rate for turbulent diffusion, the combination of molecular diffusion and movement with turbulent air, is on the order of 10² slower than that for maximum evaporation.

If evaporation of oil were like that of water and were boundary-layer regulated one could write the mass transfer rate as:

$$E \approx K C T_{\mu} S \tag{1}$$

Where: E is the evaporation rate in mass per unit area

- K is the mass transfer rate of the evaporating liquid, presumed constant
- C is the concentration of the evaporating liquid as a mass per volume (or thickness)
- T_u is the turbulence factor, as noted above the turbulent diffusion rate is much greater than the molecular diffusion rate

S is a factor that relates to the saturation of the boundary layer above the evaporating liquid. If the air is already saturated with the compound in question, the evaporation rate is zero. This also relates to the scale length of an evaporating pool. If one views a large pool over which a wind is blowing, there is a high probability that the air is saturated downwind and the specific evaporation rate is lower than for a smaller pool.

Much of the pioneering work for evaporation equation work was performed by Sutton (1934). Sutton proposed the following equation based largely on empirical work:

 $E = K C_{s} U^{7/9} d^{1/9} Sc^{-r}$ (2)

Where: E is the mean evaporation rate per unit area K is the mass transfer coefficient C_s is the concentration of the evaporation fluid (mass/volume) U is the wind speed d is the area of the square or circular pool Sc is the Schmidt number and r is the empirical exponent assigned values from 0 to 2/3.

The terms in this equation are analogous to the very generic equation (1) proposed above. The turbulence is expressed by a combination of the wind speed, U, and the Schmidt number, Sc, which relates the diffusivity of a particular gas in air. The coefficient of the wind power is representative of the turbulence level. The value of 0.78 (7/9) as chosen by Sutton represents a turbulent wind whereas a coefficient of 0.5 would represent a wind flow that was more laminar. The Schmidt number is the ratio of kinematic viscosity of a gas (v) over the molecular diffusivity (D) of that gas in air. It is a dimensionless value and can be thought of as represented by d and has been given an empirical coefficient of 1/9. This represents, for water, a very small increase in evaporation rate with increasing size. The coefficient of the Schmidt number, r, represents the value of the diffusivity of the particular chemical, and historically ranged between 0 and 2/3.

This water evaporation work was subsequently used by those working on oil

spills to predict and describe oil and petroleum evaporation. Much of the literature follows the work of Mackay (1973 and 1984). Mackay and Matsugu (1973) corrected the equations to hydrocarbons using the evaporation rate of cumene. It was noted that the difference in constants was related to the enthalpy differences between water and cumene. Data on the evaporation of water and cumene have been used to correlate the gas phase mass transfer coefficient as a function of wind-speed and pool size by the equation,

$$K_m = 0.0292 U^{0.78} X^{-0.11} Sc^{-0.67}$$
 (3)

Where: K_m is the mass transfer coefficient in units of mass per unit time U is wind speed, to the power of 0.78

X is the pool diameter or the scale size of evaporating area

Sc is the Schmidt number which is a dimensionless number representing the viscosity ratio of the evaporating material and air to the diffusivity

Stiver and Mackay (1984) subsequently developed this further by adding a second equation:

$$N = KAP/(RT)$$
(4)

Where: N is the evaporative molar flux (mol/s)

K is the mass transfer coefficient under the prevailing wind

 (ms^{-1})

A is the area (m^2)

P is the vapour pressure of the bulk liquid

R is the gas constant (8.314 $Pa \cdot m^3/(mol-K)$)

T is the environmental temperature (K).

Thus boundary layer regulation is assumed to be the primary regulation for oil and petroleum evaporation. This assumption was never tested by experimentation as revealed by the literature search. The implications of these assumptions are that evaporation rate for a given oil is increased by:

- increasing turbulence

- increasing wind speed

- increasing the surface area of a given mass of oil

- decreasing the scale size of the evaporating area (note the balance between this and the above factor)

These factors can then be verified experimentally to test if oil is boundary-layer regulated or not.

Experimental

Evaporation rate was measured by weight loss using an electronic balance. The balance used was a Mettler PM4000, capable of measurements to 0.01 ± 0.02 g. The weight was recorded using a computerized system consisting of a Toshiba 3100, a serial cable to the balance and a modified version of the software program, 'Collect', sold by Labtronics, Richmond, Ontario. The latter consisted of an older version of the program written in Basica which could then be easily modified to incorporate certain features.

The software program normally acquires data at fixed time intervals. Adjustments were made to the program to allow different time multiples for data acquisition. This then allowed minimization of data at times after the initial rapid evaporation period. Intervals of data acquisition could be set at multiples such that each time increment had an equal weight loss increment. For example in one day, using a timing multiplier of 1.1 and an interval of 10 seconds, 75 data points were collected compared to 8640 if a regular time intervals were used. It was important then to use the time increment to yield data sets which were manageable. Experiments were done to measure the effect of the number of data points on data quality. A sequence using the multiplier 1.1 was found to be optimal. For example, using this timing sequence measurements were taken at the following minute intervals, 8.3, 9.1, 10, 11.1, 13.4, etc. After one day, sequences were already at intervals of several hours.

Measurements were typically conducted in the following fashion. A tared petri dish of known dimensions was loaded with a specified amount of oil. Data acquisition was started and continued until the desired time (varying from a few hours for a volatile substance to several days for a less-volatile oil). At the end of the experiment, the weathered oil was saved for chemical analysis for other experiments not related to this project. Vessels were cleaned and rinsed with dichloromethane and a new experiment started.

This method differs significantly from previous measurements which were taken by weighing the pan at fixed intervals. This results in fewer data points and thus less reliable data. The method described here is possible because of the development of computers and balances that can output data and software to couple these. Furthermore, a new type of balance, the Mettler PM4000, provides accuracy to an order magnitude less weight than previous balances with the same maximum loading weight. This is important in accurately measuring the weight loss of heavy oils which evaporate slowly. In fact, often many of the changes observed occur only in the tens of milligrams, which this type of balance measures.

The weight loss dishes were standard glass petri dishes from Corning. A standard 139 cm diameter (ID) dish was most frequently used. Petri dishes of other sizes were used in experiments where the area of evaporation was a variable. All petri dishes were from Corning and were of inside diameters, 44.8, 88.9, 138.6, 143.2, and 162.2 mm.

Oil was directly placed on the glass petri dish unless otherwise noted. Experiments were conducted with oil on water to show that the effect was the same. However, use of water under the oil could result in serious errors if the water became exposed to the air and evaporated.

Measurements were done in one of four locations: inside a fume hood, inside a controlled temperature room, on a counter top and some were performed outside to verify that evaporation data obtained was not unduly influenced by experimental conditions.

Most experiments were conducted in the fume hood, where there was no temperature regulation. Temperatures at this and other locations were measured using a Keithley 871 digital thermometer with a thermocouple supplied by the same firm. Temperatures at the fume hood location were relatively constant at 20°C except during the coldest of winter months. During these times, experiments of a different nature were generally carried out such as those involving variable temperatures using the cold room. Temperatures were taken at the beginning and the end of a given experimental run, and were occasionally measured in the middle of runs to verify that they were not changing rapidly.

Wind velocities were measured using a Taylor vane anemometer (no model number on the unit) and a Tadi, 'Digital Pocket Anemometer'. These velocities were later confirmed using a hot wire anemometer and appropriate data manipulations of the outputs. The anemometer was a TSI - Thermo Systems model 1053b. The power supply in the unit was a TSI model 1051-1, the variable decade a TSI model 1056, the averaging circuit, a TSI model 1047 and the signal linearlizing circuit was a TSI model 1052. The voltage from the averaging circuit was read with a Fluke 1053 voltmeter. The hot wire sensors was angled and was a TSI model 1213-60. The sensor probe resistance at 0°C was 7.21 ohms and was operated at 12 ohms for a recommended operating temperature of 250°C. Data from the hot wire anemometer was collected on a Campbell Scientific CR-10 data logger at a rate of 64 Hz. At this data rate about 8000 data points or about 2 ½ minutes of data could be collected before the CR-10 was over-writing data. These data were subsequently down-loaded to a lap top computer and saved for subsequent analysis.

Evaporation data were collected on the Toshiba 3100 laptop computer and subsequently transferred to other computers for analysis. The 'Collect' program records time and the weight directly. Data was recorded in ASCII format and converted to Excel format by the program of the same name, Microsoft Incorporated, Redmond, Washington. Curve fitting was performed using the software program "Table Curve", Jandel Scientific Corporation. The weight percent and the absolute weight were always fit separately and statistics on these parameters recorded separately. This was done to enable subsequent analysis of dimensionless and absolute evaporation. The program "Table Curve" enables the user to fit hundreds of relationships to a set of data and rank the resulting fit in order of regression coefficient (R²). In this study, the 'common' functions were generally used. The particular best equation was typically the logarithmic one and the regression coefficient (correlation coefficient squared) generally were over 0.95. Equations without the constant or single-parameters equations were also calculated for correlation work.

Results and Discussion

Table 1 shows the experiments conducted to date and the best equation constant for a single parameter equation.

Eighteen series of experiments, totalling over 250 experiments, lasting over 450 days in total, have already been conducted:

1. Preliminary Series - *Determination of Basic Evaporation Physics* - The purpose of these was to explore the topic. Five runs were conducted which include oil alone, oil-on-water and water alone.

2. Second Series - *Confirmation of the Rate of Evaporation and The Exponential Rate* - The purpose of these was to further detail the behaviour of evaporating oil. Several of the variables were measured to note the effects these would have. The experimental method was continually improved to remove error and noise. Two sub-series of experiments were performed; A. those logged manually, and B. those logged using a computer. Method improvements made during this round included the automatic data logging, rapid method of adding oil to avoid high rate of loss, the selection of glassware types with consistent flat bottoms and the shielding of the experiment to avoid drafts which cause erratic behaviour of the scale when not measuring the effect of wind.

Table 1

.

,

.

.

Summary Table of Experiments on Evaporation

.

	Date	Prime	Oil	Days	Total	Pan (cm²)	Inifici	Initial (mm)	End	%	Temp	Wind	Variable	Varioble	R' Best	Best	Single
Ser	ies 1993	Purpose	Туре	Length	time (br)	Area	Looding (g)	Thickness	W1.	Evap	c	m/s		Value	Equation	Equation	Parameter
1	May 12	prekminary	ASMB	0.5	9	151	8.53	0.67	5.5	36	23.4	0	rate		-		for
	May 22	preliminary	ASMB	0.2	4	151	6.62	0.52	3.9	42	20.3	0	rate		0.969	In	equation
	May 24	oreliminary	ASMB	0.5	8	151	10.1	0.8	3.2	68	20.3	Ó	rote		0.971	In	
	MOV 24	oteliminan	ASMA	0.2	4	153	7 21	0.57	43	40	18.7	ň	rote		0.732	In	
	tuno 1	provinings	A \$ 140	2	- 20	161	7 91	0.42	 	24	10.0	ň	rata		0.007	in	
		preliminary	ASIVIO	3	00	1.01	7.01	0.02		30	10.0	0	iole		0.777		
	June 20	preliminary	ASMB	1	21	101	8.05	0.64	4.4	45	21.5	<u> </u>	rate		0.941	<u>រ</u> ោ	
2	June 21	rate	ASMB	1	15	151	8.18	0.65	5.3	35	21,2	0	rate		0.991	١n	5.35
1	June 23	rote	ASMB	1	22	268	16.29	0.72	11	34	21	0	rate		0.978	In	4.76
	June 24	rate	ASMB	1	23	270	29.49	1.3	20	32	21.8	0	rate		0.97	tn	4.43
	June 25	rote	ASMB	7	182	151	8.04	0.63	4.5	44	22.6	0	rale		0.99	រក	4.95
1	July 2	rate	ASMB	1	15	151	20.16	1.59	14	30	22.4	0	rate		0.937	in	4.05
	July 3	rate	ASMB	2	51	151	22.52	1.78	15	35	21.9	0	rote		0.975	łn	4 36
í	buty 5	rote	ASNAR	2	45	151	27.15	214	17	36	24 4	õ	role		0.954	In	4.26
		reto	ASAAR	ĥ	25	151	34.1	2,04	21	30	23.0	Ň	roto		0.000	10	1 15
	JUIV 7	icie	ASIVID		20	1.51	25.00	2.07	21	20	20.0	0	Tule		0.232	14	2.01
		rare	ASIVID	4 [0]	/3	131	33.70	2.04	24	9Z	21.7	0	raie		0.76	10.1	3.01
ļ	July 20	rate	ASMB	2[8]	36	151	57.67	4.55	39	32	22.8	0	rate		0.963	In	4.09
	Aug 30	rate	ASMB	1	18	151	115.03	9.08	85	26	20.1	0	rate		0.879	in	3.07
L	Sept 1	rate	ASMB	4	73	151	96.41	7.61	62	36	20.3	0	rote		0.886	In	3.86
3	Sept 4	rate	ASMB	10	217	151	66	5.21	42	36	20	0	rate		0.937	١n	3.56
	Sept 13	rate	ASMB	4	64	151	19.35	1.53	12	38	22.1	0	rate		0.981	٤n	4.66
	Sept 16	rate	ASMB	3	56	151	40.67	3.21	27	34	17.8	0	rate		0.952	In	3.95
1	Sept 18	rate	ASMB	2	47	151	16.87	1.33	- 11	36	19.2	0	rate		0,987	In	4,73
	Sent 20	rote	ASMA	1	23	151	7 42	0.59	47	34	18.8	ñ	rate		0.688	10	514
	Sant 21	roto	0110 A S A A D	,	20	151	707	0.43	 K	24		ñ	coto.		0.700	ln.	5 10
	Septer	TOTE:	A SELED	ו ה	23	101	1.72	0.00	5	20	20.1	0	iole		0.700	11 I	3.10
1	Sept 22	rote	AZWB	3	/1	151	24.8	1.70	10	3/	23.1	0	rate		0.976	IN IN	4.49
	Oct 15	rate	ASMB	1	32	151	32.2	2.54	21	35	18.6	0	rate		0.977	In	4./8
	Oct 16	rote	ASMB	5	89	151	66.82	5.27	42	37	22.9	0	rate		0.98	In	4.27
	Oct 20	rate	ASMB	4	76	151	18.06	1.43	10	45	20.4	0	rate		0.993	In	5.7
	Oct 23	rale	ASMB	4	66	151	17.56	1.39	11	40	20.3	0	rate		0.986	In	5.26
Į	Oct 26	rate	ASMB	3	88	151	35.44	2.8	22	37	19.1	0	rate		0.962	In	4.27
4	Oct 29	stiming	ASMB	1	25	151	18.32	1.45	12	33	22.6	0	rale		0.992	in	4.54
1	Oct 30	stirrina	ASMB	2	45	151	37.52	2.96	26	32	14.1	0	rate		0.964	In	3.65
1	Nov 1	stimine	ASMA	2	51	151	20.48	1.62	14	32	20.9	0	rote		0.994	In	4.28
	Nov 2	ativia a	ACLAD	ŝ	47	151	21.47	1.71	14	34	17.0	ň	roto		0.005	 In	4.14
	Novo	since g	ASHID	r r	70	151	21.07	1.00	14	25	17.0	ň			0.004	10	4.10
	NOV 5	stiming	ASIMB	2		101	23.07	1.70	10	35	17.0	0	ruie		0.704	(B)	4.10
	NOV 8	stiming	ASWR	8	166	151	70.86	5.59	53	26	21,8	0	rate		0.931	IN	3.32
	Nov 16	stiming	ASMB	6.5	150	151	24.82	1.96	15	39	20	0	rate		0.996	in	5.58
	Nov 22	stiming	ASMB	5	117	151	30.38	2.4	19	36	22.2	0	rate		0.997	In	4.07
	Nov 27	slirring	ASMB	10	237	151	125.3	9.89	83	34	19.4	0	rate		0.924	۱n	3.08
5	Dec 8	Time	ASMB	2	46	151	19.46	1.54	13	35	17	0	constant	0.5 hr	0.998	In	4,37
	Dec 10	Time	ASMB	2.5	65	151	21.47	1.69	14	34	20.2	0	constant	0.5 hr	0,967	In	4.28
1	Dec 13	Time	ASMB	1	30	151	40.21	3.17	28	30	13.6	0	constant	0.5 hr	0.987	In	3.85
	Dec 14	Time	ASMB	3	72	151	27 26	215	18	36	13.8	ō	constant	1 hr	0.994	In	4 23
1		Time	45140	25	15	151	37 00	200	24	30	75	ň	constant) br	0.004	ln.	3.74
		1001162 Marca	10000	2.0	44	151	22.07	2.77	20	24	2.0	0	CONSIGN.	1.0	0.270	1 n i	204
	Dec 20	ume	ASMB	~	44	101	33.0/	2.07	20	- 34	21.4	0	constant	1.2	0.767	(n) (3.64
	Dec 22	ume	ASWR	2	4/	131	37.15	2.93	20	اد	21.6	0	constant	1.2	0.789	(n	4.02
16	Dec 24	Oil	Bunker	4	99	151	252.07	17,14	250	1	11.8	U	rote		0.687	In	0.048
1	Dec 28	Oil	Gasoline	1	19	151	73.61	6.68	8.7	88	13.4	0	rate		0.983	In	10.1
1	Dec 29c	a Oil	Gasoline	0.5	4	151	20	1.81	1.6	92	9.1	0	rate		0.922	In	12.1
	Dec 29b		Gasoline	0.5	2	151	20	1.81	2.3	89	19.5	0	rate		0.889	In	15.9
	Dec 29c	Oil	Bunker	3	72	151	20.06	1.36	19	6	19.6	0	rate		0.875	In	0.473
	1994																
	Jan 1	Oil	Prudhoel	2	49	151	20	1.49	17	15	21.5	0	rote		0.993	In	1.65
	Jan 3	Oil	Prudhoe2	3	71	151	20	1.49	16	19	21.3	0	rate		0.997	in	2.17
	Jan 6	Oil.	Orimutsion	1	26	151	20	1.34	9.2	54	21.2	0	rate		0.95	In	6.4
	lan 7	01	Orimulsion	; 1	20	151	20	1.34	15	26	12	Ő	rate		0.951	In	3.38
	long	01	Brent		 ∡R	351	⊿∩	3 18	27	33	18	ő	rote		0.995	ln.	3.93
	Jon 10	0	Broot	1	-+0 07	141	 	1 50	10	20	214	. n	rate		0.001	10	4.04
			DICTI		2/	151	20	0.37	12	20	21.0		iule		0.771	10 10	
	Jan H	Oil	Orimulsion	-	25	151	40	2./1	12	07			rote		0.792	arı 	5.07
	Jan 12	Oil	Brent	3	67	151	30	2.38	20	35	19.5	. 0	rate		0.991	10.	4.03
	Jan 15	Oil	Brent	3	74	151	50	3.97	33	- 33	(8.)	0	rate		0.986	In	3.97
ł	Jan 18	Oil .	Endicott	2	42	151	50	3.62	46	9	20.1	0	rate		0.972	In	0.926
1	Jan 20a	i Oil	Av Gas 80	1	3	151	20	1.91	0	100	5.6	0	rate		0.974	เก	16.8
	Jon 20b	Oil	Av Gas 80	1	2	151	20	1.91	0	100) 18	0	rate		0.964	in	15.4
	Jan 20c	Oil	lssungnak	2	47	151	20	1.56	16	22	19	0	rate		0.947	In	2.23
	Jan 22	Oil	Terra Nova	2	43	151	20	1.54	17	17	18.8	3 0	rate		0.971	In	1.93
	Jan 24	Oil	Heating Oil	4	95	151	20	1.53	12	39	5.6	0	rate		0.852	ln In	3

Table 1

Summary Table of Experiments on Evaporation

.

.

-

		Date	Prime	Oil	Days	Total	fon (cm [*])	Initial	Initial (mm)	End	7.	Temp	Wind	Variable	Variable	R ¹ Best	8est	Single
1	Seri	es_1993	Purpose	Туре	Length	Time (hr)	Area	Loading (g)	Thickness	Wt.	Evap	с	m/s		Value	Equation	Equation	Porameter
Į		Jan 28a	5	Jet 40 fuel	0.5	6	151	20	1.71	4.2	79	20.8	0	rate		0.915	In	9.63
ł		Jan 285	Oil	Prudhoe 8ay	8	190	151	30	2.23	23	24	11.2	0	rate		0.986	In	2.36
į		Feb 5	Oil	Santa Ciora	2	48	151	20	1.44	16	18	24.1	0	rate		0.967	In	2.3
ł	7	Feb7	Area	ASMB	3	50	16	10	7.45	7.1	29	24.2	0	area	16 cm²	0.969	In	2.95
1		Feb 9	Area	ASMB	1	25	16	5	3.72	3.4	31	23.9	0	area	16 cm²	0.96	In	3.67
l		Feb 10	Area	ASMB	1	21	16	2.12	1.58	1.6	24	8	0	area	16 cm ²	0.72	In	2.89
1		Feb 11	Areo	ASMR	1	25	14	1.06	0.79	0.7	32	24.6	õ	aroa	14 cm2	0.701	in.	5.02
		Fob 10	100	A 5 6 4 D	· ·	50	(2)	00	3.04	1.4	22	- 24.0 - 00 E	0	uieu	10 011	0.771	H 4	3.23
				ACLED	~		02	20	1.00		32	22.5	0	oreo	62 Cm	0.992	113	3.52
ļ		Feb 14	Ared	ASMB		22	62	10	1.92	1.2	28	15.6	0	area	62 ¢m*	0.996	In	3.77
		Feb 15	Area	ASMB		26	62	8.2	1.58	5.4	34	25.3	0	area	62 cm³	0.982	In	4.35
1		Feb 16	Area	ASMB	1	23	62	4.1	0.79	2.7	33	23.8	0	area	62 cm²	0.994	In	4.57
ł		Feb 17	Area	ASMB	1	24	161	20	1.48	14	32	21	0	area	161 cm ²	0.987	łn	3.98
1		Feb 18	Area	ASMB	1	23	161	10.7	0.79	7.5	30	25.2	0	area	161 cm²	0.973	In	4.07
ł		Feb 19	Area	ASMB	2	50	161	21.4	1.58	14	35	23.9	0	orea	161 cm'	0.941	In	3.66
		Feb 21	Area	ASMB	5	83	161	50	3.7	33	33	19.1	0	orea	161 cm²	0.933	In	3.16
ł		Feb 26	Area	ASMB	2	50	161	30	2.22	19	36	21	0	area	161 cm*	0.99	In	47
		Feb 28	Area	ASMB	1	25	161	10	0.74	6.9	32	20	0	orea	161 cm ³	0.953	In	4.06
		Mor 01	Area	ASMB	ર	74	204	27.3	1.58	18	35	18	ñ	0.00	204 cm	0.000	10	3.42
ļ		Mor 04		01110 05470	ĩ	20	200	12 45	ە ر ، مر	10 7 0	37	21	0 0	area	200 CIA	0.764	() () (~	0.03
ł		Mar 05	Alea			20	200	15.05	0.77	0.7	5/	10.5	0	ored	206 CHI	0.974	41.1	3.27
1	1	Marus	Area	ASMB	2	51	206	20	1.16	13	33	19.5	0	area	206 cm	0.963	in	3.64
Ì		Mar 07	Area	ASMB	2	44	151	20	1.58	13	34	20.5	0	area	151 cm²	0,993	in	4.18
1		Mar 09	Area	ASMB	1	26	151	10	0.79	6.5	35	19	0	area	151 cm ²	0.994	In	4.8
	8	Mar 10	Wind	ASMB	1	23	151	20	1.58	13	37	22.9	1.45	wind	1.0 m/s	0.98	In	5.28
Į		Marii	Wind	ASMB	1	24	151	20	1.58	13	37	22	1.45	wind	1.0 m/s	0.972	In	5.3
l		Mar 12	Wind	ASWR	2	42	151	40	3.16	25	3/	21.1	1.45	wind	1.0 m/s	0.99	In	4,77
		Mar 14	Wind	ASWR	2	40	151	40	3.16	25	38	21.2	1.45	wind	1.0 m/s	0.993	in Co	4,77
1		Mar 16a	Wind	Water	0.5	3	151	20	1.32	1.5	9 I	21.8	1.45	wind	1.0 m/s	0.997)in	0.592
		MOF 16D	Wind	Water	0.5	<u>,</u>	151	20	1.32	1	75	21.8	1.45	wind	1.0 m/s	0.997	lin E-	0.612
t		Mor 16C	Wind Monal	ACTAD	0.5	3	101	40	2.60	10	22	21.0	1.45	wind	1.0 m/s	0.999	11n	0.34
l		Mor 17	Wind	ASIND	* *	21	101	20	1.00	10	30	22.1	1.60	wind	1.6 m/s	0.981	in In	5.17
ł		Mar 18	Wind	ASKAR	;	22	151	20	1.50	12	37	21.4	1.45	wind	1.0 10/5	0.747	10	5.27
		Mar 19	Wind	ASKAR	2	46	151	20	3.14	25	20	21.4	1.60	wind	1.0 (1)/5	0.770	in In	3,13
		Mor 21	Wind	ASAAR	1	20	151	-10 20	3.10	12	30	22.7	1.00	wind	1.0 m/s	0.760	10	4.7
ł	1	Mor 22a	Wind	Water	0.5	ĩ	151	20	1 32	14	77	21.0	1.65	wind	1.6 m/s	0.777	ai lio	0.00
ł		Mar 22b	Wind	ASMB	1	17	151	20	1.58	13	37	23.9	1.65	wind	1.6 m/s	0.778	In	5.47
1		Mar 23a	Wind	Water	0.5	3	151	20	1.32	27	87	22.2	1.65	wind	Lám/s	0.770	lin	0.515
		Mar 23b	Wind	Water	0.5	5	151	40	2.65	3.4	92	23.6	1.65	wind	1.6 m/s	0.989	lin	0.312
ĺ	ĺ	Mar 23c	Wind	ASMB	1	22	151	20	1.58	12	39	24.3	1.65	wind	1.6 m/s	0.981	In	5.54
		Mar 24a	Wind	Water	0.5	1	151	20	1.32	8.6	57	23.4	1,85	wind	2.1 m/s	0.998	lin	0.7
ł		Mar 24b	Wind	ASMB	2	44	151	40	3.16	25	37	23	1.85	wind	2.1 m/s	0.991	In	4.85
I		Mar 26	Wind	ASMB	1	6	151	20	1.58	14	32	21.7	1.85	wind	2.1 m/s	0.993	In	5,78
		Mar 26b	Wind	ASMB	2	39	151	40	3.16	25	38	20.4	1.85	wind	2.1 m/s	0.993	In	4,99
ļ		Mar 28a	Wind	Water	0.5	2	151	20	1.32	4.5	78	21.8	1.85	wind	2.1 m/s	0.994	lin	0.603
1		Mar 28b	Wind	Water	0.5	5	151	40	2.65	2.8	93	22.6	1.85	wind	2.1 m/s	0.998	lin	0.316
ł		Mar 28c	Wind	ASMB	1	12	151	20	1.58	13	35	22.4	1.85	wind	2.1 m/s	0.993	In	5.52
		Mar 29	Wind	FCC-heavy	١	32	151	40	2.92	30	26	21.7	1.85	wind	2.1 m/s	0.987	in	0.557
1	1	Mar 30a	Wind	Gasoline	0.5	1	151	20	1.87	4.5	78	22.6	1.85	wind	2.1 m/s	0.983	In	18.2
1		Mar 30b	Wind	Gasoline	0.5	2	151	40	3.74	9.4	77	22.4	1.85	wind	2.1 m/s	0.975	In	15.4
ļ		Mar 30c	Wind	FCC-heavy	1	22	151	20	1.46	14	30	22.3	1.85	wind	2.1 m/s	0.996	In	0.8
	1	Mar 31	Wind	ASMB	1	21	151	20	1.58	12	39	23.4	3.8	wind	2.5 m/s	0.981	in	5.82
ļ		April 1a	Wind	Water	0.5	1	151	20	1.32	6.6	67	22.4	3.8	wind	2.5 m/s	0.997	lin	1.02
1		April 1b	Wind	Water	0.5	2	151	40	2.65	20	50	22.2	3.8	wind	2.5 m/s	0.999	lîn	0.56
		April 1c	Wind	Gasoline	0.5	0	151	20	1.87	5.9	70	22.2	3.8	wind	2.5 m/s	0.984	In	21.6
		April 1d	Wind	Gasoline	0.5	1	151	40	3.74	14	64	21.9	3.8	wind	2.5 m/s	0.994	ln	16.6
ł		April 2a	Wind	Water	0.5	3	151	20	1.32	13	38	21.7	0	wind	0	0.999	lin	0.186
1	1	April 2b	Wind	FCC-heavy	2	4/	15	40	2.92	23	41	21,4	3.8	wind	2.5 m/s	0.994	in	0.785

Table 1

•

.

•

Summary Table of Experiments on Evaporation

٠

	Date	Prime	Oll	Days	Total	Fon (cm [*])	Initial	tnitiat (mm)	End	%	Temp	Wind	Variable	Variabie	R' Best	8est	Single
Sea	ies 1993	Purpose	Туре	Length	Time (hr)	Area	Loading (g)	Thickness	wt.	ενσρ	с	m/s		Value	Equation	Equation	forometer
	April 4	Wind	FCC-heavy	2	39	151	20	1.46	9.3	54	22	3.8	wind	2.5 m/s	0.997	in	1.13
	April 6	Wind	ASMB	2	34	151	20	1.58	12	40	22.5	3.8	wind	2.5 m/s	0.993	In	5.52
	April 7	Wind	ASMB	1	18	151	40	3.16	26	36	21	3.8	wind	2.5 m/s	0.997	In	5.21
	April 8a	Wind	Water	0.5	1	151	20	1.32	4.9	75	22	3.8	wind	2.5 m/s	0.986	lin	1.04
i	April 8b	Wind	Water	0.5	2	151	40	2.65	12	70	22.9	3.8	wind	2.5 m/s	0.994	lín	0.402
	April 8c	wind	SCC-berrow	1	10	351	20	1 46	1.4	31	23	3.8	wind	25 m/s	0.000	in	0.002
ļ	April 9a	Wind	Garoline	0.5	1	151	20	1.87	14	77	221	1.45	wind	1.6 m/r	0.004	in	10.7
1	April Oh	Wood	Caralino	0.5	3	161	40	374	4.0 2 0	02	22.1	1.00	www.co.ul	1.0 / 14/5	0.770	() () (14.7
]	April 90	Wind	GOLOWIE	2.0	40	161	40	0.74	0.0	22	22.4	1.00	wing	1.0 m/s	0.765	10	10.0
1		WHING .	PCC-neavy	~~~~	40	131	40	2.72	21	20	22.5	1.00	wind	1.0 m/s	0.777		0.007
	Abu Ha	Wind	Gasoline	0.5		151	20	1.8/	4.8	/6	21.8	1.45	wind	1.0 m/s	0.992	In	(9.5
}		Wind	Gasoline	0.5	2	- 151	40	3./4	9.2	- //	22.1	1.45	wind	1.0 m/s	0.973	in	16
1	April 11c	Wind	FCC heavy	1	21	151	20	1.46	14	31	23.1	1.45	wind	1.0 m/s	0.99	In	0.887
l i	April 12	Wind	FCC heavy	2	51	151	40	2.92	25	36	24.2	1.45	wind	1.0 m/s	0.996	In	0.66
	April 14	Wind	FCC heavy	2	46	151	20	1,46	16	18	24	0	wind	0	0.986	ln.	0.308
l	April 160	Wind	Water	0.5	3	151	20	1.32	14	29	23.9	0	wind	0	0.999	lin	0.179
	April 16b	Wind	FCC heavy	4	87	151	40	2.92	33	17	23.9	0	wind	0	0.996	łn	0.216
	April 20a	Wind	Water	0.5	8	151	40	2.65	23	41	25	0	wind	0	0.999	lin	0.088
	April 20b	Wind	Water	1	16	151	40	2.65	11	72	25.1	0	wind	0	0.998	lin	0.0778
	April 21a	Wind	Gasoline	0.5	7	151	20	1.87	4.8	76	22.5	0	wind	0	0.92	In	8.55
1	April 21b	Wind	Gasoline	1	17	151	40	3.74	8.2	80	22.5	0	wind	0	0.944	In	9.43
	April 22a	Wind	Water	0.5	6	151	20	1.32	7.6	62	23	0	wind	0	0.99	lin	0.178
E	April 22b	Temp	ASMB	1	26	151	20	1,58	14	30	10	0	lemo	10°C	0.996	In	3.87
	April 23	Temo	ASMA	2	47	151	20	1.58	14	30	5	0	temo	500	0.987	In	3 A 8
]	1.1.100	-	ACLAD	~	~~~	101	20	1.00		20	5	~	, temp	50	0.707		0.40
	April 25	lemp	ASMD		24	121	20	1.36	14	32	15	-	remp	15°C	0.995	in	4.22
i	April 26	Iemp	ASMB	j	25	151	20	1.58	13	33	20	0	temp	20°C	0.997	In	4.28
1	April 27	Temp	ASMB	1	24	151	20	1.58	13	34	25	0	temp	25°C	0.998	in	4.45
ļ	April 28	Temp	ASMB	1	24	151	20	1.58	13	36	30	0	temp	30°C	0.995	In	4.88
	April 29	Temp	ASMB	1	23	151	20	1.58	13	38	35	0	temp	35°C	0.996	In	513
1	1.00		ACAAD		40	161	20	1.60	10	24	0	õ	101110	00 C	0.004	1	0.70
	April 30	temp	ASMO	2	40	101	20	1.30	15	24	0	0	remp	00	0.764	10	2.76
l	May 2	Temp	ASMB	2	45	151	20	1.58	16	22	-5	0	temp	-5°C	0.894	łn	1.81
	May 4	Temp	ASMB	з	61	151	20	1.58	15	24	-5	0	temp	-5°C	0.938	łn	2.44
	May 6	Temp	ASMB	3	52	151	20	1.58	16	18	-10	0	temp	-10°C	0.826	In	1.33
	May 13	Temp	ASMB	6	143	151	20	1.58	16	18	-15	0	temo	-15°C	0.673	In	1.06
	1401 280	Temo	ASAAR	0.5	5	151	20	1.58	13	33	40	<u>^</u>	tomo	40%0	0.001	lo.	5 40
	11109 200	i leinp	AGIVID	0.0	~	1.51	20	1.50	10		40	Š	ientp	-00	0.774		0.47
	May 286) temp	ASMB	i	21	151	20	1.58	19	4	-15	0	temp	-15°C	0.754	In	0.536
L	May 29	Temp	ASMB	3.5	72	151	20	1.58	17	15	-20	0	temp	-20°C	0.659	In	0.916
5	May 19	humidily	ASMB	1	17	151	20	1.58	14	32	15	0	humidity	40	0.994	tn	4.36
ļ	May 20c	humidity	Water	0.5	6	151	40	2.65	26	34	15	0	humidity	40	0.999	lin	0.0898
	May 20b	humidity	ASMB	1	22	151	20	1.58	14	31	15	0	humidity	30	0.998	In	4.04
	May 21	humidity	Water	0.5	14	151	40	2.65	8.9	78	15	0	humidity	- 30	0.999	lin	0.0959
	May 22	humidity	ASMB	1	29	151	20	1.58	13	33	15	0	humidity	50	0.998	In	4.36
	May 23	humidity	ASMB	1	21	151	20	1.58	14	31	15	0	humidity	55	0.997	in	4.29
1	May 24c	I humidity	Water	0.5	з	151	40	2.65	35	14	15	0	humidity	60	0.997	lin	0.0797
1	May 24h	humidity	ASMB	1	15	151	20	1.58	14	30	15	0	humidity	60	0.999	In	4.24
	Mov 250	t burniclity	Water	0.5	5	151	40	2.65	32	21	15	0	humidity	70	0.999	lin	0.0646
	Moy 25h	humidity	ASAAB	1	18	151	20	1.58	14	31	15	0	bumidity	70	0.997	In	4 31
1	MOV 240	t burnidity	Water	0.5	8	151	40	2.65	30	26	15	õ	bumidity	· 80	0.994	lin	0.0559
	May 260	humidity	ASKAR	1	15	151	20	1.58	14	30	15	ň	burnicity	80	0.005	In	4.25
1	May 200	, humidity	Water	0.5		151	40	2.45	33	10	15	ň	burnicity	00	0.770	lin	0.0519
[May 270	a normany	ASMA	1	17	151	-0	1.59	14	21	14	ň	humber	- 00	0.777	ш (М	200010
	1 Nuy 270	numically	ASIVID			1.51	20	1.50	2 6		- 13	<u> </u>	TIOTTIQITY	70	0.774	- <u>163</u>	4.2
1 "	sepi 220	1 Pure cmpd	. penzene	0.5	4	101	20	1.31	3.0	03	23.7	0	rate		0.777	1871 1871	0.007
	sept 22b) Pure cmpd	. Dodecane	2	45	151	20	1.//	16	18	23.3	U	rate		0.999	lin "	0.0068
1	Sept 24	Pure cmpd	. Undecane	2	46	151	20	1.79	Y.4	53	24.3	Ű	rate		0.999	iin "	0.0193
1	Sept 260	3 Pure cmpd	. p-Xylene	0.5	7	151	20	1.54	7.3	63	24	0	rate		0.989	lin	0.161
	Sept 26b) Pure cmpd	. Nonane	1	11	151	20	1.83	3.9	80	24	0	rate		0.999	lin	0.117
	Sept 27	Pure cmpd	. Decane	1	19	151	20	1.81	9.3	54	22.3	0	rate		0.998	lin	0.0498
	Sept 280) Pure cmpd	, Heptane	0.5	3	151	20	1.94	8.3	59	18.5	0	rate		0.999	lin	0.326
1	Sept 28b) Pure cmpd	. Octane	0.5	3	151	20	1.88	13	36	20.4	0	rate		0.997	tin	0.221
ļ	Sept 280	Pure cmpd	. Decohydror	и I	18	151	20	1.48	13	36	21	0	rate		0.996	lin	0.0351
1	Oct 6	Pure cmpd	. Tridecane	1	23	151	20.36	1.79	20	2	21.1	0	rate		0.986	lin	0.0014
	Oct 8	Pure cmpd	Hexadecan	e 7	167	151	20	1.71	20	1	15	0	rate		0.847	lin	8.256-05

ĩabie 1

.

Summary Table of Experiments on Evaporation

.

•

-

-

	Date	frime	Oil	Days	Total	fan (cm²)	10lfici	Initiai (mm)	End	%	Temp	Wind	Varlab ie	Vodable	R' Best	Best	Single
Sea	ies 1993	Purpose	Туре	Length	Time (hr)	Area	Looding (g)	Thickness	Wt.	Έναρ	с	m/s		Value	Equation	Equation	Parameter
11	Sept 290	Fure cmpd. Sw	Heptane	0.5	0	151	20	1.94	3.7	81	16.4	1.45	rate		0.999	lin	2.82
ĺ.	Sept 29b	Pure cmpd. &w.	Octane	0.5	2	151	20	1.88	4.9	75	18.2	1.45	rate		0.991	lin	1.27
	Sept 29c	Pure crood. Aw.	Undecane	1	17	151	20.1	1.8	8.6	57	19.8	1.45	rate		0.998	lin	0.0586
	Sept 30c	Pure chipd, Sw.	Nonane	0.5	3	151	20	1.83	2.3	89	20.2	1.45	rate		0.999	lin	0.545
	Sept 30b	Furn cmpd. &w	Decane	0.5	6	151	20.5	1.86	7	66	21.6	1.45	rate		0.999	iin	0.2
]	Sept 30c	fure cmod. &w	Hexadecone	3	63	151	20.3	1.74	20	0	22.3	1.45	rate		_	lin	0
1	Oct 7	Puer concil &w	Tridecane	ì	25	151	20	1.75	18	12	26.2	1.45	rate		0.986	lin	0.0078
	Oct 17a	Ren count for	Benzene	0.5	0	151	21	1.58	28	87	171	1.45	role		0.700	lin	3 48
1	Oct 17h	Full Clipst, and	o-Videne	0.5	2	151	23.25	1 79	2.0	on	17.0	1.45	(CILO		0.000	tin .	0.754
	Oct 17c	Fore Chiple, Aw	Dodocono	0.5	7	151	20.20	1 77	19	6	21.2	1.45	rate		0.777	lin.	0.0245
ł	Oct 17d	Pule chipa, Ew	Dodecone	0.5	í.	161	20	1.77	10		21.0	1.40	ione rete		0.700	iu i lie	0.0245
1-	Oct 7	Pure cmpd. &w.	A S L A D	0.5	14	151	20	1.40	1.2	74	-20.1	1,43	rute	·	0.997	<u> </u>	2.0
14		ouidoor	ASMO	0.0	°	101	24.4	1.75	10	27		111	rate		0.926	in G	3.9
	OCI 4	ourdoor	ASMB	0.5	°	151	25.45	2.01	20	23	8	m	rate		0.821	in .	2.89
┝	0015	outdoor	ASWR	0.5	5	449	67.95	1.8		27	6.5	<u></u>	rate		0.834	<u></u>	3.92
13	Oct IS	Doping	WAS - 34.5	2	40	151	20	1.58	20	2	18	0	rate		0.937	square	0.0333
	Oct 18	Doping	Heptone+WAS	0.5	8	151	20	1.58	17	17	17.9	0	rate		0.931	square	0.841
ļ .	Oct 18b	Doping	DodeCone+WA	. 3	64	151	20	1.58	18	9	17.8	0	rate		0.972	square	0.137
1	Oct 21	Doping	Nonone+WAS	1	27	151	20	1.58	16	19	20.3	0	rate		0.943	square	0.535
1	Oct 22	Doping	Tridecane+WAS	3	77	151	20	1.58	19	7	21	0	rote		0.94	square	0.083
1	Oct 26	Doping	Decone+WAS	1.5	34	151	14.93	1.18	12	20	17.9	0	rate		0.974	square	0.481
L	Oct 27	Doping	Undecane+WA	3	70	151	20	1.58	16	18	16	0	rate		0.973	square	0.251
14	Oct 30	Dope&wind	i Undecone +WA	1.5	41	151	20	1.58	16	21	20	1	rate		0.996	square	0.414
1	Nov 1	Dope&wind	Decone +WAS	1	24	151	20	1.58	16	21	22	1	rate		0.924	square	0.597
	Nov 2	Dope&wind	Dodecone+WA	3	76	151	20	1.58	16	22	21	1	rate		0.979	sauare	0.294
1	Nov 5	Dope&wind	indecane+WAS	5	125	151	20	1.58	16	18	23.9	1	rate		0,987	square	0.2
1	Nov 10	Dope&wine	1 Norvone+WAS	1	18	151	20	1.58	16	20	212	1	rate		0.854	square	0.72
	Nov 11g	Dogeswing	1Henloon+WAS	0.5	5	151	20	1.58	17	18	20.1	ì	rote		0.746	source	1.22
1	Nov 11b	Depetuier	- WAS - 34 59	2	44	151	20	1.58	10	~	185	i	rate		0.073	square	0.0967
1	Nov 140	CODECAMIN	12.000000	0.5	7	151	20	1.50	30	80	17	0	CLINIC		0.725	Joodie	0.0707
1.	Nov 140	componen	2-Compon	0.5	11	351	20	1.77	10	00	22.7	Ň	corve		0.777	141	2.2
1	Nov 140	componen	ra-compon	0.5	6	1.01	20	1.72	1.7	71	23.7	U A	curve		0.773	square	0.2
1	NOV 150	componen	13-compon	0.5	3	151	20	1.74	1.7	21	20	0	curve		0.988	linear	0.353
	NOV 15D	componen	té-Compon	2	49	15	20	1./	1.7	92	19	0	Curve		0.948	square	1.79
	NOV 17	componen	5-compon	1	27	151	20	1./2	1.6	92	21.2	0	Curve		0.985	square	2.25
	Dec 10	componen	t 14-compon	1	21	151	20.03	1.7	5.6	72	18.6	0	curve		0.975	square	2.17
ļ	Dec 11	componen	13-compon	1	30	151	20.14	1.71	5.9	71	19	0	curve		0.923	square	1.93
	Dec 12	componen	t 12-compon	1	25	151	20.09	1.71	7	65	8	0	curve		0.984	square	1.8
	Dec 13	componen	t I I-compon	4	92	151	20.2	1,72	4	80	9.2	0	curve		0.916	square	1.26
1	Dec 17	componen	t 10-compon	2	50	151	20.05	1.7	5.5	72	22.2	0	curve		0.913	square	1.52
	Dec 19	componen	19-compon	2	40	151	20.17	1.71	7.4	63	18.6	0	curve		0.954	square	1.44
Į –	Dec 21	componen	8-compon	1	29	151	20	1.7	7.9	61	23.4	0	curve		0.956	square	1.66
1	Dec 22	componen	t7-compon	1	25	151	20	1.7	7.2	64	23	0	curve		0.968	square	1.77
10	Dec 23	oil type	Komineft	5	121	151	12.88	1.02	8.8	32	23.3	0	rate		0.995	ln	3.4
	Dec 28	oil type	Federated	6	142	151	20	1.58	12	40	23.1	0	rote		0,982	In	4.44
1	1995	- ,,		-								-					
1	Jan 3	oil type	Federated	4	95	151	20	1.58	13	34	15	0	rate		0,985	In	3,99
1	Jan 7	oil type	Federateda	4	96	151	20	1.58	12	38	15	18	rale		0.988	In	4.42
1	Jan 11	oil type	Avalon	3	70	151	20	1.56	18	9	15	0	rate		0.96	In	2.08
	Jan 14	oittype	Gulfaks	4	89	151	20	1.61	15	26	15	0	rate		0.983	ln	2.89
1	Jon 18	oitivne	Brent	3	79	151	20	1.58	13	34	15	ñ	rale		0.995	łn	4 23
1	Ign 21	oiltype	Amaudiaak	5	120	151	2014	15	15	24	15	ñ	rate		0.952	In	23
1- 1-	1 Jan 24	- rkinning	Tarra allow		- 01	151	20.1-	1.5/	15	- 27	15	<u></u>	timine	romo	0.702		2.0
\parallel	Jan 30	skinelne		7	120	151	20	1.54	15	20	22.0	ň	stining	301110	0.727	ĥ	2.57
1	Soh 4	skannang		2	70	101	20	1.04	10	2/	21.2	~	soning etion	nu agit	0.70/	111 100	2.70
	red 4	skinning	terro Nova-s	,	/2	101	20	1.54	10	20	21.0	U A	sum∩g	sinted	0.754	(1) 1	4.10
ļ	reo /	skinning	statijord-s	4	73	151	20	1.07	13	20	41.5	0	sម៣ពិg	sined	0.766	(n 1-	4.12
1	Feb II	skinning	stattjord-b	4	99	151	20	1.59	13	33	22.4	Û	stiming	no agit	0.978	in L	3.47
1-	Feb 15	skinning	Statijord-c	5	118	151	20	1.59	13	33	15	Q	slining	some	0.983	In	3.65
18	Feb 20	temperatu	«Gulfaks	4	96	151	20	1.61	15	24	10	0	temperature	10°C	0.959	In	2.53
1	Feb 24	temperatu	n Gulfaks	8	188	151	20	1.61	15	25	5	0	temperature	5°C	0.975	In	2.54
1	Mar 4	temperatu	r Gulfaks	6	144	151	20	1.61	15	23	0	0	Imperature	0°C	0.977	In	2.19
	Mor 10	lamoorah	Gulfoks	3	70	151	20	1 41	15	24	15	n	lemoerch	ነምር	0.984	in	2.81
ł	140-10	iemperatu	Culterin	5	70	101	20	1.01	10	20	10	Š		0000	0.704	11 i -	2.01 ^
1	Mar 13	temperatu	n Gultaks	3	72	151	20	1,61	15	26	20	0	temperature	20°C	0.997	in	3
	Mar 16	temperatu	«Gulfaks	2	48	151	20	1.61	15	26	25	0	lemperature	25°C	0.997	In	3.01
1	Mar 18	temperatu	« Gulfaks	2	46	151	20	1.61	15	27	30	0	1emperoture	30°C	0.972	In	3.24
L	Mar 20	temperatu	n Gulfaks	2	42	151	20	1.61	14	29	35	0	Iomperature	35°C	0.985	In	3.54

3. Third Series - *Precise Determination of Evaporation Rate* - The purpose was to begin "regular" measurements so that correlatable data could be collected. Eleven experiments of this type were conducted. The data was collected using a new modification to the data collection software that enabled time-interval multiples of non-integers. This resulted in more accurate curve fits after the data was collected.

4. Fourth Series - *Study of Film Formation and Its Experimental Elimination* - The purpose was to check whether a film, which often forms when oil evaporates under quiescent conditions, is a serious effect with certain types of oil and whether a pneumatic stirring device would remove this effect.

5. Fifth Series - *Study of the Variability of Evaporation Physics With Oil Type* - This series was to test that the findings are relevant to many different types of oils. Several differing oil types from gasoline to emulsions were tested.

6. Sixth Series - *Determination of the Evaporation Area and Thickness Effects* - The sixth series was an experiment of area of evaporation. Several different pan sizes were used to measure this effect.

7. Seventh Series - Determination of the Regulation by Boundary Layer - This series was a measurement of the effect of wind on the evaporation rate and thus a test of boundary layer regulation. This was done with several oils including Alberta Sweet Mixed Blend (ASMB), Gasoline, FCC Heavy Cycle (a narrow cut refinery intermediate) and water, about which so much is known.

8. Eighth Series - Determination of the Temperature Effect on ASMB Evaporation - This series was a test of the temperature effect from -20°C to 40°C.

9. Ninth Series - *Test of the Effect of Relative Humidity on Oil Evaporation Rate* - If oil evaporation were strongly boundary-regulated, evaporation would be affected by the relative humidity. A controlled environmental chamber was used in this study to test the humidity effect.

10. Tenth Series - *Measurement of the Evaporation Rate of Pure Hydrocarbons without Wind* - This series and the next were conducted to measure the rate of evaporation with and without wind. This will determine at what molecular weight, boundary layer regulation is a factor and when it is not.

11. Eleventh Series - Measurement of the Evaporation Rate of Pure Hydrocarbons with Wind.

12. Twelfth Series - *Experiment with ASMB Outdoors* - This series was a test of the entire laboratory result. The instrumentation was moved outdoors and 3 experimental runs conducted to test the hypothesis under 'real' conditions.

13. Thirteenth Series - *Experiments on Oils 'Doped' with Pure Hydrocarbons With No Wind* - This series and the next were conducted to measure if the evaporation of pure compounds was affect or changed by the presence of the oil residue (weathered oil).

14. Fourteenth Series - Experiments on Oils 'Doped' with Pure Hydrocarbons With Wind.

15. Fifteenth Series - Determination of the Curve-type with Number of Components Evaporating - Several synthetic mixtures consisting of 2 to 14 components were evaporated to determine the curve of best fit for each one. This answered the question of why most oils fit the logarithmic curve best and what the mathematical justification for this is.

16. Sixteenth Series - Further Studies on Variances of Oil Type - Several different types of oils were evaporated to determine whether there were differences in evaporation

behaviour with these types. All experiments were conducted in a controlled environment except for two.

17. Seventeenth Series - *Studies on the Formation of Skin Formation* - Two oils, Terra Nova and Statfjord were tested for skin formation by conducting experiments with and without stirring.

18. Eighteenth Series - *Determination of the Temperature Effect on Gullfaks Evaporation* - This series was a test of the temperature effect from 0°C to 35°C.

The Evaporation Characteristics of Oil

This study shows that most oils evaporate at an exponential or logarithmic rate with respect to time. A few exceptions to this exist, particularly narrow-cut products such as FCC Heavy Cycle which fits a square root curve best. A comparison of the evaporation of several different oils is shown in Figure 1.

The logarithmic shape of the curves is due to the number of components evaporating at one time. A separate study was conducted on the type of curve resulting from differing numbers of components and the curve resulting. This study shows that about 5 components yield a square root and about 12 components yield a logarithmic curve. This shows that the best fit curve is simply a result of the number of components evaporating.

Boundary Layer Regulation

The major concern is whether or not oil is boundary-layer limited. The easiest test is whether or not oil evaporation is affected by winds. Several experimental runs were conducted to examine the relationship between wind velocity and oil evaporation rate. It is important to remember the boundary-regulated water evaporation shows a strong relationship varying as U^x , where x=.5 to .78 depending on the turbulence level of the wind. Figure 2 shows a series of evaporation curves with varying wind velocities (all rich in turbulence) for ASMB (Alberta Sweet Mixed Blend crude oil).

Figure 2 shows that evaporation rate only increases a small amount after the first wind increment. Figure 3 shows the same type of graph with water. The classical relationship with water is seen here, each increase in wind speed results in an increased evaporation rate. This would appear to indicate that oil is not boundary-regulated or is marginally so.

The evaporation rates themselves can be compared with the wind velocities to determine if a relationship exists. Figure 4 shows the correlation between evaporation rates of ASMB, FCC Heavy Cycle, gasoline and water.

Figure 4 clearly shows that there is little relationship between the evaporation rate for the ASMB and FCC Heavy Cycle and just a very small amount for gasoline - the most volatile petroleum product. Water shows a typical large increase in evaporation rate with increasing wind velocity. It should be noted that the lines were fit by regression and thus any curves would not show.

Another 'classic' indication of boundary-layer regulation is the relationship of evaporation rate to area. If boundary layer regulation exists, evaporation rate should be directly related to the area of the evaporating substance (except, of course, over very long scales where the scale of the evaporating area would actually decrease evaporation rate because of saturation over long wind fetches. This is not relevant to these experiments because the scale size, in order of magnitudes, was not changed during the course of the experiments). Figure 5 shows the relationship between evaporation rates and area for a number of experiments conducted with ASMB.

This figure shows that there is little relationship between spill area and evaporation rate. The slight relationship noted may be due to partial boundary-layer regulation or to the fact that increasing areas may have increasing oil volumes, to which there is a strong relationship.

Another indication of boundary layer regulation is the relationship between mass or weight of the material evaporating and evaporation rate. If boundary layer regulation is strictly applied, there is little relationship between the two parameters. Figure 6 shows the relationship between spill mass and evaporation rate for a series of experiments conducted with ASMB. It can be clearly seen that there is strong correlation between spill volume and evaporation rate - indicating that the boundary-layer regulation is either very weak or non-existent.

It thus appears that oil and petroleum product evaporation is weakly boundarylayer regulated or not at all. In any event, the parameters relating to boundary-layer regulation do not necessarily need to be included in evaporation predictions. These include wind velocity, turbulence level, area or thickness. The result will be to simplify the equations for evaporation very significantly. This will have benefit to spill modelers because these parameters are often difficult to determine at the time of a spill. Instead the modeler will only need temperature and mass of spilled material - two relatively easy parameters to obtain. The question now is, why is oil not boundary-regulated. The answer appears to be that most of the components of oil evaporate so slowly that molecular diffusion is sufficient to carry the molecules from the surface. The fact that even gasoline only shows a slight boundary-regulation tendency indicates that most of its components evaporate at rates less than that of molecular diffusion. A separate series of experiments was conducted to determine the boundary-layer regulation of pure components. Results of this experiment are shown in Figure 7. The figure shows that there is no significant boundary-layer regulation above C10, and that the regulation is only important for C7. For most petroleum products and crude oils, there is only a small percentage of mass equivalent below C10 and this explains the lack of boundary regulation.

Temperature

Another factor examined in these studies was the relationship between temperature and evaporation rate. Figure 8 illustrates two such studies and shows that the relationship found between evaporation rate and temperature is linear. Figure 8 also shows that the linear relationships are different for different oils. Work continues on developing a method of correlating these to other readily-available oil data.

Equations

Extensive data analysis shows that most oil evaporation data fits a logarithmic curve. Curves were fit for both percentage evaporated and for actual weight lost. Furthermore, single parameter equations, that is without the constant term, were fit for both types of curves. The single-parameter equation term for percentage lost is given in Table 1. The regression coefficient (\mathbb{R}^2) is given in Table 1 and was calculated for the two-parameter equation for percentage of weight lost. The single-parameter equations are of the form:

 $Ev = P \ln t$

where: Ev is the percentage or weight evaporating per unit time, t

P is the parameter, which is calculated separately if weight or percentage is used

t is the time

The two-parameter equations are of the form:

 $Ev = a + P \ln t$

where: Ev is the percentage or weight evaporating per unit time, t

a is a constant term

P is the parameter, which is calculated separately if weight or percentage is used

t is the time

Temperature was found to be the most important environmental variable affecting oil evaporation. Evaporation amount or rate changes linearly with temperature. Equations which include the influence of temperature are of the form:

 $Ev = PT \ln t$

where: Ev is the percentage or weight evaporating per unit time, t

P is the parameter, which is calculated separately if weight or percentage is used

T is the temperature

t is the time

Research has also shown that the parameter, P, for the above equations can be estimated from oil distillation data with accuracy similar to that of measurement.

Conclusions

The principal finding to date is that oil is not strictly boundary-layer regulated. This is a result of the fact that oil evaporation, especially after a short initial time period, is slower that the molecular diffusion rate of the evaporated components in air.

This has profound implications for most oils including:

1. area of the spill is not important to evaporation prediction

- 2. wind speed is not important
- 3. temperature is the most important environmental consideration

4. evaporation can be predicted for mass loss by an equation of the form:

 $E_V = MT \ln t$

where: Ev is the mass evaporating per unit time, t

M is the mass

T is the temperature

t is the time

5. evaporation can be predicted even more simply by an equation of the form: $Ev = T \ln t$

> where: Ev is the percentage evaporating per unit time, t T is the temperature

t is the time

The most important implication is that prediction of evaporation will be much simpler in the future. The input parameters suggested here, temperature and mass of the oil are usually the only parameters known in the event of a spill. Furthermore, one does not even require the mass, because the percentage equation could be used, leaving only temperature as an input parameter.

Research on oil evaporation continues. Future publications will include description of the relationship of oil evaporation equation parameters to distillation data and to temperature. Further empirical data is being gathered and this will ultimately be added to Environment Canada's public data bases.

REFERENCES

Brutsaert, W., *Evaporation into the Atmosphere*, Reidel Publishing Company, Dordrecht, Holland, 299 p., 1982.

Fingas, M.F., "The Evaporation of Oil Spills", Journal of Hazardous Materials, in press, 1995.

Jones, F.E., *Evaporation of Water*, Lewis Publishers, Chelsea, Michigan, 188 p., 1992.

Lehr, W.J., R. Overstreet, R. Jones and G. Watabayashi, ADIOS-Automatic Data Inquiry for Oil Spill", in *Proceedings of the Fifteenth Arctic Marine Oilspill Program Technical Seminar*, Environment Canada, Ottawa, Ontario, pp 31-45, 1992.

Mackay, D. and R.S. Matsugu, "Evaporation Rates of Liquid Hydrocarbon Spills on Land and Water", *Canadian Journal Chemical Engineering*, Vol. 51, Canadian Society for Chemical Engineering, Ottawa, pp 434-439, 1973.

Smith, J.M. and H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Inc., New York, p. 182, 1987.

Stiver, W. and D. Mackay, "Evaporation Rate of Spills of Hydrocarbons and Petroleum Mixtures", *Environmental Science and Technology*, Vol. 18, American Chemical Society, Washington, D.C., pp 834-840, 1984.

Sutton, O.G., "Wind Structure and Evaporation in a Turbulent Atmosphere", *Proceedings of the Royal Society of London, A 146*, pp. 701-722, 1934.