Assessment and Analysis of Deepwater Pipeline Repair in the Gulf of Mexico

Sponsored by: United States Department of the Interior Minerals Management Service

Presented by:

Project Consulting Services, Inc.

The Need for Deepwater Pipeline Repair in the Gulf of Mexico

Anticipated 2000 Gulf of Mexico Gas Production

Gulf of Mexico Gas Production Trends

Deep Water Discoveries

 112 Deepwater Discoveries as of 1999
 27 Deepwater Discoveries Producing at end of 1999
 83 of the Current Deepwater Discoveries have Future Production Plans

1999 Deep Water Production Start Ups

Planned 2000 Deep Water Production Start Ups

Gulf of Mexico Transportation Methods to Bring Deepwater Production to Market

Hazards to Subsea Pipelines

- Natural Disasters
- Operational Error
- Physical Impacts from Fishing or Oil and Gas Activities

15

Construction of the Pipeline

Purpose and Need For Deepwater Pipeline Repair

 Deepwater Pipeline Repair Capabilities are Essential to Provide Confidence in the Deepwater Oil and Gas
 Developments and to Ensure a Reliable
 Supply of Production from Deepwater
 Producing Fields

Gulf of Mexico Consortiums

- R.U.P.E. Co-Ownership Project
- Began in 1977 by Tennessee Gas with

- 11 Participants
- Today 22 World Wide Participants

Gulf of Mexico Consortiums

- DeepStar
- Began in 1992 by Texaco
- Conceptual Study of the Feasibility of Extended Reach Tie-Backs 40-60 miles
- Has Expanded to Encourage the Production of Hydrocarbons from tracks in up to 10,000+ Feet Sea Water

Challenges of Deepwater

- Saturation Diving Limited to 1,200 Feet
 Sea Water
- Heavy Lift Vessels Required to Recover
 Pipelines to Surface
- Remote Operations Essential to Success of Deepwater Pipeline Intervention

History of Deepwater Pipeline Repair

- 1973 Exxon JIP 16 Participants
- Repair 36" Concrete Coated Pipe in 3,000 Feet Sea Water
- Based on Large ROVs that were Non-Existent at the Time
- Ended 1977 with Report Only

History of Deepwater Pipeline Repair

- 1974 Shell JIP 6 Participants
- Repair of 36" Concrete Coated Pipe to 3,000 Feet Sea Water
- Proposed Subsea Catamaran Vessel
- Ended 1977 with Report Only

History of Deepwater Pipeline Repair

- 1977 Statoil
- Repair of 36" Concrete Coated Pipe in 1,500 Feet Sea Water
- Based on HydroTech Manipulating
 Frame to Install Connectors
- Operated by Oceaneering WASP
- Ended Same Year with Report Only

History of Deepwater Pipeline Repair

- 1981 Gulf Oil JIP 4 Participants
- Repairs to 8,000 Feet Sea Water
- System Based on Large (Non-Existent) ROVs and Existing Equipment
- Ended 1983 with Preliminary Design Only

Deepwater Pipeline Repair Options

Re-Lay Pipeline Or Portion of Pipeline

Deepwater Pipeline Repair Options Pipeline Repair Clamp

Deepwater Pipeline Repair Options

Surface-Lift-Layover

SURFACE-LIFT-LAYOVER METHOD OF DEEPWATER PIPELINE REPAIR REPAIR PROCEDURE 1. CUT PIPE 2. LIFT ENDS TO SURFACE 3. ADD PIPE 4. CONNECT 5. LAYOVER RESULTS - MODEL TESTS HAVE VERIFIED METHOD - SPOOL PIECES ARE BEING TESTED CRITICAL ELEMENTS . SPOOL PIECE DESIGN . MONITORING OF ANGLE 0 . DYNAMIC POSITIONING OF VESSEL

The Reality of Deepwater Pipeline Repair

- A Comprehensive Pipeline Repair System Must Exist to Minimize Loss of Production
- More Complete Systems Have Been Available in Europe over the Last Decade than in the Gulf of Mexico
- Estimated Worst Case Repair Scenario for Gulf of Mexico would take 8 months

- European Shallow Water Tie-in and Repair Philosophy
- On-Bottom Hyperbaric Welding
 - -Competitive in European Markets
 - -All Welded System
 - -High Strength / High Reliability
 - -Limited by Water Depth

- European Deepwater Pipeline Repair Philosophy
- On-Bottom Repair As Strong As Pipeline
- Automated Hyperbaric/Other Welding (Development)
- Horizontal Mechanical Connections
- Slip-On/Forged Mechanical Connectors
- Remote On-bottom Flange Tie-Ins

- Gulf of Mexico Shallow Water Tie-In and Repair Philosophy
- Surface Welding
- Break-Over Tie-Ins
- Flanges

- Gulf of Mexico Deepwater Pipeline Repair Philosophy
- Surface Welding of Mechanical Connectors
- Vertical Connectors / U/M-Shaped Jumpers
- Slip-on Mechanical Connectors (Remote Installation Under Development)

The Major Deepwater Pipeline Repair Systems of the World

Where Have We Been? Where Are We Now? Where Are We Going?

The Major Deepwater Pipeline Repair Systems of the World

Statoil Pipeline Repair System
 Snam/Sonsub Pipeline Repair System
 Stolt MATIS Pipeline Repair System
 Shell Deepwater Pipeline Repair System
 Oceaneering Pipeline Repair System

Statoil Pipeline Repair System

- Origins in 1987
- Covered 1000 km of Pipelines
- Statoil's Statpipe System
- Norske Hydro's Oseburg Transportation
 System
- First System Based on Hyperbaric
 Welding
- Water depth limitation to 1,200 Feet Sea Water

Statoil Pipeline Repair System

1993 Began Development of Deepwater
 Pipeline Repair System

- Design Criteria
- Remote Diverless On-Bottom Repair
- Morgrip Mechanical Connector
- Strong As Original Pipeline
- Design Life of 50 Years
- 20" Pipelines or Less

Statoil Pipeline Repair System

Morgrip Mechanical Connector

Statoil Pipeline Repair System

 1996 Haltenpipe Mid-Line Tie-In During Pipeline Construction Using Statoil PRS
 First Remote On-Bottom Tie-In Performed Using Mechanical Connectors

16" Pipeline in 460 Feet Sea Water

MMS Statoil Pipeline Repair System

Statoil Pipeline Repair System

 Current Participants Include Statoil, Norske Hydro, and Phillips Petroleum Co.

- Total of 7000 km of pipeline covered
- 42" Diverless Repair System Under Development

Statoil Pipeline Repair System

Current PipelineSystems Coveredby PRS

Statoil Pipeline Repair System

42" Morgrip Connector

Statoil Pipeline Repair System

- Current PRS Components
- 2 Hyperbaric Welding Habitats
- 6 Pairs of H-Frames
- 2 Morgrip Installation Modules
- One High Pressure Abrasive water jet system used for pipe cutting, concrete removal, and corrosion coating removal

Statoil Pipeline Repair System

- Limitations for Gulf of Mexico Applications
- Large and Heavy System Requires
 Large Heavy Lift Vessel to Deploy
- All equipment is located in the North Sea Area

Statoil Pipeline Repair System

Large 70 Ton H-Frame Can Handle Up to 48" Concrete Coated Pipe

Origins in late 1970's by Sonsub
Snam Trans-Mediterranean Pipelines
2000 Feet Sea Water Max. Depth
Pre-Dated "Work Class" ROVs
Used 14 Autonomous Modules
Diameter Specific to the 20" Pipelines

1993–Sonsub AROWS Revolutionary Repair Philosophy ◆20" and 26" Trans-Med Pipelines Based on Work Class ROVs Simpler ROV Operated Tools System Designed around the X-Loc Connector

X-Loc Telescoping Spool Piece

Pipeline Handling H-Frame

- ♦1998 D.S.R.S./A.R.CO.S.
- Combined New Snam Cold Forging / Collet Connection System with Sonsub D.S.R.S.
- The Latest Stand-By System for the 20"/26" Trans-Mediterranean Pipelines

Telescoping Spool Piece with Snam Connection System

 1997-BP Foinaven Project-North Atlantic (West of Shetlands)

- Diverless Flange Tie-In System
- 8" and 10" Pipelines
- 1,500 Feet Sea Water

BRUTUS

MMS Snam/Sonsub Deepwater Pipeline Repair System BRUTUS – Bolt Insertion and Tensioning Tool and Nut Magazine

MMS Snam/Sonsub Deepwater Pipeline Repair System BRUTUS Completed Flange Connection

- BRUTUS First Project
- June 2000 North Sea
- Construction Subsea Tie-In
- Statoil Norne/Heidrun Pipeline
- 16" ANSI 1500 Taper-Lok Flange

58

- 1000' Sea Water

MMS Snam/Sonsub Deepwater Pipeline Repair System D.S.R.S. / BRUTUS Integrated System

- Gulf of Mexico Applications
- D.S.R.S. Large and Heavy System
 Requires Large Heavy Lift Vessel to
 Deploy
- BRUTUS More Portable But Requires D.S.R.S. Type Support
- BRUTUS and D.S.R.S. Equipment Are Located In Europe

MMS Stolt MATIS

Components and Procedures Flange Alignment Frame

MMS Stolt MATIS

Components and Procedures

Flange Alignment Tool

MMS Stolt MATIS

- Deep MATIS System is Currently Under Development
- Elf Angola Girassol Project
- June 2000 Sea Trials in North Sea
- November 2000 Girassol Construction
- 82 Diverless Flange Connections
- 4,600' Sea Water

Stolt MATIS

Components and Procedures Deep MATIS Module Under Construction

MMS Stolt MATIS MATIS Support Tools Under Development H-Frames - Leak Detection **Mechanical Pipe Cutter** Concrete Removal - FBE Removal Metrology -- Hydrate Plug Detector Pipe Deburial - Pollution Containment

Stolt MATIS

- MATIS as Repair System
- Easily Adaptable for Existing Diameters
- Deployable from DSV
- Requires Surface Lift of Pipeline Ends
- Multiple MATIS Modules Required for Large Diameter Ranges

Stolt Future Development Goals

Remote On-Bottom Diverless
 Repair with Jumper / Mechanical
 Connectors

BIMS Remote Articulated Connector

Stolt Future Development Goals

- Wet Friction Welding
- Better weld metal characteristics than arc welding
- Not dependent on water depth
- Automated (diverless) process
- Not expected to be perfected for
 - several years

Stolt Future Development Goals

Friction Stitch Welding Process

Stolt Future Development Goals

Friction Stitch Welding Process

Shell Deepwater Pipeline Repair System

The First Comprehensive Pipeline Repair System in the Gulf of Mexico

Shell Deepwater Pipeline Repair System

Deepwater Pipeline Operation in Gulf of Mexico Based on Mileage

- Shell, Equilon, and Coral Gas (Tejas) Developing Repair System
- Goal is to Minimize Down Time to 1
 Month
- Includes
 - Surface Lift OR On-Bottom Repair
- Commissioning
- Uninhibited Flow at Start-Up

Shell Deepwater Pipeline Repair System

Surface Lift Repair Procedure

- Advantages to Surface Lift Repair Procedure
- Allows Welded Male Hubs
- Allows Accessibility to Pipe Bore for Hydrate Plug Remediation
- Proven Procedure

- Disadvantages to Surface Lift Repair Procedure
- Requires Heavy Lift Vessel
- Not Applicable in All Damage Scenarios

Shell Deepwater Pipeline Repair System

On-Bottom Repair

- Eliminates Surface Lift
- Based on grip and seal connectors

- Advantages of On-Bottom Repair
 - Heavy Lift Vessel Not Required
- Serves as contingency if Surface Lift is Not Possible

- Procedure Not Proven
- No Accessibility to the Pipe Bore
- Mechanical Seal Reliability

Shell Deepwater Pipeline Repair System

Philosophy:

- System Based on Proven Technology
- All Components Adapted from Existing Products and Equipment
- Covers Sizes: 12", 14", 16", 18", 20"

- Summary of Major Components:
 - Mechanical Connectors (Collet, Grip & Seal) HydroTech
- H-Frames HydroTech
- Diamond Wire Pipe Cutter Sonsub
- Concrete and FBE Removal Tool Sonsub
- Hydrate Detection Tool Oceaneering
- Discharge Containment Tent Oceaneering
- Taut Wire Metrology Oceaneering
- Acoustic Metrology Leased from Fugro/Chance

Shell Deepwater Pipeline Repair System

- Additional Requirements
- Agreements with Contractors and Service
 Companies for Repair Emergencies
- Repair Manual

Shell Deepwater Pipeline Repair System

- System Limitations
- Steel Catenary Risers
- Pipe-In-Pipe Systems
- MAOP > 6,000 PSIG

Shell Deepwater Pipeline Repair System

Status:

- System Ready by August 2000
- Soliciting Participation from Other Deepwater Operators
- Draft Participation Agreement Prepared in a DeepStar
 Committee Base on R.U.P.E. Model

Oceaneering Deepwater Pipeline Repair System

- Based on WASP Atmospheric Diving System
- On-Bottom Repair Capabilities to 2,300' Sea Water

86

Up to 14" Pipelines

Oceaneering Deepwater Pipeline Repair System

- Oceaneering Pipeline Repair Tools
- WASP ADS Rated to 2,300' Sea Water
- ROVs
- Smart Flange Plus Connector
 - Hydraulic Smart Connector
- WACHS Guillotine Saw
- PMT Taut Wire Metrology

Oceaneering Deepwater Pipeline Repair System

WASP Atmospheric Diving System

Oceaneering Deepwater Pipeline Repair System

Smart Flange Plus Connector

Oceaneering Deepwater Pipeline Repair System

Hydraulic Smart Connector

Oceaneering Deepwater Pipeline Repair System

WACHS Guillotine Saw

Oceaneering Deepwater Pipeline Repair System

- First Deepwater On-Bottom Pipeline Repair in Gulf of Mexico
- Mariner 4" Dulcimer Flowline Repair

Oceaneering Deepwater Pipeline Repair System

- Mariner 4" Dulcimer Flowline Repair
- Summer 1999
- 1,100 Feet Sea Water
- WASP Installed Smart Flanges
- Performed off of 243' MSV

Oceaneering Deepwater Pipeline Repair System

- Mariner 8" Pluto Repair
- October 1999
- Leaking Weld Found During Hydrotest
- Surface Lift by the Pipeline Lay Vessel
- 2,150 Feet Sea Water
- ANSI Flange Make Up On-Bottom Using WASP

Oceaneering Deepwater Pipeline Repair System

Reflange A-Con Variable Alignment Connector

Oceaneering Deepwater Pipeline Repair System

Diverless Hot Tap

- Williams Field Services JIP
- Oceaneering, HydroTech, T.D. Williamson

Conclusions

Deepwater Pipeline Repair Systems Are Available to the Gulf of Mexico

- The First Comprehensive System Will Be Available to the GOM by August 2000
- Pipeline Repair Scenarios have been Reduced from 8 months to 1 month

Assessment and Analysis of Deepwater Pipeline Repair in the Gulf of Mexico

Sponsored by: United States Department of the Interior Minerals Management Service

Presented by:

Project Consulting Services, Inc.

