2RGAD
CEAC-TR-96-0102

LEAKAGE FAILURE OF THREADED FIBER-COMPOSITE
JOINTS UNDER COMBINED INTERNAL PRESSURE, AXIAL
AND MAKEUP LOADING: EXPERIMENTS AND ANALYSES

By
S. 8. Wang” and X. Lu™

Composites Engineering and Appiications Center, and
Department of Mechanical Engineering
University of Houston
4800 Calhoun Road
Houston, TX 77204-0980

December, 1996

Sac

“Professor and Director, CEAC and Mechanical Engineering Department
**Research Associate, CEAC; Formerly, Graduate Research Assistant,
Department of Mechanical Engineering




CEAC-TR-96-0102

(Report #2 of the Final Report Series to American Petroleum Institute and Amoco
Corporation for the Project on Long-Term Multiaxial Strength of Fiberglass Tubing)

LEAKAGE FAILURE OF THREADED FIBER-COMPOSITE JOINTS
UNDER COMBINED INTERNAL PRESSURE, AXIAL AND MAKEUP
LOADING: EXPERIMENTS AND ANALYSES

by
S.S. Wang” and X. Lu™

Composites Engineering and Applications Center, and
Department of Mechanical Engineering
University of Houston
4800 Calhoun Road
Houston, TX 77204-0900

December, 1996

* Professor and Director, CEAC and Mechanical Engineering Department
**Research Associate, CEAC; Formerly, Graduate Research Assistants, Department of
Mechanical Engineering



FORWARD

This report is the first part in the final report series for the project on long-term
multiaxial strength of fiberglass tubing, conducted during the period of 1994-96 by
researchers of the Composites Engineering and Applications Center (CEAC) for Petroleum
Exploration and Production at the University of Houston, Houston, TX. The research was
funded mainly by a contract from the American Petroleum Institute (API), Washington D.
C. Owing to the broad scope of work and the depth of the investigation, supplementary
support was also provided by a grant from the Amoco Corporation, Chicago, IL. and by
CEAC internal funds.

The overall objectives of the research program, as requested by API, were to:
{1). Examine the validity of the assumptions and hypotheses of the proposed API rating
methodology for long-term strength of fiberglass composite tubing under multiaxial
loading;
{2). P%ovide rigorous understanding of progressive leakage failure mechanisms and
mechanics of FRP tubing subjected to combined internal pressure and axial loading, and
(3). Identify the limitations of the proposed API rating methodology.

The current study has been directed to focus on the following critical issues of the
leakage failure in fiberglass composite tubing used in oil and gas exploration and
production operations:

(1). Progressive leakage failure modes;

{2). Long-term and short-term leakage failure envelopes;

(3). Safety (or service) factors in composite tubing design, and

(4). Load sequence effects.

Both composite tube bodies and threaded fiber-composite joints are studied. Two types of
composite tubing were considered; one for downhole applications and the other for typical
line pipe applications. The effect of different multiaxial loading modes, including short-
term loading, long-term creep and cyclic fatigue, on the composite tubing leakage was
investigated.

This first report addresses the aforementioned critical issues of leakage failure in a
fiberglass composite mube body. In the second report, the complicated leakage failure of
threaded fiber-composite tubular joinfs is investigated. The third report covers the
important problem of long-term composite tubing leakage under multiaxial cyclic fatigue
loading. In all these reports, the analytical and experimental methods developed for the
studies are described in detail to ensure a clear understanding of the advanced level of the
approach used in the investigation.
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ABSTRACT

A combined experimental and analytical study has been conducted to investigate
leakage failure of threaded fiber-composite tubular joints subjected to combined internal
pressure, axial loading and make-up interference. Owing to material, geometric and
loading complexities, nonlinear composite constitutive equations, local thread contact and
material damage in the composite joints have been included in the analytical part of the
study. Based on experimental observations, and contact and failure mechanics
considerations, leakage failure modes are identified and proper mechanism-based failure
criteria are established. To predict the leakage failure of threaded composite joints,
several rigorous mathematical models are introduced. Computational mechanics analyses
of the composite joint failure under various multiaxial loading modes are conducted. With
the current development of quasi three-dimensional finite elements and the mechanism-
based failure criteria, both direct full-field modeling and coupled global-local modeling of
the threaded composite joints are performed. In the experimental part of the study,
threaded integral composite joints were used in a joint make-up study and in leakage
failure experiments. The leakage failure experiments were conducted on the integral
composite joints with prescribed make-up interferences subjected to combined internal
pressure and axial loading with various biaxial loading ratics. A rigorous analytical
method for defining the make-up interference in a threaded composite joint has been
introduced. To provide a clear insight into the experimental results, fundamental leakage
failure maps have been constructed from the experimental and analytical results, and
relate different leakage failure modes to the critical pressure, axial load and makeup turns.
Analytical predictions of the threaded composite tubular joint failure, based on the
proposed mechanical models, mechanism-based leakage failure criteria and local contact
analyses, are compared well with the experimental resuits. Effects of the make-up
interference, hoop-to-axial loading ratio, geometric imperfection and thread surface
friction on the joint leakage failure are studied in details. The probabilistic nature of the
threaded composite joint leakage failure is also addressed in conjunction with the thread
tightening safety factor introduced in the study.
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1. INTRODUCTION

The demand of alternative and/or better materials to meet stringent performance

and cost-effectiveness requirements in petroleum exploration and production operations
has led to consideration of light-weight, fiber composites for a variety of aggressive, load-

bearing appiications. Joining of composite tubing, especially the threaded composite
joints, has been a major concern because of the complexities involved. It is recognized
that design and analysis methodologies for monolithic metallic joints have been practiced
for a long time and well established. However, the mechanics and failure behavior of
threaded composite tubular joints for load-bearing applications has not been well
understood. Rigorous analytical and experimental methods to study the mechanical
response of a threaded composite joint simply do not exist, mainly because the following
difficulties and complexities:

1) Complexities in fiber composite joint materials. Composite materials have inherently
inhomogeneous microstructures and anisotropic properties. An accurate leakage
failure study of composite joints requires knowledge of nonlinear anisotropic material
properties, complicated failure criteria, and nonlinear thread contact mechanics.

2) Lack of understanding of threaded joint contact mechanics: Complexities of the local
joint geometry and lack understanding of the thread contact pose a fundamental
problem for evaluation and prediction of joint failure. The connection threads are
recognized to be the weakest link in a composite joint system. A detailed study of a
threaded composite joint made of different kinds of composite materials is generally
tedious, difficult and very complex.

3) Complexities in leakage failure modes: The three-dimensional states of stress and
deformation in a threaded region of a fiber composite joint are known to be very
complex. Various leakage failure modes may be developed under a combined internal
pressure, axial loading and make-up interference. Very little is understood about the
failure modes and the effect of the combined loading modes on the joint failure.

4) Unknown long-term deformation and leakage failure resistance: Compared to
monoelithic metallic joints, the threaded composite joints exhibit more complicated
stress states and failure modes, in addition to the issue of material degradation. Long-
term deformation and failure behavior of threaded composite joints are not fully
known at present.

5} Lack of accurate methods for analysis and design: The complexities of the joint
materials, geometry, and loading and difficulties in handling the contact mechanics
and failure modes in a threaded composite joint have laid serious barriers in the
development of sound analysis and design methodologies. The analysis and design
methodologies for traditional threaded metallic joints are not able fo nor suitable for
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the threaded fiber composite joint problem. In-depth knowledge of leakage-failure
mechanics of a threaded composite joint is needed to develop proper design and
analysis methodologies.

It is obvious that the materials, geometry and functions of the threads used in a
composite tubular joint are significantly different from a joint made of mechanical
fasteners, such as a bolt-nut joint. Various thread configurations have been used for
connecting tubular components; they all have two common functions: structural load-
transfer and resisting leakage. While a threaded joint is generally used for convenience in
joining tubular composite structures, several unique features are critical in their
performance and failure evaluation:

1) Thread taper. The thread taper along the axis of a composite joint is important to
provide a proper radial interference between the two connected components after a
mechanical made-up.

2) Thread sealing. The contact force developed between thread surface under external
loading prevents leakage failure of the joint. Leakage failure through the thread
contact surface is a complex nonlinear mechanics problem, which has not been fully
investigated and understood.

3) Three-dimensional characteristics of threads. Localized stress concentrations in the
threads are inherently three-dimensional and very complicated. Therefore, the
existing one-dimensional theories, such as those used in analyzing a bolt-nut joint, is
incapable of addressing the threaded composite joint failure problem.

Given these aforementioned complexities, one may recognize that a combined analvtical
and experimental approach may be the only viable way to understand the leakage failure
behavior and to provide quantitative relationships to relate the joint leakage failure to
various geometric, lamination, material and loading variables in a threaded composite
joint,

The objectives of the research are to: (1) establish fundamental fiber and
particulate composite material constitutive equations, especially in the nonlinear regime,
through micromechanics and experiments for the composites used in the joints, (2)
determine leakage failure modes and associated failure criteria by multiaxial loading
experiments and failure/contact mechanics, and (3) develop mechanics models and
nonlinear numerical methods to analyze and predict deformations and leakage in threaded
composite joints under various combinations of internal pressure, axial loading, and
make-up interference.

In the next section, a comprehensive review of the literature is conducted on
analytical and experimental studies of various tubular joint systems, including both
metailic and fiber-composite joints. Critical studies on composite thread and joint
geometry, microstructures, and materials used are presented in Section 4 to establish a
basis for subsequent investigation of the composite joint leakage failure. Unique
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multiaxial-loading and leakage-detection facilities developed for this research, and the
composite joint leakage experiments conducted are described in Section 5. The
boundary-value problem of a threaded composite joint under combined multiaxial
external loading is formulated in Section 6. To solve the leakage failure problem (with
complex local and global geometry, unknown thread surface contact and nonlinear
constitutive equations), mechanical models of different ievels of complexities are
introduced in Section 7. Failure criteria associated with individual leakage failure modes
are introduced in Section 8 and subsequently used in conjunction with the mechanical
models. With the aid of a Lagrangian multiplier technique (to account for thread surface
contact) and a progressive material degradation scheme (for composite damage during
increasing loading), an incremental-iterative numerical method is developed in Section ¢
to simulate the composite joint leakage failure. The analytical and experimental methods
developed are applied to threaded integral composite joints made of filament-wound,
glass-fiber reinforced epoxy laminate tube bodies molded with particulate-filled
composite threads, subjected to various combinations of internal pressure, axial loading
and make-up interference. Experimental results and numerical predictions are given in
Section 10. Leakage failure maps with different failure modes are constructed and
compared with the experimental data obtained from the integral composite joint tests.
The important effects of multiaxial loading modes, make-up interference, geometric
imperfection, thread surface friction, thread tightening and others on the joint failure are
discussed. Also, based on the experimental and numerical results, the probabilistic
nature of the joint leakage failure is determined, and predictions of the statistical leakage
occurrence can be properly made. Several important conclusions are drawn in Section
11



2. LITERATURE REVIEW

To study the leakage failure of a threaded composite joint under multiaxial
loading, a major issue is the stress transfer between threads of a pin! and box2. Of equal
importance are the sealing mechanisms and contact mechanics involved in the joint.
Since current development of threaded composite joints is mainly based on the
knowledge of conventional metallic tubular joints, a review of threaded metallic joints
and other related threaded connectors, such as bolt-nut connections, is included.

2.1 Analyses of Tubular Joint Systems

2.1.1 Stress Analyses and Failure of Composite Tubulars

The analysis of a filament-wound composite tubular (or cylindrical shell) under
multiaxial loading has been an important research subject for decades. The early study
by Whitney and Halpin [4] has demonstrated that a multilayer fiber-composite
cylindrical shell may exhibit highly anisotropic behavior under general loading. Failure
envelopes for cylindrical glass/polyester composite shells under multiaxial loading have
been constructed by many researches, for example, Eckold, et al. [5]. A ply-by-ply
progressive failure study has been conducted in {51, based on the well-known maximum-
stress failure criterion, coupled with instantaneous unloading of a damaged ply. In the
construction of failure envelopes, failure initiation and final structurai failure are
identified.

The effect of nonlinear material constitutive equations on leakage of a glass-
{iber/epoxy composite tube under combined internal pressure and axial loading has been
studied by Wang, et al. [6]. The study is focused on leakage failure, and onset of the
leakage is identified as formation of a through-thickness microcrack. The results indicate
that a linear composite laminate analysis with stress-based failure criteria may grossly
under-estimate the critical load of composite leakage failure and that composite material
nonlinearity significantly affects deformations and failure.

[t has been well known that winding angles of reinforcing fibers influence the
performance of composite twbulars. Mistry [3] has conducted a theoretical investigation
on the effect of fiber winding angles on the strength of GRP (graphite-fiber reinforced
plastic) tubes subjected to combined external pressure and axial compression. In the
study, a finite element analysis has been conducted to determine buckling loads and the
first-ply failure of composite cylinders with different winding angles. The results
demonstrate that, in a composite tube under a simple hydrostatic external pressure,

preferred fiber winding angles are close to £809, instead of 559 for a closed end case.

! A pin is 2 tubular section with male threads.
2 A box is a tubular section with female threads.
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2.1.2  Analyses of Threaded Bolt-Nut Joints

Before examining a threaded tubular composite joint, it is appropriate to review
the commonly used threaded metallic joints with a bolt-nut connection. Investigation of
load bearing capacity of threaded metallic fasteners has been conducted by many
researchers since Den Hartog {7] first examined the subject of bolts holding a stack of
plate rotors in a furbo-generator. Local deformations and stresses are of particular
interest because the majority of reported failures initiate at the root of the first loaded
thread. Den Hartog has found that, for the particular threaded joint studied, the stresses
along the thread follows an exponential distribution with a peak at the seat of the nut,
reaching nine timmes the "average stress” and taking 45% of the load with the first two
turns of the thread.

Goodier [8] has used a semi-analytical method to determine the load distribution
in a thread of a metallic bolt. The detailed stress in the thread is obtained from radial
expansion and axial deformation of a nut measured by an extensometer. The results
show that the load distribution along a thread in a bolt is governed by tension in the bolt,
compression in the nut, bending of the thread, and circumferential deformation of the
nut. The stretching in the bolt and the axial contraction of the nut are primarily
responsible for local siress concentrations. Sopwith [9] has conducted a detailed
analysis of a bolt-nut joint subjected to axial loading. Sopwith’s approach is based on
the fact that axial extension of a bolt and compression of a nut, which cause stress
concentrations at a loaded end of the joint, are relieved to some extent by other
deformations. These may include (1) bending deflection on threads, (2) axial recession
due to radial compression of the nut and the bolt thread, and (3) axial recession due fo
radial contraction of the bolt and expansion of the nut. Expressions describing the
recessions have been derived, and the results are compared favorably with experimental
data. Sopwith's theory has been modified by Patterson and Kenny [10] to evaluate
thread deflection of an incomplete thread form. Good correlations are obtained between
theoretical and experimental results by incorporating a thread runout.

Numerical methods, such as finite elements, have been extensively used to
analyze threaded metallic bolt-nut connections because of the convenience. Dragoni [11]
has studied effects of thread pitch and friction on stress concentrations in a metallic bolt-
nut connection. The exact contour of a thread is modeled and, consequently, an
extremely fine element mesh is needed to determine accurately local stresses. The
results show that, for a given nominal diameter with a total bolt load, the maximum
elastic stress in a bolt increases appreciably as the pitch decreases. The analysis also
reveals that stresses in the bolt increase linearly with the coefficient of friction up to
about 0.6, In an alternative model, Bretl and Cook [12] have replaced all the threads
with an equivalent load-transfer layer of orthotropic properties. Principal directions of
the orthotropy depend upon local thread geometry and the load transfer direction which
is not known a priori. With this approach, a thread joint may be modeled by relatively
coarse finite elements with a high computational efficiency. The results obtained
correlate weil with Goodier's semi-analytical study [8], Sopwith's theoretical analysis [9]
and Patterson and Kenny's experimental work [10],
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Instead of treating a threaded bolt-nut joint as an axisymmetric problem, Rhee
[13] has studied three-dimensional deformations of a threaded connection, using 3-D
solid modeling with a combination of 20-node 3-D elements and interface elements. The
results indicate that a 2-D model may underestirate the critical stress in a metallic thread
bolt-nut joint by approximately 20%, when compared with a 3-D model for a joint with

a helix thread angle of 5°.

Since dimensions of a thread are generally much smaller than those of a joint,
Andrieux and Leger [14] have proposed a multiple-scaling method for analyzing a
threaded joint. The method is based on the concept of decomposition of the original
problem into two problems of two different scales. The local problem, involving only
the detailed geometry of threads, is studied with a standard numerical (finite element)
model to address the nonlinear, thread contact mechanics, whereas the global one is
soived by a 1-D approach, which allows a comprehensive parametric study of joint
variables. :

2.1.3 Analyses of Threaded Metallic Tubular Joints

When used in connecting metallic tubulars, a threaded joint is usually subjected to
complex multiaxial loading, such as a combination of internal pressure, axial loading, and
bending. Threads in the tubular joint are different from those in a bolt-nut joint in both
geometry and load transfer. Threads in a tubular joint not only transfer loads between a
pin and a box in a more complicated manner but also provide sealing to prevent the joint
from leaking. Of particular interest are the make-up interference and its effects on
leakage failure of threaded connections, because of their extensive use and safety
concerns.

Weiner and Sewell [15] have examined sealing mechamsms of threaded metallic
tubular joints and concluded that a leakage failure criterion, involving only torque in
make-up, is not reliable. The make-up torque depends primarily on friction between a
mating pin and the box thread and, for clean connections, is largely a function of the type
of a thread compound employed. Different types of thread compound can cause make-
up torque variations up to 500%. Therefore, based upon observations of different
sealing mechanisms, an alternative make-up (i.e., torque-turn} criterion is introduced.
Although the torque-turn criterion has been successfully used for many years for
threaded metallic joints, the smooth finish introduced by current machining techniques
along with variations in thread tolerance, has created probiems in counting the make-up
turn!. Day, Moyer, and Hirshberg [16] have developed a method to establish a proper
torque-position criterion. For an API eight-round connection make-up, the method
accounts for variations in thread tolerance, coupling coating or plating and the thread
compound. A finite element simulation has also been conducted to establish key make-

U With the torque-turn criterion, the turn counter starts counting turns once a reference torque is reached
during the make-up. This reference torque varies from 50 to 300 fi-1b for various tbing sizes to 10%
of the minimum make-up torque vaiue for a normal casing. Furthermore, changes in thread surface
coefficients of friction, thread manufacturing methods, thread compounds, and variation in the coating
or plating coefficient of friction, may cause the turn counter to start recording turns at different
positions of the pin and the coupling engagement, and give erratic results,



up parameters.

In recent years, a quantum leap in problem-solving capabilities has been realized
due to the introduction of supercomputers and workstations; solving a large
computational problem has become feasible at a low cost. Hilbert and Kalil [17] have
evaluated a premium threaded metallic connection by a combined approach of finite
element modeling and full-scale testing. In the modeling, the connection has been
discretized by axisymmetric elements with a total of 10,000 degrees of freedom.
Nonlinearity caused by thread surface contact has also been investigated. In the full-
scale test, the gas sealing capacity, failure loads and modes have been investigated.
Nonlinear finite element models have been used by Assanelli and Dvorkin [18] to study
standard API eight-round metallic connections, buttress connections, and other
connections.

When an excessively large tensile load, significantly exceeding the design
allowable, is applied to a threaded tubular connection, the pin body may be pulled apart
from the coupling, called jump-out. Morita, et al. [19] have investigated this
phenomenon with a finite element method, which includes large deformations, surface
sliding, and material nonlinearity. To obtain a reference, the jump-out of a one-ring
thread has been numerically and experimentally studied, and jump-out tests also
conducted on an 18-5/8-inch joint. Based on the results, a criterion has been proposed
for the slide out of threads in the FEM simulation. Bahai, et al. [20] have introduced a
hybrid model to calculate the load transfer in a threaded metallic connection subjected to
combined axial and bending loads. In the model, a tubular joint is approximated by a set
of spring elements with stiffness and stress concentration of the threads determined by a
2-D finite element method. The resuits are comparable with those from a fully 3-D
finite element analysis. The approach may be suitable for parametric studies of local
thread stresses and global joint deformations.

While analyzing a threaded tubular joint with a finite element method is
technically straightforward feasible, the direct brutal force numerical approach is
generally costly, time-consuming, and not without difficulties. Accurate and efficient
methodologies are needed. Kwon, et al. {21] have developed a joint-service-life-analysis
model, based on the beam-on-elastic-foundation approximation with the aid of bolt/nut
equations and Lamé's equation. The model gives reasonable results when compared with
detailed numerical solutions and strain gage measurements.

It is well recognized that geometric details of a joint affect its local stress/strain
concentrations and failure. Based on field measurements of actual geometry of a
threaded metallic joint, Beghini, et al. [22] have conducted a detailed stress analysis on a
threaded connection. A nonlinear finite element analysis has been employed to evaluate
the influence of the geometric variation on local stresses in the joint. The results show
that the stress distribution along a thread may differ significantly from that predicted in
the joint with a nominal geometry. In conjunction with a Monte Carlo simulation, a
probability density function of a conventional stress parameter (1.e., the stress at a
thread fillet root) has been determined for cases of different external foading.



2.1.4 Aunalyses of Threaded Composite Tubular Joints

While many studies have been conducted on fiber composite tubulars, very
limited work, e.g., see [23,24], has focused on mechanical reliability of threaded
composite tubular connections. The study conducted by Dilintas [23] addresses
relationships among different loading modes (i.e., make-up, axial tension, and internal
pressure) and the joint response. Frictionless surface contact and linear material
properties are assumed in the study. The results show that the frictionless contact
assumption between thread surfaces gives good results for the cases under service
loading. Also applied axial tension reduces contact pressure on a thread surface and
consequently, reduces the sealing capacity of the joint. The influence of filament
winding angle on performance of a threaded composite joint has also been studied by
Dilintas [24]. A reduction in the longitudinal stiffness of the box with a predominantly
circumferential winding angle results in a slight decrease in stress concentrations in male
threads and an improvement in sealing performance of the joint.

It is noted here that, owing to the complications introduced by the threads and
the multiaxial loading applied, no analytical solution has been found in the literature on
deformation and thread contact in a threaded composite joint. Nor any information is
available on the failure analysis methodology for a threaded composite joint leakage.

2.1.5 Failure Theories for Composite Lamina and Composite Laminate

For a fiber composite laminate, failure prediction is generally difficult because of
the inherent material anisotropy, discontinuity through the thickness direction and the
complicated ply stress state. A recent survey of existing failure theories for fiber
composite laminae has been given by Nahas {25]. Among the theories, the well-known
Tsai-Wu's tensorial polynomial has been widely used. However, the polynomial failure
criterion [26], cannot identify the complex composite laminate failure modes. A simpie
mechanism-based failure theory is the maximum stress (or strain) criterion, which does
not account for interactions of stress components on failure. The failure theory
introduced by Hashin [27] is a mechanism-based failure criterion. The theory is based
on the stress invariants with individual fiber and matrix-dominated failure modes being
distinguished. The strain-based failure theory by Christensen [28] also accounts for
composite failure modes with proper assumptions.

Unlike a monolithic material, failure of individual plies in a composite laminate
does not necessarily results in the complete loss of load-bearing capability of the
composite laminate. A number of progressive failure theories have been used to
examined the ply-by-ply failure progression in a composite laminate [25]. A common
feature of the progressive failure theories is that ply unloading would take place after a
ply is failed. The instantaneous unloading model proposed by Chiu [29] assumes that a
composite ply loses its entire load-carrying capacity immediately after the ply fails.
The Hahn-Tsai method [30] suggests that a failed ply may still partially support the
ioad it carries, until the final laminate failure occurs. The model proposed by Petit and
Waddoups [31] takes an unloading path [ying between those of Chiu and Hahn-Tsai.
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2.2 Experimental Studies of Threaded Joints

2.2.1 Threaded Bolt-Nut Joints

It is well known that the detailed geometry of a joint may have a significant
influence on local stresses at the thread root. Several experimental studies have been
conducted to examine this effect. A photoelastic siress-freezing technique has been
performed by Hetenyi {32] on the stress distribution in nuts with different geometry.
The nut with a tapered lip is found to give the most uniform stress state. Patterson and
Kenny [33] have studied detailed stress distributions in threads of an ISO metric nut and
bolt by a frozen-stress photoelastic method, employing a fringe-multiplying polarscope
with a recording micro-densitometer. The experimental results have a good correlation
with the solution obtained by Sopwith [9].

2.2.2 Threaded Metal Tubular Joints

A full-scale test may provide a useful means to evaluate the behavior of a
threaded tubular joint. Ishikawa, et al. [34] have measured structural deformations in a
threaded tubular connector under severe stresses. Deformations in a threaded joint under
make-up, tension and bending have been gaged, and a finite element analysis has also
been carried out to calculate detailed stresses and joint sealing capacity. Good
correlations are obtained between the finite-element results and experimental data in
different loading conditions.

An experimental investigation has also been conducted by Traweek, et al. [35] on
internally coated tubular connections. Plastic deformations are found to occur during
joint make-up and additional plastic strains result from pressurization of the joint. The
results indicate that the API eight-round connection may not be the optimal choice for
the case when the joint is subjected to repetitive make-up and breakout!, such as in a
work string. Since the joint is permanently deformed during each make-up, it could be
continually made-up with greater penetration until worn out.

Broodbent and Fessler [36] have employed a photoelastic stress-freezing method
to determine the stress distribution in a threaded tubular joint. The study focuses on
stresses at a thread fillet in the joint. The maximum stress in a tubular connection occurs
in the fillet nearest to the loaded contacts. An axisymmetric finite element analysis has
also been conducted. Empirical equations have been developed to determine the
commonly used thread geometry. The position and magnitude of the critical stress are
predicted and compared well with photoelastic models in different loading modes.

2.2.3 Threaded Composite Tubular Joints

The only experimental study in the literature on mechanical behavior of a
threaded composite joint is conducted by Yamagata, et al. [37]. The study focuses on
joining methods of graphite/epoxy composite tubulars, commonly used to construct
truss assembles for space structures. [ssues on design, fabrication, and performance
evaluation of a graphite/epoxy cylinder with threads on its inner wall have been

" Breakout is a procedure of disconnecting the threaded tubular joint.
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addressed. Three types of composite tubulars containing different {iber arrangements for
integrated joints have been developed. The results show that composite tubular joints
with fibers along the longitudinal direction have the highest load-bearing capacity.
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3. SCOPE OF THE RESEARCH

It is important to recognize that at present rigorous experimental and analytical
methodologies for understanding and prediction of leakage failure in threaded fiber
composite tubular joints under combined internal pressure, axial loading and make-up
interference do not exist. Leakage failure modes and associated failure criteria, which
relate joint material damage and sealing reliability to the thread geometry, composite
lamination parameters, joint configuration and multiaxial loading, are not known. The
leakage failure behavior of a threaded composite joint is simply not well understood in
both short term and long-term loading conditions.

The scope of this research include:

1) Thorough understanding of the leakage failure behavior of threaded fiber-composite
tubular joints under external multiaxial loading;

2) Development of rigorous experimental and analytical modeling methods to
quantitatively define and determine the leakage failure envelope(s) for a threaded joint
subjected to various combinations of internal pressure, axial loading and make-up
interference;

3} Determination of the effects of joint geometric variables, material parameters, tread
contact conditions, and loading modes on the composite-joint leakage failure
resistance.

To accomplish these goals, the following specific technical tasks, involving
several different disciplinary areas, such as composite materials, damage and failure
theories of solids, contact mechanics, advanced material testing and experimental
methods, and nonlinear computational mechanics, are conducted.

1} Critical study on composite joint geometry, thread configurations, and material
microstructures and constitutive properties. Emphases are placed on detailed
characteristics of the threads and nonlinear composite constitutive equations, which
are critical for subsequent local {microscale) modeling and analyses.

2) Development of unique experimental facilities for conducting properly designed
leakage failure experiments to understand the joint leakage failure phenomena and
later validate the analytical models developed. The facilities contain unique
capabilities, including multiaxial (axial, pressure and torsional) loading with digital and
analog controllers, make-up interference application and measurement, real-time
muitiaxial deformation measurement, high-sensitivity leakage detection, and
computer-controlied on-line data acquisition and analysis.

3) Identifying the leakage failure modes in threaded composite joints by conducting
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carefully designed experiments and detailed microscopic observations. The failure
mode identification should include considerations of composite tube-body damage,
tube-body/thread interface debonding, thread material failure, and the loss of bearing
pressure in the thread surface contact region.

Establishing proper mathematical failure criteria (functions) for each individual failure
mode identified in the multiaxial leakage failure experiments. The failure criteria are
constructed, based on the most recent developments of failure theories for fiber- and
particulate-reinforced composites, and interface and contact mechanics of dissimilar
media.

Formulating governing differential equations and associated boundary, interface and
loading conditions for the threaded composite joint problem. The formulation should
include the unique features of the joint failure problem, including nonlinear contact
mechanics along the thread surface, composite material nonlinear constitutive
equations, damage and associated ply property degradation during loading, and failure
criteria for individual leakage failure modes.

Constructing proper mechanical models for modeling the threaded joint leakage failure
problem and evaluating the suitability and validity of the individual models based on
comparisons between experimental results and analytical solutions. Formulations of
individual models are made at both global and local levels so that information on
global joint deformations and local thread contact stresses can be properly extracted
for further use.

Development of advanced numerical simulation methods and associated
computational algorithms for analysis and prediction of leakage failure in threaded
composite tubular joints, The computer-aided simulation methods should have the
capability of addressing complex local and global joint geometry, material and
(contact) geometric nonlinearities, degradation and damage evolution, and various
combinations of axial loading, internal pressure and make-up interference.

Based on the multiaxial-loading experiments, analytical modeling and simulation
methods developed, defining and establishing leakage failure envelopes (maps) for
threaded composite tubular joints.

Investigating the effects of thread make-up interference, geometric
tolerance/imperfections, thread contact surface friction, and multiaxial loading modes
on the thread joint leakage failure envelopes. Also included in the study is the
fundamental statistical nature of the threaded joint leakage failure, due to the inherent
material and geometric variabilities.

10) Based on the experimental observations and test results and the analytical solutions

obtained from the modeling and prediction, evaluating the assumptions and the
recommended procedure in the AP proposed ranking methodology for threaded FRP
composite tubing joints.
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4. THREADED COMPOSITE JOINT GEOMETRY AND MATERIAL
CONSTITUTIVE PROPERTIES

To ensure the leakage failure mechanics analysis mathematically tractable, proper
approximations and assumptions need to be introduced for the joint geometry and
material constitutive properties, Validity of the assumptions and simplifications can
only be made through properly conducted experiments and observations, and subsequent
micromechanics analyses.

In this section, proper geometric and material models are established for the
subsequent study of a threaded composite tubular joint. The efforts include

1) establishing a detailed geometric model for threaded composite joints,

2) conducting microscopic observations and an X-ray diffraction (XRD) analysis to
identify constituent material phases in the joints, and

3) determining constitutive properties of composite plies in the tube body, and of
threads in the joint.

4.1 Geometric Features and Modeling of Threaded Composite Joints

Stress concentrations at thread roots of a joint are usually caused by the
complicated geometry of the threads. The multiaxial loading, the stress transfer between
the pin and the box, and material heterogeneity and discontinuity in the composite joint
introduce additional difficulties to the problem. Detailed geometric features of the
composite joint are critical in the present analytical and experimental investigations and
need t be examined with great care.

4.1.1 Joint Geometry and Geometric Modeling

Two kinds of threaded composite tubular joints, i.e., threaded and coupled
(T&C) joint and integral joint (1J), are commonly used. In a T&C joint shown in Fig. 4-
I(a}, two pin members are connected by a coupler, which is a short tubular segment with
a slightly larger inner diameter than that of pins but threaded internally from both ends.
In an integral joint, as shown 1n Fig. 4-1(b), internal threads are made directly at one end
of the tube (i.e., the box end), and external threads are made at the other end (i.e., the pin
end). The composite tubulars are connected by making-up interference through the
threads. A properly controlled amount of radial interference may be introduced in the
integral joint because only one make-up process is needed in each connection.

To investigate the mechanics of composite joint leakage failure without loss of



14

generality, an integral composite tubular joint! made of filament-wound glass/epoxy is
selected in this study. To obtain the detailed local geometry and material characteristics
of an integral composite joint, the joint was cut, measured, and observed under an optical
microscope. The overall geometry of a threaded integral joint specified by American
Institute of Petroleum is shown in Appendix A.

4.1.2 Thread Geometry and Geometric Model

Threads in a joint are used mechanically to hold a pin and a box section together
with a proper axial alignment. Threads are required to act as leakage resistant elements.
For illustrative purposes, four types of threads [38,39]: line-pipe threads, round threads,
buttress threads, and extreme-line threads, are shown in Appendix B. The line-pipe,
round, and buttress threads are required to fit together during make-up such that with
proper sealants, leakage resistance can be achieved through the threads? . The detailed
thread geometry? in a selected threaded integral composite joint {38] is shown in Fig. 4-
2. We note that a characteristic of the threads is that a taper in joint diameter {e.g.,
~6.25%) exists; thus the pitch diameter of the threads varies along the axis of the joint.
Because of the taper, an appreciable difference between diameters of the pin and the box
is introduced during make-up. Obviously, both flanks of the thread may be subjected to
complex contact anding, which is essential in sealing® the joint.

4.1.3 Geometric Imperfections

In reality, no joint is machined perfectly to nominal dimensions, and geemetnc
imperfections always exist. In a threaded composite tubular joint, geometric
imperfection in the form of thread taper may change the interference introduced into the
joint during make-up, and consequently its leakage-resistant capacity. For a joint with
different thread taper between pin-side threads and box-side threads, its leakage-resistant
capacity can be significantly different. Typical thread taper of an integral composite
tubular joint is shown in Appendix C.

4.2 Microstructure of Fiber Composite Joint Materials

{a) Microstructure of Thread Materials

Material constitutive equations and leakage failure modeling require clear
understanding of various material systems used in the threaded composite joint. From
detailed optical microscope observations, microstructures of the threads in the pin and
box sections are presented in Figs. 4-3(a) and 4-3(b). A significant amount of fillers was
found in the thread materials. Volume fractions of the fillers were approximately 25.5%

L' The internal and external dizameters of the tube body selected are 2.004 inches and 2.344 inches,
respectively, for convenience and for the availability of tests. :

2 Threads in an extreme-line casing are not designed to be leak tight. The leakage resistance of an

extreme-line connection is accomplished by a metal to-metai seal.

The dimensions of the thread in the figure are: 82609, p = 0.1250 inch, H =0.10825 inch, hg=hp

= {07125 inch, srg = ¢ = 0.01700 inch, and s¢g = 5¢n = 0.0200 inch,

4 There is a small clearance between crest and root of the thread. In order to provide reliable sealing,
Teflon particles are sometimes recommended together with a thread lubricant to fill the clearance
during making-up of the joint.

Lad
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and 15.3%, respectively, in the threads of the pin and box sections. Only about 2% of
the total volume was found to be voids in the pin-side threads, whereas a larger amount
of voids, approximately 10%, was observed in the box side threads. The difference in
the void volume fraction may be caused by difference in processing, and needs to be
included in the micromechanics analysis of constitutive equations of the joint materials.

To determine interface characteristics between the threads and the tube body,
both pin and box sections were sectioned, polished and observed under an optical
microscope. A clear interface (Figs. 4-4(a) and 4-4(b)) was found between the pin-side
threads and the composite pin tube body, Fig. 4-4(a), indicating that the pin-side threads
were adhesively bonded to the pin. The interface was not clearly observable between
the box-side threads and the composite box body in Fig. 4-4(b). Instead, glass fibers in
the inner ply of the box were observed to meander along the profile of the box-side
threads! .

{b) Filament-wound Composite Tube Bodies

The fiber volume fraction and ply configurations in the composite tubular joint
(the pin and the box) were determined by an ASTM standard burn-out test conducted in
an oven with a temperature at 5300C. The composite ply configurations were identified
as [£550]s in the pin and [+550]; in the box section. Fiber volume fractions in the pin
and in the box of the joint were also determined by the burn-out test. The volume
fraction of glass fibers was found to be approximately 55%.

4.3 Material Systems and Their Constitutive Equations

(a) Thread Materials

An Xeray diffraction (XRD) method was used to identify the filler matenials in
the threads. Typical diffraction patterns of the pin and box thread materials are shown
in Figs. 4-5(a) and 4-5(b}, respectively. The fillers in the pin and in the box threads were
identified as quartz (Si072) and graphite flakes, respectively.

The elastic moduli of the quartz and graphite flakes were 10.4 Msi and 1.5 Msi,
respectively [401. Assuming the fillers in the threads were 3-D randomly oriented, one
may obtain elastic properties? of the particulate filled epoxy thread composites based on
the following micromechanics equations [63]:

Ve
E:~5~Ef~l~{l + (1+v Vi Ep, {(4-1a)
VEVeve+ (1 -Vgv,, (4-15)

In some cases, threads are machined into the composite tube. But the case of machined threads is not
considered in this study.

2 E =048 Msi and v = 0.3, for box-side threads.
E=0.67 Msi and v = 0.3, for pin-side threads.
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where quantities with subscripts f and m are related to the fiber and matrix, respectively,
and V¢ is the fiber volume fraction.

(b) Fiber Composite Tubular Bodies

In the tubular composite joints, an anhydride-cured epoxy resin was used. The
reinforcements were E-glass fibers. Elastic properties of the unidirectional glass/epoxy
composite, obtained from experiments {41] at room temperature, were

E11 = 6.53 Msi, Egp = E33 = 1.74 Mst,
v12 = 0.28, Gip = 0.82 Msi,
Ve=0.57,V,=0012, "

where subscripts 1, 2, and 3, refer to fiber, transverse and through-the-thickness
directions in each glass/epoxy ply.

Glass transition temperatures, Tg, of the fiber composite and the thread materiais
were determined by a standard DSC (Ditferential Scanning Calorimetry) measurement.
The Tg’s of the glass/epoxy composite and the filled thread material were 1156C and

1039C, respectively, as shown in Figs. 4-6(a) and 4-6(b). Since the Tg value of the fiber
composite was significantly higher than the ambient temperature, viscoelastic effects! of
the composite were neglected in the present study of room-temperature failure behawor
of the composite joint.

4.4 Failure Strengths of Fiber Composite Joint Materials

(a) Fiber Composite Tubular Body

The establishment of proper failure criteria is critical in the leakage failure study
of the composite tubular joint. Rigorous physical-mechanism-based failure criteria,
based on the results of a previous study [6], are introduced in the present progressive
failure analysis of composite tube bodies?,

(b) Composite Thread Materials

To predict leakage failure of a threaded composite tubular joint under combined
internal pressure, axial and make-up loading, damage and failure of the threads must be
taken into account. Since epoxy is relatively brittle, the well-known maximum principal
stress failure criterion for brittle materials is used. Tensile and compressive strengths of
the filled epoxy in the threads are found to be 9.5 ksi and 36 ksi, respectively [40].

{¢) Thread-tube Body Interface

[ A long-term moisture exposure of the composite joint may reduce Tg values of the composite and the
thread material. Viscoelastic effects may become appreciable in this case and have to be considered.

2 The failure strains of the unidirectional glass/epoxy composite obtained from experiments {41] are
gbh) = 0.004, egzg =0.04, and 7y = 0.0504.

Here, superscripts T and C represent tension and compression, respectively,
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The microstructural study reveals that the pin-side threads were molded on the
tube body. The interface strength between the composite pin body and pin-side threads
is important in determining the ultimate load bearing capability of the joint. Rigorous
methodology to determine the interface strength between two composite systems
remains still controversial, and various test methods have been introduced, but none is
satisfactory. In this study, the interfacial strength between the thread and the tube body
was obtained by an analytical procedure with back calculations from the experimental
results of selected integral composite joints in an axial-loading dominated condition. The
results show that the average interfacial (shear) strength between the filled threads and
the composite tube body was approximately 1.6 ksi.



18

5. LEAKAGE FAILURE EXPERIMENTS

The experimental part of this research attempts to identify damage mechanisms
associated with leakage failure and establish proper failure models. It is also used to
validate the leakage failure analysis of a threaded composite tubular joint. The leakage
failure experiments on threaded composite joints are much more involved than those on
fiber-composite tube bodies, owing to the complex joint geometry, and loading and
material parameters involved. Each leakage failure experiment on a threaded composite
joint usually consists of following three steps which need to be considered carefully.

1) Make-up. Make-up (i.e., tightening) is a unique loading mode associated with
threaded joint contact mechanics. During the make-up, a radial interference is
introduced and its associated variables, such as make-up turn, torque, and associated
deformations need to be included.

2) Multiaxial loading and leakage detection. Determination of leakage in the experiment,
especially its onset in a threaded composite joint subjected to external loading, is
controversial. Leakage failure modes are critical in understanding the functional
failure and modeling the damage of the joint. The leakage failure envelope, i.2., the
critical state of combined internal pressure, axial and make-up loading, is most
important in understanding loading mode interactions in joint leakage failure.

3) Break-out. Break-out of a joint leads to determination of deformations involved and
the amount of interference introduced in a tested joint. The information is needed to
construct the leakage failure envelope.

The complicated threaded fiber-composite joint failure caused by applied multiaxial
loading requires special considerations in:

1) Designing a proper test specimen with a simple geometry and a gripping system
suitable for evaluation of failure modes and critical loads of the joint;

2) Developing a loading system for introducing various combinations of internal
pressure, make-up and axial loads in a joint leakage test;

3) Devising proper measurement and data acquisition systems that ali necessary
‘information in the leakage test can be recorded correctly and conveniently;

4) Construction of a reliable leakage detection system to determine quantitatively the
onset of the leakage failure;

5y Developing a control system which enables the micro-computer to govern ditferent
loading actuators, synchronize the measurements, and detect the leakage;



19

6) Conducting a critical bearing pressure study to establish the sealing capacity of a
threaded tubular composite joint under various loading modes, and

7y Establishment of a leakage failure envelope for the threaded composite joint under
different make-up interferences and other loading, and identify associated leakage
failure modes for subsequent modeling and verification.

5.1 Experimental System Development

5.1.1 Threaded Composite Joint Specimen

The leakage test was conducted on threaded fiber-composite joints with finite-
length pin and box sections subjected to combined make-up, internal pressure and axial
loading. The applied loading was transmitted from loading grips to the specimen through
surface contact. During the load transfer, local stress concentrations in the specimen
were inevitably developed. If not properly designed, the specimen may fail prematurely
and outside the gage section. The local stress concentrations were mostly related to the.
geometry of the grips, the bonded tab and the threads, and the material discontinuities
between various contacts and fixtures.

Several types of tab designs for different tubular gripping systems have been
reported in the literature [42,43]. Since in a threaded composite joint specimen, high
stress concentrations generally occur in the thread contact region, thus, this will ensure
the joint specimen fails first in the gage section rather than in the tube body. Therefore,
a proper tab design for a composite tubular specimen should be also suitable for the
composite joint specimen.

Extensive studies [41], experimentally and numerically, have been conducted on
designing the tabs for a tube-body experiment in our laboratory. Based on the analytical
and experimental results obtained in [41], specimen design for the leakage testing a
threaded composite joint is presented in Figs. 5-1(a) and 5-1(b). The specimen tab was
macde of a hoop-wound glass/epoxy with a taper angle of 7.59, as shown in Figs 5-1(a)
and 3-1(b)!.

3.1.2 Composite Tubular Joint Gripping System

In a leakage experiment, the threaded composite joint was subjected to multiaxial
loading. The loading must be transferred to the specimen through a specificaily designed
gripping system. In an axial loading case, an in-house designed gripping system was
used. The grip arrangement, shown in Fig. 5-2, consisted of a steel end plate with an
internal plug, an aluminum spacer, and an outer steel flange. The axial load was
transmitted from an actuator to the steel flange by bolts and was applied to the specimen
through the surface contact between the tab and the spacer. Grips on both the pin side

{ We note that using hoop-wound glass/epoxy as the tab material may not be the best in some cases,
especially in the cases of high axiai loading. However, the hoop-wound tab was easy to make and
suitable for joints subjected o an intermediate level of axial loading. Since the internal diameter of the
box near the box end varied along its axis, a relatively long specimen in the box side was employed.
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and the box side of the joint were identical except the internal diameter of the spacer on
the pin side, which was smaller than that on the box side.

An internal pressure was applied to the specimen by the water filled inside the
specimen. Two alternatives could be used to conduct the pressurization. One was by
sealing the gap between the steel plug on the end plate and the inner wall of the
specimen; the other was by using a mandrel. The first method had some disadvantages!
and was not used. The second approach, as illustrated in Fig. 5-3, could overcome these
difficulties. With a mandrel being introduced, the amount of the pressure medium in the
specimen could be kept to a minimum. Based on a self-equilibrated design of the
mandrel, no internal pressure related axial load was needed when pressurizing the joint.
Therefore, the axial-to-hoop loading ratio could be accurately controlled. Sealing
between the mandrel and the specimen was achieved by using suitable O-rings, if
dimensions of the mandrel, especially the OD and O-ring grooves, are designed and
machined with close tolerances. The one-piece mandrel worked well for the test of a
composite tubular body specimen. However, the experiment of threaded composite
joints required additional attention, because diameters of the pin and the box would be
changed after the make-up was applied, as illustrated in Fig. 5-4.

To achieve the best sealing? between the mandrel and the specimen without
damaging the O-rings and the specimen, a two-piece screw connected aluminum alloy
mandrel was used in the current gripping system, as shown in Figs. 5-5a and 5-5b.
Each side of the mandrel was pushed into the joint from the end of the specimen, as
shown in Fig. 5-5¢, and then connected?

5.1.3 Multiaxial Loading System

The development of a dependable multiaxial loading system was essential to the
establishment of leakage failure envelopes and identification of failure modes in the
composite joints. The multiaxial loading system developed for the joint leakage test is
shown in Fig. 5-6. Two actuators were used in the experiments, one for applying the
axial load up to 55 Kips and another for the internal pressure. The internal pressure was
applied to the joint specimen by a pressure intensifier which could generate a pressure
up to 10 ksi.

The pressure medium was salt water, which was supplied to the intensifier and

! The disadvantages include (1) A large axial compressive loading must be applied to the specimen to
offset the tensile loading causaed by the internal pressure. This compressive load might buckle the
specimen if the specimen was to experience a sudden drop in the internal pressure, and causing load
control of the test to become difficult, and (2) A relatively large amount of the pressure medium
{watery was needed, which might mess up the test system when the joint leaked or failed.

2 Owing to the radial interference introduced during make-up, dimensions of the box end increased and
those of the pin end decreased. The reduction in the internal diameter at the pin-end caused difficulties
in pushing the mandre! into the specimen and even damaged the O-rings and the specimen, especially
for the joint with a high level of make-up. Reducing the outside diameter of the mandrel may aveid
these difficulties, but it may also decrease the sealing pressure between the specimen and the mandrel.

3 The two-piece mandrel could also eliminate the inconveniences caused by the dimensional limitation
in the tension-torsion test systern when pushing the mandrel into the specimen.
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the specimen through an inlet valve with an opened bleeding valve. After the intensifier
and the specimen were filled with water, the bleeding valve and the inlet valve were
closed. A prescribed level of internal pressure could be realized upon moving the piston
in the intensifier by an analog controller. In an experiment without leakage, the piston in
the intensifier would be controlled to a constant position to keep a desired level of
pressure, as long as deformations in the specimen and in the test system were time
independent. However, when leak occurred, the piston would be forced to move up to
maintain the prescribed pressure.

5.1.4 Make-up lL.oading System

During make-up of a threaded composite joint, a radial interference was
introduced, resulting in a bearing pressure on the thread surface. A simple and accurate
joint make-up system was developed in this study, as illustrated schematically in Fig. 5-
7. The design made full use of the existing equipment and the grips available in
Multiaxial Materials and Structures Testing Laboratory. The grips were identical to
those used in the leakage test and a 60:1 speed reducer, driven manually by a crank
handle, was used as the torque application device. As shown in Fig 5-7, the box side of
the joint would move up substantially during the make-up as the joint was tightened up.
The movement could induce a significant amount of axial load to the threads of the joint
and even damage the threads, if the actuator failed to follow the axial movement of the
box section. To eliminate this induced axial load during the make-up, the axial actuator in
the test system was set to a zero-load control mode, while the torsional actuator
remained in a displacement-control mode. With the zero-load control, the axial actuator
would follow the movement of the box during the make-up and protected the threads
from being damaged.

5.1.5 Load Control Systems

During construction of the experimental facility in this study, control systems,
involving a digital controller and an analog controller, were developed to govern the axial
ioad and the internal pressure. With the digital controller, the applied axial load was
controlled by a computer through a general purpose interface bus (GPIB) board, using
the existing system configuration, whereas with the analog controller, the pressure
applied was controlled by a computer with minor system modifications. Among various
operational parameters, loading and unloading were the first concerns in the jomnt leakage
test. Proper control of the loading path ensured that the applied axial loading and
internal pressure could be introduced in-phase or along a prescribed path, while control
of unloading provided safety if the specimen was damaged, leaked or in an emergency.

Two channels of digital /O in a data acquisition board (MINI-16) were
programmed as outputs and used for the load (pressure) control on the analog controller,
as shown in Fig. 5-8. Two computer-driven solid state relays (SSR) were mounted
behind the start button on a waveform generator unit and the actuator-off button on a
hydraulic control unit of the analog controller. When the digital output of the data
acquisition board was set to high (>2.4 volts), the voltage on the SSR (<2.6 volts) was
not enough to close the relay and left the relay open. By setting the digital output to
low (<0.4 volts), the voltage on the SSR (>4.6 volts) was sufficient to close the relay.
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By closing or opening the relays, the computer was able to start the waveform generator
to apply a prescribed internal pressure to the specimen or turn off the actuator for
unloading. The SSRs aiso provided electrical isolation from the control devices. With
these hardware modifications and a properly developed software, which controlled both
data acquisition and GPIB boards, the multiaxial test system could simultaneously
control the axial load and the pressure, measure joint deformations, detect leakage, and
terminate the experiment when the onset of leakage was detected.

5.1.6 Multiaxial Deformation Measurement System

During joint make-up, a radial interference was introduced into the joint.
Associated with the interference were deformations in both pin and box sections of the
joint, and a make-up torque due to the friction generated between threads. Accurate
measurements of make-up parameters, such as the deformation, torque, and turn, were
essential [44] in quantitative evaluation of the make-up. A measurement system for the
joint make-up, as shown in Fig. 5-9, was developed for this purpose. Deformationsina
threaded joint during make-up were measured with strain gages mounted on the joint. A
ten-turn potentiometer, mounted on the bottom of the speed reducer, was calibrated for
the make-up turn measurement. The induced torque during the joint make-up was
measured directly from the load cell of the tension-torsion test system.

In a leakage test, the detailed response of a threaded joint under a combined axial
load, internal pressure, and make-up interference was determined, including deformations
caused by the axial and pressure loading. Also, the critical load level at which leakage
occurred, and the associated damage modes in the joint were identified and recorded in
the test system.

Unlike the experiment on a tube body {41], which had a uniform field in the gage
section, deformations in a threaded joint specimen were highly nonuniform with straing
varying along the axis of the joint. Strain gages were also used at different locations along
the joint axis to determine deformations. The internal pressure was measured by a
transducer in the pressure intensifier, and the piston movement, by a linear variable
displacement transducer (LVDT). Signals were sent to the analog-controller conditioning
board. Signals from the strain gages, the pressure transducer, and the LVDT were
processed through the data acquisition board and the microcomputer. The axial load
measured by the load cell in the test system was recorded by the computer through the
GPIB board. The complete measurement system developed for the leakage experiment
of threaded composite joint is shown in Fig. 5-10.

5.1.7 Leakage Detection Systems

Determination of the load level at which the onset of threaded joint leak requires
a sensitive and reliable leakage detection system. In this study, two leakage detection
systems were constructed. Both methods were sensitive to detect the joint leak and a
comparative evaluation was easily made to assess their validity.

{a) Conducting Metal Mesh Method.
By wrapping a fine conductive metal mesh on the outside surface of a specimen,
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water leaked to the surface of the specimen was detected through a digital input
measurement, as shown in Fig. 5-11. The method was based on the fact that a
glass/epoxy composite was not a conductor. A conductive path was formed between the
metal mesh and the mandrel when the salt-water filled specimen leaked, resulting in
reduction in resistance between the mesh and the mandrel. The reduction was amplified
by a PNP triode, leading to a forward active mode between its collector and an emitter.
The mode would lower the digital input of the data acquisition board, which was set to
be high initially, and thus would trigger an event detection system.

(b) Piston-Movement Method

The second method was developed on the basis that, at a constant pressure
loading rate, the piston of a pressure intensifier would move faster in a leaked joint test
than in the one without leakage in order to keep the same applied pressure. A schematic
of a pressure-versus-piston movement in a joint test without leakage is given by the
solid line in Fig. 5-12.  After an initial adjustment, such as filling the fluid into the gap
between the mandrel and the specimen, the slope approached to a constant value D1,
which depended on the stiffnesses of the specimen and the test system. If the specimen
started to leak at a certain pressure level, the slope D would have to increase in order to
maintain the same pressure, as shown by the dash line in Fig. 5-12. Given the loading
rate and the diameter of the piston, one could determine quantitatively the amount of
fluid leaked through the specimen at a given load by calculating the difference in the
slope, (D-Dy). If the leakage threshold was assumed as Dy, then the following
expression may be used as leakage detection,

Dy
(Area of piston) x (Loading rate)

Leakage occurs, when D 2D, + (5-1)

Based on the API recommendation [44], the threshold Dy for leakage detection
was set as approximately 1 ml/minute in this study. An experiment was terminated,
only when both leakage detection systems were triggered.

5.1.8 Data Acquisition System

Measurement devices for the aforementioned joint make-up and leakage test
employed two data acquisition systems, namely, a data acquisition board and a GPIB
board. Since no hardware synchronization existed between the two data acquisition
systems and patterns of scanned data were different as described in Appendix D, a single
reading mode was selected in the digital controller. Also, since the scanning frequency of
the data acquisition board was relatively low in low noise and high resolution modes,
certain sequences in the data acquisition must be determined first to obtain relatively
well synchronized measurements. Here two single readings from the digital controller
were placed one before and one after the data acquisition from the data acquisition board.
The average of the two readings was used as a reference {(or synchronized) for the data
from the data acguisition board. At a low loading rate, this reading sequence gave good
synchronization between the two data acquisition systems.

A schematic representation of the control and the data acquisition operations is
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given in Fig. 5-13. After all test parameters were introduced, the computer took control
from the digital controller and set the axial loading rate and magnitude. The prescribed
axial load and internal pressure were applied by the computer almost instantaneously to
ensure the correct loading ratio and path. During loading, the computer acquired the data
in the aforementioned manper. The digital input from the leakage detection systems was
also checked during loading. When a joint leak was detected, the computer would
automatically terminate the test or beep to alarm the operator, depending on the options
chosen.

In order to make the control program user friendly, the program was written in
Visual-Basic 3.0. The menu-driven program, Fig. 5-14, would prompt the user with a
corresponding sub-windows for the detailed input of loading parameters, strain gage
arrangements, test profile display, and leak detection choices. Test parameters would
also be saved in a file (or loaded into the system), based upon the selection of the file
menu. The test results were displayed on two x-y-y plots through the computer screen,
according to profile selection.

During a joint make-up, the torque was applied manually. In this case, the
computer was used only for data acquisition and analysis purpose.

5.2 Experimental Procedure

- {a) Composite Joint Makeup
’ Prior to a formal joint make-up, an initial tightening (IT)! was ascertained. At
the mid-point of an anticipated, engaged thread section, two circumferentially oriented

strain gages were mounted 180° apart on the outside surface of the composite box
section. Threads on both the pin and the box sides of the composite joint were brushed
with a manufacturer-recommended thread compound [45]. The pin section was then
screwed into the box in three turns below a finger tight position. The make-up of the
connection was continued, using the aforementioned device shown in Fig. 3-7, until a
prescribed number of turns was reached. During the make-up process, the make-up
turn, the torque, and the hoop strains were all recorded and monitored with a micro-
computer.

(by Multiaxial Loading on Threaded Composite Joint

The leakage failure experiment of a threaded composite integral joint was
conducted on the aforementioned multiaxial material testing system. Three
circumferentially oriented and six axially oriented strain gages were mounted on the outer
surface of a box section, as shown in Fig. 53-15. The three locations for mounting the
strain gages corresponded o two end points and one mid point of the engaged threads.
Unless otherwise noted, the experiments were conducted under proportional loading
with a loading rate about 19 psi/sec for one-turn make-up and 21 psi/sec for two-turn

The inital tightening is sometimes referred to as “finger tight posiion” (FTP). The FIP was
determined by using two fingers {o make-up the joint such that deformation in the joint at that
position was minimal.
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make-up. The pressure-to-axial-load ratio applied in the leakage experiments ranged
from a pure internal pressure (1:0) case {o a nearly uniaxial loading (~0:1) case.

(¢} Leakage Detection

Salt water was used as the pressuring medium in all experiments. An aluminum
mesh was wrapped on the outer surface of the threaded joint for accurate leak detection.
The piston movement in the pressure intensifier was also monitored to determine the
joint leakage. The test was terminated when results from both leakage detection methods
were positive.

In this study a total of 37 tests have been conducted. The specimens were from
two batches of samples sent by the manufacturer. The test matrix is shown in Table 3-
1, which also gives loading and make-up conditions in each test.



6. BOUNDARY VALUE PROBLEM FOR LEAKAGE FAILURE OF
THREADED COMPOSITE TUBULAR JOINTS

Consider a threaded composite joint subjected to combined internal pressure,
axial load, make-up interference and, in some cases, bending. An accurate leakage failure
analysis of the threaded composite joint under the complicated loading requires proper
formulation of a nonlinear mechanics problem, involving thread surface contact, nonlinear
material constitutive equations, and anisotropic coupling of extension, shearing, bending
and torsion. In addition, a proper theoretical model for the joint leakage behavior should
also include various failure modes, such as tube body damage, thread shear-off,
thread/tube body interface fatlure and loss of bearing pressure between the threads in
contact. In this section, formulation of a nonlinear boundary-value problem for a
threaded composite joint, and an accompanying solution procedure are presented for
studying the leakage failure of the joint. In the formulation of the boundary-value
problem, the following subjects are specially addressed:

1) Assumptions and approximations for modeling a threaded composite joint, based on
the experiments and observations, and information available in the literature;

2) Governing differential equations, and corresponding boundary and interface
conditions for the joint subjected to multiaxial loading,

3) Uniqueness of a solution for the problem, and
4) Procedures for solving the boundary-value problem.
6.1 Approximations and Assumptions

6.1.1 Geometric Consideration

Except the helical threads, an important feature of a threaded tubular composite
joint is its global structural axisymmetry. The nonaxisymmetric effect of the threads
depends on the thread helical angle, which is a function of the nominal diameter of the
joint and dimensions of the thread pitch, as shown in Fig. 6-1. The global geometric
axisymmetry of a threaded joint is less disturbed in the case of threads with a small
helical angle. In most commonly used threaded tubular joints {38,391, the helical angle is
less than 2 degrees, as discussed in Appendix E. Therefore, in this study, it is assumed
that the nonaxisymmetric effect of the threads with a small helical angle is negligible.
The threaded joints considered are modeled as being geometrically axisymmetric in a
cylindrical coordinate system.

6.1.2 Thread Contact
It is generally recognized that thread surfaces of 2 composite tubular joint are
smooth due to high precision molding during manufacturing. Note that a lubricant s
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commonly applied during make-up. Galling caused by an excessive make-up is not
considered. Therefore, a small frictional force between thread contact surfaces is
assumed.

6.1.3 Composite Joint Material System

Ply constitutive equations of the filament-wound composite tubular body are
assumed to be transversely isotropic and uniform along the circumferential direction.
The fiber composite considered in this study is a glass/epoxy composite, exhibiting
highly nonlinear shear behavior, whereas tensile stress-strain relations in longitudinal and
transverse directions remain approximately linear. The shear nonlinearity has been
shown [6] to affect significantly deformation and leakage failure characteristics of the
composite tubular. An analysis with linear material properties may grossly under-
estimate the composite leakage response. Experimental studies, as will be discussed
later, show that matrix cracking, a damage mechanism in the composite tubular, is a major
failure mode responsible the joint leakage. Therefore, in developing the current
theoretical model, the composite tube body is assumed to have cylindrically anisotropic
ply properties with substantial shear nonlinearity.

6.1.4 Interface

Macroscopically, two kinds of interface exist in a threaded composite tubular
joint, (1) interfaces between composite plies with different winding angles in the tube
body, and (2) the interface between the composite lamina in the tube body and molded
threads in the joint region. Perfect bonding between the composite plies and also
between the composite lamina and the threads is assumed in the joint section.

6.1.5 Loading

In the study, a threaded joint is assumed to be subjected to a combined internal
pressure, axial load, torsional make-up, and bending. In typical fluid transport and
downhole environments, the bending is smail and assumed to be negligible. Also, the
composite tubular joint is supported axisymmetrically.

6.2 Governing Differential Equations

Based upon the aforementioned assumptions and approximations, a threaded
composite tubular joint can be referred to a cylindrical coordinate system (Fig. 6-2) with
the z coordinate being coincident with the tube axis. In the cylindrical coordinates, the

engineering strain, g, in each composite ply are given by

__au mav 1 ow
&= fo= 5, T T 98
87 08 7" 5z o’ (6-1)
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where u(r, 8, z), v(r, 8, 2), and w(r, 6, z) are displacement components in each ply along
r, 8, and z directions, respectively.

The ply composite material constitutive equations with in-plane shear
nonlinearity are expressed as

g =S40 0; (1j=1,234.5,6). (6-2)

In Eq. (6-2), Sjj is nonlinear compliance of the individual composite plies, and is function
of ply fiber orientations © and the state of stress & . The G; and g; are stresses and
strains in contracted notation with [0}, O, 3, G4, G5, 617011, 022, 033, 23, T3, O12]
and [g}, &, £3. €4, €5, €g]=[€11, €22, €33, €23, €13, €12)-

The constitutive equations for the threads follow Hooke's law g; = S-; ;s where

Si; is a linear compliance of the thread material. Equilibrium equations in the cylindrical
coordinates are

96, (06,-Cg) | 0Tg 0T,

=t T e Y
Ity | 00y 0Ty 21y
dr * .1: 88 + oz * r WO’ (6—3)
E}tm 1 dt@z 801 1:rz
+ =0,

TR T

Since all geometric parameters, external loads, and ply material properties are
assumed to be independent of 8, the ply displacements, strains and stresses in the

composite should also be independent of 8. Thus, the strain-displacement relations can
be simplified as

%)\
U £ W,QE+§E
Vv v V
S ST T

where Ulr, 2), V(1, z) and W(r, 2) are ply displacements, and are functions of r and z
only. Similarly, equilibrium equations in the cylindrical coordinates have the forms as

do, (5.-0g) o1, o
79?+ [ * gz
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o oz T x =0, (6-3)
dt, 90, T,
+ =

A

Note that in Egs. (6-4) and (6-5), the strains (&{) and stresses (o) are functions of r and z
only. Therefore, the boundary-value problem of a threaded composite tubular joint can
be formulated in terms of r and z in the cylindrical coordinate system. Note also that
while the composite joint problem is formulated in the same manner as a traditional
axisymmetric problem, the deformations and stresses in the threaded composite joint are
inherently three-dimensional, since all components of field variables are present in the
above equations.

As mentioned earlier, the constitutive equations for a fiber composite lamina (Eq.
(6-2)) generally involve severe shear nonlinearity. The nonlinear shear behavior of a fiber
composite requires a proper mathematical description. Based on the strain energy
density consideration and symmetry of deformation in a rectilinear anisotropic solid,
Hahn and Tsai have proposed {46,471 a power-law type constitutive equation to
describe the nonlinear behavior of fiber composites. (A discussion of the strain energy
density function for the nonlinear material is provided in Appendix F). Following the
Tsai-Hahn representation [46,47], the power-law relationship given in Eq. (6-6) is used
in the study:

= =h
€ = OgeTs + 56662 ; (6-6)

where S, corresponds to the linear in-plane shear compliance and S is a high-order
term, which can be determined by proper experiments.

Although the power-law expressions may be extended [48] to include the out of
plane transverse nonlinear relationships between €;; and &, and the coupling between
the in-plane and out-of-plane deformations (in LZ and LT planes), only the decoupled
in-plane shear nonlinearity is considered in this study.

Thus, constitutive equations of a transversely isotropic unidirectional fiber
composite! can be expressed in the principal material coordinates as

I For the E-glass/epoxy composite used in the current study, the nonlinear shear compliance S 26 has
been found [41] to be 1.654 x 10714 (psiy3.
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From Eq. (6-7), the constitutive equations, Eq. (6-2), in the structural (r-8-z) coordinates
can be easily obtained by a standard coordinate transformation.

6.3 Boundary and Interface Conditions

6.3.1 Applied Loading Conditions

For illustration, consider a threaded tubular joint made of a two-ply fiber
composite (Fig. 6-3) subjected to a combined axial load p, and internal pressure p;,

respectively. Along the boundary [y, traction boundary conditions are
cll=c@P=p, 1=1@=0, and 1{) =1 =0, (6-8)
where the superscripts | and 2 denote composite plies in the pin section of the joint.

An internal pressure p; is applied on inner surfaces ['z, '3, ['4 and T's of the joint.

The corresponding traction boundary conditions along the boundaries Iz to I's are as
follows:

G, =~p, T,=0,and T4=0, on ™, (6-9)
Gy =Py T = 0,and 14,=0. on 13, {6-10)
0oy =-p, nPog=0, onTyand Ts, (6-11)

(=123; =23, r=4,3),
where n'” denote directional cosines of the normal to the boundary Ty .

Boundary conditions along all other surfaces of the joint, I'p, except those along
the thread contact, are traction-free and can be expressed as

Gij Hj:O, (6“22}
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where n; denote directional cosines of the normal to the boundary T

Also, the following constraint conditions are applied along the boundary I's to
prevent any rigid body motion of the joint:

V=0, W=0. (6-13)

Note that other constraint conditions may also be used, provided that they have the
same statically equivalent effect on the thread region. Equation (6-13) is taken in this
study because of its simplicity.

6.3.2 Thread Surface Contact Conditions

It is important to point out here that threads of a tubular joint not only transfer
loads between the pin and the box but also serve the sealing function. The sealing
integrity of a threaded joint is accomplished by the development of contact pressure on
the thread surface. The contact pressure is caused by a radial interference!, due to thread
taper, between the external surface of the pin and the internal surface of the box after
assemblage. A key element in the determination of thread-surface contact is a proper
description of the contact condition. Unlike the commonly used displacement (or
traction) boundary conditions in a boundary-value problem, the exact solution along the
contact boundary 1s unknown in the present threaded joint problem, and it changes with
the applied boundary loading. However, the surface contact conditions can still be
determined through an iterative method, by employing a properly introduced solution
procedure.

Generally, three situations may occur on a contact surface when two bodies are
brought in contact, opening (on BRopeﬁ), sliding contact {on dRgjide), and sticking contact
(on dRgtick). In each case, two types? of boundary conditions need to be satisfied, i.e.,
basic contact and constraint contact conditions.

(a) Opening Case

In an opening case, two bodies do not contact along 6Ropen and traction-free
boundary conditions need to be met,

cl=6P=0, t{=1=0, and T} =13 =0, on dRgpen.  (6-14a)

! The radial interference, 3, may be approximated from the taper of the threads as

6 {Turas for assemblage) x (Tapering
2 x (Number of Threads/inch)

2 Basic contact conditions are commonly given in the form of an equality, whereas constraint conditions
are expressed by an inequality. In a mechanics analysis, the constraint contact conditions are used to
describe the situations of a contact boundary and the basic contact conditions are for defining the local
loading {or continuity), which are enforced along the corresponding boundaries,
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Also, the required constraint conditions are
UP-U9>38,, ondRopen (6-14b)

The subscripts n, t, and 8 in Eqs. (6-142) to (6-14b) denote local normal, tangential, and
circumferential directions along the contact boundary, respectively, as shown in Fig. 6-4.
The superscripts i and j represent the bodies in contact, and 8y, is the normal component
of the radial interference (or initial interference) on the contact surface.

(b) Sticking Contact

In: the case of a sticking surface contact, the bodies are in contact along a segment
of the surface, dRgick. However, driving force in this case may not be sufficient to cause
relative sliding to happen. Consequently, basic conditions for the sticking contact are

UP-UP =8, UP-UP=8g UYP-UP =84, alongdRsick, (6-152)
ol ~oi =0, @~ =0, -1 =0, along dRgick, (6-15b)

where 3y0 and dgg in Eg. (6-152) are relative movements along the t and 6 directions
when sticking occurs. Constraint conditions for this case are

uzie@-ﬂrit <f{cn, {6-15¢)
s =0oll <0, (6-15d)

where fis the coefficient of frictionl, and /1% + t2, is called an “equivalent frictional
stress”. o '

{¢) Sliding Contact

When the equivalent frictional stress reaches a critical value, f io_ |, along dRgjide

sliding contact oceurs. The basic conditions for the sliding contact are

Ug) “iug:)f: 5:13 (6-168.)
. (0 ) _..f [ Gn{ 8% ) 0 '""‘f Gn! 58
oy~ of) =0, Téémrx{t?“‘w—?—:—;&m TI?@T-’U;{@:“;PZ ‘ = (6-16b)

where 38; and 8g are relative siiding displacements along the t and 6 directions,
respectively. Constraint conditions for the sliding contact are

ol = gQ) <0, on dRglide. {6-16¢)

! In this study, the /'is considered to be isotropic because the particle-filled thread composites in the pin

and box regions are statistically homogeneous and isotropic.
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In general, a combination of dRgpen, IRstick, and dR;jide constitutes the entire
thread contact surface.

6.3.3 Interface Conditions

Basic equations given in Section 6.4.1 are for each composite ply and for the
thread materials. Thus, solutions obtained for individual composite plies and for the
threads have to satisfy continuity conditions along the interface. Since plies of the
threaded composite joint are assumed to be perfectly bonded, the following displacement
and traction continuity conditions along the interface need to be met:

Ut =@, V(l)zv(?"}, Wwib = w®@

, on Tint1, (6-17a)
o) = off, =D, =13
U@ =@ v@OZyv® W@ wd :
. ’ . on lintz, (6-17b)
o) = o, =, =1
U = ® v@ o yvO wd - w®
_ ’ ’ on Tings. (6-17¢)
ofp = o), =, 1=13
U =y® vOZye W - wd
on it (6-17d)

- — {6 5y — (6
o =0, wp=1P, 13 =13

where superscripts represent the corresponding plies in a threaded composite tubular
joint (Fig. 6-3). The subscripts n, t, and 8 denote normal, tangential, and circumferentiat
directions of a ply interface.

6.4 Boundary-Value Problem for Threaded Composite Joint
In the context of nonlinear, anisotropic elasticity and contact mechanics, the

boundary-value problem for a threaded composite joint under multiaxial ioading may be
written as follows:

V-0 =0, inQch, Qcp, Qth, and Qup,. (6-18a)
=5 (Vu+(Vwh, inQch, Qep, Qb and Qup, (6-18b)
£=8(8) 0, inQchand Qcp, (6-18¢)

g=S8"6, inQ,and Qp, (6-18d)

N:g=t onlptols, (6-13e)

u=ii only, (6-18%)

N+ol-N:o'=0, w-u'=0, onTinerface, (6-18g)
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(wh-ul-8)20, 6,50,
(uj—ui-8)0,=0,

|o,|<—fo,, then §,=0,
|o|=~f o, thenA20s.t § = -—M‘St,)

> on aR—o;aen W dRstick \J ORslide, (6-18h)

where Qcb, Qep, Lth, and Otp in Egs. (6-18a) to (6-18d) represent domains of the box,
the pin, the box-side threads, and the pin-side threads, respectively.

The constitutive equations of a fiber-composite ply involving in-plane
nonlinearity are given in Eq. (6-18¢). Hooke's law for the threaded material is expressed
by Eq. (6-18d). The interface I'interface is between dissimilar materials. The
expressions given in Egs. (6-18h) are contact conditions along thread surfaces,

The external loading in the boundary value problem, as described in Section 6.5.1,
is a combination of internal pressure, axial load, and make-up interference. The internal
pressure and the axial load are applied to the joint as traction boundary conditions given
in Eq. (6-18¢). The make-up interference is introduced to the joint as a displacement

mismatch 8y along the contact surface dRgpen \J IRstick W IRglige in Eq. (6-18h).

6.4.1 Uniqueness of Solutions

1t is recognized that the boundary-value problem presented in the aforementioned
Egs. (6-18a) to (6-18h) involves two kinds of nonlinearity. The first is material
nonlinearity of the fiber composite in the pin and box bodies. The second is traction
nonlinearity along a thread contact surface. It is important at this point that the
uniqueness of the solutien for the nonlinear problem can be established first.

Consider an anisotropic, nonlinear elastic material R having shear nonlinearity in
the 1-2 plane. Constitutive equations of the material are given as

=5, (8115 +8,8) Sl 0%, (6-19)

qmnmn 2

where Sy, corresponds to linear material compliance and is positive-definite, and 88, is

the high-order compliance.

Assume that the material is subjected to a prescribed traction t2 on dRy, a
displacement u@ on dRy, and a body-force £ in R. Then, the solutions should meet the
equations given in Eq. {6-19) and the governing field equations,

oy + =0 inR, (6-20)
n; Gy =t on dRy, (6-21)
g =ul on Ry (6-22)
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If (¢, u(l)) and (6(?), u(?)) are two different solutions and ¢ = ¢l — ¢ is
assumed for any ¢, then one has

;=0 inR, (6-23)
n; Gy u; =0 on dR!, and (6-24)
a;j = gqm o, + 5 (5115;2 +8,8,) s (CS'%) + o3 + Gm yo,.  (6-25)
From Eq. (6-24), one has
0= f n; o} u ds. (6-26)

Using the divergence theorem, one obtains

fnGuciS
w )

f(csﬁ ,} Ldv
;J;(Gij’juid-ci’;u{ij)d\"
::fcr?"-s;‘-dv

:f (675 ~+~S55 (6%) +<5%}<5%3 (2))012 dV =0. (6-27)

i ;]mn mn

(6?2) +<512 ) and

Ngo——\

i
L@«
Since {63 Gzzi

oBo

1y 1.2 27 1) 2y
o'+ ooy« o 2o + off - ool

2 2 1
20§?+G%‘ 2(212)4»6(?)}

_ 1 a7, 52 )
=5 o+ o), (6-28)

one has ¢ 122 +olyoly + 0‘@ 2 0. Since S, is positive-definite and égé 2 0, it follows
that o vanishes throughout R. Consequently, £;; must vanish as well, whereas u; may
have, at most, the form of a rigid-body displacement.

Therefore, one concludes that solutions for stress and strain are unique in this

! From Egs. (6-21) and (6-22), one has an;j ={} on oR; and u; =0 on dRy. Consequently, one has Eqg.
(6-24), provided that dR = dR; w dRy,.
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problem. The uniqueness of the displacement solution depends on having sufficient
external constraints.

If there is a small difference in boundary conditions between Case 1 and Case 2,
then Eq. (6-24) becomes

njol=t,  ondRy, (6-292)
uf =ud on oRy;. (6-29b)

By assumfuig that

n; G55 | =4/ nj O30 O <M, on dRy, (6-30a)
laf | =y/ufuf <M, on dRy, (6-30b)

where M| and M; are positive constants, one has

| 1058 jonmn +8% (014" + oo + 0¥ 073 ) 4V

< MJ fud*!ds +M2f 2| ds. (6-31)
Ry R,
Consequently, one obtains
lim  o;=0, (6-32)
u?' «}»t“ :«a()
?ii;m s; =0, (6-33)
u“%a:-%ﬁ'rao

Therefore, the solutions for stress and strain continuously depend upon the boundary
conditions.

We remark here that the existence of a unique solution for a contact problem has
been discussed by Oden, et al. [49] with a series of mathematical theorems. For the
thread contact in a tubular joint discussed in this study, the existence and uniqueness of
selutions, according to Oden, et al, are guaranteed.

6.4.2 Convergence of Solutions
[n Eq. (6-6), shear deformation is expressed as a function of stress and

experimental data can be used to determine the S¢¢ and 526 well. Expressing the stresses
as functions of strains and using the Taylor series expansion, one can rewrite Eq. (6-6) in
term of g4 as.
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€ & , Skt
os=f () =5 X, Aﬂtg%——%a“, (6-34)
- 6

where A, are constants, with Ag=1, Aj=-1, Az=3, Az=-12, A4=35 and As=189, etc.
The convergence condition of Eq. (6-34) can be expressed as

A, lSkel
lim | =2t 20 (6-35)
0o An E Séé
Limited numerical values of Ay show that
Apa i
>1. 6-36
S (639
Therefore, one obtains
St
Eg < g‘z—; . (6-37)

For the fiber composite system used in this study, the value of 4/ 826/326 is 0.0103,

which is below the shear failure strain of the glass/epoxy composite. Therefore, the
radius of convergence of Eq. (6-34) may cause "collapse” in expressing the shear stress
as a polynomial of shear strain.

6.4.3 Solution Procedure

Solving the boundary-value problem with the aforementioned material and
traction nonlinearities in a closed analytical form is possible only in an extremely simple
case, e.g.. a long cylinder subjected to pure torsion. In most other cases, solutions for
this class of boundary-value problems require an iterative numerical procedure in which
such technique as the Newton-Raphson method needs to be employed.

Most theoretical studies [61,62] on finding deformation and contact force of
elastic bodies under certain boundary {and loading) conditions are restricted to the
special case in which no friction exists on the contact surface. In order to solve a contact
mechanics problem with a finite frictional force on the contact surface, Oden, et al. [49]
have proposed an iterative procedure. The procedure is based on a sequential-
approximation approach. Two special cases have been investigated with success, (i)
contact with a prescribed tangential stress, and (if) contact with a prescribed normal
stress along the boundary.

The numerical solution procedure for the present nonlinear contact problem is
introduced with the following iterative steps:
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1) Solve the special case (i} with an assumed tangential stress Gt on the contact surface.
As a result, the normal stress oy, on the contact surface is also obtained.

2) Using the normal stress oy, one may solve the special case (ii). As a result, a new
tangential stress o; is computed

3} Check the convergence of the solution. If the prescribed tolerance limit of
convergence is not attained, repeat Steps (1) and (2).

Details of the numerical solution procedure are given in Section 8.
6.5 Remarks

6.5.1 Boundary-Value Problem

- The boundary-value problem for a threaded composite joint subjected to
multiaxial loading has been formulated in a cylindrical coordinate system involving only r
and z. However, anisotropy of fiber composite properties leads to severe coupling
between ply axial and shear deformations and, globally, coupling among extension,
bending as well as twisting. Therefore the resulting deformations and stresses are
inherently three dimensional.

Formulation of the threaded composite joint problem involves material
nonlinearity and contact nonlinearity caused by thread surface closure and sliding. The
uniqueness of the solution is shown to be guaranteed for the composite material system
used in current study. Solving this class of boundary-value problems requires
development of a new iterative solution procedure involving two kinds of iteration to
account for both material nonlinearity and thread surface contact nonlinearity.

6.5.2 Material Nonlinearity of Fiber Composites

The nonlinear constitutive equations for fiber composites used in this study are
first developed by Hahn and Tsai [30], based on the complementary energy density
function expressed in a polynomial form proposed by Green, et al. {55]. Similar
constitutive equations have also been obtained by Hashin, et al. [56], using the classical
deformation plasticity approach. This kind of nonlinear shear response has been found
for almost all composite systems [6, 431. Accordingly, a general expression may be
deduced from the complementary energy density function, yielding the commonly used
power-law type constitutive relationship of the following form for fiber composites:

€6 = S¢eOg + See03. (6-38)

Note that Eq. (6-34) may be viewed as a truncated polynomial of the third order.
The second-order terms are excluded because: (1) the complementary energy density
function of a fiber composite is invariant {55}, and (2) the material is indifferent to the
change of direction of shear loading in the material symmetry plane of the composite.
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It is also noted that the constitutive equation, Eq. (6-34), involves only physical
(material) nonlinearity. Consideration of only the material nonlinearity (and neglecting
the kinematic nonlinearity) has led to the development of a broad range of theory of
physically nonlinear elasticity. This class of nonlinear mechanics theory has been used
to address many important engineering problems in plasticity [57], fracture mechanics
[58], and composites {5, 48].

Recent developments in finite elasticity [59,60] have shown that nonlinear
elasticity, involving only physical nonlinearity, may have some shortcomings. For
example, constitutive relations based on physically nonlinear elasticity do not consider
the difference between Piola-Kirchkoff and Cauchy stresses [60], and the infinitesimal
strain may not be invariant under superimposed finite rigid-body motions [59].

Following the common approach of finite elasticity, the second Piola-Kirchkoff
stress of an elastic material may be expressed as an expansmn of a function f{E), where E
is a finite strain tensor, defined by

E=e+ «%- HTH. % (HT + H), (6-39)

" in which H is a displacement gradient, and e is the infinitesimal strain tensor. Assuming
that f{E) is twice differentiable at 0, one may express the second Piola-Kirchkoff stress

T as
T® = L(E) + Q(E, E) + o(E)? ), (6-40)

where L and Q are fourth and sixth order tensors determined by f(E). Note that in
physically nonlinear elasticity, deformations are assumed to be infinitesimal and no
distinction is made among the Cauchy stress T, the first Piola-Kirchhoff stress T™ and
the second Piola-Kirchhoff stress T'. Therefore, the stress T in physically

nonlinear elasticity is
T® = Le) + Q(e, &) + oflel®). (6-41)

The difference between the second Piola-Kirchkoff stress T* obtained from
finite elasticity and the stress T'P™ from physically nonlinear elasticity is

T® TP 2 %L{HTH) +o(THI. C(6-42)

Decomposing the displacement gradient H into symmetric and skew-symmetric parts,
one has

H=e+w, (6-43)
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where w is a rotational tensor expressed as
w= % (H-HT) = — wT. (6-44)

Then, Eq. (6-42) may be expressed as

L

& _pln)
T T 3

L (e +ew — we — w2) + o(/HI%). (6-45)

From Eq. (6-43), it is clear that the constitutive equations obtained from the physically
nonlinear elasticity approach, Eq. (6-41), may not be comprehensive. Certain terms are
not included when finite strains are considered, as shown in the results from finite
elasticity, Eq. (6-40).
»

To illustrate this concern, consider the problem of an elastic solid under simple
shear in which displacement components in a Cartesian coordinate system (X, Y, Z) in
the reference configuration are

a; =28Y, (6-46a)
1}.2 = %.13 - 0, (6“46b)

where the 26 is the amount of the shear applied. From Eq. (6-45), the difference in
- stresses obtained from a finite elasticity approach and from the physically nonlinear
elasticity approach may be determined as

T~ TP™ = 2Ly0 67 + 0(87). (6-47)

From the above discussion, we remark that for a composite structure under large
deformation, development of complete constitutive equations to account for both
material and kinematic nonlinearities are needed (to include finite deformations and/or
rotations in the formulation.)

At present, the property database of fiber composites under finite deformations
does not exist. Including rotations w in the nonlinear constitutive relations also introduce
practical difficulties in experiments, i. e., complexities in measuring the rotation w. While
the physical nonlinear constitutive equation is recognized to have its short-comings for
the composites under large deformations, the proposed physically nonlinear elasticity
model is emploved in the leakage failure study, since deformations in the composite joint
remain small.
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7. APPROXIMATE MODELS FOR OF THREADED COMPOSITE
TUBULAR JOINTS

Except the few very simple cases discussed previously, solving the boundary-
value problem formulated in Section 6 in a closed form could be difficult because of the
complicated thread geometry and the material and contact nonlinearities involved. Since
dimensions of the threads in a joint are much smaller than those of the tubular joint
body, the boundary-value problem may be modeled on different scales (i.e., global and
local) [14]. As will be shown later, modeling of a tubular composite joint can be greatly
simplified on a global scale. Furthermore, coupling the global approach with a local
model may provide an efficient and effective way to determine the complicated details of
the nonlinear boundary-value problem.

Two distinet models are introduced in this section for analyzing a threaded
composite joint, i.e., direct full-field model and coupled global-local model. Formuiation
of a direct full-field model is relatively straightforward, as compared to a coupled global-
local model. However, details of local deformation and contact stress can only be
obtained from the coupled global-local model, leading to a better understanding of the
joint leakage failure problem. The objectives of the present efforts are to

1) develop a direct, full-field model and an accompanying analysis;
2) introduce a coupled global-local model for a threaded composite tubular joint;

3) formulate an "equivalent thread layer” to approximate the threads on the global scale
for the coupled model;

4) establish governing equaziéns for the coupled global-local model and develop an
accompanying analysis.

7.1  Direct Full-Fielid Model

A straightforward approach to the threaded composite joint problem is to solve
the boundary-value problem given in Egs. (5-19a)-(5-19h) numerically. Various
numerical methods could be used for this purpose. Direct discretization, i.e., full-field
modeling, of the entire joint by a solid finite element method provides a direct solution
for the problem. The full-field modeling and analysis should include the following
features:

1} Anisotropic, nonlinear material properties of composite plies in both the pin and the
box section. :
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2) Detailed geometric modeling of both pin-side and box-side threads.
3) Contact between thread surfaces and the effect of thread surface friction.

With the direct full-field model, deformations and stresses in the threads, along
the thread contact surface, and in the tubular joint body may be obtained in one
comprehensive analysis. However, costs of the analysis could be prohibitive and
solution accuracy may not be easily established.

7.2  Coupled Global-local Model

In coupled global-local modeling, unique characteristics of a threaded composite
tubular joint are recognized; i.e., the threads are dimensionally small and geometrically
and mechanically complicated. The approach attempts to combine a detailed local
formulation of the individual thread response with a global structural joint analysis.
Thus, the boundary-value problem may be decomposed into two inter-related parts on

" two different (i.e., global and local) scales. The global-scale model concentrates on

overall deformation of the threaded joint and provides proper input boundary conditions
for a selected local domain with a substructure of a thread contact region. The local-scale
analysis, however, focuses on detailed deformation and local stress concentrations in the
threads and along the thread contact surface.

7.2.1 Assumptions and Approximations
In addition to the assumptions made in Section 6, the following approximations
are introduced in the global-local modeling of the threaded joint.

1) In the global-scale model, the thread region in a tubular joint may be represented by
an “equivalent thread layer”, which will be discussed in the next section.

2} The “effective stiffness” of the equivalent thread layer is anisotropic and can be
related to thread geometry and thread surface friction.

3) Effective stresses in threads may be evaluated in a selected domain with a
substructure and boundary conditions determined from the global model.

A schematic of the coupled global-local model is given in Fig. 7-1. The detailed
thread geometry needs not to be seen in the global-scale modeling, whereas on a local
scale, detailed thread geometry is fully considered.

7.2.2 Formulation of Equivalent Thread Layer

In the global model, the overall deformation of a threaded tubular joint is of
primary concern. Thus, all engaged threads in the joint may be represented by an
"equivalent thread layer” with an “effective stiffness”. The effective stiffness of this
equivalent thread layer may be related to constitutive properties of the threads and
individual thread geometry. Following the work of Bretl and Cook [12], the
effective stiffness within the equivalent thread layer is formulated such that the layer
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would not take the stress tangent to the “load-bearing plane”. Therefore, the stiffness
of the equivalent thread layer may be approximated by

4 0 0 0 o o 0 i
g;l 0 CyCyy O O O Zg
o N e =
T o 00 0 0 0 }\vy/’ )
133 0 0 0 0 Cs 0 || ¥i3
k'ﬁz) 0 00 o 0 o Y1z

- where Cjj is elastic stiffness component of the equivalent thread layer. Here subscripts
1, 2, and 3 represent directions on the “load-bearing plane”; the 2 direction is normal to
the plane, and 1 and 3 directions tangent to the plane with the 3 direction being
coincident with the 8 direction as shown in Fig. 7-2.

The load-bearing plane in an equivalent thread layer is defined and determined
from thread geometry and thread contact conditions. If frictional force is neglected, the
load-bearing plane is the physical surface of a thread. In the presence of frictional force,
the load-bearing plane is defined to be perpendicular to the resultant of normal and
frictional forces on a contact surface. :

For a pair of threads illustrated in Fig. 7-2, the direction 7y of the load-bearing
plane for each contact case is defined as

Yaspc= By + o
£, <0 (7-2a)

Yapre= B2 -,

>0 Yagpc=Yapee=B; - .
Eap>0 (7-2b)

T2<0:  Yagpc=Yapre =B+

where £,5 is an average strain through the thickness direction of the equivalent thread
layer; Ty, is the shear stress at B; and YABDC and y e are directions of the load bearing

planes in ABDC and ABFE, respectively. The angle of friction « is defined as
f=tan o, (7-3)
where £ is a frictional coefficient.

We note that the £, in Egs. (7-2a) and (7-2b) indicates the contact situation
between threads. The conditions represented by Eq. (7-2a) are for the case that both
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load and stab flanks of a thread are in contact, which is important in joint sealing.
Equation (7-2b), however, represents the case of a single thread surface contact.
Equations (7-2a) and (7-2b) are unique for the threaded tubular joint problem, which
generally has a taper along the joint axis, and both thread flanks in contact are physically
feasible.

7.2.3 Governing Equations for Global-Scale Model
In the global-scale model of a threaded composite joint with an effective thread
layer, the governing equations for the problem may be stated as follows:

V-=0, inQch, Qcp, O, (7-4a)

e=1 (Vu+(VwD, inQcp, Qcp, and Oy, (7-4b)

" £=8(8) o, inQgpand Qcp, (7-4¢)
c=Ceg Inlk (7-4d)

N-o=t onlTgtols, (7-4e)

a=0 onls, (7-41)
N.gi-N-ci=0, ul-ui=0, along Iinterface (7-4g)

where Qcb, Qcp, and Q1 in Egs. (7-4a)-~(7-4d) represent domains of the box, the pin,
and the thread layer, respectively. Constitutive equations for a fiber composite lamina,
involving the in-plane nonlinearity, are given in Eq. (7-4¢). Elastic stiffness of an
equivalent thread layer in the joint is given in Eq. (7-4d) with detailed formulation
expressed in Eq. (7-1). The Tinterface represents an interface between dissimilar
materials. The loading boundary conditions, as described in Section 5, are combined
internal pressure, axial load, and make-up interference.

7.2.4 Governing Equations for Local-seale Modei

The local model requires a detailed description of each thread geometry and
involves complex nonlinear contact mechanics formulation of thread engagement. The
local modeling is conducted for selected domains, as shown in Fig. 7-3, much smaller
than those in the full-field analysis. The boundary conditions in the local model are
interpreted from the resulting displacement solution for a global model. The boundary-
value problem for the local model is given as follows:

V-a=0, inQ%ch, Qcp, Qtb, and Qup, : (7-5a)
e=4 (Vu+VwD, inQch, Q'cp, b, and Qup, (7-55)
e=S(&) o, inQ’chand Qcp, (7-5¢)

e=S'0, inQib,and Qp, (7-5d)

u=i onl™ (7-5¢)

N:gl~N-oi=0, ui~u=0, along nterface, (7-56)
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(aé"uiﬁﬁsn)cn:(}’ 2 o
on dRgpen W IRstick \J ORslige,  {7-32)
lo|<~fo,, then §,=0,
H
!

o =0, theni20s.t §=-ko,

where Q*ch and Q*Cp in Egs. (7-5a) to (7-3d) represent the selected local domains with
detailed substructures. The {th and Qtp are local domains of pin-side and box-side
threads, respectively Constitutive equations for a composite ply involving the
aforementioned material nonlinearity are given in Eq. (7-5¢). Hooke's laws for threaded
materials are expressed in Eq. (7-5d). The interface I'interface is between two different
materials. The expressions given by Eq. (7-5g) are contact conditions along a thread
surface. Loading conditions for the local model are prescribed displacements along the

boundary [, which are obtained from the global model.

7.2.5 Remarks on Coupled Global-local Model

The coupled global-local model for a threaded composite tubular joint contains
two boundary-value problems formulated on different scales. The local-scale modeling is
generally well-defined and its details are almost identical to the one described in Section
6. The solution for the local model may be obtained by the same procedure described in
the last section.

The equivalent thread layer conditions, Eqgs. (7-2a} and (7-2b), developed in this
study extend the work of Bretl, et al. [12], to account for the unique feature of both
thread surfaces in contact in a threaded tubular joint . These expressions are more
comprehensive than Bretl’s model. By replacing the engaging threads with an equivalent
thread layer, the global-scale model does not involve the thread-contact details.
Therefore, its numerical details are much simpler than those of the direct full-field
modeling. The global-scale model is effective, especially when overall structural
deformations of a threaded tubular joint are of interest. The two-scale model is
computationally efficient and operationally siraple to address the complex composite
threaded joint problem.
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8. LEAKAGE FAILURE CRITERIA FOR THREADED
COMPOSITE TUBULAR JOINTS

To predict accurately the leakage failure in a threaded composite tubular joint,
different fatlure modes must be identified first and associated leakage failure criteria need
to be properly established. In this section, the commonly observed leakage failure modes
and associated failure criteria are addressed for a threaded composite joint under
combined internal pressure, axial load and make-up interference.

8.1 ILeakage Failure of Fiber-composite Tube Body

Leakage of a fiber-composite tube body is commonly associated with formation
of through-thickness, interconnected ply transverse cracks! {5, 6]. Formation and
growth of the interconnected cracks are mainly caused by low matrix-dominated,
transverse and shear strengths of a fiber composite. To predict the transverse cracksina
tubular composite, detailed transverse normal and shear deformations at the ply level
need to be accurately evaluated. In this study, the physical-mechanism-based composite
ply failure criteria are used to determine the ply cracking in a composite laminate tube
body. For the glass/epoxy composite used in the study, the following failure criteria are
employed:

Transverse cracking (tensile):  g,, 2 Eg’;, (8.1a)
Transverse cracking (compressive):  £g,, 2 eg,?f, (8.1b)
Ply shear failure: |75 2V,2p (8.1c)

where eg?f, eg% and Y\2¢ @€ transverse tensile, compressive and shear failure strains of the

hoop-wound glass/epoxy composite, respectively.
8.2 Leakage Failure of Composite Threads and Thread-tube Interface

Thread failure may also cause leakage in the threaded composite joint. A
common form of the thread failure is fracture of the thread material when local stress
concentrations reach a critical value (i.e., strength). The other possible form of thread
failure is due to reduction of thread height, usually caused by repeated make-up and
break-out, which are not considered in the present study.

Leakage has also been observed as a result of debonding of the thread-tube body

! This is true only for the case of a fiber composite laminate tube containing a britle liner or without a
tiner. For a fiber composite laminate tube with a ductile liner, burst failure commonly cccurs due 1o
fiber-dominated ply fracture.
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interface. Unlike a threaded metal tubular joint, threads in g fiber composite tubular joint
are usuaily molded on the composite tube body. Bond failure at the interface between
the molded threads and the tube body may occur due to high interfacial stresses and low
interfacial strength. The experimental study, which will be discussed later, shows that
interface failure in a threaded composite tubular joint can be a major failure mode in joint
leakage.

Since the thread materials and the molded interface both consist of highly

crosslinked thermoset polymers with particulate reinforcements, the following brittle
strength criteria are used to assess their failure:

Thread failure: ci2o; for 6;>0, (8-2a)

O] > of for oy <0, \ (8-2b)

Interface failure:  |1§)] 2 1{),, (8-2¢)

where ©; and Oy are principal stresses in a thread; cs§ and o} are the tensile and

compressive strengths of the thread material, and ft{f%f is the interfacial shear strength.

8.3 Sealing Failure Along Thread Contact Surface

A threaded composite joint may lose its sealing integrity even without any matrix
cracking, when the fluid leaks through the thread contact surface. Understanding of this
leakage mechanism requires detailed information of the thread surface pressure
distribution during thread contact in the joint.

8.3.1 Sealing Along Thread Contact Surface

In the threaded composite joint considered, thread-to-thread sealing may be
achieved, provided certain conditions! can be met. A key step to achieve the sealing
integrity is to ensure an appropriate level of bearing pressure along the thread contact
surface by a proper make-up. Theoretically, the higher the bearing pressure, the better
the joint is sealed. However, a high bearing pressure is usually accompanied by large
mechanical deformations in the threads and, consequently, may cause local thread
damage. An optimal thread bearing pressure may be achieved by introducing a proper
make-up interference into a joint under a combined internal pressure and axial load
without damaging the joint. Therefore, establishment of a quantitative relationship
between thread bearing pressure and the applied external loading is essential in designing

! These conditions may inciude:
1) Proper thread cleaning eliminates dirt or other foreign materials which may interfere with mating of
thread surfaces.
23 Solid-bearing thread compounds, applied to the threads, fill the small (< 0.002 inch) clearance
between crests and roots of the threads.
3} A proper assembly interference i3 introduced to provide enough bearing pressure between thread

surfaces.



43

a leakage-free threaded joint.

8.3.2 Relationship Between Leakage Pressure and Thread-surface Bearing

Pressure ;

Establishing 2 proper relationship in an analytical form between the applied
internal pressure and the thread-surface bearing pressure to achieve pressure sealing is
difficult, because of complexities associated with surface sealing mechanisms, especially
when the surface is not perfectly smooth. The basic sealing principle [15] developed
earlier for a metallic joint requires that the bearing pressure Pg must exceed the internal
pressure Pi. This is a straightforward, minimum requirement in static balance to achieve
a reliable sealingland is expressed as

Py > P (8-3)

To quantify the sealing capability of a threaded joint, a leakage tightening factor,
X may be introduced, where X is the ratio of contact (bearing) pressure to internal
pressure in a joint at onset of leakage. Based on the minimum bearing-pressure
requirement for sealing, Eq. (8-3), the leakage tightening factor X must be greater than
one. Owing to many uncertainties, such as surface roughness, involved in manufacturing
and joint surface preparation, sealing capabilities may be different for two joints
subjected to the same make-up and external loading.

Thus, it is appropriate to define a joint tightening factor X, which basically is a
safety factor, relating the contact pressure to the internal pressure in order to achieve a
leak-free joint. The joint tightening (safety) factor accounts for the joint sealing
variability and provides a proper criterion for a leakage-free joint design. The joint
tightening (safety) factor X should be greater than the leakage tightening factor X with a
certain degree of confidence. Obviously, accurate determination of the joint tightening
(safety) factor requires a systematic investigation?. .

The level of the tightening (safety) factor reflects an allowable leakage
probability, as shown in Fig. 8-1. The lower the leakage probability is aliowed, the
higher the tightening safety factor is required. When a bearing pressure is less than the

1 Systematic experiments have been conducted by Buchter [30] to study the sealing behavior of a bolted
steei flange joint. Several important cbservations relevant to the current study are:
1} The reiationship between leakage internal pressure and contact pressure is linear, when a contact
surface is very smooth.
2) The roughness of a coatact surface can influence the foint sealing. (A well-polished surface
provides better sealing than a rough surface.)
3} The viscosity of the oil applied on a sealing surface has a significant influence on sealing. {An ol
with a higher viscosity provides better sealing, especially on a rough surface.)
4} ‘The viscosity of the pressure medium used also influences the joint sealing. (A higher contact
pressure is required to seal a pressure medium with a lower viscosity.)

2 guchter [50] has suggested the following criteria for selfecting the joint tightening (safety) factor X for
determining comntact pressure in a leak-free steef/ boited flange joint:
1y X=1.5 for static pressure up to 14 ksi and a joint diameter not exceeding 2 inches.
2y X=2.0 for pressures up to 28 ksi and a joint diameter farger than 2 inches,
33 X>2.0 for pressure greater than 28 ksi.
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product of internal pressure and tightening safety factor, the leakage probability
increases. The leakage probability is equal to one, theoretically, when a bearing pressure
is equal to the internal pressure. Based on the leakage probability consideration, three
regions may be defined in Fig. 8-1 for different levels of bearing pressure Pp as

Leak region: 0<Pgp<Pj,
Leak-prone region: Py <Pg <XPj,
Leak-free region: XP;<Pgy.

In the leak region, the leakage probability is high, say 99%, which means that, in most

- cases, a bearing pressure is not enough to provide sealing. In the leak-free region, the

leakage probability is required to be very low, e.g., 0.0005%, as suggested by the API
[44]. The leak-prone region is a transitional region, in which the bearing pressure may or
may not be enough to hold the pressure medium inside the joint.

8.4 Leakage Failure Criteria for Threaded Composite Tubular Joints

Based on the aforementioned discussion, the following leakage failure criteria are
introduced in the leakage analysis of a threaded composite tubular joint subjected to
complex external loading:

1) Joint leakage, if Pg < Pj.

2) Joint leakage, if a through-thickness crack is developed in a composite tube body,
re., BEq. (8-1).

3} Joint leakage, if thread fracture or debonding along the thread-tube interface cccurs,
i.e., Eqgs. (8-2a) to (8-2¢).

4) Joint leakage free, if XPj < Pp.

Based on the aforementioned criteria, a schematic leakage-failure envelope (Fig. 8-
2) may be constructed for a threaded composite joint under a combined axial loading,
internal pressure and makeup. Different regions under the leakage envelope correspond
to different governing leakage failure modes. Leak, leak-prone, and leak-free regions are
determined. based on the ratio of bearing pressure to internal pressure for the cases
caused by loss of bearing pressure. Allowable loads for a reliable threaded composite
tubular joint should fall in the leak-free region.

8.5 Remarks

The mechanism-based failure criteria introduced in this study distinguish
different modes of leakage failure in a threaded composite joint. In the case of leakage
caused by loss of bearing pressure, uncertainties involved in sealing between thread
contact surfaces are taken into account by introducing a tightening (safety) factor, and
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the leakage probability can be determined accordingly. The leakage failure envelope
introduced here contains regions governed by the stiffness of a composite joint and a
region governed by the strength of the fiber-composite material. In the strength-
dominated failure region, the leakage may be determined by proper use of damage and
failure mechanics, whereas in the stiffness-dominated regions, the present contact
mechanics and failure theories can only provide a range where leakage may occur because
of the uncertainties involved.

Note also that the leakage failure criteria developed in the study are valid only for
a threaded fiber-composite joint with a brittle matrix and brittle threads, in which
transverse (matrix) cracking governs the leakage failure. For a threaded composite joint
with a ductile matrix, other mechanisms of damage may occur and, consequently,
different leakage failure criteria may be required.



9. NUMERICAL METHODS FOR LEAKAGE FAILURE
ANALYSES OF THREADED COMPOSITE JOINTS

As indicated in Section 6, deformations and stresses in a threaded composite
tubular joint are inherently three-dimensional with all six components of stresses (and
strains) in existence simultaneously. For the threaded composite tubular joint under
complex combined loading, the aforementioned thread and joint geometry, lamination
variables, and nonlinear material constitutive properties make the boundary-value
problem extremely complicated. The progressive damage in the fiber composite in a
joint and the unknown surface contact in the threads introduce such mathematical -
complications that generally prevent one from obtaining a closed-form solution. Thus,
proper advanced numerical methods must be used.

Among various commonly used numerical methods, the well-known {inite
element method is considered here because of its flexibility in handling complicated
geometry for solid modeling, loading and boundary conditions, and the unique nonlinear
material constitutive equations. Obviously, conventional axisymmetric finite element
formulation for an isotropic material is not adequate for the present problem. A quasi-
three dimensional formulation, based on generalized plane deformation theory of
anisotropic solids, needs to be developed for the present threaded composite tubular
joint leakage problem.

We note here again that the numerical method for analyzing the leakage failure of
a threaded composite joint must be able to include the important issues of material
nonlinearity, thread surface contact, different modes of failure, and progressive damage
of tube bodies, threads and the thread/tube body interface. All of these complications
warrant the present development of accurate and efficient numerical methods in this
study.

9.1 Nonlinear Finite Element Method for Analysis of Threaded Composite Joint

9.1.1 Formaulation of Generalized Plane Elements

As discussed in Section 6, all field variables in the basic equations for a threaded
composite joint are functions of r and z only. Following the standard digplacement-
based element formulation, one may express element displacements, U(r,z), V(r,z) and
W(r,z), as

U= ¥ Noo Uy,
Vo= _i N{rzy vy, (9-1)

1

W= }fi Ni{rz) W, ,
H
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where Nj are shape functions; n is the number of nodes in an element, and Uj, Vi, and Wj
are displacement components at the i-th node.

In this study, eight-node isoparametric ring elements are formulated. The Nj are
standard quadratic interpolation functions [52]. Equation (9-1) may be expressed in a
matrix form as

{u} =[Nl {q°}, (9-2)

where {u} are element displacements; [N}, shape functions; and {q°}, element nodal
displacements.

Applying the strain-displacement relationship Eq. (5-4), one may express the
element strains {€} in term of {q°}, i.e,,

{e} = [B]{q"), (9-3a)
where [B]=[d][N], (9-3b)
-C% 0 0
L 0o o
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The compliance of a unidirectional composite is given by
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Note that in Eq. (9-4), the nonlinear shear compliance (Sg4 + Sgécr%) is a function of Gg.

Using the minimum potential energy theorem, one may establish the following
global equilibrium equations for the problem:
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[Kl{q} = {Q} (-5

where [K] is the global stiffness matrix; {q}, global nodal displacements; and {Q},
equivalent nodal forces. The stiffness matrix and the equivalent load are

=2 f 1'[CE)][B] rdrdz, (9-6a)

=X | N"p®) ra. (9-6b)

In Eqgs. (9-62)-(9-6b), {p*} is an element loading vector, and [C(€)] is a nonlinear
material stiffness matrix in the physical coordinates of the joint.

9.1.2 Lagrangian Multiplier for Thread Surface Contact

Accurate determination of bearing pressure on a thread surface is critical in the
leakage analysis of a threaded joint. Proper formulation of a thread contact problem
requires the constraint conditions in Egs. (6-15a)-(6-17b) be imposed along the thread
surface when different contact situations occur.

Along a surface with no thread contact, applying the traction-free boundary
conditions is trivial. However, on a contact surface, the constraints imposed by Egs. (6-
16a) and (6-17a) may not be straightforward in the element formulation. A numerical
procedure, which is generally very involved, requires a continuous change in degrees of
freedom of active nodes during the incremental/iteration steps. This is especially true
when the contact surface configuration and associated tractions change continuously
during loading and unloading. In this study, an efficient procedure, based on the well-
known Lagrangian-muitiplier technique is introduced. For illustration, consider the
sticking contact of a thread surface with the constraint condition Eq. (6-17a). The term,
l(UQJ ~Ug} - 63)2, is added to the potential energy functional of the system, where A is
the Lagrangian multiplier. Minimizing the functional, one may obtain the following
constraint conditions, containing Ug‘) and Ug) , in addition to the equilibrium equations
Eg. (9-5):

LA UR L L) 8 |
["?% 7&} ud [ M8 ©-7

where U and UY are nodal displacements, and 8p, the make-up interference.
Examining the left side of Eq. {9-7), one finds that it has a form similar to the equilibrium
of a bar element. Therefore, the Lagrangian multiplier method used for the thread contact
problem is equivalent to imposing a zero-length “bar” element with a stiffness A
connecting the i-th and j-th nodes along the normal on the contact surface. An obvious
advantage of using the Lagrangian multiplier is that no change in degrees of freedom of
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active nodes in the contact region is required during numerical iteration. Thus,
computationally, modifications of the global stiffness matrix can be minimal in the
contact analysis.

9.1.3 Incremental-iterative Procedure for Material Nonlinearity

The global equilibrium equations Eq. (9-3) are nonlinear since the element
stiffness matrix Eq. (9-6¢) involves composite stresses. Solving the equations requires a
numerical incremental iterative procedure, as shown schematically in Fig. 9-1. During
computation, nodal displacements g%’ in the m-th iteration are calculated at the k-th step

loading Q® as follows:

W koM

(9-8)

where Ifm is a nonlinear stiffness matrix at the load level Q(k).

Convergence of the solution requires that |(u® —a& )/ y®|<vy, where yisa
prescribed tolerance limit and is taken as 3% in this study.

9.1.4 Iterative Procedure for Thread Surface Contact

An iterative procedure is also necessary to address the thread contact problem
because of the load-dependent contact surface conditions. In the finite element
formulation, surface traction and deformation of contact along a thread surface is related
to nodal variables. The iterative procedure involves the following steps:

1} Assume an initial contact area along the thread surface.
2) Apply proper contact conditions, and solve approximate equilibrium equations.

3) Check constraint conditions along the contact surface. If the conditions are
inconsistent with the assumed contact configuration, then update the contact surface
conditions, and return to Step 2.

4) Check the solution convergence. If the updated solution meets the prescribed
convergence criterion, the load level is increased and return to Step 1. Otherwise,
return to Step 2.

9.1.5 Numerical Scheme for Progressive Damage in a2 Threaded Joint

Three kinds of damage modes leading to leakage failure in a threaded composite
joint are considered in the present study: thread fracture, thread-tube interface
debonding, and ply cracking in the composite tube body. The composite damage
degrades material properties, affects deformations and redistributes the stress in a joint.
The magnitudes and states of the stresses in individual plies and threads at a given load
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level are critical in assessing the damage evolution. To study the leakage failure modes
and the corresponding damage progression in the joint! , the local failure criteria
discussed in Section 8 are infroduced and proper numerical algorithms are developed
here.

1) Thread fracture

The materials used in the (pin-side) threads are identified as epoxy filled with
quartz particulates, and epoxy with graphite flakes (box-side). Elastic properties of the
thread composite materials are determined by micromechanics theories. Principal
stresses at Gaussian stations in each element in the threads are checked against the brittle
failure criteria given in Section 8. If a thread fracture is identified, the stiffness of the
thread element is degraded to zero at the Gaussian point and the incremental procedure
continues. ‘

2} Thread-tube body interface debonding

To develop the numerical algorithm for the thread-tube body debonding the
interface failure criterion given in Section 8 is used. Along the debonded interface,
tractions varnish and the stiffness matrix (in local coordinates) at the Gaussian point near
the interface of the tube-body element (Fig. 9-2) is modified as

0 0 0 0 0 0
0 &;nCyuCy 0 0
(& = 0 ?32 ?33 ?34 0 0 , (9-9)
0 CpCuCy 0 0
0 0 0
0 0 0

Lo Y
<o Q
oo

where Cij represent composite stiffness components in the interfacial coordinates 1-2-3.

3y Composite tube body damage

In the case of leakage caused by ply cracking in a fiber composite tube body, the
mechanism-based failure criteria, Egs. (8-1a) to (8-1c), are employed. Material
degradation associated with the ply damage requires instantaneous unioading and the
composite with piy cracking is assumed to partially lose its partial load-bearing
capacity. The stiffness matrix at a Gaussian point in the material coordinate system in a
degraded element is changed to

' Wear of the pin threads is a potential problem, but it is not inciuded in the study.
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The following incremental-iterative solution procedure is introduced to determine

the tube-body damage:

1))

3)

4)

At a given load, global equilibrium equations for the entire joint are calculated with
degraded material stiffness matrices in damaged elements.

The global nonlinear equilibrium equations are solved with an teration procedure
given in Sections 9.1.3. and 9.1.4 to include the material nonlinearity and thread
contact.

Local stresses and straing are then determined in each element and along the thread-
tube interface in the thread joint.

Stresses and strains are examined at each Gaussian point in all elements and along the
thread-tube interface, and checked against the failure criteria.

If new damage is initiated, the loading is kept unchanged. An updated damage zone
and failure modes are introduced, and the computation returns to Step. 1. Otherwise,
a load increment is introduced and the procedure will continue from Step 1.

9.1.6 Numerical Procedure for Leakage Analysis

To predict the leakage onset, detailed stresses and deformations in the entire joint

need to be obtained, and failure modes and damage evolution have to be determined at
each load level. The efficiency and accuracy of the solutions have a direct consequence
on the leakage failure prediction. The proposed iterative-incremental procedure can be
accomplished within a computational loop with its exit being controlled by the following
conditions:

b

2)

The difference in deformation solutions between two iteration steps is within a
prescribed tolerance limit (e.g., 3%).

Along all possible contact surfaces, contact surface configurations must be
compatible with the corresponding constraint conditions.

The difference in bearing pressure along a contact surface between two iteration
steps 1s small.
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The solution procedure is terminated when a prescribed load is reached or when the
leakage failure criteria are met. A flow chart of the incremental-iterative algorithm for
analyzing and predicting the joint leakage problem is given in Fig. 9-3.

We note here that the present solution procedure combines numerical iterations
for material nonlinearity and thread contact into one with multiple convergence
conditions. This procedure greatly reduces the number of iterations during computation
and expedites the incremental solution scheme.

9.1.7 Solution Accuracy and Convergence _

. To make efficient use of the computer memory, a one-dimensional storage
technique with a variable semi-bandwidth is used. Equilibrium equations are soived by

the well known Cholesky method. All real variables in the program are operated with

double precision.

To check accuracy of the formulation and numerical algorithm, comparisons of
the results with existing reference solutions are made. The first is on stresses in a linear
glass-fiber composite tubing under a given internal pressure. The following geometry of
the composite tubing and its material properties are used:

1.D. = 2.0 inches; 0.D. = 2.4 inches; Tube length = 5.0 inches.

Ply fiber orientations; [+550/-550 15 Internal pressure = 100 psi;

Composite ply properties: F;1=6.53 Msi; Eoo=E33=1.74 Msi.
12+0.28; G23=0.8 Msi.

In the analysis, the axial displacement W and the circumferential displacement V
at one tube end are fixed, and free at the other end. One element per ply along the tube
thickness direction is used. The stress solution at a distance 2.5 inches from the end of
the composite tube is given in Table 9.1, and compared with the known solution [52] for
an infinitely long composite tube. Excellent agreement between the reference solution
and the current results is observed.

To establish the validity of the finite element formulation with material
nonlinearity, a two-ply, long composite cylinder with shear nonlinearity under torsion is
solved first in closed form. The closed-form, anisotropic elasticity solution for the
problem is given in Appendix G. The geometry and ply material properties of the
composite tube in the numerical solution are assumed as foilows:

L.D.=2.0 inches; 0.D. = 2.4 inches; Ply thickness = 0.1 inch;
Length of Tube = 10 inches.

Outer ply properties: [£11=6.53 Msi; Ear=E33=1.74 Msi;
v12=0.28; (317=0.82 Msi.
§8c=1.654 x 10-14 (psi.) 3.

Inner ply properties: E27=6.53 Msi; Eri=E33=1.74 Msi;

V21=0.28; G172=0.82 Msi.
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$6¢3.308 x 10-14 (psi)3.

In the computational analysis, at one end of the tube, the axial displacement W and the
circumferential displacement V are fixed, and at the other end an end rotation is applied.
Two elements per ply along the thickness direction and 12 elements along the axial
direction of the cylinder are used. The shear stress T, Obtained in the cross section at 5
inches from the end of the tube is shown in Fig. 9-4. Comparison is made between the
numerical results and those determined from the elasticity solution given in Appendix G.
In Fig. 9-4, excellent agreement is observed between the numerical results and the
elasticity solution.

A convergence study on thread contact is conducted for a composite joint with
different finite-element discretizations. The discretization, shown in Fig. 9-5b, is
obtained by modifying and refining the mesh in Fig. 9-5a at both ends of the engaged
threads. The convergence study is focused on the stresses in the end threads because
loading on the threads are generally the highest and more complicated than that on the
rest. The limited computer capacity is the other reason for the convergence study,
(The node numbers of a nominal mesh and the locally enriched meshes are 6,598 and
8,027, respectively.) The external loading on the threaded joint is a two-turn make-up
interference. The average normal contact pressure! on thread surfaces 1 to 6 and the
maximum principal stresses at thread roots A to D shown in Figs. 9-5a and 9-5b are
calculated. Comparisons of the results are made in Tables 9-2 and 9-3.

It is clear that the results obtained by different finite element discretizations are
in excellent agreement. However, the maximum difference in the principal stress at a
thread root is about 20%. The computational expense for the locally enriched mesh is
almost two times as that for the case with a nominal mesh. Since stress concentrations
obtained at a thread root are close from the two discretizations, the nominal mesh
configuration is used in the subsequent calculations.

9.2 Numerical Method for Direct Full-Field Modeling

The generalized plane element formulation given in Sec. 9.1 is used to construct
cight-node isoparametric elements for direct full-field modeling threaded composite
tubular joints. The discretization shown in Fig. 9-6 contains 1,744 elements with 3,792
nodes. The axial displacement W and the circumferential displacement V at the left end
of the joint are fixed . The numerical procedure for the direct full-field modeling is
described in the previous section. '

9.3 Numerical Method for Coupled Global-Local Modeling

Eight-node isoparametric elements are also used in the coupled global-local
modeling of a threaded composite tubular joint. A mesh (1,016 eiements with 3,255

1 The tangent component of the contact pressure equals o the product of the normal pressure and the
frictional coefficient, which is (.08 in this case.
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nodes) for the global-scale model is shown in Fig. 9-7. An associated local-scale model is
shown in Fig. 9-8, which consists of 420 elements and 1,866 nodes. Nodal
displacements along B to Bs in Fig. 9-8 are interpreted from the results of the global-
scale analysis.

9.3.1 TIteration Procedure for Equivalent Thread Layer

In the global-scale model, the effective stiffness of the thread region is modeled
by an equivalent thread-layer, involving determination of the aforementioned equivalent
load-bearing plane, which is usually unknown in prior and is obtained through an
iterative procedure. Before an element stiffness in the equivalent thread-layer is
evaluated, an initial load-transfer direction and a thread surface contact are assumed.
After solving the equilibrium equations, the shear stress and the average strain in Eqs. (7-
2a) and (7-2b) are determined. If the results are consistent with the initial assumptions,
the solution obtained is correct. If any inconsistency is found, the assumed load-transfer
direction or the thread surface contact condition needs to be modified, and the equations
are solved again. This iterative procedure continues until the consistency condition is
reached in all thread-layer elements. Although the global-scale model involves the
iterative procedure to determine the direction of the load-bearing plane, it is much
conceptually simpler than that used in analyzing thread contact in the aforementioned
direct full-field modeling.

9.3.2 Numerical Scheme for Local Modeling

The aforementioned local model of thread contact requires local boundary
conditions obtained from the global model analysis be applied to the selected local
domains with sufficient geometric details. Thread modeling at different scales is shown
in Figs. 9-9a and 9-9b. Boundaries CD and EF of an equivalent thread layer correspond
to boundaries CD’ and E'F in a local model. - However, applying displacements along
CD and EF obtained directly from the global model to CD’ and EF in the local model
may not lead to best results, because an equivalent thread layer only gives average
deformations in the thread region. Deformations obtained at positions along TD and EF
corresponding to the actual thread roots can be significantly different from their true
solutions in the locai model. A better solution of the local behavior may be obtained by
conducting a local analysis on a selected domain including areas around the thread region,
for example, regions A'B'D'C' and EF'H'G, and ABDC and EFHG. (The applied
displacement boundary conditions on CABD’ and EGHT in the local model are
obtained from the global analysis.)

9.4 Comparison of Results from Different Models and Solution Efficiency

9.4.1 Comparison Among different Models _

With the two aforementioned approaches, threaded integral composite joints
under one-turn and two-turn make-ups can be properly modeled. The composite
material nonlinearity is included to ensure a full consideration of physical behavior of the
system. Hoop deformations are obtained along the external surface of a box section (AR
in Figs. 9-6 and 9-7) and along the internal surface of a pin section (CD in Figs. 9-6 and
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9-7) in the engaged thread region. The results are shown in Figs. 9-10 to 9-13. As
expected, the applied make-up radial interference results in tensile hoop strains along the
external surface of the box section and compressive hoop strains along the internal
surface of the pin section. The difference is found to be very small between the hoop
strains at the external surface of the box obtained by the global and the direct full-field
(linear material) models. Similarly, the computed hoop strains at the inner surface of the
pin section along z/p > 2.5 (p is thread pitch), using the two different (linear material)
models, are in close agreement. Discrepancies in the computed strains for z/p <2.5 may
result from the end effect of the tubular pin section.

Axial strains caused by the make-up load are shown in Figs. 9-14 to 9-17. On
the external surface of the box section, axial strains are much smaller than those on the
internal surface of the pin section. Better agreement is observed between the results
from the two linear analyses along the external surface of the box than those obtained
along the internal surface of the pin. However, in all cases studied, introduction of
material nonlinearity in the direct full field modet significantly affects the results.

Contact bearing pressures along the thread surfaces (i.e., stab and load surfaces
Fig. 4-3b) are given in Figs. 9-18a and 9-18b, using both the direct full-field (linear
material) model and the local (linear material) analysis, for both one-turn and two-turn
make-up cases. The local model is conducted on the joint with the boundary conditions
along boundaries B to Bs obtained from the global model. The local analysis addresses
the details of individual thread contact, as shown in Fig. 9-8. Since the thread surface
pressure is mainly caused by a radial make-up interference, good agreement is expected,
and is indeed observed between the results from the two approaches in the region at z/p
>2.5. The end effect from the pin section is expected to affect the thread pressure in the
region z/p < 2.5.

9.4.2 Seolution Efficiency

All computations have been carried out on SunSparc-2 workstations. The CPU
time used for a direct full-field model is approximately 225 minutes. The CPU time for a
coupled global-local model requires 4.8 minutes for a global analysis and 28.3 minutes for
a local analysis. The global-local modeling is much more efficient than the direct full-field
modeling, and the requirement of computer capacity is much less. A global-local model
needs only approximately 28% computer memory required for the corresponding direct
full-field model.

9.5 Additional Remarks

The results obtained in this study indicate that overall deformations of a threaded
composite tubular joint determined by a global-scale model compare well with those
obtained from a direct full-field model. The detailed thread contact pressure obtained
from an associated local analysis is also consistent with the results from a direct full-field
model. From the view point of computational efficiency, the coupled globai-local model
appears more suited for the complex threaded composite joint problem without
compromising the solution accuracy. However, the global-local model has severe
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limitations, since an equivalent thread layer can not be constructed when the threads
contain damage of different forms. Also accuracy of the global-local modet is difficult to
assess when the damage of the threads is included. Consequently, in construction of a
leakage failure envelope for a threaded composite joint, the aforementioned direct full-
field model with material nonlinearity is used to avoid the complications.




62

10. ANALYTICAL AND NUMERICAL SOLUTIONS FOR
COMPOSITE JOINT LEAKAGE FAILURE, AND COMPARISON
WITH EXPERIMENTS

The experimental, analytical and numerical methods developed in previous
sections are used to investigate quantitatively the leakage failure of threaded tubular fiber
composite joints. Leakage failure envelopes and associated failure modes of the threaded
composite joints are determined for the cases under different combinations of axial load,
internal pressure and make-up turns. Also included in the study are the influence of
thread surface contact with varying bearing pressure, the effect of geometric
imperfection, the probabilistic characteristics of composite joint leakage, and the
determination of the tightening safety factor. Based on the results obtained, quantitative
relationships are established among the joint sealing integrity, joint/thread materials and
geometry, and external mechanical loading.

10.1 Deformations and Stresses of Threaded Composite Joints under Combined
Loading

Tn a 2-3/8-inch diameter threaded composite joint with a thread compound, hoop
strains € developed are shown in Figs. 10-1 and 10-2 for the cases of one-tum and two-

turn make-ups. The hoop strains were measured at the midpoint of engaged threads on
the external surface of the box section (i.e., hoop strain gage No. 2 as described in Section
5.4). Substantial deformation at the initial tightening (IT) position! was observed,
especially in the joint with a low number of make-up turns, T. The start of the loading
portion of a make-up-strain-versus-turn curve is difficult to delineate and define.
Consequently, the exact amount of the make-up interference from a make-up curve may
not be always accurately determined?. Experiments on disengagement of the composite
joints (i.e., the break-out test) were conducted after the make-up tests. During a joint
break-out, hoop strains and break-out turns were measured, as shown in Figs. 10-3 and

10-4, and the unloading could be easily identified™ 4 in the figures.

U In a joint without a thread compound, the initial tightening is defined as
*
Ee (Z ) = 0, at Tﬁ?IT,
and eq (Z) £ 0, at T=Tyy + 8 for ¥ 8 > G,

where T is make-up tern, 8 is a small constant and 7" is the location of strain measurement, defined as
the ratio of Z in Fig. 9-7 to thread pitch which is 0.123 inch for the joint studied.

This was caused by the thread compound used in a make-up, which had a high viscosity and contained
Teflon particles. During a make-up process, most of the applied thread compound was gradually
squeezed out of the joint. Therefore deformations in the joint during the make-up depended
significantly on the viscosity and process of thread compound sgueezing. [n order to eliminate the
effect of thread compound viscosity, & break-cut (untightening) study was conducted after the joint was
tested.

Ideally, the unloading portion is to decrease monotonically with the break-cut turn, as illustrated
schematically in Fig. 10-5. However, because of geometric imperfections, experimental resuits usually

£

L
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In Fig. 10-6, measured hoop strains at the mid-point of engaged threads along the
external surface of the box section during a make-up are shown. The results reveal that
the actual make-up (corresponding to the unloading portion in a break-out curve) was
usuaily, on an average, approximately 10% less than the number of turns passed the
initial tightening position, due to the slight mismatch in the taper of the pin and the box.
Therefore, in practice, to achieve a desired make-up interference, a ten percent over
make-up may be needed if the initial tightening (IT) position is used as a reference.

Detailed deformations at the mid-point of engaged threads (Z*m’].S) on the
external surface of the box section in a threaded composite joint under one-turn and two-
turn make-ups are also analytically determined by the aforementioned direct full-field
‘model and are given in Fig. 10-6. Good agreement is observed between the measured
hoop strains and the analytical solutions. The results for the joint with a linear ply
properties are compared with the solutions obtained from the material constitutive
model with ply nonlinearity. The relatively small interferences induced during the joint
make-up do not seem to lead to significant nonlinear deformation in the joint.

In Figs. 10-7 to 10-8, typical load-deformation relationships are shown for a
threaded composite joint subjected to increasing internal pressure (with T=2 and Pa=0).
Hoop strains on the external surface of the box section changed nonlinearly with internal
pressure. {A small amount of noise was recorded in the third hoop-strain gage when the
applied internal pressure exceeded 3 ksi. The noise may be caused by local thread
contact in the joint. The local contact may be also responsible for a slight jump of the
hoop-strain measurement in the second gage.) Similar phenomena were observed in axial
strain measurements. The onset of leakage was determined from the piston movement in
the pressure intensifier during loading (Fig. 10-9). The initial movement of the piston
was relatively fast in order to supply the fluid to fill the small gap between the specimen
and the mandrel. The piston subsequently moved at an approximately constant
velocity. When leakage occurred in the joint, the rate of the piston displacement
increased, signaling the control system to terminate the experiment.

Principal stresses at the thread roots of the composite joint under two-turn
makeup and 2:1 loading with internal pressure of 2000 psi. are shown in Figs. 10-10a
and 10-10b. [t is observed that the end threads usually carry higher loading. Interface
shear stress between the threads and tube body, Fig. 10-11, also exhibits the similar
features. The principal stress fields in the end threads are illustrated in Fig. 10-12a to
10-12d.

deviated from the expected linear relationship. In order to determine the separation point A in Fig. 10-
3, a scheme was suggested 1o rationalize the experimental data. By a judicious choice of point A, the
number of break-out turns could be determined such that the difference berween the experimental
results and the idealized curve could be minimized.

4 This is due to the fact that no compound was squeezed out of the threads and elastic unloading
oceuTed
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10.2 Leakage Failare Envelopes

Leakage failure envelopes were constructed for the threaded composite joints
with one-turn and two-turn make-ups subjected to combined axial load and internal
pressure! in a proportional loading mode and shown in Figs. 10-13 and 10-14. Failure
predictions from the aforementioned full-field leakage analysis are also shown for
comparison. Different leakage failure modes were identified and related to different
combinations of internal pressure and axial loading. In the case of leakage failure caused
by the loss of bearing pressure between thread surfaces, the experimental data obtained
are in good agreement with the analytical predictions. Most experimental results were in
leak and leak-prone regions of the failure envelopes. Leakage failure modes were found
in consistency with the predictions. Scattering of experimental data was observed in the
joints with a low level of make-up, and the data scatter is larger than that in joints with a
higher level of make-up. Note that the numerical predictions are based on two different
values of the tightening safety factor (X=1 and 2) as introduced in Section 8. The effect
of the tightening factor on the leakage failure of a threaded composite joint will be
addressed in Section 10.8.

In a joint subjected to a high axial load, leakage failure? caused by composite
tube-body damage was not commonly observed in the experiments. Only in one test
was composite tube body damage clearly found. Experimental results in this case were
compared well with the numerical predictions, as shown in Fig. 10-14. Leakage failure
by thread shear-off coupled with through-thickness cracking in the tube (pin) body was
found in most experiments under a combined high axial loading and low internal pressure.
However, analytically, only matrix-cracking-dominated leakage® and local thread-tube
interface failure were predicted with no thread shear-off being analytically obtained in
the numerical solutions. This will be discussed in detail in the next section.

10.3 Damage Mechanisms, Evolution and Associated Leakage Failure Modes
As indicated previously, several leakage failure modes were observed in the

threaded composite joints under combined axial loading, internal pressure and thread
make-up interference. In a hoop-stress dominated experiment, leakage failure was

! As mentioned in Section 10.1, the amount of radial interference introduced into a composite joint
during make-up could vary from }oint to joint, even though the joint was tightened by the same
number of make-up turns passing the initial tightening position. Therefore, each joint was prepared
with different make-up levels. In order to construct accurately an experimental leakage failure envelope
for a composite threaded joint, a rigorous scheme of normalization is introduced in Appendix F.

2 In a composite joint under high axial loading, the internal diameter of the joint decreased with an
increasing load, due to Poisson’s effect. In such a case, the piston displacement would not provide an
accurate measure for the leakage detection since the piston of the pressure intensifier moved backward
with an increasing load. Thus, the sensitivity of the leakage detection system could be reduced in the
test conducted under high axial loading. The low sensitivity of the leakage detection system might
cause the test system continue to apply loading to the joint after leakage was initiated, and eventually
resulted in failure along the interface between the threads and the pin body.

3 We note that in some cases, the locations, where leakage is predicted, had a gap region of less than
one-tenth of an inch between the pin and the box. Experimentally, using the aforementioned
conducting-mesh technique to detect the leakage must be conducted with great care.
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mainly caused by the loss of bearing pressure along the thread surface, as shown by the
solid circles in the figures (Figs. 10-13 and 10-14). In these cases, the pressurized fluid
leaked between the joint thread surfaces without causing material damage in the
composite tube body or in the threads. The leakage failure was attributed to insufficient
contact pressure developed among the threads.

In a composite joint dominated by combined high axial loading and internal
pressure, leakage failure is predicted by pin-section composite tube-body damage.
However, in the experiments, no leakage was actually detected in the tube body before
the thread shear-off, except for the one case shown in Fig.10-14. (The conducting-mesh
detection method usually gave a failure signal first, immediately followed by the thread
shear-off, The piston movement detection method, however, did not give any advanced
warning before failure in all the cases studied.) Failure by the pin-side thread shear-off
(Figs. 10-15 and 10-16) was typical in the experiments under combined high axial loading
and internal pressure, where interface fracture occurred between threads and the pin
body. The pin-side composite tube was pulled out of the joint, leaving the pin-side
threads in the box section. '

Microscopic observations on the damaged pin sections indicated a significant
amount of matrix cracking (Fig. 10-17) occurring in the failed region of the pressurized
composite joint under high axial loading. Some through-thickness cracks were also
found. To identify the damage failure mechanisms observed, the pin section with
sheared off threads was subsequently pressurized internally. A significant amount of
leakage was seen in the region where the threads were sheared off, as shown in Fig. 10-
18, even though the pressure was as low as 80 pst. Leakage was also found at the end of
the thread section. Clearly, leakage failure modes in these cases were thread shear-off
combined with through-thickness cracking in the (pin section) tube body.

In the case of a composite joint failed by the aforementioned tube-body damage,
the current numerical study predicts 2 failure mode in the form of pin-side tube-body
damage (matrix cracking), as shown in Figs. 10-19a to 10-19¢. The damage is predicted
to initiate at the roots of the last two engaged pin-side threads near the mill end of the
tube body and grow along the axial direction. Interfacial failure between the threads and
the tube body occurs locally under the threads in the integral composite joint before a
through-thickness crack is developed. The interfacial failure, which causes the threads to
shear off, would occur if the applied loading continuously increases after the leak occurs.

10.4 Effects of Make-up Interference, Internal Pressure and Axial Loading

If the predicted leakage failure envelopes for a threaded composite joint are
combined for the cases of one-turn'and two-turn make-ups in Fig. 10-20, one finds that,
in the region of failure by the loss of bearing pressure, the critical internal pressure in the
joint depends significantly on the level of the make-up loading. In the case of combined
high hoop stress and low axial loading, increasing the make-up interference could greatly
increase the critical internal pressure, thus, the sealing capacity of the joint. However, in
the tube-body-damage-dominated region, the critical axial load and internal pressure seem
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not affected by the change of in make-up interference.

Thus, in the region that failure is dominated by the loss of bearing pressure, the
tightening safety factor dictates the leakage-free region. High axial loading results in a
low critical bearing pressure and consequently, reduces the sealing capability of the joint.
The reduction in the bearing pressure appears to be approximately linear with an
increase in external loading for the one-turn make-up case, whereas nonproportional
changes are observed in a two-turn make-up case, due to complex interactions among
material nonlinearity, thread contact and damage evolution. Obviously, these effects
become more appreciable when the joint is subjected to higher loading.

For an illustrative purpose, relationships between the joint make-up level and the
sealing capacity are shown in Figs. 10-21(a) to 10-21(c) for a 2-3/8-inch composite
integral tubular joint under different hoop-to-axial loading ratios. The leakage-prone
region is bounded by the tightening safety factors X=1 and X=2. Under a given (hoop-
to-axial) loading ratio, the sealing capacity of the joint is approximately proportional to
the make-up interference. An increase in the axial load requires an additional make-up to
keep the same sealing integrity of the joint.

10.5 Effect of Geometric Imperfections

It is clear that in a joint leakage failure caused by the loss of bearing pressure, the
critical internal pressure depends on the make-up interference and axial loading. Fora
joint with threads of a given pitch dimension, the magnitude of the make-up interference
is a function of the make-up turn, thread taper and other geometric parameters, as
expressed in Eq. (6-14). While the make-up turn is a global loading parameter
independent of the joint geometry, the thread taper is an important local geometric
parameter which requires carefully examination. The results of the threaded joint leakage
failure presented in the previous sections are obtained under the assurnptions that: (1)
the radial interference is constant along the thread engagement region, and (2) the thread
taper in both pin and box sections are nominal [38,39]. '

From Tables A-1 and A-2, taper of threads in a joint is clearly not constant but
varies along the joint axis. The Tables also show that the pin-side and box-side thread
taper are generally not the same!. To illustrate the effect of the geometric imperfection,
two cases are investigated in the present study. The first is a so-called "fast-pin-and-
slow-box" joint, in which pin-side threads have a taper of 6.5%, and box-side threads
have a taper of 6.1%. The second is a "fast-box-and-slow-pin" joint, which has a
geometry opposite to the first case. Obviously, in a joint with the thread taper being not
nominal, the radial interference introduced during the make-up varies from peint to point
in the engaged thread region.

U API Standards {38,39] specifies that the tapering of round threads for an external-upset tubing can vary
from 6.1% to 6.5% in diameter with a nominai value of 6.25%. Therefore, the maximum variation in
tapering in 4 threaded composite joint may reach 0.4% in diameter, causing a substantial amount of
interference between the two ends of the engaged threads and, consequently, affects the leakage pressure
of the joint,
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An illustration of the make-up interference in a fast-pin-and-slow-box joint is
given in Fig. 10-22. The radial make-up interference along the left-hand side of the
engaged thread region is smaller than that in a nominal joint if the interference at the mid-
point of the engaged thread region is kept the same as that of a nominal joint. The
reduction in the radial interference will result in a decrease in bearing pressure and,
consequently, the sealing capability of the joint. In the case of a fast-box-slow-pin joint,
it is plausible that the bearing pressure may increase in that region. Since in this research
only reduction in sealing capability of a joint caused by the geometric imperfection is of
concern, only the case of a fast-pin-slow-box composite joint is studied.

In the composite joint with a fast pin and a slow box, several parameters need to
be introduced first to represent properly the make-up interference. Commonly, three
physical make-up parameters need to be considered: (1) make-up torque, (2) make-up
hoop strain at the mid-point in an engaged thread region, and (3) make-up interference at
the mid-point in the engaged thread region. For comparison, the study on the effect of
geometric imperfection conducted here assumes that all joints mvesngated with or
without a nominal thread taper, have the same amount of make-up.

The make-up torque and the make-up hoop strain at the mid-point of the engaged
thread region on the outer surface of the box section in a joint with a fast pin and a slow
box are determined numerically under a two-turn make-up interference at the mid-point
in the engaged thread region. The solutions are compared with in a nominal joint with
the same level of make-up. The results show that the ratio of the make-up torque on a
nominal joint to that on a joint with a fast pin and a slow box is 1.004. The ratio of the
make-up hoop strain on a nominal joint to that on a fast-pin-and-slow-box joint is 1.015.
Since these two values are very close to one, it may be appropriate to approximate that
the aforementioned three make-up parameters are generally equivalent. In the current
analysis of a joint with a fast pin and a slow box, the make-up interference at the mid-
point of an engaged thread region is used as the make-up parameter.

In Fig. 10-23, leakage failure envelopes are obtained for threaded, integral tubular
composite joints with a nominal and with a non-nominal thread taper. It is important to
note that in a joint with a fast pin and a slow box, the thread taper may cause a
significant reduction in the leakage pressure of the joint. In order to quantify this
geometric effect, a sealing reduction parameter  is introduced as the ratio of the critical
ieakage pressure for a non-pominal joint to that for a nominal joint subjected to the same
proportionai external loading. For the joints considered with a unit tightening factor, the
£ has values ranging from 0.795 to 0.886, and for joints with a tightening factor of two

the § varies 0.786 to 0.852. Therefore, the critical leakage pressure of a joint with the
non-nominal taper is lower than that of a nominal joint by about 22%. However, no
appreciable effect of the taper imperfection is found in joints with the leakage failure
being resulted from tube-body damage.

Note that the geometric-imperfection-induced & is only one of several geometric
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imperfections contributing to the leakage resistance of a threaded composite joint. Other
geometric and composite lamination parameters, such as wall and ply thicknesses,
variations in material properties, thread height, truncating radii and flank angles, may lead
to further reduction in the critical pressure.

10.6 Influence of Thread Surface Friction

In a leak-free threaded composite joint, the bearing pressure on a thread contact
surface must be greater than the critical internal pressure!. The ratio of the bearing
pressure to the critical internal pressure defines the joint sealing reliability. The higher
the ratio, the more reliable the joint. Using a high make-up interference one may increase
the ratio to improve the joint leakage resistance. However, a high level of make-up may
also cause undesirable material damage in the joint even without external loading.
Another approach is to change the tightening safety factor of the contact surface without
losing the sealing reliability. The experimental study reported in [50] has shown that
increasing the viscosity of the sealing compound applied on the thread surface may
reduce the bearing pressure needed for sealing. Increasing the viscosity will raise
frictional force between thread contact surfaces. The frictional effect is an important
parameter and should be carefully examined.

In this section, leakage failure of a threaded integral composite joint with different
thread surface friction is studied. For illustration, several coefficients of {riction between
the thread contact surfaces {e.g., 0.04, 0.08 and 0.16) are considered for determining the
effect of the thread surface friction on the leakage-failure resistance of the composite
joint. In Fig. 10-24, increasing the coefficient of friction between thread contact surfaces
is found to raise the critical bearing pressure. In the region of leakage caused by the tube-
body damage mode, the effect of thread surface friction is not significant. Thus,
increasing the coefficient of friction between thread contact surfaces in a composite joint
is expected to improve the sealing reliability of the joint, provided that the increase is not
caused by raising the roughness of the contact surface.

10.7 Probabilistic Characteristics of Leakage Failure

In the joint leakage caused by the loss of thread bearing pressure, the magnitude
of the tightening safety factor introduced earlier is critical. As mentioned in Section 8,
sroper determination of the tightening safety factor requires a combined experimental
and analytical approach and clear understanding of leakage failure modes. With the
analytical methods developed in this study, it is possibie to determine quantitatively the
tightening safety factor for a threaded integral composite tubular joint subjected to any
combinations of internal pressure, axial load and make-up interference.

In this section, a systematic investigation of leakage failure has been conducted on
rwo sets of threaded integral composite tubular joints. One is shown in Fig. 4-2 and the
other, in Appendix G. The joints were tested under internal-pressure-dominated loading

' The critical internal pressure is XPj.
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with a hoop-to-axial load ratio ranging between 1:0 to 1:0.67 so that the leakage failure
mode was governed by the loss of bearing pressure. Subsequent modeling and analyses
are then conducted to determine the leakage tightening factors for individual cases. A
cumulative leakage frequency diagram is then constructed, as shown in Fig. 10-25, based
on the combined analytical and experimental results. The probabilistic leakage failure
distribution function is determined, and it follows a normal distribution function F(X),

F(X) = —L f " el gy, (10-4a)
oV2n) .-
with
1 It
p=g i‘_Z] X, (10-4b)
ol=-to ¥ (X -p)? (10-4c)
a1 &4 i

where 1 is the mean value of Xj; ¢ is the standard deviation and n is number of samples.
The values of . and & are found to be 1.61 and 0.48, respectively.

From the results, the tightening safety factors are given in Table 10-1 for the
threaded composite joints with different sealing confidence levels. The length of the
threaded composite tubing per leakage in the Table is calculated, based on the
assumption that the composite tubing usually is 30 ft long with one threaded integral
joint per segment. It is clear seen that the tightening safety factor X=2 corresponds to an
80% sealing confidence level, whereas the minimal sealing requirement, X=1, gives only
10% sealing confidence, which is consistent with the results shown in Section 8.

10.8 Approximate Relationship between Joint Sealing Integrity and Mechanical
Loading

As a first-order approximation, a linear relationship is assumed to relate the
leakage failure caused by the loss of thread bearing pressure to joint sealing capacity and
make-up interference,

Py = KT - aP, - BP,, (10-1)

where Py is the bearing pressure on a thread contact surface; T is the make-up turn, and
K, o, and B are constants. The terms Pj and Pa in Eq. (10-1) represent applied hoop and
axial stresses, respectively. For a given hoop-to-axial load ratic R = P53 / Pi, Eq. (10-1)
may be written as
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Taking the tightening safety factor X into consideration, one may determine the
proper make-up for a threaded composite tubular joint under a prescribed axial and
pressure loading by

_Pgr (@ +PBR)P; X+ (o +BR) P

T K K i

(10-3)

Notes here that for a composite integral joint with a 2-3/8-inch diameter, the analytical
solutions in the current study gives the values of K = 48,635 psi/turn, o0 = 1.353, and B
=0.9414. With Table 10-1 and Eq. (10-3), one may determine the suitable make-up for
a threaded composite joint to achieve the desired level of sealing confidence under
combined internal pressure and axial loading for a line pipe application.

10.9 Additional Remarks

The geometric variation in thread taper and viscosities of most thread compounds
complicate quantitative determination of the joint make-up interference. A turn or
torque criterion may not provide an accurate and adequate measure of the make-up
interference. Consequently, the currently used representation of leakage failure loading
for metal joints could be confusing. The scheme developed in this study elucidates the
vigcosity effect of a thread compound and provides a rational and quantitative measure
of the make-up interference. A proper combination of the leakage loading representation
and the make-up interference may provide an effective approach to this class of
complicated problems. The leakage failure envelope obtained with these methods in this
study reveals quantitatively some of the most important, fundamental nature of leakage
failure of a threaded composite joint.

The analytical models developed in the current study have been shown to be
effective in predicting leakage failure of a threaded composite joint under combined
internal pressure, axial loading and make-up interference. Based on these models, an
approximately linear relationship is introduced to relate the leakage failure to internal
pressure, axial loading, make-up interference and sealing confidence of a threaded
composite joint. The proposed approach provides an efficient and effective quantitative
method for proper make-up determination. With the aid of the method developed in the
study, the effect of thread taper imperfection is found to yield a geometry-related, joint
sealing reduction parameter which is important in design of threaded composite joints.

However, the models and associated analytical methods developed in this study
have the following limitations:

1} Geometry: The axisymmetric assumption of the joint thread geometry restricts the
current model for the joints with small helix thread angles. The error introduced by
the geometric model may increase with an increasing helix thread angle. In a metal
joint with a helix thread angle of 5 degrees, neglecting the nonaxisymmetric effect of
the helix angle may cause an error in the critical stress as much as 20% [13].
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2) Loading: Nonaxisymmetric loading, such as bending, is not considered here. The
circumferential 8—dependency of deformation and stress needs to be considered
when the leakage failure of a joint under bending is studied. Using the well-known
Coulomb’s law to describe friction between thread contact surfaces may also
introduce additional approximations in leakage prediction of a threaded composite
joint under cyclic loading. Current hydrodynamic lubrication theory shows that
Coulomb’s law is only valid in describing the case of low-velocity sliding along a
contact surface, as shown in Fig. 10-26. When the sliding velocity increases, the
velocity-dependent frictional force has to be introduced.

3) Long-term leakage prediction: The glass-transition temperatures, Tg, of polymeric
matrices in FRP joints are generally higher than room temperature. For short-term
room temperature leakage prediction, it may be permissible to neglect the viscoelastic
effect of the materials. However, long-term environmental parameters, such as
moisture, may reduce the Tg of the material system. The viscoelastic effect during
long-term loading on creep deformations and stress redistribution will become
appreciable. Also the degradation of the polymeric materials and fibers in the
composite during long-term mechanical and environment loading needs to be
considered.
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11. CONCLUSIONS

To understand the composite joint leakage failure phenomena and subsequently
validate the analytical modeling, world-unique experimental facilities have been
designed, constructed and fully used for this project. The facilities include a servo-
hydraulic multiaxial (axial, pressure and torsional) loading system, digital and analog
control systems, make-up interference application and measurement system,
multiaxial deformation measurement systems (multiaxial extensometers), two leakage
detection systems, and a fully computer-controlled data acquisition system.

2) Nonlinear, inelastic three-dimensional anisotropic composite mechanics models have

3)

4)

6)

been formulated for studying the complex deformation and damage developments in
threaded composite tube bodies during leakage failure. The nonlinear moving
boundary problem of local thread surface contact in a composite joint under
combined internal pressure, axial and make-up loading is modeled by quasi three-
dimensional contact mechanics formulation based on the Lagrangian multiplier
method.

To account for the detailed thread geometry, local joint configuration, ply material
nonlinearity, through-thickness material discontinuity, thread surface contact and
damage (crack) growth in the composite joint, efficient and accurate incremental-
iterative algorithms have been developed for both direct global modeling and coupled
local-global modeling of the problem.

The complex failure modes, which govern the leakage failure of a threaded composite
tubular joint, have been identified in the experiments on filament-wound E-
glass/epoxy composite joints with molded threads and have also been confirmed in
the analytical results, The failure modes include fiber- and matrix-dominated
cracking through tube bodies, thread material fracture, tread/tube-body interface
debonding, and the loss of bearing pressure in the thread surface contact region.

Quantitative failure criteria have been developed and established for each individual
failure mode from failure theories of fiber and particulate composite mechanics and
contact mechanics. These fatlure criteria have been successfully implemented into
the computational algorithms of the leakage failure analysis and prediction
methodologies developed in this research for threaded composite tubular joints.

Based on the experimental results and the analytical solutions, compiete leakage
failure maps (or envelopes) can be and have been constructed for filament-wound
glass/epoxy composite joints with tube-body laminate lay-ups [(£559)], (n=9 for
the pin and 11 for the box sections). The complete leakage failure map generally
contains three distinct regions: leakage, leak-prone and leak-free regions under
different combinations of internal pressure, axial and make-up loading.
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Each region in the composite joint failure map is shown to be governed by the
failure criteria associated with the distinet, individual failure modes identified, i.e.,

~ composite tube-body ply cracking, tube-thread interface debonding, thread material

8)

)

10)

1)

12)

13)

14)

fracture, and loss of bearing pressure along the thread contact surface.

The inherent geometric and material variabilites of threads and thread surfaces ina
composite tubular joint warrant the introduction of an important parameter, i.e., the
tightening safety factor, in design, analysis and evaluation of the joint leakage failure
problem. The value of the joint tightening safety factor is also affected by the
roughness of the thread surface, the viscosity of the thread compound, the pressure
medium used in the joint, and the allowable joint leakage failure probability.

Excellent agreement has been observed between the analytical predictions and the
experimental results for the filament-wound glass/epoxy composite joints failed by
the loss of bearing pressure. In the case of the composite joint leakage caused by a
through-the-wall tube-body cracking mode, the discrepancy between the
experimental data and predictions is small, since a high axial load is generally
involved and the test system sensitivity is low in this condition.

In the case that a threaded composite joint failed by the loss of bearing pressure in
the thread contact region, the leak-free, leak-prone and leakage-failure regions can be
distinguished individually by different functional relationships among the applied
axial and make-up loading, internal pressure, and the bearing pressure on a thread
surface.

[n the leakage failure of a composite joint caused by through-thickness tube-body
cracking or thread material fracture, the influence of the make-up interference on the
critical failure loads is found to be not appreciable. Consequently, in these cases
increasing the make-up interference during the joint formation may not improve the
sealing reliability of the threaded joint.

In the case of joint leakage failure by the loss of bearing pressure, the sealing
capability of the joint, under a given biaxial loading and a safety tightening factor,
increases almost proportionally with the amount of the make-up interference
introduced in the joint. Therefore an additional make-up interference is required, as
the applied axial load increases, to ensure the same joint sealing confidence.

The amount of thread tapering in a composite tubular joint significant affects the
bearing pressure development in the thread contact region, and therefore influences
the leakage failure of the joint. For a filament-wound glass/epoxy composite joint
with a fast pin and a slow box, the sealing capability of the joint may be reduced by
22% when compared with the case with a nominal thread tapering configuration.

An increase in the frictional coefficient between the thread contact surfaces raises
the bearing pressure, and consequently, improves the sealing capability of the
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composite joint, provided that the change in the frictional coefficient is not caused
by altering the roughness of the thread surface.

Based on the experiments and the failure analysis conducted in this study, the
leakage failure probability of the filament-wound E-glass/epoxy composite joints is
found to follow a normal distribution function. The standard deviation and mean
values of the normal distribution function are 0.48 and 1.61, respectively, for the 2-
3/8-inch integral FRP composite joints.

The present investigation on the joint tightening factor indicates that the minimum
bearing pressure requirement for threaded joint sealing in a previous study [15] is
not adequate to prevent leakage failure of a threaded composite joint. A higher
bearing pressure is obviously needed to achieve a reliable, leakage-free performance
of the composite joint.

In the API proposed procedure for ranking/qualifying threaded FRP composite
joints/connectors, construction of both short-term and long-term failure envelopes
should include the important make-up interference loading, in additional to the
pressure and axial loading. The presently proposed representation of failure
envelopes does not contain all the important applied external loading and can not
adequately describe the joint leakage failure.

The currently recommended interpolation procedure in the API proposed
ranking/qualification method may not be suitable for construction of proper leakage
failure envelopes, especially for the case of long-term failure. From the present joint
experiments and the related study on tube bodies, failure envelopes for both short-
term and long-term leakage in a threaded joint are known to be highly distorted; the
weighting method to interpolate the biaxial (hoop to axial) failure loading, even
without considering the makeup interference, simply based on one intermediate, 1.¢.,
1:1, biaxial loading ratio is obviously inadequate.

From the analytical and experimental studies conducted in this research, it becomes
clear that additional parameters should be included in the API proposed procedure
for establishing long-term joint leakage failure envelopes. These should include long-
term creep deformation and stress relaxation in the threads, degradation of the thread
compounds used in the joint, and time-dependent strength changes of both tube
bodies and threads.

The reduction factor in the API proposed joint ranking procedure for obtaining the
joint/connector service envelope from the long-term failure envelope needs to be
lower than the current value, i.e., 0.67, based on the considerations of material and
geometric variations in the composite joints and the statistical nature of the joint
leakage failure characteristics, as reported by the experimental results and analytical
solutions in this study
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13. FIGURES

(b)
Fig. 4-1  Tubular Joints, (2) Threaded and Coupled (T&C) Joint, and (b) Integral
Joint (1J)
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/ T
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Fig. 4-2 Detailed Thread Geometry for Casing and Tubing Round Threads [38]




Fig. 4-3 Microstructure of Threads, {a) Pin-side Thread and (b}
Box-side Thread
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(b)

Fig. 4-4  Threads and Thread/Tube-body Interface at, (a) Pin
Side and {(b) Box Side, in Integral Composite Joint
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Fig. 4-5 XRD Patterns of Thread Materials in Integral Composite
Joint: {a) Pin-Side Threads, and {b) Box-Side Threads -
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Fig. 9-7  Global Model for a Threaded Composite Tubular .}oint with an
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Fig. 10-13 Leakage Failure Envelope of a Threaded Composite Joint with One-turn
Make-up (2-3/8-inch Integral Composite Joint), Subjected to Combined
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Fig. 10-14 Leakage Failure Envelope of a Threaded Composite Joint with Two-turm
Make-up (2-3/8-inch Integral Composite Joint) Subjected to Combined
Axial Load and Internal Pressure
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Fig. 10-15 Damaged Pin Section of Threaded Composite Joint [Threaded
Composite Joint Leaked at Pi=3 ksi and P5=21 kips with T=2]

Fig. 10-16 Sheared-off Threads [Threaded Composite Joint Leaked at Pi=3 ksi and
P5=21 kips with T=2]
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__ Fig. 10-17 Optical Micrographs of Damaged Pin Body
- [Threaded Composite Joint Leaked at Pi=0.9 ksi
and P3=20.5 kips with T=1]

Fig. 10-18 Leakage Test of Damaged (Pin Section) Tube Body
[Threaded Composite Joint Failed at Pi=3 ksi and
Pa=21 kips with T=2]




V.V

(b)

rereereiet
o—

_— Interfacial damage

\
\

Fig. 10-19 Predictions of Tube-body Damage Growth and Leakage Failure
of a 2-3/8-inch Threaded Composite Joint with a Make-up, T=2. Subjected to
Combined Axial Loading and Internal Pressure; (a) Initiation (0.93 ksi / 5.6
Kips}, (b} Growth (2.02 ksi/ 12 kips), and (c) Leakage (2.71 ksi/ 16 kips}
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Fig. 10-20 Leakage Failure Envelopes of Threaded Composite Joint with
One-turn and Two-turn Make-ups, Subjected to Combined Axial
Loading and Internal Pressure (2-3/8-inch Composite Integral
Joint)
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Fig. 10-21a Leakage Failure of Integral Compesite Joint Subjected to Pure
Internal Pressure and Make-up Interference
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Fig. 10-22 Threaded Composite Joint with a "Fast-Pin-and-Slow-Box" Geometry
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Fig. 10-24 Leakage Failure Envelopes of Threaded Integral Composite Joint
with Different Frictional Coefficients (T=2) Subjected to
Combined Axial Loading and Internai Pressure




132

LOQT 01 1] ue9MIDg ONEY
Suipeo ] yum do-odey pue Suipror] BIXY ‘QINSSI I [BUIBIU] PaUIqwo)) 0} pataigng
Julof ousodwio)) [BISOIU] popeaitL]], ISR I(] YOUl §/¢-7 JO AN[IqRqOL] 2Injm, a8eeoT S7-01 i

X “lojory Sutuapydi]

[ ¥

¢ ¢ 1 I S0
H T ¥ T T t t T T I T T L T I Y T ¥ T {}
- A
[9°f =" | LAY pS
w
. .=
. S
o
90 &
) A
- n >
! uonouUny uonNqINSIp J ofeesy . 80
" ( ZH 1077 urumoys uounads 10 o 00 7
[ #1077 U usoys uswimads 0 ) o ’
B Aownborysdeeejoaneung o O = B 01
] 1 1 3 L3 _ 3 1 1 i m 3 1 1 i — 1 ] i i ]




133

1ot = A% Teansition ragion
Boundary lubrication
10"‘2 E
Hydrodynamic tubrication
0™ 4
f
8
o4
8
o o Velgeity {mgarithmic}cmﬁec

Fig. 10-26 Relationship between Velocity and Coefficient of Friction
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14. TABLES

Table 5-1 Test Matrix of Threaded Composite Joints!

Test No. Batch Sample No.  Axial Loading [nternal Pressure Make-up Turn

1 1 1 3.3P P 1
2 1 2 0 P 1
3 1 2 0 P i
4 1 2 0 P 1
5 1 3 P 2P 1
6 I 3 6.7P P 2
7 1 4 P P 1
8 | 5 P 0 1
9 1 6 1.5P P 1
10 1 7 P P I
11 1 7 P 2P 1
12 1 7 1.3P P 1
13 i 8 P 0 2
14 1 8 P 3P 2
15 1 8 P 1.4P 2
16 1 9 P 3P 2
17 1 9 0 P 2
18 1 9 P P 2
19 1 9 P P 2
20 I i0 P 1.4P 2
21 2 1 0 P 2
22 2 1 0 P 2
23 2 1 P 4p 2
24 2 2 0 P 2
25 2 2 P 4P 2
26 2 2 P 2P 2
27 2 3 0 P 2
28 2 3 P 4p 2
29 2 3 P 2P 2
30 2 4 ¢ P 2
31 2 4 P 4p 2
32 2 4 P 2P 2
33 2 5 0 P 2
34 2 5 P 4p 2
35 2 5 P 2P 2
3 2 9 0 P 2
37 2 9 P 4P 2

' All loading are proportional.
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Table 9-1 Comparisons between Current and Reference Solutions for a
Composite Tubular Subjected Internal Pressure

Reference solution {521 Current numerical solution
r{inch) Or.(psi.) Op.(psi) or.(psi.) O (psi.)
1.05 -69.79 325.0 -68.67 529.4
1.10 -43.32 495.0 -42.30 4972
1.15 -20.48 468.0 -19.32 4694

Table 9-2 Maximum Principal Stress at Thread Root in Composite Joint

Thread root Uniformn mesh (psiy  Locally enriched mesh (psi)
A 9312 9258
B 5347 4391
C 2661 2315
D 2789 2669

Table 9-3 Average Contact Pressure on Thread Surface in Composite Joint

Thread surface Uniform mesh! (psi) Locally enriched mesh? (psi)

1 9989 9927

2 7009 6954

3 9596 9574

§ 4 7750 7725
. 5 13910 13800

6 4959 4918

Shown in Fig. 9-3a; with 6598 nodes and 2010 elements,
< Shown in Fig. 9-3b; with 8027 nodes and 24355 elements.
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Table 10-1 Tightening Safety Factor of Threaded Integral
Composite Joint (2-3/8 inches Diameter) Subjected to Combined
Internal Pressure, Axial Load and Make-up Interference!

Sealin nfidence (% Tightening Safetv Factor Length of Pige Line / Leakage

~10 1.0 30 fi

~80 2.0 150 ft

S0 2.224 300 ft

95 2.399 600 ft

9% 2.726 0.568 mile
99.9 3.093 3.68 mile
99.99 3.395 56.8 mile

P For a line pipe application.
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APPENDIX A
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APPENDIX B
API THREAD CONFIGURATIONS
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Fig. B-1 Thread Configurations [38,39], Line-pipe Threads
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Fig. B-3 Thread Configurations [38,39], Buttress Threads
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APPENDIX C
THREAD TAPERING OF INTEGRAL COMPOSITE TUBULAR JOINTS

To determine the thread tapering, each joint has to be gaged individually. The
thread gaging requires special gauges made by a licensed manufacturer and needs a
special service in petroleum E&P operations. The specimens of integral fiber-
composite joints used in the experimental investigation were gaged by a local pipe
inspection company!. In Tables C-1 and C-2, results of the thread tapering in the
composite joints used are shown. Values in the Tables were the measurements made at
four locations along the axis of the joints (Fig. C-1, from right to left) as suggested by
API [39].

It is obvious that the tapering of threads in the joint was not a constant (Tables
C-1 and C-2). Also, taperings of pin-side threads and box-side threads were usually not
identical. To achieve reliable sealing, the pin and the box sections of the joint should be
chosen such that the difference in thread tapering between the pin-side threads and box-
side threads is minimal.

Table C-1 Tapering of Mill End in Composite Joints
(% in diameter)

Box No. Tapering 1  Tapering?2  Tapering3  Tapering 4
1 6.4 6.4 5.2 6.4
2 6.4 6.2 6.2 62
3 6.2 6.2 5.4 6.2
4 6.4 6.2 6.2 6.4
5 6.0 6.0 6.2 6.4
) 6.2 6.2 6.2 6.2
7 6.0 6.0 6.2 6.2
8 6.2 6.2 6.4 6.2
9 6.0 6.0 6.2 6.2

Table C-2 Tapering of Field End in Composite Joints
(% in diameter)

Pin No. Tapering | Tapering 2 Tapering 3 Tapering 4
1 6.2 6.4 6.4 6.2
2 6.4 6.2 6.2 6.0
3 6.4 6.4 6.2 6.2
4 6.4 6.2 6.2 6.2
5 6.4 6.2 6.4 6.0
6 6.2 6.2 6.2 6.0
7 64 6.4 6.2 6.0
8 6.2 6.2 6.2 6.0
9 6.4 6.4 6.2 6.0

' American Pipe Inspection, Inc., Houston, TX
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Fig. C-1 Thread Gaging Locations
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APPENDIX D
FEATURES OF DATA ACQUISITION SYSTEM
USED IN EXPERIMENTAL SETUP

A typical plug-in data acquisition board usually had only one A/D converter,
which could transfer a single channel of analog signals to a digital one. In 2 multiple-
channel data acquisition, a multiplexer (MUX) was used to scan all the channels
avatlable and digitized the analog inputs one by one, as illustrated in Fig. D-1. The scan
frequency depended on a user-chosen resolution. In a given data acquisition board, an
increase in the scan frequency would result in a decrease in the converted resolution and
consequently, an increase in the digital noise. In order to achieve a high resolution in an
A/D converter with a low noise level, a time delay between two channels should be set
long and the board should be calibrated frequently during tests, especially when a test
last long. All these contributed to a reduction in the scanning frequency of the data
acquisition. The scanning frequency of the data acquisition board for eight channels
was approximately one Hz in low noise and high resolution modes. The scanning
frequency was also affected when the data was logged during an acquisition loop.

The sophisticated data acquisition system in a digital controller enabled a
computer to acquire the data through the GPIB board in two modes. One of the modes
permitted a user to request the data one by one through the GPIB board. The other
allowed the user to send data into the controller buffer with a prescribed acquisition
frequency and read the data from the buffer when it was full. The acquisition frequency
in this case would not be changed during the data transfer.

signal conditiners

analog . g >

input
— >.__

dule
MUX|—A/D convertorf— 0 -
. trol
>—-— contro CPU

— D_.._

Fig. D-1 Typical Plug-in Data Acquisition System
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APPENDIX E
THREAD HELICAL ANGLE OF THREADED JOINTS

The thread helical angle of threads in a joint depends on the joint diameter and
pitch dimensions. For an API round thread, the thread pitch is usually between 6 to 10

threads/inch [38]. The thread helical angles of typical API round threaded joints are
shown in Table E-1.

Table E-1 Helical Angles in Commonly Used Threaded Joints
Tube Diameter

Pitch(thread/inch) 1.5 inches 2.0 inches 2.3 inches
6 2.03° 1.520 ‘ 1.22¢
8 1.52° 1.14° 0.91°

10 1.22° 0.91° 0.73°
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APPENDIXF
STRAIN ENERGY FUNCTION OF AN ELASTIC BODY
WITH IN-PLANE SHEAR NONLINEARITY

The complementary energy density function of an elastic body with in-plane
shear nonlinearity is given as

w” fﬁ dO‘ ': ijmngijomn"}”jlfsg(ic?% (F-1)

where Sijmp are linear elastic compliances and St is a high-order compliance described
in Section 3.

From Eq. (F-1), it is easy to obtain

& = %W~. (F-2)

4y

The existence of a unique inverse of Eq. (F-2) is guaranteed by the condition,
*w”"
det =0, F-3
(36:13&';) (F-3)
where ¢ and oj are siresses in contracted notation as described in Section 6.

Based on the fact that W is positive-definiteness, Eq. (F-3) yields
S¢e +35850%, 2 0. (F-3)
The strain energy density of the body can be expressed as

£

ijgij dey =gy 04-W
- 1 1 =h 4 _
=& Gij“igi;mn Sij Omn — 7 V66 T12- (F-4)

The derivatives of the strain energy density W with respect to strain component
give the corresponding stress components:

oW = da
“gm T ""3”“ Cmn ™ Sstmn T Gy — 8660’ —ag;z'

i

JC o & 90 s ieh 3 90y, - SN
=05 F g, Cmo T dsme g, O ‘5565@2"‘"—”‘0% (811052 + B2y
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do
= Géj + { €hn ™ Smﬂsi Gg— %3266%2(5m§5n2 + 61“[}26&1)} ”E}"g’rfi““; (F“S)

As shown in Eq. (6-19), the terms in the bracket in Eq. (F-5) vanish. Therefore,
cne has

-\ (F-6)
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; . olution for 4 single Jayer cylinder can
imroducmg nonlinear constitutive ‘quations intg the well-known
Lekhnitskij formuiation [49] as
o) =g 6 =o < o =0, yo =0, (G-1a)
uf =00, o (G-1b)
u{l,} = ug , (G-I C)
O = (S 4 s 1% <, (G-1d)
where the Superscript | (i=1,2) denotes the i-th ply; ©% ¢ the angle of WISt per unis
length, ang o{ and ull are constants for rigiq body motiong

~ Uz and il = o) = w;, (G-2)
By properly cOnstraining the n1gid body q1otion, one hag
b ué)-@rz, and ulii = g (G-3)
- From Eq, (G-1d), one ¢an obtain the shear stregg Caused by the tWist ag
\\\\_ = .
T = M@ - M_@ L + WSG%
Y | 255 30
3 T Tk
Or M er | [ s
+ e~ T | g T . (6-4)
/ 28h \/ [2 {uhj [3 {ijh
\/ 66 / | 2566 | 2568
Consequentiy the torque cap be determineg as
a+!;+t2 34+ 0 -"'[2 {_2}
T= ) z'”cg,zdr:v/a rth dH—j I T, dr.

(G-5)
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- APPENDIX H
NORMALIZATION SCHEME FOR LEAKAGE LOAD

Based on the aforementioned joint sealing characteristics, one may show that
leakage through threads may be initiated when the bearing pressure on a thread contact
surface reaches a critical level, X Py, where P; is the internal pressure and X is a leakage

tightening factor to be determined. The bearing pressure is related to the applied
loading on the joint, i.e., the make-up interference, internal pressure, and axial loading.

As a first-order approximation, a linear relationship is proposed between the
loading and the bearing pressure. Thus, the initial condition for the joint leakage may be
expressed as

P +oP, + PP, = XP, (H-

makeup

1y

where Pmakeup is an average bearing pressure caused by a make-up interference: P.is

the internal pressure, and P,, is the axial load. The o and 8 in Eq. (H-1) are constants
related to the stiffness and the geometry of the composite joint, respectively.

The bearing pressure on the threads of the joint, caused by the make-up
interference, may be expressed as

P makeup ~ KT, (H-
2) '

where K is a constant and T is the number of make-up turns.
Substituting Eq. (H-2) into (H-1), one obtains
= WK , (H-
- P,
X =0 S"ig;

—|

3)

From Eq. (H-3), along a proportional loading path, i.e., P,/ P; = constant, the
ratio of internal pressure to make-up turn is constant in the case of leakage caused by
the loss of bearing pressure. Using Eq. (H-3), one may normalize the experimentally
determined leakage loading with a make-up interference to construct a leakage failure
envelope. In the case of leakage caused by body damage, resuits are shown without
normalization because the leakage load of a joint is not sensitive to the make-up
interference, based on the experimental observations and the analytical solutions.
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APPENDIX I
THREADED COMPOSITE JOINT USED IN PROBABILISTIC
LEAKAGE FAILURE STUDY

As mentioned in Section 10, two sets of threaded integral composite tubular
Joints were used in the probabilistic study of joint leakage failure. The geometry and
dimensions of the first set of joints are shown in Fig. A-1, the other ones are shown in
Fig. I-1. The pin-section geometry and dimensions of the two lots of joints are
identical. However, box-section dimensions and geometry of the two lots of joints are
different. The leakage failure envelope for the second set of joint under two-turn make-
up is shown in Fig. I-2 and a comparison between analytical prediction and
experimental results is also given in the figure.
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