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OUTLINE

• Failures: Introducing four hydrogen embrittlement case studies 

• Theory: How hydrogen embrittlement happens and how it affects 
operations

• Experimental: Hydrogen embrittlement affecting bolts when 
using different coatings

• Final Remarks



Offshore Industry Failures

• Hydrogen Embrittlement failures are catastrophic 
in nature

• Hydrogen embrittlement failures in drilling 
equipment lead to significant safety and 
environmental risks

• Failures have significant economic consequences

• Failures occur mostly in a subsea environment

Dual Derrick Operations

FAILURES EXPERIMENTAL FINAL REMARKS
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Failure 2: Lower Marine Riser Package (2012)
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Failure 3: Blow Out Preventer (BOP) Flange Bolt Failure (2014)

• Flange bolting plated with zinc is 
missing where cracking occurs in 
stud threads

• High hardness in excess of HRC 34

• Arrows point at areas with 
consumed sacrificial coating
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Failure 4: Bay Bridge Failure

• San Francisco Bay Area Bridge Failure 

• High strength bolting 

• (ASTM A490 39 HRC Maximum)

• Hot Dip Galvanized Zinc

• Bridge closed for repairs

• Long and costly repairs

• Offshore and on land



Efforts to address Hydrogen Embrittlement on bolting
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What is Hydrogen Embrittlement?
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Embrittlement

• Hydrogen embrittlement is 
the mortal enemy of 
fasteners.

• It causes metals to become 
brittle and fracture easily.

• Caused by tensile stress, 
material susceptibility to 
hydrogen, and corrosive 
environments.

High hardness



Hydrogen Embrittlement in Action

• Positively-charged hydrogen breaks 
out of water molecules and is 
attracted to metal

• Hydrogen atoms enter the metal 
through high-stress areas

• Hydrogen interacts with iron atoms 
to weaken and embrittle the metal
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H2 (hydrogen gas)

2H+ + 2e-

2H+ (atomic hydrogen)
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How Hydrogen Embrittlement Happens in Fasteners

Manufacturing Process In Service Environment
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Evaluation of Hydrogen embrittlement in bolting

ASTM F519: No failure after 200 hours at 75% NTS. It evaluates IHE

ASTM 1940: Specifically related to fasteners. It evaluates IHE

ASTM 2660: Effect of residual hydrogen in the steel as a result of 
processing. It evaluates mainly EHE

ASTM 1624: Tests in air to investigate IHE. Tests in 3.5% NaCl and 
cathodic polarization to investigate EHE. 
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Electrochemical Approach to Hydrogen Embrittlement

• Every material possesses a Potential and delivers a Current

• Potential = Corrosion energy 
The higher the potential, the more resistant to corrosion. 

• Current = How reactive a material is to its environment 

The higher the current, the more hydrogen will be produced. 

• The Protection Potential = the potential value (-0.85 V vs Ag/AgCl) where no electrons are 
exchanged between a material and its environment due to corrosion reactions

Potential Values equal or more negative produce hydrogen.
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The Protection Potential

Fe++   Fe++

Fe++

Fe++

Fe++

Hydrogen Embrittlement
Anodic Stress 

Corrosion  Cracking

Anodic Reaction
Fe = Fe++ + 2e-

Potential (Volts-Ag/AgCl) Scale

Seawater 
Corrosion

H

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1.2-1.1-1-0.9-0.8-0.7-0.6-0.5

200 ksi (44HRC)

 175 ksi (40HRC)

150 ksi (38HRC)

 125 ksi (32 HRC)

14 | API, 2018 Exploration and Production Winter Standards Meeting

N
o
rm

a
liz

e
d
 C

ra
ck

 G
ro

w
th

 R
a
te

v

Cathodic Reaction
2H+ + 2e- = H2

Seawater
Hydrolysis

H
H

H

H

H

H

H+
H+

H+

H+

H+H+

THEORY EXPERIMENTAL FINAL REMARKSFAILURES



15 | API, 2018 Exploration and Production Winter Standards Meeting

THEORY EXPERIMENTAL FINAL REMARKSFAILURES

API 20 E
ASTM B994 SC18 CLASS1

Galvanic Coupling 

Manufacturing Process In Service Environment

API 20 E
ASTM B994 SC18 CLASS1
ASTM F519

CATHODIC
OVER 

PROTECTION

GALVANIC
COUPLING

CORROSION
FORMING

MACHINING
HEAT TREATMENT

PICKLING
PHOSPHATE

PLATING



• More negative potential increases the risk 
of hydrogen embrittlement.

• Below the water stability region, hydrogen 
is produced

• Nickel-Cobalt will not cause hydrogen 
embrittlement. Zinc does. 

• Zinc will produce hydrogen gas and 
atomic hydrogen.

Thermodynamics of Hydrogen Production

Water Stability Region
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• Zinc and Zinc-Nickel have a very low potential and delivers a very high current, so it 
is very reactive and its cathodic current will produce hydrogen.

• Nickel-Cobalt has a high potential and delivers a very low current, so it reacts very 
slowly and is resistant to corrosion. 

Summary of electrochemical performance
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Cathodic protection (overprotection) 

• Cathodic Protection charges metals with current to prevent 
corrosion. 

• Too much current accelerates hydrogen production, putting 
fasteners at risk of hydrogen embrittlement. This is easy to 
do by accident due to the design of cathodic protection. 

• Coatings must protect fasteners from accidental cathodic 
overprotection.

• Cathodic charging was used for hydrogen production tests, 
hydrogen permeation tests, and the effect of cathodic 
protection on the mechanical strength of coupons.
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Anode Cathode

Cathodic overprotection to        
-1.2 V vs Ag/AgCl
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Nickel-Cobalt: 
Hydrogen Embrittlement Test for Cathodic Protection
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• Notched tensile samples (49 
HRC) were subject to 
cathodic overprotection of -
1.0 V vs Ag/AgCl in 3.5%wt 
NaCl.

• Tensile tests to break the 
samples were performed 
after 30 days of polarization.

Bare Steel Nickel-CobaltZinc coating

EXPERIMENTALTHEORY FINAL REMARKSFAILURES



Tensile Tests with Cathodic Protection
• Nickel-Cobalt plating has a 

minimal effect on a fastener’s 
mechanical performance. 

• Cathodic overprotection has 
no effect on mechanical 
performance with Nickel-
Cobalt plating. 

• Nickel-Cobalt protects 
fasteners under stress from 
hydrogen. 

Bare Steel
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Charging Side
3.5% wt NaCl
1.0 mA/cm2

Exit Side
0.1 N NaOH
+0.3 V vs Ag/AgCl

Permeation: How Hydrogen Penetrates Steel
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Hydrogen Permeation Cell Testing

Ar Gas

Test Solution

Charging Cell

Pt (AE)

Salt Bridge

Potentiostat

RE (Ag/AgCl)

Saturated KCl1N-NaOH

Ni-Co Zinc Zn-Ni
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Hydrogen Production on different coatings

• 1 mA/cm2 was applied during 
12 hours in a 3.5wt% NaCl
acidified to pH=3

• Hydrogen was collected and 
quantified

• Nickel-Cobalt produced the 
least amount of hydrogen 
compared to the other 
coatings. 
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Hydrogen Permeation Cell Testing: Results ASTM G148

• Zn showed the highest 
hydrogen permeation

• Ni-Co exhibited the lowest 
hydrogen permeation, one 
order of magnitude less than 
Zn-Ni and two orders of 
magnitude of Zn

• Despite the high hydrogen 
production on the Zn-Ni, Zn 
had a higher permeation.
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Final Remarks

• Materials selection plays a crucial role 
regarding hydrogen embrittlement 
susceptibility.

• Nickel-Cobalt will not produce hydrogen 
even with high cathodic overprotection, 
Zn and Zn-Ni will do.

• Eliminating one of the elements from 
the catastrophic Venn diagram, may 
eliminate the risk of hydrogen 
embrittlement.

• Nickel-Cobalt protects from external 
sources of hydrogen in the field.
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Question & Answer
Any questions?

Thank you all


