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Executive Summary 

This research investigation focused upon the development of a new approach to 
interpret complex hydrodynamic phenomena using data from experimental studies or 
field measurements.  A promising system identification technique was further developed 
to address nonlinear and frequency dependent aspects common to marine riser and ocean 
platform dynamics.  The sequential development of analytical formulations and the use of 
computer simulations and model basin experiments are documented herein and in 
archival refereed publications. 

Initially, a distributed parameter formulation incorporating the reverse system 
identification technique for multiple input/ single output nonlinear problems was 
investigated.  This combined time/frequency domain method was used to illustrate the 
propagation of various types of hydrodynamic nonlinearities along the length of a marine 
riser.  The marine riser response model introduced the combined method of normal 
modes and system identification procedures.  Numerical simulations using this new 
approach demonstrated that the parameters of interest were convergent for each of the 
modes that were included.  Further, the sensitivity of this methodology to predict the 
selected parameters over a range of frequencies and the degree of variation that could be 
expected under ideal simulation conditions, and the propagation of nonlinearities along a 
riser were illustrated. 

The further development of this time/frequency domain system identification 
technique addressed the precise evaluation of the frequency dependence of parameters 
such as added mass, stiffness and damping, as well as the use of fully correlated signals 
in the process of parameter estimation.  Although some multiple riser data was available, 
it was not suitable for this aspect of the study and a recent series of rigid and compliant 
mini-TLP model tests was used.  Practical issues regarding the application of this 
approach, the utilization of force and moment measurements, the over specification of 
non-linearities in a predictive model and the ordering of non-linear contributions by their 
importance were addressed.  In general the results demonstrate that the methodology is 
quite robust and yields predictions that are most accurate for the parameters associated 
with the largest motions of the ocean system being investigated.  At this point the 
methodology is sufficiently developed to where it can be applied to investigate a wide 
range of marine riser, ocean structures and floating platform systems. 
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1.  Introduction 
The design of deepwater marine riser systems and compliant offshore structures 

requires engineers to address many difficult challenges which include defining and 

modeling the local offshore environment, specifying the associated combined global 

loading on innovative platform designs, and numerical simulation and model test 

verification of the platform response characteristics.  The focus of this research 

investigation is the recovery of key parameters from time series measured during an 

industry type model basin test program using new model developments incorporating the 

reverse multiple input/single output (R-MI/SO) technique. 

The reverse multiple input/single output (R-MI/SO) technique as originally 

developed by Bendat (1990,1993) and Bendat, Coppolino and Palo (1995) is a frequency 

domain system identification technique that is suited to address a wide range of problems 

in science and engineering.  The methodology, which is intended to extract information 

about the system parameters directly from recorded time series, requires measurement of 

the excitation (cause) and the corresponding response data (effect).  In the formulation 

the causality is reversed, meaning that the system kinematics (displacements, velocities, 

etc…) that are typically the output due to the applied loading inputs (forces and 

moments) are switched, that is the outputs become the inputs and vice versa.  A 

conditioning procedure is then applied to successively eliminate the linear contents 

between the inputs and the output.  In more complex systems, these operations 

decompose the nonlinear system into a number of linear sub-systems.  The auto- and 

cross-spectra are used to obtain the linear transfer functions of each sub-system, and 

subsequently by examining these transfer functions and the ordinary and cumulative 

coherence functions for each linear and nonlinear term, one can interpret the importance 

and magnitudes of the desired system parameters.  It is worth noting here that should 

additional nonlinear terms be introduced into the problem definition, the procedure will 

yield coefficients whose value is essentially zero and effectively the terms will drop out.  

This method is therefore particularly well suited for the identification of parameters 

appearing in nonlinear second-order differential equations of motion with constant or 

frequency-dependent coefficients, which are commonly encountered in offshore 
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mechanics.  The R-MI/SO method has been applied to single-degree-of freedom models 

of compliant offshore platform (Panneer-Selvam and Bhattacharyya 2001). 

In the sections that follow, the sequential development of the model is presented in a 

compact manner.  Additional details can be found in the archival publications listed in 

Section 5. 

 

2. Marine Risers 
Many engineering problems are best modeled as distributed-parameter systems.  

The governing equations describing the dynamic behavior of these systems require 

derivatives of the response with respect to two or more independent variables, usually 

time and position or angle.  Mathematically describing their behavior leads to either a 

single partial differential equation or to a coupled system of partial differential equations 

with constant coefficients.  The objective of system identification is evaluation of the key 

problem parameters from time series data, based upon the form of the governing equation 

or equations.  Linear and nonlinear system identification is an extensively developed 

subject where very efficient methods combining time and frequency domain methods 

have been developed to extract information about key system parameters from measured 

records of excitation and response data (see for example Imai et al. 1989, Bendat 1990, 

Rice and Fitzpatrick 1991, and Bendat 1998). 

A reverse dynamic nonlinear systems identification technique for multiple-

input/single-output (MI/SO) problems described by means of ordinary differential 

equations was presented by Bendat (1990, 1998).  The power of the remarkable reverse 

MI/SO technique is that a nonlinear system model with feedback can be transformed into 

an equivalent reverse dynamic MI/SO linear model without feedback.  The resulting 

system is then decomposed into a number of linear sub-systems that involve the 

computation of various conditioned (residual) spectral density functions that successively 

eliminate the linear contents between the inputs and the output.  Using this procedure 

typical system parameters including, the mass, stiffness and damping, as well as, the 

coefficients associated with a general nonlinear damping-restoring term can be evaluated 

from the frequency domain results.  Application of this approach to investigate a variety 
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of two-degree of freedom nonlinear systems can be found in the technical book by 

Bendat and Piersol (1992).  Later Bendat and Piersol (1993) pointed out that estimation 

procedures based on frequency response functions for single-input/single-output (SI/SO) 

systems can easily be extended to arbitrary distributed-parameter systems subjected to 

distributed inputs if the system can be described in terms of its normal modes.  In 1998 

Bendat showed how to replace six degree of freedom (DOF) nonlinear models for ocean 

engineering applications with equivalent reverse linear models than can be solved by the 

linear data analysis procedures. 

The parameters of physical systems and engineering problems of interest are 

generally distributed in space, and thus system identification methods must be extended 

to deal with distributed-parameter systems.  Banks and Kunisch (1989) published a 

monograph which summarized their development efforts on parameter identification 

analyses of distributed-parameter systems.  The monograph focus is on approximation 

methods for least squares inverse problems governed by partial differential equations and 

addresses issues of the identifiability and stability of the estimated parameters.  Specific 

results dealing with the approximation and estimation of coefficients in linear elliptic 

equations were presented and discussed. 

Some previous studies have addressed aspects that are connected with the 

approach taken in this study of marine riser dynamics.  Stansby et al. (1992) investigated 

different forms of the extended Morison equation including extra terms such as a Duffing 

type force.  The inclusion of the extra terms in the force was used to address specific 

consideration of vortices rather than the more general view of non-linearities taken in this 

present study.  Jones et al. (1995) indicated that standard decay tests for the evaluation of 

the damping are not readily available for large structures and that the only economical 

approach is to use ambient vibration data.  Based upon similar logic, it seems reasonable 

that the system identification approach presented herein addresses the use of field or 

laboratory excitation of marine risers by ocean wave and currents.  A compliant single 

degree of freedom system was studied by Panneer-Selvam and Bhattacharyya (2001).  

They considered four different data combination scenarios and developed an iterative 

scheme for the identification of the hydrodynamic coefficients in a Morison type 

excitation model and included in their analysis a non-linear stiffness parameter (Duffing 
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coefficient).  Their analysis procedure used reverse MI/SO technique and their findings 

showed that the approach was robust for both weak and strongly nonlinear systems. 

In this study, a production riser for a deepwater structure is considered and 

Bendat's MI/SO reverse identification technique is extended to address distributed-

parameter multi-DOF systems that include general nonlinear damping-restoring terms.  It 

is assumed that the physical properties of the marine riser, e.g. mass, stiffness, etc., are 

constant along the length of the riser.  Thus, the resulting coupled partial differential 

equations involve two independent variables, time and location along the axis.  The 

discretization of the marine riser is carried out with the objective of accurately modeling 

the excitation and obtaining accurate modal responses to compare with data that 

measured displacement at a single elevation in the laboratory tests.  The analysis 

illustrates the use of modal analysis and the nature of the convergence of modal 

parameter estimates for random ocean wave excitation of the marine riser. 

 

2.1  Normal Mode Formulation 
As one begins to think about the range of sources for non-linear behavior that are 

possible, other approaches to modeling the non-linear response behavior need to be 

considered.  The governing partial differential equation for a marine riser has been 

developed and discussed in many technical articles; see for example McIver and Olson 

(1981).  In this study, it is suggested that the nonlinear drag force be treated more 

generally in a form consistent with nonlinear system identification, 

( ) ( ) ( ) ( ) ( )
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In general the notation used throughout this report is consistent with that adopted by 

offshore engineers (see for example Sarpkaya and Isaacson 1981), however, others are 

not and will be defined.  Note that  is the Duffing coefficient and  is the Van der Pol 

coefficient.  The Duffing non-linearity acts as an artificial spring with variable positive 

stiffness, , that increases as the displacement, 

3k 3c

( ) ( )2
3 ,k x v x t ( )txv , , gets larger.  Such a 

spring grows stiffer as the riser differential elements move away from their equilibrium 

position, but it recovers its original value when the segments return to their original 

position.  Thus, high-amplitude excursions should oscillate faster than low-amplitude 

ones and the sinusoidal shapes should be “pinched in” at their peaks.  The Van der Pol 

non-linearity acts as an additional damper. 

In the normal mode approach a transformation to a generalized orthogonal space 

can be accomplished using the eigen properties of the problem, see for example Clough 

and Penzien (1993).  Following this approach the displacement of the riser at any location 

 and time  can be expressed as a linear combination of modes, specifically x t N

( ) ( ) (
1

,
N

i i
i

v x t x P tφ
=

≅ ∑ )  (4) 

where ( )xiφ  and  are the usual mode shape and generalized coordinate for the i( )iP t th 

normal mode.  Similarly it is assumed that the cubic term can be expanded in terms of the 

same mode shapes, ( )xiφ , and the new generalized coordinate ( )iQ t  of the ith normal 

mode 

( ) ( ) (3

1
,

N

i i
i

v x t x Q tφ
=

≅ ∑ )  (5) 

By virtue of the orthogonal properties of the modes, all terms in each of the summations 

vanish except the one term for which i=n.  Consequently the mathematical model for the 

marine riser for each mode, n, can be expressed as, 
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For a pin-pin connected beam or string, the vibration shape of the nth mode can be 

expressed as (Clough and Penzien 1993) 
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⎞
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πφ  (7) 

where L  represents the length of the marine riser.  The corresponding generalized 

expressions are 
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0
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L

n
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 In the reverse dynamic model, ( )nF t  is the mathematical output, and  and 

 are the required inputs to the system.  The two inputs are computed from the 

dynamic response of this nonlinear system, and can be non-Gaussian and correlated to 

some extent.  From knowledge of 

( )nP t

( )tQn

( )nP t , ( )tQn  and ( )nF t , without restrictions on their 
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probability or spectral properties, the TI/SO (Two Inputs/Single Output) linear system can 

be solved using the reverse MI/SO technique to identify the two frequency response 

functions, from which the system parameters can be recovered.  Thus, all that remains in 

the formulation is the development of the frequency domain equations. 

Based on the computation of these three quantities, it is straightforward to 

compute the two frequency response functions ( )nE f  and ( )nF f  

( ) ( ) ( )22 2n n n nE f K f M j f Cπ π= − +  (15) 

( ) (2 )n nF f D j f Vπ= + n  (16) 

 

The generalized stiffness, mass and damping for the nth mode of vibration are given by 

( )( )
0

lim Ren nf
K E

→
= f  (17) 

( )( )
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Re

2
n n

n

K E f
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2
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C

fπ
=  (19) 

( )(Ren n )D F f=  (20) 

( )( )Im
2

n
n

F f
V

fπ
=  (21) 

Recalling Equations (8), (9), (11) and (12), the mass, damping, Duffing and Van der Pol 

terms can be computed from any mode of vibration and the following parameters 

recovered 

2 1, 2,3,...nm M n
L

= ∀ =  (22) 

2 1, 2,3,...nc C n
L

= ∀ =  (23) 
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3
2 1, 2,3,...nk D n
L

= ∀ =  (24) 

3
6 1, 2,3,...nc V n
L

= ∀ =  (25) 

 

On the other hand, the determination and partition of the flexural stiffness and 

tension require the value of the generalized stiffness for at least two different modes of 

vibration. Knowing the generalized stiffness for two different modes of vibration p and q 

and recalling Equation (10), we get a linear system with two equations and two 

unknowns. Solving for the tension and the flexural, or bending, stiffness yields 

 

4 4
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4 4
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4 4
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2.2  Convergence of Identified Parameter Values 
For this example, a marine riser, 873m long, with the properties summarized in 

Table 1 was studied.  The marine riser was assumed to be pin-pined with the top hinge 

positioned 23 m above the still water level and was subject to Gaussian random wave 

excitation.  Linear wave theory was used to generate the wave kinematics in the 

computation of the the wave loads.  The initial spatial discretization of the marine riser 

model was 1 meter and the riser motions were computed at 8192 time steps, which is 

equivalent to a test duration of 27.3 minutes. 

The mass per unit length for the first five modes of vibration identified using the 

reverse system identification model are presented in Figure 1.  Recall that the frequency 

range of interest is 0 to 1 Hz.  This graph illustrates that the marine riser can be thought 
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 Units Specified value 
Riser Length m 873 
Outer radius m 0.7 
Mass per unit length 
(Including added mass) kg/m 912 

Linear viscous drag coefficient Ns/m 120 
Duffing coefficient N/m3 8000 
Van der Pol coefficient Ns/m3 5000 
Tension N 7×106

Bending stiffness Nm2 107

 
Table 1. Particulars for the Marine Riser numerical example. 

 

of as a low pass filter since the estimates of mass per unit length do not cover the white 

noise frequency range in its entirety.  On the other hand, as can be observed in the figure, 

the specified mass (  can be recovered with good accuracy from the 

generalized mass of any mode of vibration.  Moreover, it seems that higher modes tend to 

give a better accuracy over the whole frequency range.  The estimates of the linear 

viscous damping coefficient for the first five modes of vibration are presented in Figure 

2.  It can be observed that the value of the linear viscous damping is recovered with 

acceptable accuracy over the 0 to 0.5 Hz frequency range.  In the 0.5 to 1 Hz frequency 

range, the scattering of the results is perhaps a consequence of the filtering action of this 

marine riser system.  The estimates of the Duffing coefficient for the first five modes of 

vibration are shown in Figure 3.  Again it is observed that the estimates are accurate over 

only a portion for the frequency range of interest (0 - 1 Hz).  This is similar to the case 

for the mass per unit length, and it is concluded that these results reflect the same signs of 

low pass filtering by the marine riser system.  The estimates of the Van der Pol 

coefficient for the first five modes of vibration are shown in Figure 4.  This modal 

coefficient is less well behaved at very small frequencies.  Omitting this range a 

reasonable estimate can be obtained for the coefficient. 

)912 /kg m
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Figure 1. Modal estimates of the mass per unit length obtained using reverse system 

identification. 

 
Figure 2. Modal estimates of the viscous damping coefficient obtained using reverse 

system identification 

 

Figure 3. Modal estimates of the Duffing coefficient obtained using reverse system 
identification. 
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Figure 4. Modal estimates of the Van der Pol coefficient obtained using reverse 
system identification. 

 

2.3  Propagation of Nonlinearities along a Marine Riser 
It is expected that where Gaussian excitation is applied as an input to a linear 

system, here the linear riser model with a linear force model, the output, i.e. response will 

also be Gaussian.  The random sea excitation consisted of a wave train of 117 waves with 

a minimum wave elevation of –8.44m and a maximum wave elevation of 12.53m.  An 

analysis of the wave input indicated that the design seas had a mean of 0.27 m, a variance 

of 11.92 m2, a skewness of 0.303 and a kurtosis of 3.02. 

If one considers the graphs of the distributions shown in Figure 5, some 

interesting behavior is observed that is not obvious from the values of the skewness and 

kurtosis at the various water depths.  In Figure 5a, the linear system behavior can be 

observed in the shape of the distribution, which appears to be Gaussian.  The influence of 

the nonlinearities is also captured in the reduction of the peak values and broadening of 

the response behavior distributions.  In the combined Duffing – Van der Pol model the 

response is dominated by the Duffing non-linearity.  Since the excitation is concentrated 

in the near surface, decaying exponentially for deep water, this combined with the fluid 

damping along the riser will also diminish the response behavior with depth and this 

should be translated into reduced peaks and distribution width.  This is indeed the case 

for the 700m-water depth, and the coalescing of the distribution width leaving only the 

 15



peaks to be modified by the nonlinear models is consistent with one’s intuition about the 

anticipated response behavior.  However, at the 400m water depth the bi-modal behavior 

of the distribution peaks for the Duffing and combined nonlinear models is quite 

interesting as is the continued domination of the response by the combined nonlinear 

Duffing - Van der Pol model. 
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Figure 5. Probability density function profiles at three different depths. 
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3.  More Complex Ocean Systems 
In previous studies of fluid-structure interaction problems (Chung  and Kim 1995, 

Niedzwecki and Liagre 2002), computer-generated numerical data from simulated 

nonlinear systems were used to demonstrate that the R-MI/SO technique provides an 

accurate practical method to identify the dynamic properties of various desired nonlinear 

systems by converting nonlinear models into equivalent linear models.  These studies 

were quite focused and did not take complete advantage of the R-MI/SO technique to 

help identify the best nonlinear integrodifferential equation of motion.  Attention was 

directed at specified constant parameters used to synthesize the systems’ dynamic 

response where the identified system parameters were numerically estimated from the 

spectral mean of the transfer functions over a determined frequency range, such as, the 

response frequency range of the system.  Using a more extended approach, Bhattacharyya 

and Panneer Selvam (2001) applied the R-MI/SO to a synthesized dataset describing the 

response of a large moored floating body to ocean waves, which included frequency 

dependent added-mass and damping coefficients as well as linear and nonlinear mooring 

line stiffness coefficients.  The application of the R-MI/SO method to a two input/single 

output model of the system showed that the recovery of the added-mass coefficient’s 

frequency dependence is feasible and reasonably accurate as long as the linear stiffness 

coefficient is assumed to be constant.  The frequency dependence of the damping 

coefficient was recovered quite accurately. 

 This phase of the study builds upon the R-MI/SO method as presently reported in 

the open literature but develops the methodology to address realistic systems with both 

constant and frequency dependent parameters.  Of particular interest is the identification 

of the frequency dependence of the hydrodynamic added-mass and damping coefficients, 

since these coefficients are essential for understanding of the nonlinear effects 

influencing the dynamic behavior of compliant deepwater offshore structures.  Large-

scale model test data from a recent model test program of a mini-TLP (Faltinsen 1990, 

Narayanan and Yim 1998, Niedzwecki et. al. 2001), is used as the basis to investigate the 

application of the R-MI/SO method.  This model test data was selected since it contains 

data on both the rigidly restrained hull and the corresponding compliant platform under 

identical wave conditions.  This data set was selected for this reason, since it is 
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impractical to measure the forces acting on a compliant structure without affecting its 

motions.  The validity of assuming equivalency of forces and moments is investigated 

and discussed.  The wave forces and moments were measured directly on the rigidly 

restrained hull model using a six degree-of-freedom load cell.  An infrared optical 

tracking system was used to monitor the compliant model response behavior.  Again, 

each model was subjected to the same wave conditions.  The restoring forces due to the 

vertical mooring system, the tendons, also commonly referred to as tethers, and risers 

were post-computed from the time series recordings of the mini-TLP motions. 

 

3.1  Mini-TLP Formulation 

Commonly, the first issue in the implementation of any system identification 

technique is the selection of the governing equation or equations.  The selection of the 

appropriate mathematical model must reflect both physical insight and the known 

mechanical properties of the system.  In the present study, Newton’s second law of 

motion governs the mini-TLP motions and the choice of a nonlinear second-order 

differential equation of motion asserts itself naturally (Newman 1977, Faltinsen 1990).  A 

nonlinear stiffness (Duffing) term as well as a nonlinear damping term is added to this 

equation in order to take into account the nonlinear restoring forces due to the vertical 

mooring system and the hydrodynamic damping due to the wave-structure interactions.  

The system of coupled nonlinear differential equations governing the six degree-of-

freedom (DOF) mini-TLP motions can be expressed in a manner consistent with Bendat 

(1998) as 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )3M A q t B q t K q t R q t D q t q t f t+ + + + + =&& & & &  (28) 

where, M  is the mass matrix, A  is the hydrodynamic added-mass matrix, B  is the linear 

damping matrix, K  is the linear stiffness matrix, R  is a nonlinear Duffing type stiffness 

matrix, and  the nonlinear damping matrix.  The nonlinearity of the horizontal plane 

restoring forces due to the mooring system is accounted for by the cubic term.  This first 

odd nonlinear function captures the change of direction of the restoring forces when 

D
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surge or sway motions change of sign.  The vertical restoring forces are believed to be 

dominated by linear behavior. 

The general kinematic and environmental excitation vectors are defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3 3 3 3

, , , , ,

, , , , ,

, , , , ,

, , , , ,
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T

T

T

x y z x y z

q t x t y t z t t t t

q t x t y t z t t t t

q t q t x t x t y t y t z t z t t t t t t t

f t f t f t f t m t m t m t

φ θ ψ

φ θ ψ

φ φ θ θ ψ ψ

= ⎡ ⎤⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

& & & & & && & & & & & & &
 (29) 

 

For each degree of freedom (Bendat 1998), the components of ,  and ( )q t ( )3q t

( ) ( )q t q t&  are taken as the inputs of the equivalent R-MI/SO model, while the 

component of ( )f t  is taken as the output of the mathematical model.  The platform 

kinematics vector, , encompasses the following translation and rotational 

components: 

( )q t

( )x t the surge motion response (inline), ( )y t  the sway motion (transverse), 

( )z t  the heave motion (vertical), ( )tφ  the roll rotation response about the  axis, x ( )tθ  

the pitch rotation response about the  axis, and y ( )tψ  the yaw rotation response about 

the  axis.  The general excitation vector z ( )f t  contains the following total external 

forces and moments applied on the hull of the compliant mini-TLP: ( )xf t  the inline 

force excitation, ( )yf t  the transverse force excitation, ( )zf t  the vertical force excitation, 

( )xm t  the roll moment excitation, ( )ym t  the pitch moment excitation and  the yaw 

moment excitation. 

( )zm t

The matrices M , A , B , K , R , and  are each D 6 6×  matrices and except for the 

system mass matrix all the other matrices could be considered to be potentially frequency 

dependent.  The platform has two planes of symmetry and the origin of the axes on the 

platform is assumed to coincide with the center of gravity of the platform.  Therefore the 

mass matrix, M, is a diagonal matrix.  The first three entries on the diagonal are equal to 
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the system structural mass, m , and the last three entries are the principal moments of 

inertia about the ,  and  axes, denoted x y z xxI , yyI  and zzI  respectively. 

In each problem being analyzed, each potential source of coupling between the 

degrees of freedom in the mathematical model must be considered and only the most 

significant terms are generally retained for analyses.  A study of an unrestrained ship 

reported by Mulk and Falzarano (1994) concluded that all six-degrees of motion affect 

one another and that one needs to be careful in assessing the importance of the various 

coupling terms.  Unlike free-floating vessels, tension-leg platforms have well defined 

couplings between certain degrees of freedom, due to the platform geometry and vertical 

taut mooring system design.  For the mini-TLP, based upon the geometry and mooring 

system restraints, it could be anticipated that the most significant sources of motion 

coupling include surge/heave, surge/pitch, sway/roll and heave/pitch.  However, through 

further investigation of the model test data it was concluded that the surge/heave and 

heave/pitch coupling terms could be neglected for this particular platform, and only the 

coupling corresponding to the terms associated with the surge/pitch and sway/ roll will be 

included in this study.  More specifically, this will be reflected in the added-mass, linear 

damping and linear stiffness matrices.  For a symmetric platform such as the mini-TLP, 

neglecting the second-order terms will result in the nonlinear stiffness matrix, R , and the 

nonlinear damping matrix, , being diagonal matrices. D

The system of coupled nonlinear differential equations presented in Eq. (28) can 

be rewritten in the following indicial form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
6

3

1
ii i in n in n in n ii i ii i i i

n

m q t a q t b q t k q t r q t d q t q t f t
=

+ + + + + =⎡ ⎤⎣ ⎦∑&& && & & &  (30) 

with .  Upon taking the Fourier transform of both sides of Eq. (30), the 

equivalent mathematical reverse dynamics input/output models are obtained 

1, 2,..., 6i =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
6

1
Linear terms Nonlinear stiffness Nonlinear damping

Linear coupling terms

l c r d
i i n n i i i i i

n
n i

H U H U H V H W Fω ω ω ω ω ω ω ω
=
≠

+ + +∑1442443 1442443 1442443

144424443

ω=  (31) 
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where, , and 1, 2,..., 6i =

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

3

i i

i i

i i i

i i

U q t

V q t

W q t q

F f t

ω

ω

ω

ω

= ℑ⎡ ⎤⎣ ⎦
⎡ ⎤= ℑ⎣ ⎦
⎡ ⎤= ℑ⎣ ⎦

= ℑ⎡ ⎤⎣ ⎦

& & t
 (32) 

 

 In addition, 2 fω π= , is the radian frequency, is the frequency in Hz, and f [ ]ℑ  

indicates a Fourier transform of the quantity in brackets.  The relations between the 

transfer functions, H , and the Fourier transforms of the system parameters are found to 

be of the form 

( ) ( ) ( )( ) ( )2l
i ii ii ii iiH K M A j Bω ω ω ω ω ω= − + +   (33) 

( ) ( ) ( ) ( )2c
n in in inH K A j Bω ω ω ω ω ω= − +   (34) 

( ) ( )r
i iiH Rω ω=  (35) 

( ) ( )d
i iiH Dω ω=  (36) 

The Fourier transforms ( )iiB ω  and ( )inB ω  of the linear damping coefficients  and  

appear by themselves respectively in the imaginary part of the transfer functions 

iib inb

( )l
iH ω  

and ( )c
nH ω .  Likewise, the Fourier transforms ( )iiR ω  and ( )iiD ω  of the nonlinear 

stiffness coefficients  and nonlinear damping coefficients  are found in the real part 

of two different transfer functions

iir iid

( )r
iH ω  and ( )d

iH ω .  This does not cause a problem 

for their evaluation from the transfer functions.  However, the Fourier transforms 

( )iiM ω , ( )iiA ω  and ( )iiK ω , as well as ( )inA ω  and ( )inK ω , of the elements of the 

mass matrix M , the added-mass matrix A  and linear stiffness matrix K  turn up 

respectively in the real parts of the transfer functions ( )l
iH ω  and ( )c

nH ω .  To avoid the 

problem of partitioning the structural system mass, the hydrodynamic added-mass and the 
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linear stiffness terms, the formulation is modified in the following way.  The acceleration 

and displacement signals are used as separate inputs.  Given that the velocity is 

automatically accounted for by the imaginary part of the transfer function associated with 

the displacement, it does not need to be used as an input.  Since the acceleration and 

displacement input signals are highly correlated, i.e. the acceleration is the second 

derivative with respect to time of the displacement; a method was developed to reduce 

the input signals’ correlation before applying the conditioning procedure.  Hence the 

mass appears alone in a dedicated transfer function, while the linear stiffness and linear 

damping appear respectively in the real and imaginary part of the second transfer 

function. 

The most general equivalent mathematical reverse dynamics multiple 

input/multiple output (MI/MO) linear model has twenty-four inputs, the original six 

physical inputs  with its second derivative ( )q t ( )q t&& , plus the six associated  terms 

and the six associated 

( )3q t

( ) ( )q t q t& &  terms, and six outputs, the original three physical forces 

and the three physical moments.  Whenever possible, it is always preferable to split the 

MI/MO model into a series of MI/SO models since the conditioning procedure of a large 

number of inputs and outputs (Sridhar, Mulder, van Staveren 1994) can introduce 

significant computational errors.  In the present case, MI/SO models can be employed 

because the coupling between motions is principally due to the mechanical properties of 

the mooring system of the mini-TLP.  These effects are included in the general excitation 

vector, ( )f t .  As mentioned earlier, it is preferable to consider the displacement and 

acceleration components as two different inputs so that there is no ambiguity in the 

determination of the mass and stiffness coefficients.  Indeed, if only the displacements 

( )q t  are used as inputs to represent the linear part of the system, the mass and stiffness 

terms both appear in the real part of the same transfer function, which makes them 

impossible to discern.  Utilizing the symmetry conditions of the mini-TLP and the 

assumption that only surge/pitch and sway/roll are the most important coupling effects, 

the 24-input/6-output MI/MO linear model can be recast as six MI/SO models, where 

each of these models requires either four (in the case of heave and yaw motions) or five 

(all the other modes of motion) different frequency response functions. 
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If the measured inputs are not correlated to each other, the contribution of each 

input to the output can be obtained from the frequency response and ordinary coherence 

functions between the various inputs and the output.  On the other hand, if the measured 

inputs are partially correlated, a new set of uncorrelated inputs must be obtained by 

conditioning the inputs before calculating the contribution of each input.  To ensure that 

the conditioning analysis is successful, correct priorities of the correlated inputs must be 

determined somehow before conditioning.  One reasonable approach is to put the 

correlated inputs in the order of their magnitude based upon the integral of the original 

coherence functions over a specified frequency range of interest.  The reader is referred 

to Liagre and Niedzwecki (2003) for additional details. 

 

3.2  Mini-TLP Model Test Particulars 

The mini-TLP was designed as an unmanned deepwater compliant platform for 

use off of West Africa (Teigen and Niedzwecki 1998).  In order to accommodate testing 

in a wider range of sea states the hull deck elevation was increased by 5 m by increasing 

the vertical column heights..  Thus, the dynamic behavior is somewhat different than the 

original design and the sea states reported are somewhat different.  The mini-TLP hull 

consists of four vertical columns connected by four submerged rectangular pontoons.  

The experiments were conducted using the 1:40 scale model.  All the results presented 

herein are reported at prototype scale.  Both the rigidly constrained and compliant model 

tests were run with head and quartering sea platform orientations and the identical ocean 

wave simulations.  For the rigidly constrained model tests, the mini-TLP hull was not 

fitted with either tethers or risers.  The six degree-of-freedom load cell was bolted to the 

model deck and to the access bridge.  The load cell was carefully selected to provide 

adequate stiffness so that the vibrations were minimized at the testing frequency.  The 

access bridge, which also can be used as a towing carriage, was lifted off its wheels and 

supported on blocks, and stiffened by installing adjustable bracing connected between the 

bridge structure and the model basin walls.  In an earlier set of tests, involving a truncated 

cylinder whose displaced mass was almost equivalent to that of the mini-TLP model, the 

dynamic amplification due to the load cell flexibility and system damping were 
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evaluated.  It was concluded that the inertial forces were negligible and that all the values 

in the cross-talk matrix of this instrument are less than five percent.  Based upon 

evaluations from other earlier tests with the compliant model, the mini-TLP was installed 

using an equivalent four-tethers/four riser system instead of the eight-tethers/twelve risers 

in the original design.  The three restoring force components due to the tethers and risers 

at the connection points on the platform are computed using the top tensions and mini-

TLP motions measured during the compliant model tests.  The total restoring forces and 

moments are computed at the center of gravity of the platform and combined with the 

wave loads measured during the rigidly restrained hull tests to produce the components of 

the general excitation vector, ( )f t . 

The test program included a static offset test to demonstrate the stiffness behavior 

of the mooring system designed for the experiments.  The results of this test indicated 

that the as-built system had been accurately scaled and provided restoring forces that 

were in accordance with the prototype specifications.  Free-decay tests to determine 

natural periods and damping factors were also performed.  The mini-TLP was tested in 

specific design storm environments, as well as several unanticipated storm environments 

for academic purposes.  In the present study, only the data recorded during the 

simulations of the West Africa (JONSWAP spectrum with 4 m, 16s and =2s pH T γ= = ) 

and Gulf of Mexico (JONSWAP spectrum with 13.1m, 14s and =2s pH T γ= = ) storms 

with the platform in head seas configuration will be used.  The tests were recorded for 

1707 seconds (three hours prototype scale) at a sampling frequency of 40 Hz (6.32 Hz 

prototype scale) and filtered with a hardware low pass filter at 10 Hz (1.58 Hz model 

scale).  This resulted in records containing 68280 data points in each time series. 

 

3.3  Non-linear Frequency Dependent Behavior 

The introduction of partial and cumulative coherence functions to guide the 

selection and rank the importance of various non-linear terms is an important aspect of 

this methodology.  An example is presented in Figure 6, where the suggested terms in the 
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equations of motion have been rank ordered and their contribution over the selected 

frequency range illustrated. 

The behavior of the hydrodynamic added-mass and damping coefficients as a 

function of frequency was simulated for the mini-TLP using an industry standard 

radiation-diffraction software package (WAMIT 2002).  The resulting numerical 

predictions were used in evaluating the accuracy of some of the key problem parameters.  

Examples of the frequency dependence of the system added mass and damping are 

presented in Figures 7 and 8.  In general the results demonstrate that the methodology as 

modified in this study is quite robust and yields predictions that are most accurate for the 

parameters associated with the largest motions of the platform.  Practical issues regarding 

the application of this system identification approach including the utilization of both 

force and moment measurements and observed strengths and weaknesses in dealing with 

data regardless of its source must be carefully considered in applying this methodology. 
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Figure 6. Cumulative coherence functions for the R-MI/SO model using the inline 

force, ( )xf t , as output. 

 

The identified coupled surge/pitch added-mass, , is presented in Figure 7.  The 

R-MI/SO model results and numerical predictions have surprisingly comparable trends 

15a
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throughout the whole frequency range, and within the frequency range of interest, the two 

evaluations have the same order of magnitude. 
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Figure 7. Comparison of the frequency-dependent coupled surge/pitch added-mass, 

. 15a

 

The identified surge linear damping, , and the numerical predictions are 

presented in Figure 8.  In this case the agreement between the two procedures is excellent 

in the [

11b

]0.04Hz,0.11Hz  frequency range where the largest amount of energy is 

dissipated by the system through its surge motion.  The surge linear damping coefficient 

computed using the damping ratio was equal to , as reported by Liagre and 

Niedzwecki (2003).  This value is greater than the results obtained using system 

identification, but nonetheless of the same order of magnitude. 

69.75 10 kg/s×
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Figure 8.  Comparison of the frequency-dependent surge linear damping 

 
 

The identified linear stiffness, , is presented in Figure 9.  The linear stiffness 

identified at frequencies close to 0 Hz agrees very well with the result of the offset test 

performed in calm water where the linear trend line for the specified stiffness to surge 

offset had a slope of .  In the present case, the identified parameter is not 

constant but displays a well-defined pattern: the linear stiffness increases in a seemingly 

linear manner as the frequency increases up to 0.15 Hz.  Using a linear fit over that 

frequency range, the proportionality constant was estimated to be .  The 

most likely physical explanation of this phenomenon is that wave frequency motions 

have effects on a shorter length of tethers than slow-drift motions.   At low frequencies, 

the tethers respond linearly from their anchors to their connections on the platform hull, 

and at higher frequencies the transverse drag force on the tethers keeps them relatively 

straight over most of the water column, while only the upper portion of the tethers moves.  

The decreased length of the tethers freely moving contributes to a virtual increase of the 

linear surge stiffness. 

11k

44.2 10 N/m×

51.85 10 Ns/m×
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Figure 9.  Comparison of the frequency-dependent surge linear stiffness. 

 

In order to identify the pitch moment of inertia, yyI , and pitch added-mass, , 

the R-MI/SO model of which the output is the pitch moment excitation, , is 

considered.  The identified moment of inertia 

55a

( )ym t

yyI  and pitch added-mass, , are 

presented in Figure 10.  The first parameter is identified using the R-MI/SO model 

relative to , the pitch angular moment.  The value of the identified parameter 

averaged over the frequency range is roughly equal to the pitch moment of inertia 

, which can easily be obtained from the known pitch radius of 

gyration and structural mass.  The pitch added-mass, , is not recovered by this 

methodology.  This is probably a confirmation that the platform is designed for small 

pitch rotations.  For a severe wave environment produced in a 100-year Gulf of Mexico 

storm the mini-TLP exhibited pitch rotations between -2.8° and 2.9°, with a standard 

deviation of 0.4°.  Another possible reason for the inability to correctly identify the sum 

of both parameters could be that the standard deviation of the measured pitch was not 

much greater than the accuracy of the pitch measurement.  This is not totally unexpected 

as the platform was designed so that the pitching motion would be very small.  

55a

( )ym t

93.035 10 kg myyI = × × 2

55a
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Figure 10. Comparison of the pitch moment of inertia, yyI , and the frequency-

dependent pitch added-mass, . 55a

 
The identified nonlinear damping, , is presented in Figure 11.  The polynomial 

fit of the values of high coherence indicates a clear frequency dependence of the 

nonlinear damping.  This result at first seems to contradict the hypothesis made in a 

recent research study by Holappa and Falzarano (1999), which still constituted a 

significant advancement by proving the importance of the frequency dependence of the 

added-mass and damping coefficients in the simulation of nonlinear ship rolling.  Indeed, 

in order to compare their extended state space model with full-scale experimental data, an 

additional nonlinear damping term had to be added to the wave damping.  Since 

nonlinear terms cannot be included in extended state space approximations due to 

linearity requirement of the model, the nonlinear term was merely assumed to be constant 

over the frequency range.  In this study, the application of the R-MI/SO method makes no 

restrictive assumption about the parameters and the frequency dependence of the 

nonlinear damping is illustrated. 

11d
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Figure 11. Frequency-dependent surge nonlinear damping, . 11d

 

4.  Closing Remarks 
The study, in addressing the marine riser problem, provides a sense of the difficulty in 

analyzing practical distributed-parameter systems.  There are several interesting 

implications for laboratory and field measurement programs of risers.  In particular, using 

the system identification on the measured data regardless of the source will require one to 

choose a finite number of the most important parameters to be investigated.  Assumptions 

regarding the wave field, the wave force excitation model and its coefficients, and the 

riser system are required to resolve the parameters as was demonstrated in this study.  At 

about mid-water depth, when the excitation is provided only by surface wave phenomena, 

the nature of the distribution of the response may be characterized prior to numerical 

analysis, and this interpretation of the data may provide an indication of the nature of the 

non-linearity that dominates the response behavior.  The determination of the magnitude 

of the nonlinear coefficients requires use of the procedures presented herein. 

The basic concept and objective of this system identification approach to marine 

risers is presented in Figure 12.  To the left of that figure, there are three boxes that 

basically define the problem, the geometric riser specifications, the hydrodynamic force 

transfer coefficients and the actual measurements.  There are differing levels of modeling 
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that can be associated with the system identification method.  This is important because 

not all models need be exceedingly complex.  Once a determination is made, the 

governing equations are selected in a consistent manner and the system identification 

method can proceed with the objective to obtain the values and behavior of the design 

parameters of interest. 

 

 

GoverningGeometric Riser 
specifications 

 
 

Figure 12. The basic concept and objective of using system identification methods. 

 

 

In this research study, the R-MI/SO technique was used in combination with the 

dynamic response model for a compliant offshore structure with the objective to identify 

selected system parameters from measured excitation and response data.  The 

environmental excitation was limited to only waves with the expectation that the system 

would behave as a weakly nonlinear system.  The form of the mathematical model is 

initially built upon the known mechanical properties of the system.  Next, by means of 

the computation of the original coherence functions between each potential input and the 

output, the most relevant inputs are selected and retained for the identification of the 
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related parameters.  The comparison of the inputs’ original coherence functions within a 

specified frequency range is used for the sorting of the inputs before applying the 

conditioning procedure leading to the transfer functions, from which the system 

frequency dependent characteristics and model parameters are retrieved.  The 

completeness of the model is achieved by monitoring the increase of the cumulative 

coherence functions and the decrease of the extraneous noise spectrum over the 

frequency range of interest when additional terms are included.  In the case of the mini-

TLP, the dynamic response model takes into account the most important mode couplings 

as well as Duffing type stiffness and quadratic damping nonlinearities. 

 

 The results obtained confirm the correctness of the model and demonstrate a 

strong consistency for the model related to surge motions, which is the predominant 

mode of motion of tension leg platforms in uni-directional sea states.  The identified 

value of all the parameters included herein is satisfactory for the specific range of 

parameters considered and the conditions in which the input and output signals to the R-

MI/SO model were recorded.  The value of parameters such as the heave linear stiffness 

recovered via spectral averaging of the respective transfer function compares favorably to 

the known constant value.  The identification of frequency dependent parameters, such as 

the surge and surge/pitch added-mass or the surge linear damping coefficient, proved to 

be quite accurate and in good agreement around the excitation peak frequency with the 

numerical predictions obtained using WAMIT.  The identified value of the heave linear 

stiffness proved to be correct for the static case and interestingly exhibited a linear trend 

increasing as a function of frequency.  This would not have been picked up without the 

implementation of a process to ensure the partition of the parameters.  The recovery of 

the nonlinear stiffness coefficient showed that no significant error is introduced by 

including additional linear or nonlinear terms which contribution is negligible since the 

identified value of the term is approximately zero.  Conversely, if one does not include 

sufficient terms the cumulative coherence functions will provide some guidance in 

choosing correctly the additional terms.  It was reasoned for this study that the cause why 

some parameters were poorly recovered is that the particular design of the mini-TLP 

minimizes the motions related to these parameters, therefore making the identification 
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process somewhat difficult.  Apparently, this finding is consistent with system 

identification techniques in general and it is only a minor shortcoming as only the 

parameters associated with the largest motions are usually of real interest.  In the case of 

the mini-TLP, the pitching motions were by design quite small as verified by the 

experiments.    Although the pitching motions are quite small they nevertheless are quite 

important and contribute along with the other rigid body modes to the dynamic tendon 

tensions.  Thus, this practical consideration suggests the inclusion of the tendon dynamics 

in the original formulation or as a coupled subset needs to be incorporated into the 

analysis procedures.  

 

Of course, great caution must be exercised in generalizing these results beyond 

what has been done.  Parameter evaluation is likely to be strongly influenced by the 

spectral characteristics of the loads used for excitation of the system.  Perhaps the results 

could be improved if a band-limited white noise was used to persistently excite the 

system in the laboratory.  However, using band-limited white noise excitation for the 

purpose of system identification is a debatable issue when dealing with real engineering 

applications, in view of the fact that only data due to environmental excitation can be 

collected in the field.  Furthermore, improvements would also be significant if the 

kinematics and loads were measured during the same tests.  Bearing this in mind and the 

fact that measured experimental data were used, for many of the variables a reasonable 

level of agreement was obtained for the identified variables over the frequency range of 

interest.  Based upon the results obtained in this study it is apparent that the nearly perfect 

agreement for numerically simulated data as shown in other research investigations, for 

example see Spanos and Lu (1995), should not be expected when analyzing measured 

data. 

 

Broadly speaking, this research study shows that no parameter can be assumed 

constant unless its identified value follows a horizontal line over a certain frequency 

range.  The R-MI/SO technique is a very powerful tool for identification of frequency 

dependent parameters in complex offshore engineering systems.  As long as the system 

studied can be reasonably modeled by means of a nonlinear differential equation, the R-
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MI/SO technique is preferable but can be used in conjunction with Volterra methods that 

require large amounts of data, which are not generally available in most measurement 

programs (Sibetheros and Niedzwecki 2003, 2004).  Although the application of this 

procedure to ships and other offshore platforms is straightforward, one can expect to 

observe unexpected results and this study provides some insight as to how one might 

approach the solutions. 
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