

DET NORSKE VERITAS TECHNICAL REPORT

BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT

FINAL REPORT

ON

COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

TA&R No. 677

This study was funded by the Bureau of Ocean Energy Management, Regulation, and Enforcement, U.S. Department of the Interior, Washington, D.C., under Contract Number M10PC00108.

REPORT NO. EP034373-2011-01

REVISION NO. 1

Disclaimer

This report has been reviewed by the BOEMRE and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of the trade names or commercial products constitute endorsement or recommendation for use.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Project No.: EP034373	
Organisational unit: Houston Approval Center	DET NORSKE VERTAS (USA) I 1400 Ravello Katy, Texas774 Tel: + 1 281 396-10
Client ref.: Lisa A. Algarin, CO Timothy J. Steffek, COR	Fax: + 1 281 396-1900 http://www.dnv.com
	Project No.: EP034373 Organisational unit: Houston Approval Center Client ref.: Lisa A. Algarin, CO Timothy J. Steffek, COR

The Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) contracted DNV to perform a state-of-the-art comparison of API, ISO, and NORSOK existing offshore structural standards. The comparison identifies the differences and attempts to explore the reasons and if possible recommends areas of improvement with application to the US Gulf of Mexico and the West Coast offshore areas.

The study showed that even though there may be significant differences in the adopted design approach being Working Stress Design (WSD) or Load and Resistance Factor Design/Limit State Design (LRFD/LSD) and the regional design criteria, the formulations for calculating member and joint or plate/shell stresses are similar in all three standards.

It is recommended that further efforts be directed towards the harmonization of the standards. A significant step has been the recent collaboration between API and ISO and to a certain degree NORSOK to adopt a common approach to the development of future offshore structural standards, It appears that the LRFD/LSD methodology will eventually prevail and be applied to future GOM and West Coast offshore fixed and floating structures as it had for Atlantic and Arctic regions.

The limited case studies performed using a GOM fixed platform and a spar deepwater floating structure indicate that design environmental criteria are based on similar reliability analyses and definition of probability of failure. Jacket member utilization comparison indicates that both ISO and NORSOK give significantly more conservative formulation for members with cone transitions compared to API. Member and joint utilizations were noted to vary by up to 53% for members and 29% for joints. No one standard was found to be always more conservative than the other two. A single GOM spar case study showed that the ISO/NORSOK LRFD approach gives yield and buckling utilizations that are within about $\pm 10\%$. Further investigations are recommended for more in-depth evaluation to reach more general conclusions.

Report No.: EP034373-2011-01	Subject Offsho	Group: re	Inde	xing terms
Report title: Comparison of API, ISO, and NORSOK Offshore Structural Standards		Stru Offs	ctural Standards Comparison hore Fixed and Floating Structures	
Work carried out by: Liqun Yang, Michal Moczu Gign Gng With varified by	lski, Knut Ar	nesen Kud Amer	1	No distribution without permission from the client or responsible organisational unit, i.e. free distribution
G. Abdel Ghoniem (TA&R Lotsberg, and Gunnar Solla	Principal Inv	estigator), Inge~		Strictly confidential
Date of this revision: Re 2012-01-12 1	ev. No:	Number of pages: 207	\boxtimes	Unrestricted distribution

DNV Reg. No.: EP034373-2011-01 Revision No.: 1 Date : 2012-01-12 BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Table of Contents Page EXECUTIVE SUMMARY1 1 1.1 Background 2 1.2 2 Objective 1.3 Codes and Standards 2 1.4 **Design Philosophy** 4 1.5 **Report Organization** 6 2 ENVIRONMENTAL CRITERIA AND LOADING CONDITIONS7 2.1 **Environmental** Criteria 7 2.2 Loading Conditions - API 8 2.2.1 API RP 2A and 2INT-MET, 2INT-DG, and 2INT-EX 8 2.2.2 API RP 2T 11 2.2.3 API RP 2FPS 14 2.3 Loading Conditions - ISO 15 2.3.1 ISO 19900 - General Requirements 15 2.3.2 ISO 19902 - Fixed Steel Offshore Structures 15 2.3.3 ISO 19904-1 Floating Offshore Structures - Part 1: Monohulls, 20 Semi-submersibles and Spars 2.4 Loading Conditions - NORSOK 23 2.4.1 N-003 - Action and Action Effects 23 2.4.2 N-001 - Integrity of offshore Structures 24 2.5 Summary of Environmental Criteria and Loading Comparison 25 3 3.1 **Tubular Members** 34 3.2 **Tubular** Joints 37 3.3 Code Comparison Summary 37 4 4.1 General 46 4.2 Code Validity 46 4.3 **Fatigue Parameter** 47

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

4.3.1	Loading	47
4.3.2	Stress Concentration Factor	47
4.3.3	S-N Curve	47
4.3.4	Fatigue Damage Accumulation	48 49
4.4	Fatigue Analysis Methods	49
4.4.1	Simplified Fatigue	49
4.4.2	Detailed Fatigue	50
4.4.3	Fracture Mechanics	50
4.5	Welding Improvement Techniques	50
4.6	Summary of Fatigue Comparison	50
5 F	OUNDATION DESIGN	58
5.1	Comparison of Safety Format and Safety Level	58
5.1.1	API-RP 2A WSD:	59
5.1.2	ISO 19902:2007:	59
5.1.3	NORSOK:	59
5.2	Axial Pile Capacity – Methods of Calculation	62
5.3	Pile Structure Interaction and Definition of Pile Failure	62
5.4	Summary	63
6 I	N-SERVICE INSPECTION AND MAINTENANCE	65
6.1	API 2A, 2T, and 2FPS	65
6.2	ISO 19902 and 19904-1	66
6.3	NORSOK N-005	67
6.4	Summary	68
7 A	SSESSMENT OF EXISTING PLATFORMS AND FLOATERS	72
7.1	General	72
7.2	API RP 2A and Bulletin 2INT-EX	74
7.3	ISO 19902 (2007)	78
7.4	NORSOK N-006	80
7.5	Summary of Assessment of Existing Platforms Comparison	82
8 F	IRE, BLAST, AND ACCIDENTAL LOADINGS	91
8.1	General	91

8.2	Assessment Process	91
8.2.1	API RP 2A	91
8.2.2	ISO 19902	93
8.2.3	NORSOK	93
8.3	Ship Collisions	94
8.4	Dropped Objects	95
8.5	Fire and Blast	96
8.6	Summary of Accidental Loadings Comparison	99
9 II	NSTALLATION AND TEMPORARY CONDITIONS	104
9.1	General	104
9.2	Lifting	104
9.2.1	Dynamic Effects	104
9.2.2	Effect of Fabrication Tolerance	105
9.2.3	Allowable Stresses and Action Factors	105
9.2.4	Slings, Shackles and Fittings	106
9.3	Loadout	107
9.4	Transportation	107
9.5	Launching and Uprighting Forces	107
9.6	On-bottom Stability	108
9.7	Summary of Installation and Temporay Conditions Comparision	108
10 S	EISMIC DESIGN GUIDELINES	112
10.1	General	112
10.2	Design Guidelines Comparison	112
10.2.1	Terminology	112
10.2.2	Seismic Risk Maps	112
10.2.3	Seismic Zones	112
10.2.4	Foundation Soil Types	113
10.2.5	Earthquake Response Spectrum	114
10.2.6	Earthquake Directional Loads	114
10.2.7	Earthquake Directional Combination	115
10.2.8	Time History Analysis	115
10.2.9	Structural Components - Tubular D/t Ratio	115
10.2.10	Pile Axial Capacity Requirements	115
10.3	Seismic Design Comparison	116

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

10.3.1	Two Level check	116
10.3.2	Action Combinations	116
10.3.2	Seismic Design Procedures	117
10.3.4	Seismic Analysis Methods	123
10.4	Summary of Seismic Design Guideline Comparison	120
10.4	Summary of Seismie Design Guideline Comparison	127
11 C	ASE STUDIES	
11.1	Fixed Platform	128
11.1.1	Introduction	128
11.1.2	Analysis Methodology	128
11.1.3	Boundary conditions	130
11.1.4	Loads and Load Combinations	131
11.1.5	Results	133
11.2	Floater - SPAR	140
11.2.1	Introduction	140
11.2.2	Analysis Methodology	141
11.2.3	Results	147
11.3	Summary	151
12 C	ONCLUSIONS AND RECOMMENDATIONS	152
13 R	EFERENCES	156
APPEN	NDIX A: MATHCAD UNITY CHECK SHEETS	158
A.1 MA	ATHCAD - API RP 2A	159
A.2 MA	ATHCAD – ISO 19902	173
A.3 MA	ATHCAD – NORSOK N004	189

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

List of Figures

List of Tables

Table 1-1: Main Design Codes	3
Table 2-1 Central Zone Hurricane and Environmental Conditions	10
Table 2-2 API RP 2T Load Definition - Description	12
Table 2-3 API RP 2T Load Conditions	13
Table 2-4 API RP 2T Environnemental Parameters	14
Table 2-5 Partial Factors	19
Table 2-6 Extreme and Abnormal Conditions	20
Table 2-7 Action Combinations - LSD	21
Table 2-8 Action Combinations - WSD	22
Table 2-9 Action Combinations Annual Probabilities	24
Table 2-10 Action Combinations – Limit States	25
Table 2-11 Comparison Table – Environmental Criteria and Loading Conditions	27
Table 2-12 Annual P _f in API Sec. 17 and NORSOK for unmanned and manned platforms	31
Table 2-13 ISO 19906 Reliability Targets for ULS and ALS	31

Table 2-14 DNV Classification Notes 30 6 (1992) Annual Pf and Taraet Reliability Indices	31
Table 2-15 Guidelines for Design of Wind Turbines $DNV/Riso_2002^*$	32
Table 2-16 Load/Action Factors	52
Table 2-1 Tubular Member Desian Check -1	20
Table 2-2 Effective Length Eactor	رد ۱۵
Table 2-2 Tubular Mambar Design Chack (Contd.)	40
Table 2-4 Tubular Member Design Check (Contd.)	41
Table 3-4 Tabular Member Design Cleck (Conta.)	42
Table 3-3 Tabliat Joint Check	45
Tuble 4-1 NORSOK N-004 Design Fuligue Fuciors	49
Tuble 4-2 Simplified Fatigue	51
Table 4-3 Detailed Fatigue	53
Table 5-1 Load combinations in API, ISO and NORSOK	58
Table 5-2 Load factors in ISO and NORSOK	59
Table 5-3 Pile Design Formula Comparison	64
Table 6-1 Underwater Inspection Methods	68
Table 6-2 In-Service Inspection Requirements Comparison	70
Table 7-1 Assessment versus Design Comparison	73
Table 7-2 Comparison of Wave Criteria for New L-1 and Assessment Criteria	75
Table 7-3 Assessment of Existing Platforms and Floaters Comparison	83
Table 7-4 Damaged Members Formula Comparison	86
Table 8-1 Blast Strain Limits	97
Table 8-2 Fire, Blast, and Accidental Loading Comparison	100
Table 9-1 DAF for a single crane on a vessel	105
Table 9-2 Comparison of Installation and Temporary Conditions	109
Table 10-1 Site Seismic Zone in ISO	112
Table 10-2 Seismic Zone In API	113
Table 10-3 Site Class	113
Table 10-4 Seismic Design Requirements (Table in ISO 19901-2)	119
Table 10-5 Target annual probability of failure, p _f	119
Table 10-6 Seismic risk category, SRC	120
Table 10-7 C_a for shallow foundations and 0.2 s period spectral acceleration (ISO 19901-2 Table 6)	120
Table 10-8 C, for shallow foundations and 0.2 s period spectral acceleration (ISO 19901-2 Table 7)	121
Table 10-9 Values of C_a and C_v for deep pile foundation	121
Table 10-10 Scale factors for ALE spectra	122
Table 10-11 Correction factor C _c	123
Table 10-12 Seismic Criteria Comparison	125
Table 11-1 Properties of Soil Layers	131
Table 11-2 Wave Load Analysis Input Summary	133
Table 11-3 Results of the Global Loads Comparison	134
Table 11-4 Maximum Member Utilization Results – Base Case (API)	135
Table 11-5 Maximum Member Utilization Results – ISO and NORSOK	136
Table 11-6 Member Utilization Results – Chosen Members	137
Table 11-7 Ratio of Total Utilization – Chosen Members	137
Table 11-8 Maximum Joints Utilization Results – Base Case (API)	
	100

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Table 11-9 Joint Utilization Results – Chosen Joints	139
Table 11-10 Ratio of Total Utilization – Chosen Joints	139
Table 11-11 Design Waves for 100-year hurricane	142
Table 11-12 Action Factors Applied to the ULS-b Limit State	145
Table 11-13 Usage Factors Applied to Extreme 100 yr Hurricane Loading Condition	145
Table 11-14 Maximum Von Mises Stresses Reported for Analyzed Panels	148
Table 11-15 Von Mises Stress for the Centre of Analyzed Panels	148
Table 11-16 Results of the Buckling Check – API WSD Run	150
Table 11-17 Results of the Buckling Check – ISO/NORSOK LRFD Run	151

Nominclature

C_a, C_v site coefficients

- C_{SF} safety factor
- d brace outside diameter
- D chord outside diameter
- D_e equivalent quasi-static action representing dynamic response defined in 9.8.1
- D_o equivalent quasi-static action representing dynamic corresponding to E_o
- E_e extreme environmental quasi-static action
- E_o environmental action or loading
- F_d action effect
- F_d design action
- G Ratio of effective horizontal ground acceleration to gravitational acceleration
- G₁, G₂ permanent actions or gravity loads
- G_T the action imposed either by the weight of the structure in air, or by the submerged weight of the structure in water
- k_{DAF} dynamic amplification factor; 1.10 for heavy lift by semi-submersible crane vessel for in air offshore lifts or in air onshore or in sheltered waters ; 1.30 in other cases for offshore in air.
- Q_1, Q_2 variable actions or live loads
- Q_T the action imposed by the weight of the temporary equipment or other objects, including any rigging installed or carried by the structure
- R_d design strength
- S internal force

 $S_{a,map}(0.2) = 1000$ year rock outcrop spectral acceleration obtained from maps in Annex 2 of ISO 19901-2 associated with a single degree of freedom oscillator period 0.2 s

- $S_{a,map}(1.0) = 1000$ year rock outcrop spectral acceleration obtained from maps in Annex 2 of ISO 19901-2 associated with a single degree of freedom oscillator period 1.0 s
- $S_{a,site}$ (T) site spectral acceleration corresponding to a return period of 1000 years and a single degree of freedom oscillator period T
- t brace wall thickness at intersection
- T chord wall thickness at intersection
- T natural period of a simple, single degree of freedom oscillator
- Z Zone or relative seismicity factor
- $\beta = d/D$

$\gamma = D/2T$

- $\gamma_{f,E}$, $\gamma_{f,D}$ are the partial action factors for the environmental actions discussed in 9.9 and for which appropriate values shall be determined by the owner
- $\gamma_{f,Eo}$, $\gamma_{f,Ee}$ partial action factors applied to the total quasi-static environmental action plus equivalent quasi-static action representing dynamic response for operating and extreme environmental conditions
- $\gamma_{f,G1}$, $\gamma_{f,G2}$, $\gamma_{f,Q1}$, $\gamma_{f,Q2}$ partial action factors for the various permanent and variable actions
- $\gamma_{f,dl}$ the rigging factor, 1.10 for a dual lift; 1.00 for single crane
- $\gamma_{f,lf}$ local factor, for lifting attachments, spreader beams, and internal members attached to lifting point: 1.25 (for a lift in open waters), 1.15 (for a lift on shore or in shelter waters); 1.00 for other structures;
- $\gamma_{f,sun}$ partial factor, 1.30

 $\tau = t/T$

EXECUTIVE SUMMARY

The Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) contracted DNV to perform a state-of-the-art comparison of API, ISO, and NORSOK existing offshore structural standards. The comparison identifies the differences and attempts to explore the reasons and if possible recommends areas of improvement with application to the US Gulf of Mexico and the West Coast offshore areas.

The study showed that even though there may be significant differences in the adopted design approach being Working Stress Design (WSD) or Load and Resistance Factor Design/Limit State Design (LRFD/LSD) and the regional design criteria, the formulations for calculating member and joint or plate/shell stresses are similar in all three standards.

It is recommended that further efforts be directed towards the harmonization of the standards. A significant step has been the recent collaboration between API and ISO and to a certain degree NORSOK to adopt a common approach to the development of future offshore structural standards, It appears that the LRFD/LSD methodology will eventually prevail and be applied to future GOM and West Coast offshore fixed and floating structures as it had for Atlantic and Arctic regions.

The limited case studies performed using a GOM fixed platform and a spar deepwater floating structure indicate that design environmental criteria are based on similar reliability analyses and definition of probability of failure. Jacket member utilization comparison indicates that both ISO and NORSOK give significantly more conservative formulation for members with cone transitions compared to API. Member and joint utilizations were noted to vary by up to 53% for members and 29% for joints. No one standard was found to be always more conservative than the other two. A single GOM spar case study showed that the ISO/NORSOK LRFD approach gives yield and buckling utilizations that are within about $\pm 10\%$. Further investigations are recommended for more in-depth evaluation to reach more general conclusions.

1 INTRODUCTION

1.1 Background

As stated in the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) Contract No. M10PC00108 documentation and the DNV proposal No 1-2Q1N5T-01, the objective of this work presented herein is to perform a state-of-the-art review of existing API, NORSOK, and ISO offshore structural standards. The comparison identifies the differences and makes recommendations for their possible resolution with application to the US Gulf of Mexico and the West Coast offshore areas.

The main scope of work entails the following ten tasks:

- 1. Environmental Loads
- 2. Loading Conditions
- 3. Structural Steel Design
- 4. Connections
- 5. Fatigue
- 6. Foundation Design
- 7. In-service Inspection and Maintenance
- 8. Assessment of Existing Platforms and Floaters
- 9. Fire, Blast and Accidental Loadings
- 10. Installation and Temporary Conditions

The approach employed in the study was described in DNV proposal No 1-2Q1N5T-01 and is summarized below for completeness sake.

1.2 Objective

The objective of the work is to perform a state-of-the-art review of existing API, NORSOK, and ISO offshore structural standards with respect to structural integrity aspects and produce a comparison report identifying differences and recommendations for their possible resolution for application in US Gulf of Mexico and the West Coast.

1.3 Codes and Standards

Table 1-1 lists all documents reviewed as part of this study. Only current revisions in use were considered even though many of these recommended practices (RP's) and standards are currently under review and may be re-issued in the near future.

These standards are also included as references in Section 13.

Number	Revision	Title
API RP 2A (WSD)	21 st Edition October 2007	Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design
API RP 2T	3 rd Edition July 2010	Planning, Designing, and Construction Tension Leg Platforms
API RP 2FPS	1 st Edition March 2001	Recommended Practice for Planning, Designing, and Constructing Floating Production Systems
API RP 2A (LRFD)	1 st Edition May 2003	Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Load and Resistance Factor Design
API Bulletin 2INT-MET	May 2007	Interim Guidance on Hurricane Conditions in the Gulf of Mexico
API Bulletin 2INT-DG	May 2007	Interim Guidance for Design of Offshore Structures for Hurricane Conditions
API Bulletin 2INT-EX	May 2007	Interim Guidance for Assessment of Existing Offshore Structures for Hurricane conditions
ISO 19901-2	1 st Edition November 2004	Specific requirements for offshore structures – Part 2: Seismic Design Procedures and Criteria
ISO 19901-6	1 st Edition December 2009	Specific requirements for offshore structures – Part 6: Marine Operations
ISO 19902	1 st Edition December 2007	Fixed Steel Offshore Structures
ISO 19904-1	1 st Edition November 2006	Floating offshore structures – Part 1: Monohulls, Semi-submersibles and Spars
NORSOK Standard N-001	7 th Edition June 2010	Integrity of Offshore Structures
NORSOK Standard N-003	2 nd Edition September 2007	Action and Action Effects
NORSOK Standard N-004	2 nd Edition October 2004	Design of Steel Structures
NORSOK Standard N-006	1 st Edition March 2009	Assessment of Structure Integrity for Existing Offshore Load-bearing Structures

Table 1-1: Main Design Codes

It should be noted that as part of the collaboration efforts between ISO TC67/SC7 and API SC2 offshore Structures committees, a standard harmonization scheme has been adopted whereby the ISO standards have utilized existing API documents as starting point in developing the ISO standards. API will subsequently adopt relevant ISO documents with modification to adapt to Gulf of Mexico and other US offshore areas.

				INT	RODUCTIO	N				
				RP 20	GEN/ISO 19	900				
General Parts										
Metocean	Seismic Design	Topsides Design	Geotechnical	Structural Integrity Management	Marine Operations	Station Keeping	Fire and Blast	Weight Control	Plates	Shells
RP 2MET/ ISO	RP 2EQ/ ISO	RP 2TOP/ ISO	RP 2GEO/ ISO		RP 2MOP/ ISO	RP 2SK RP 2SM ISO 19901-7	RP 2FB	RP 2WGT/ ISO	2V	2U
19901-1	19901-2	19901-3	19901-4	ISO 19902 ISO 19904-1	19901-6	RP 2I	ISO 19901-3	19901-5		
				Speci	ific Structu	res				
	Fixed steel	structures	Concrete Structures	Floating Structures	TLP	Jack-ups	MODUs	Arctic Structures	Riser Design	
	RP 2A WSD	RP 2A LRFD/	RP 2CON/	RP 2FPS/	RP 2T			RP 2N/ ISO	RP 2RD/	
		19902	19903	0 ¹⁹⁹⁰⁴⁻¹		ISO 19905-1	ISO 19905-2	19906	ISO 13628	
	Existing		Under Revision		Under Development		Not Started		No Plans	

Figure 1-1 ISO API Standards Harmonization

The chart presented in Figure 1-1 was presented in the last API SC2 meeting and shows the status of the harmonization efforts as of February 2011. The figure helps identify the one to one correspondence between ISO and API documents.

1.4 Design Philosophy

Although the scope of work covered only API RP 2A (WSD) for comparison with ISO and NORSOK standards, it was decided to include API RP 2A (LRFD) published in 1993 and reaffirmed in 2003 even though it was withdrawn by API in 2010 in this comparison. The reason being that API RP 2A (LRFD) was utilizing the same design philosophy adopted in ISO and NORSOK; namely, the Limit States or Load and Resistance Factor Design (LRFD) methodology. The API Subcommittee on offshore structures (SC2) has established a Task Group (TG 19) to address the transition from WSD to LRFD adopting the ISO 19902 methodology as basis.

The utilization of LRFD/Limit States Design allows the allocation of different safety factors to the different types of loadings/actions depending on the degree of uncertainty associated with each type

of loading. By contrast, the Working/Allowable Stress Design (WSD/ASD) methodology combines all load types with a single safety factor applied on the calculated combined stress. Therefore, the WSD method can produce less conservative designs than the LRFD methodology for storm conditions when the stress due to environmental loading is significantly higher than that associated with well-defined dead loads or weights and vise versa.

Figure 1-2 shows a comparison between LRFD and WSD when applied to design of structures also utilizing AISC steel design code for beam type members (see /30/ for more detailed discussion). Load conditions a) and b) are: a) functional loads and b) combination of maximum environmental loads and associated functional loads. The AISC 13th Ed. did not allow 1/3 increase in allowable stress to be applied only to the environmental portion of the stress and not to the static load as was allowed in the 9th Ed. version.

Figure 1-2 Schematic of LRFD vs. WSD Methods

It should also be noted that the LRFD or Limit State design method allows yielding to be reached or exceeded in such a way that the structure is still capable of resisting further loads but may encounter high levels of deformation without reaching an unstable mechanism. Unfortunately all standards do not adequately address this acceptability criterion.

1.5 Report Organization

This report is composed of twelve sections and a references section. Following this introductory section, Section 2 addresses the comparison of the environmental criteria and the associated loading conditions and applicable load and resistance factors. This covers Tasks 1 and 2, see Sec. 1.1 above. It should be noted that the term "Action" is the preferred terminology adopted by ISO and NORSOK. However, the API terminology "Load" is utilized here for convenience. Section 3 looks at the steel design formulae used to calculate the member and joint stresses and utilization ratio and as such completes Tasks 3 and 4. As a verification tool, MathCAD sheets were also developed for member and joint checks and are given in Appendices A. Non-tubular members and connections as well as plated structures are also addressed in Section 3. Section 4 compares the fatigue requirements (Task 5) while Section 5 is dedicated to the geotechnical and foundations design requirements (Task 6). Section 6 compares the in-service inspection requirements (Task 7) and the assessment criteria for existing fixed and floating offshore structures is described in Section 7 (Task 8).

The fire, blast and accidental loading criteria are discussed in Section 8 and the installation and temporary conditions comparison is given in Section 9, which address Tasks 9 and 10, respectively. Seismic requirements are discussed separately in Section 10.

Two case studies were undertaken for an 8-legged fixed platform and a SPAR floater in order to perform numerical results comparison of application of the three codes. The details of these examples are given in Section 11.

The conclusions and recommendations are listed in Section 12 and the references are given in Section 13. Appendix A contains MathCAD sheets developed by DNV in order to verify and compare the member and joint code check formulations given in the three standards.

2 ENVIRONMENTAL CRITERIA AND LOADING CONDITIONS

2.1 Environmental Criteria

A direct comparison of environmental (Metocean) loads as stated in the three standards (API, NORSOK, and ISO) was carried-out and is presented in this section. In addition, the direct comparison is supported by case studies where environmental loads were calculated and compared using the three standards separately. The provisions that have impact on the magnitude of environmental loads e.g. directional wave criteria were reviewed and compared. The components that comprise the total environmental forces/actions include wind, waves, tides, currents, and earthquakes.

For the purpose of structural design and analysis, the governing weather condition (e.g. survival load case) is taken into account. Other load conditions (e.g., operating load case) may also be considered if found necessary due to the associated safety factors and relative value of the environmental to permanent loading.

Code requirements for strength and ductility level earthquakes, SLE (or extreme ELE in ISO) and DLE (or abnormal ALE in ISO) were also compared. Seismic criteria code comparison is given Section 10.

The code environmental criteria comparison indicates the following:

- 1. The design environmental loads such as wind, wave, and current depend on geographical locations. In absence of site-specific data, regional information is defined in all three codes that give minimum requirements of the extreme environmental conditions:
- API RP 2A provides Gulf of Mexico hurricane criteria (2.3.4c for new structures & 17.6.2a for assessment of existing structures). API Bulletin 2INT-MET replaced the criteria for new structures by including the recent extreme hurricanes in the database. Other API standards such as RP 2T and RP 2FPS refer to RP 2A for environmental criteria definition. API RP 2MET will be applicable to all units intended for the Gulf of Mexico.
- ISO 19901-1 provides environmental guidelines for the regions all over the world including Northwest Europe, West coast of Africa, US Gulf of Mexico, US Coast of California, and East coast of Canada. The new edition of ISO 19901-1 will adopt the new API RP 2MET for the Gulf of Mexico scheduled for publication in 2011. The current ISO 19901-1 GOM environmental criteria (see Annex C.4 and Table C.21) is higher than that given in API RP 2A but will not be as severe is the new 2MET criteria.
- NORSOK N-003 mainly focuses on Northwest coast of Europe and refers to ISO for details.
- 2. For snow and Ice, NORSOK N-003 and ISO 19901-1 provide more specific information compared to API RP 2A. For Arctic and Atlantic coast regions ISO 19906/API RP 2N and ISO 19902 would be applicable.

3. For earthquake; ISO 19902 and ISO 19901-2 give clearer and more comprehensive design guidelines when compared with API or NORSOK standards.

Further details of environmental criteria are also given in Sections 2.2 to 2.4 while discussing the loading conditions from the API, ISO, and NORSOK codes.

Load and material resistance factors were compared for the various elements of the structure (e.g. jacket, hull, deck, foundations, etc.). The manner in which the codes require the combination of appropriate loads is also directly compared. This includes the following main load categories: operational environmental, design environmental, dead, live, and temporary. Fire, blast and accidental loadings are considered separately.

2.2 Loading Conditions - API

2.2.1 API RP 2A and 2INT-MET, 2INT-DG, and 2INT-EX

AP RP 2A for fixed platforms states that the loading conditions should include environmental conditions combined with appropriate dead and live loads in the following four combinations:

- 1) Operating environmental conditions combined with dead loads and maximum live loads appropriate to normal operations of platform.
- 2) Operating environmental conditions combined with dead loads and minimum live loads appropriate to normal operations of platform.
- 3) Design environmental conditions with dead loads and maximum live loads appropriate for combining with extreme conditions.
- 4) Design environmental conditions with dead loads and minimum live loads appropriate for combining with extreme conditions.

Typically, a one to five year winter storm is used as an operating condition in the Gulf of Mexico. DNV has noted through projects with some GOM operators that the 10-year winter storm has conservatively been employed as the operating criteria. This is particularly true after the 2005 severe hurricane season.

As stated in Section 2.1, the extreme environmental conditions for the Gulf of Mexico specified in API RP 2A (Section 2.3.4c and 17.6.2a) have been replaced by increased criteria in a central zone of the GOM in API Bulletin 2INT-MET /11/. The change was necessary in order to account for the high activity hurricane seasons of 2004 and 2005 with Category 4 and 5 hurricanes. The Gulf of Mexico (GOM) was divided into four zones with different severity of the hurricane conditions. Four zones and three transition zones are defined in API RP 2INT-MET, Figure **2-1** with different environmental criteria. These will be further reduced to only three zones and (two transition ones) in the new API RP 2MET by combining the West and West Central zones. The three approximate gulf areas are:

- Western Gulf, between 92° W and 98° W
- Central Gulf, between 86.5° W and 89.5° W
- \bullet Eastern Gulf, between 82° W and 84° W

Figure 2-1 Gulf of Mexico Zones in API Bulletin 2INT-MET

Table 2-1 shows the API Bulletin 2INT-MET hurricane winds, waves, currents and surge for the central zone of the GOM which has the most severe conditions that have changed significantly from previous criteria. The environmental conditions in the other zones were affected only slightly. Figure 2-2 shows the original design maximum wave height specified in the API RP 2A for GOM structures. It is noted; e.g., that in the Central region, the significant wave height was increased from 12m (40 ft) to 15,8m (52 ft) for 100 year return period for high consequence L-1 structures.

Two additional interime documents were issued by API in May of 2007 ahead of the hurricane season to address requirements for design of new structures Bulletin 2INT-DG /32/, and assessment of existing structures Bulletin 2INT-EX /33/. These bulletins gave guidance, at high level, on design using the new metocean criteria of 2INT-MET and significantly increased the requirement for deck height elevation by adding 15% to the maximum wave crest for local effects. The 1000-year wave crest was also recommended for robustness consideration.

The API Bulletin 2INT-EX is discussed in Sec. 7 of this report.

Table 2-1 Central Zone Hurricane and Environmental Conditions

Table 4.5.3-1A—Independent Extreme Values for Hurricane Winds, Waves, Currents and Surge, Central Gulf of Mexico (89.5°W to 86.5°W)

Return Period (Years)	10	25	50	100	200	1000	2000	10000
Wind (10 m Elevation)								
1-hour Mean Wind Speed (m/s)	33.0	40.1	44.4	48.0	51.0	60.0	62.4	67.2
10-min Mean Wind Speed (m/s)	36.5	44.9	50.1	54.5	58.2	69.5	72.5	78.7
1-min Mean Wind Speed (m/s)	41.0	51.1	57.4	62.8	67.4	81.6	85.6	93.5
3-sec Gust (m/s)	46.9	59.2	66.9	73.7	79.4	97.5	102.5	112.8
Waves, WD > = 1,000 m								
Significant Wave Height (m)	10.0	13.3	14.8	15.8	16.5	19.8	20.5	22.1
Maximum Wave Height (m)	17.7	23.5	26.1	27.9	29.1	34.9	36.3	39.1
Maximum Crest Elevation (m)	11.8	15.7	17.4	18.6	19.4	23.0	23.8	25.6
Peak Spectral Period (s)	13.0	14.4	15.0	15.4	15.7	17.2	17.5	18.2
Period of Maximum Wave (s)	11.7	13.0	13.5	13.9	14.1	15.5	15.8	16.4
Currents, WD > = 150 m								
Surface Speed (m/s)	1.65	2.00	2.22	2.40	2.55	3.00	3.12	3.36
Speed at Mid-Profile (m/s)	1.24	1.50	1.67	1.80	1.91	2.25	2.34	2.52
0-Speed Depth, Bottom of Profile (m)	69.3	84.2	93.2	100.8	107.1	126.0	131.0	141.1
Currents, WD 10 m – 70 m								
Uniform Speed at 10 m Depth (m/s)	1.09	1.61	1.97	2.30	2.60	3.23	3.50	4.05
Uniform Speed at 70 m Depth (m/s)	0.98	1.45	1.77	2.07	2.34	2.91	3.15	3.65
Water Level, WD > = 500 m								
Storm Surge (m)	0.32	0.52	0.66	0.80	0.93	1.13	1.22	1.41
Tidal Amplitude (m)	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42

Notes:

Wind speeds for a given return period are applicable to all water depths throughout the region.

Crest elevation includes associated surge and tide.

See Figures 4.5.3-1A, 4.5.3-2A and 4.5.3-3A for wave and crest elevation values for water depths between 10 m and 1000 m.

The peak spectral period and period of maximum wave apply to waves in all water depths.

Currents in water depths between 70 m and 150 m should be estimated as described in 4.3.3.

See Figure 4.5.3-4A for surge and tide in water depths less than 500 m.

Figure 2-2 Original Extreme Wave Definition in API RP 2A 21st Edition

2.2.2 API RP 2T

API RP 2T is more comprehensive than RP 2A in defining the loads and load combinations due to the sensitivity of the Tendon Leg Platform to its payload. Table 2-2, Table 2-3, and Table 2-4 depict API RP 2T definition of load types, safety categories and annual probability of occurrence, and important parameters that critically impact the TLP global response.

API 2FPS refers to both API RP 2A and 2T for guidance related to environmental conditions and load definition.

Table 2-2 API RP 2T Load Definition - Description Table 3—Loading Type Category Descriptions

Load Type	Description
Dead loads	Nonvariable static weight of the platform structure and any permanent equipment that does not change during the life of the structure.
Live loads	Variable static loads that can be changed, moved or removed during the life of the structure. Maximum and minimum payloads should be considered.
Environmental loads	Loads on the structure due to the action of wind, wave, current, tide, earthquake, or ice.
Inertial loads	Motion induced loads that are consequences of the environmental loads.
Construction loads	Loads built into the structure during the fabrication and installation phases.
Hydrostatic loads	Buoyancy of, or submerged pressure on, submerged members.
Combined loads	The combination and severity of loads should be consistent with the likelihood of their simultaneous occurrence.

The safety categories A and B of Table 2-3 are equivalent to the API 2A's operating and extreme conditions. However the survival intact condition is new in 2T 3rd Edition with 1000 year return period environment. The specified 17 design load cases are stated to be given only as example and that other criteria may be used if properly justified. The 2T 3rd Ed. added 5 more load cases compared to the 2nd Ed. These are one new damaged condition, three survival conditions, and one ductility level earthquake (DLE) condition.

Table 2-3 API RP 2T Load Conditions

Design Load Case	Safety Category	Project Phase	Platform Configuration ^e	Design Environment	Annual Probability of Exceedance
1	Α	Construction	Various		
2	Α	Load out	Intact	Calm	
3	В	Hull/deck mating	Intact	Site specific	
4	В	Tow/transportation	Intact/damaged	Route	Varies
5	Α	Installation	Intact	Installation	Varies
6	Α	In place	Intact	One-year normal	≤1
7	В	In place	Intact	100-year extreme	0.01
8	s	In place	Intact	1000-year extreme	0.001
9	в	In place	Damaged—no compensation	One-year normal	≤ 0.01 ª
10	Sbc	In place	Damaged—no compensation	10-year reduced extreme	≤ 0.001 ^a
11	В	In place	Damaged—compensation	10-year reduced extreme	≤ 0.01 ^a
12	S ^{bc}	In place	Damaged—compensation	100-year extreme	≤ 0.001 ^a
13	в	In place	Tendon removed (planned)	10-year reduced extreme	≤ 0.01 ª
14	S bc	In place	Tendon removed (planned)	100-year extreme	≤ 0.001 ª
15	С	In place	Intact	Annual scatter diagram	1
16	SLE ^d	In place	Intact	SLE seismic	Varies
17	DLE ^d	In place	Intact	DLE seismic	Varies

Table 1—Project Design Load Cases

NOTE This table is indicative of the types of load cases to be checked, and is not intended to imply adequate number of load cases.

^a Probability of exceedence includes nominal probability of damage or tendon removal occurring.

^b Pile check, if performed, in survival conditions uses reduced safety factor.

c Survival check with damage or tendon removed is against disconnect (not zero tension) and may be response-based.

d See Section 4 and API 2A-WSD for definition of SLE, DLE.

e In all cases, platform configuration should consider both minimum weight and maximum weight variations.

Table 2-4 API RP 2T Environnemental Parameters

Table 5—Environmental Parameters Influencing TLP Response

Environmental Condition	Environmental Parameter
Wind	Mean wind speed Mean wind direction Wind power spectral density function
Wave	Significant wave height Mean wave period Wave elevation spectral density function Mean wave direction Wave directional spreading function
Current	Surface current (speed and direction) Current profile (speed and direction)
Tide	Astronomical tide Storm surge

Both API RP 2A and 2T utilize WSD approach for the design of the structure. Notably, the RP 2T 3rd Edition (latest) specified the limit states design approach for the tendon design which was not the case in the previous editions of the document.

The API RP 2T adopts the WSD design methodology for the deck and hull design, and refers to API RP's 2A, 2U, 2V, and AISC (ASD) standards for the structural elements and states that applicable class society codes may be used for buckling design check.

For structural elements designed for Safety Criteria A, safety factors recommended in API 2A-WSD and AISC should be used for normal design conditions associated. For extreme design conditions associated with Safety Criteria B, the allowable stresses may be increased by one-third.

2.2.3 API RP 2FPS

The current first edition of API RP 2FPS 1st Edition issued in March 2001 refers to API RP's 2A and 2T for the definition of the environmental criteria for GOM floating production systems. The second edition is due for publication in 2011 and will be based on the ISO 19904-1. The document refers to both API RP 2A and 2T valid editions in 2001 for the definition of the applicable environmental conditions. For Category 1 FPSs intended for field development the 100 year return period is specified. Lower criteria is stated to be acceptable for Categories 2 and 3 employed in earlier exploration and drilling phases of the development with durations of less than 5 years for Category 2 and 120 days for

Category 3. Also lower criteria may be accepted if the platform is evacuated with adequate notice prior to the design storm. API RP 2FPS also refers to API RP 2N for specification of ice loading conditions.

The API RP 2FPS adopts the WSD design methodology for the hull design and refers to API RP's 2A, 2T, 2U, 2V, the AISC (ASD) standards for the structural elements.

2.3 Loading Conditions - ISO

2.3.1 ISO 19900 – General Requirements

This general standard, applicable to all offshore structures, requires that the structural design be performed with reference to a specified set of limit states. For each limit state, design situations are required to be determined and an appropriate calculation model be established. ISO 19900 divides the limit states into four categories:

- a) Ultimate limit states (ULS)
- b) Serviceability limit state (SLS)
- c) Fatigue limit states (FLS)
- d) Accidental limit states (ALS)

The document gives general description of the environmental conditions that must be considered depending on the type of structure under consideration. These include wind, wave, current, water depth and sea level variations, marine growth, ice and snow, temperature, and other meteorological and oceanographic information such as fog, wind chill, and variability of seawater density.

2.3.2 ISO 19902 – Fixed Steel Offshore Structures

2.3.2.1 Actions for in-place condition

ISO 19902 Clause 9.4.1 states that one of three methods is normally used for defining an environmental action combination that generates the extreme direct action $E_{\rm e}$ and generally also the extreme action effect, caused by the combined extreme wind, wave and current:

- a) 100 year return period wave height (significant or individual) with associated wave period, wind and current velocities;
- b) 100 year return period wave height and period combined with the 100 year return period wind speed and the 100 year return period current velocity, all determined by extrapolation of the individual parameters considered independently;
- c) any reasonable combination of wave height and period, wind speed and current velocity that results in
 - the global extreme environmental action on the structure with a return period of 100 years, or
 - a relevant action effect (global response) of the structure (e.g. base shear or overturning moment) with a return period of 100 years.

Further discussion of these methods is given in ISO 19901-1 and is summarized herein. Method a) using the100 year return period wave with associated parameters estimated from correlations has been

used in Gulf of Mexico structures, while b) with 100 year return period wave, 100 year return period wind, and 100 year return period current has been used in the North Sea and other areas. Method c) employing the joint 100 year return period action or action effect is a more recent development, suitable when a database of joint occurrence of wind, wave and current is available.

As stated in ISO 19902, additional considerations should be given to obtaining the extreme direct action, $E_{\rm e}$, for locations where there are strong currents that are not driven by local storms. Such currents can be driven by tides or by deep water currents, such as the Loop Current in the Gulf of Mexico, Figure 2-3 /21/. In this case, method a) would be acceptable if the storm generated conditions are the predominant contributors to the extreme global environmental action (action effect) and if the appropriate "associated" value of tidal and circulation current can be determined. However, method c) is conceptually more straightforward and preferable. Method b) is the simplest method that ensures an adequate design environmental action (action effect) since it is usually very conservative compared to the true 100 year return period global environmental action (action effect).

Figure 2-3 Loop Current (NOAA) /23/

For some areas, substantial databases are becoming available with which it is possible to establish statistics of joint probability of occurrence of wind, wave and current magnitudes and directions. When such a database is available, it can be used to develop environmental conditions based on method c), which provides the true 100 year return period extreme global environmental action on the structure.

Figure 2-4 reproduced from ISO 19902 shows the parameters that should be accounted for when calculating the combined wave and current actions on a jacket structure. The figure was adopted from API RP 2A 21^{st} Edition.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Figure 9.5-1 — Procedure for calculating the quasi-static action caused by wave plus current

Figure 2-4 Wave and Current load combination procedure

The corresponding partial action factors to be used in conjunction with the 100 year return period global environmental action (action effect) are required to be determined using structural reliability analysis principles, in order to ensure that an appropriate safety level is achieved. This approach provides more consistent reliability (safety) for different geographical areas than has been achieved by the practice of using separate (marginal) statistics of winds, currents, and waves.

It should be noted that both API and NORSOK adopt similar definition of the extreme design environmental load conditions. However, ISO provides more guidance in this regard.

2.3.2.2 Partial Factor Design Format

The general equation for determining the design action (F_d) for in-place situations is given in ISO 19902, Equation 9.10-1, and the appropriate partial action factors for each design situation are given in ISO 19902, Table 9.10-1 shown here as Table 2-5:

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$F_{\rm d} = \gamma_{\rm f,G1} G_1 + \gamma_{\rm f,G2} G_2 + \gamma_{\rm f,Q1} Q_1 + \gamma_{\rm f,Q2} Q_2 + \gamma_{\rm f,Eo} (E_{\rm o} + \gamma_{\rm f,D} D_{\rm o}) + \gamma_{\rm f,Ee} (E_{\rm e} + \gamma_{\rm f,D} D_{\rm e})$$
(2.1)

where:

 G_1, G_2 are the permanent actions defined in 9.2;

- Q_1, Q_2 are the variable actions defined in 9.2;
- E_o is the environmental action due to the owner-defined operating wind, wave and current parameters;
- Do is the equivalent quasi-static action representing dynamic response in accordance with 9.8, but caused by the wave condition that corresponds with that for E_0 ;
- E_e is the extreme quasi-static action due to wind, waves and current as defined in 9.4 and taking account of the requirements of 9.5 to 9.7;
- D_e is the equivalent quasi-static action representing dynamic response defined in 9.8.1
- $\gamma_{f,G1}$, $\gamma_{f,G2}$, $\gamma_{f,Q1}$, $\gamma_{f,Q2}$ are the partial action factors for the various permanent and variable actions discussed in 9.9 and for which values for different design situations are given in Table 9.10-1 (see A.9.10.3.2.1)

 $\gamma_{f,Eo}$, $\gamma_{f,Ee}$ are partial action factors applied to the total quasi-static environmental action plus equivalent quasi-static action representing dynamic response for operating and extreme environmental conditions, respectively, and for which values for different design situations are given in Table 9.10-1 shown here as Table 2-5;

 $\gamma_{f,E}$, $\gamma_{f,D}$ are the partial action factors for the environmental actions discussed in 9.9 and for which appropriate values shall be determined by the owner.

All section referenced in above definitions refer to Clauses in ISO 19902.

Design situation	Partial action factors a						
Design situation	γ _{f,G1}	γ _{f,G2}	γ _{f,Q1}	$\gamma_{\rm f,Q2}$	γ _{f,Eo}	γ _{f,Ee}	
Permanent and variable actions only	1,3	1,3	1,5	1,5	0,0	0,0	
Operating situation with corresponding wind, wave, and/or current conditions ^b	1,3	1,3	1,5	1,5	0,9 _{7 f.E}	0,0	
Extreme conditions when the action effects due to permanent and variable actions are additive ^c	1,1	1,1	1,1	0,0	0,0	γ _{f,E}	
Extreme conditions when the action effects due to permanent and variable actions oppose ^d	0,9	0,9	0,8	0,0	0,0	γ _{f,E}	
^a A value of 0 for a partial action factor means the ^b For this, check that G_2 , Q_1 and Q_2 are the maxis ^c For this, check that G_1 , G_2 and Q_1 include the conditions. ^d For this, check that G_2 and Q_1 exclude any p being present during extreme conditions.	at the action is imum values f use parts of ea parts associat	s not applicabl ior each mode ach mode of o ed with the m	e to the design of operation. peration that o node of operat	n situation. can reasonabl ion considere	ly be present di d that cannot t	uring extreme be ensured of	

Table 2-5 Partial Factors

Table 9.10-1 — Partial action fac	tors for in-place situations:	and exposure level L1
-----------------------------------	-------------------------------	-----------------------

The partial factors specified in Table 2-5 are almost identical to those given in API RP 2A LRFD for the gravity and variable actions; see Table 2-16 giving a summary of the comparison of the partial factors. However there are subtle differences in definition of actions related to operating environmental conditions and the inclusion of dynamic actions. The ISO 19902 treatise appears to be more comprehensive and logical to apply in design.

Values of the extreme environmental action factor $\gamma_{f,E}$ are given in Annex A (Sec. A.9.9.3.3) of the ISO 19902 for the north-west shelf of Australia (AUS), the UK sector of the North Sea (NS), and the Gulf of Mexico (GOM) for structures manned or unmanned during the design event. For manned installations of exposure level L1 $\gamma_{f,E}$ values of 1.59 for AUS and 1.40 for NS are specified corresponding to a target annual failure probability of $3x10^{-5}$. These factors go down to 1.17 for AUS (and GOM) and 1.09 for NS unmanned or evacuated structures with annual failure probability of $5x10^{-4}$. The latter is associated with L2 exposure category by definition.

It should be stated that ISO 19902 in the same Annex section referenced above specifies also RSR's (Reserve Strength Factors defined as the ratio of the collapse capacity to the 100 year return period action) for each of the three regions and unmanned/manned conditions. However no guidance is given as to how the RSR is to be calculated. The calculation of RSR has high degree of variability regarding the assumptions to be applied in the pushover ultimate strength analysis.

2.3.2.3 Acceptable safety factors and allowable utilization factors

Table 10.5-1 in ISO 19902, Table 2-6 here, compares the requirements for extreme and abnormal environmental actions. The extreme environmental actions correspond to a minimum return period of 100 years while the abnormal actions have a 10,000 year return period.

Table 2-6 Extreme and Abnormal Conditions

Table 10.5-1 — Comparison of extreme and abnormal environmental action requirements

Paguiromont	Situation				
Nequirement	Extreme environmental actions	Abnormal environmental actions			
Governing clause for actions	Clause 9	Clause 10			
Limit state	ULS	ALS			
Return period	100 years	See 10.1.5, default 10 000 years			
Partial action factor	See Clause 9, default 1,35	1,0			
Partial resistance factors	See Clauses 13, 14, 15, 17; generally 1,05 to 1,25 but up to 2,0	1,0			
Wave crest height	Associated with 100 year return event	Associated with abnormal environmental event			

2.3.3 ISO 19904-1 Floating Offshore Structures – Part 1: Monohulls, Semi-submersibles and Spars

ISO 19904-1 states that design checks can be undertaken using either the partial factor design format (Limit State Design or LSD) or the WSD format.

2.3.3.1 Partial factors (LSD) format - safety, and allowable utilization factors

Design checking shall be achieved by demonstrating that design values of action effects resulting from factoring the actions do not exceed the design value of the resistance variable being addressed for the limit state under consideration. The partial action factors required for design checks are presented in Table 2-7:

Table 2-7 Action Combinations - LSD

			•						
			Partial action factor %						
Limit state	Action category								
	Permanent (G)	Variable (<i>Q</i>)	Environmental (E)	Repetitive (R)	Accidental (A)				
ULS-a	1,3	1,3	0,7	_	_				
ULS-b	1,0	1.0	1,3	-	_				
SLS	1,0	1.0	1,0	1,0	_				
Pre-ALS	1,0	1.0	-	-	1,0				
Post-ALS	1,0	1,0	1,0	_	_				
In the ULS-a co more unfavoural	ndition, an action factor ble combined action effe	of 1,0 shall be use ct than 1,3.	d for the permanent action, th	e variable action, or b	oth, where this gives a				
The action facto great accuracy (The action factor for permanent actions in ULS-a may be reduced from 1,3 to 1,2 if the action and action effects are determined with oreat accuracy (for example, external hydrostatic fluid pressures acting on a rigid body).								

Table 4	Partial	action	factors	1-25	and	combinations
1 able 4 -	i aiuai	action	ractors	N. 172	anu	combinations

For the ULS, two action combinations are considered: one to reflect gravitational action-dominated conditions; the other to account for environmental action-dominated conditions. In Table 4 of ISO 19904-1, Table 2-7 above, these two combinations are denoted ULS-a and ULS-b, respectively. It should be noted that there are differences between these partial action factors and those proposed in ISO 19902 for fixed structures, Table 2-5. Note the 0.7 factor on the extreme environmental load E in ULS-a and the $0.9\gamma_{f,E}$ in operating situation of Table 2-5. There are differences also in the definition of the design limit states. ISO 19902 utilizes two extreme loading conditions (similar to API RP 2A LRFD) one with unfavourable and another with favourable gravity and variable actions on the response effect under consideration.

For ALS, two conditions are to be assessed. These are denoted in Table 2-7 as pre-ALS and post-ALS. The two accidental limit state conditions represent the structure at the time of the ALS event, and in the damaged condition, respectively.

The partial action factors stated in Table 2-7 for the pre-ALS condition apply to values of accidental event magnitudes that equate to a return period of the accidental event of 10,000 years (i.e. annual probability of exceedance = 10^{-4}). If the return period exceeds 10,000 years, in some circumstances (such as to ensure a degree of robustness exists in the event of the accidental event occurring), it can be appropriate to combine the accidental event with a feasible environmental event such that the return period of the combined event on a joint probability basis is 10,000 years.

For ULS conditions in relation to steel structures, neither the partial resistance factor γ_r , nor the partial material factor, γ_m , is to be less than 1.15. Where the resistance concerns bolted connections and fillet and partial penetration welds, this minimum factor is to be increased to 1.30. Standards adopted for establishing structural strength could require increased partial resistance factors. In such cases, these increased factors shall be used instead of the minimum factors of 1.15 and 1.30, as appropriate.

2.3.3.2 WSD format - safety factors and allowable utilization factors

In the following table, the action combination factors applicable to the WSD format are listed for each limit state and for each combination of action categories.

	Action combination factor						
Limit state	Action category						
	Permanent (G)	Variable (<i>Q</i>)	Variable Environmental (Q) (E)		Accidental (A)		
ULS-a	1,0	1,0	_	_	_		
ULS-b	1,0	1,0	1,0	_	_		
SLS	1,0	1.0	1,0	1,0	_		
Pre-ALS	1,0	1.0	_	_	1,0		
Post-ALS	1,0	1.0	1,0	_	_		

Table 2-8 Action Combinations - WSD Table 5 — Action combination factors

For ULS, two action combinations are to be considered: one to reflect the structure located in a calm sea with responses associated with static actions only; the other for the structure subjected to extreme environmental actions combined with relevant static actions. In Table 5 of ISO 19904-1, Table 2-8 above, these combinations are denoted ULS-a and ULS-b, respectively.

For ALS, two conditions are to be assessed. These are denoted in Table 2-8 as pre-ALS and post-ALS, which represent the structure at the time of the accidental event, and in the damaged condition following the accidental event, respectively.

Similar to the LSD format, the WSD action factors stated in Table 2-8 for the pre-ALS condition apply to values of accidental event magnitudes that equate to a return period of the accidental event of 10,000 years. If the return period exceeds 10,000 years, it can be appropriate to combine the accidental event with a feasible environmental event such that the return period of the combined event on a joint probability basis is 10,000 years.

In the design check, the acceptability of a comparison between design values of the action effects and of the strength is conditional upon the action effect (F_d) being less than the design strength (R_d) reduced by a safety factor greater than unity (C_{SF}) , or the design strength (R_d) multiplied by a fraction less than unity (η) . Thus, the design check may be expressed as

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$F_d \le \frac{R_d}{c_{SF}} \tag{2.2a}$$

or, alternatively:

$$F_d \le \eta R_d$$
 (2.2b)

2.4 Loading Conditions - NORSOK

The principles of the limit state design (LSD) and the definitions of the four limit state categories are the same as given in the ISO 19900 discussed above; Sec. 2.3.1. All identified failure modes must be checked within the respective groups of limit states, i.e. ULS, SLS, FLS and ALS. It is required that the structure possesses sufficient ductility to develop the relevant failure mechanism.

2.4.1 N-003 - Action and Action Effects

The requirements and definitions regarding environmental and loading conditions are given in Section 6.7 of NORSOK N-003. Similar to ISO, NORSOK characteristic values of individual environmental actions are defined by annual exceedance probabilities of 10^{-2} (for ULS) and 10^{-4} (for ALS). The long-

term variability of multiple actions is described by a scatter diagram or joint probability density function (PDF) including information about environmental direction. Contour curves or surfaces for more than two environmental parameters can then be derived which give combination of environmental parameters that approximately describe the various actions corresponding to the given exceedance probability. Alternatively, the exceedance probabilities can be referred to the action effects. This is particularly relevant when the direction of the action is an important parameter.

For fixed installations collinear environmental actions are normally most critical, and the action intensities for various types of actions can be selected to correspond to the exceedance probabilities given in Table 2-9 (N-003 Table 4). For other installations action combinations which involve a large difference in action direction need to be addressed.

Table 2-9 presents an alternative option for combining wave, wind, current, ice, snow, earthquake, and sea level elevations in design without resorting to joint probability evaluation or leaving its proper allocation to the operator as stated in ISO 19902, 19904-1 and API RP 2A. As indicated in the table, the ULS associates the 10 year conditions with the 100 year main action and the ALS condition associates both 100 year and 10 year conditions with the 10,000 year main action. This differs from API where only one year conditions are required to be associated with 100 year extreme conditions. This is believed to be a result of considering the Gulf of Mexico to be more benign that the North Sea when it comes to extreme environmental conditions. This assumption was disputed after the severe hurricane seasons of 2004 and 2005, See Figure 2-5 taken from /31/.

Table 2-9 Action Combinations Annual Probabilities

Table 4 – Combination of environmental actions with expected mean values and annual probability of exceedance 10⁻² and 10⁻⁴

Limit state	Wind	Waves	Current	Ice	Snow	Earthquake	Sea level ^a	
	10 ⁻²	10 ⁻²	10-1	-	-	-	10 ⁻²	
Ultimate	10 ⁻¹	10 -1	10 ⁻²	-	-	-	10 ⁻²	
Limit	10 ⁻¹	10 ⁻¹	10 ⁻¹	10 ⁻²	-	-	m	
State	-	-	-	-	10 ⁻²	-	m	
				-	-	10 ⁻²	m	
Accidental	10 -4	10 ⁻²	10	-	-	-	m*	
Limit	10 ⁻²	10 -4	10 -1	-	-	-	m*	
State	10 ⁻¹	10 -1	10 -4		-	-	m*	
	-	-	-	10-4	-	-	m	
	-	-	-	-	-	10 -4	m	
 a m - mean water level m* - mean water level, including the effect of possible storm surge Seismic response analysis should be carried out for the most critical water level. 								

Figure 2-5 Regional Wave Design Criteria

2.4.2 N-001 - Integrity of offshore Structures

In Section 6.2 of NORSOK N-001defines and specifies the partial action factors. When checking the ULS, SLS, ALS and FLS limit states, the ULS action factors to be used are given in Table 2-10 (N-001

Table 1). Two ULS conditions are defined in Table 2-10; namely, "a" and "b" that correspond to a case with maximum gravity and variable loads with a reduced environmental load and a condition with realistically reduced gravity and variable loads combined with the maximum (extreme) environmental load, respectively.

The specified action factors are identical to those given in ISO 19904-1, see Table 2-7.

Variable Limit state Action Permanent Environmental Deformation combinations actions (G) actions (Q) actions (E) a actions (D)* ULS aª 1,3 1,3 0.7 1.0 ULS 1,0 1,0 1,3 1,0 b SLS 1,0 1,0 1,0 1,0 ALS Abnormal 1,0 1,0 1,0 1,0 effect b 1.0 ALS Damaged 1.0 1.0 1.0 condition ^c FLS 1.0 1,0 1.0 1.0 For permanent actions and/or variable actions, an action factor of 1,0 shall be used where this gives the most unfavourable action effect ^b Actions with annual probability of exceedance = 10⁻⁴ Permanent Variable Limit state Action Environmental Deformation actions (E) d combinations actions (G) actions (Q) actions (D)*

Table 2-10 Action Combinations – Limit States Table 1 – Partial action factor for the limit states

^c Environmental actions with annual probability of exceedance = 10^{2}

^d Earthquake shall be handled as environmental action within the limit state design for ULS and ALS (abnormal effect)
^e Applicable for concrete structures

For ship-shaped facilities, the action factor for environmental actions (E) may be reduced to 1.15 for action combination "b" when calculating longitudinal bending moment, if the still water bending moment represents between 20% and 50% of the total bending moment.

For steel structures the material factor specified is 1.15. In the case of geotechnical analyses, the material factor should not normally be lower than 1.25. For piles and anchors the material factor for soil is 1.3 which applies to pile groups. A material factor lower than 1.3 is permitted for individual piles if it can be documented it will not result in adverse behaviour.

2.5 Summary of Environmental Criteria and Loading Comparison

Side-by-side comparison of the requirements specified in the three codes is depicted in Table 2-11. The table shows that the wave kinematics factor is similar in the three standards varying from 0.85 to 0.95 for tropical storms. NORSOK requires 0.95 to be used for North Sea conditions. Marine growth is dependent on the regional conditions with about double the marine growth required in the North Sea compared to the GoM. The same drag and inertia coefficients are specified across the three codes. The conductor shielding factors, wind profiles and gusts, and wind spectra formulations are also the same in all three codes. The wind spatial coherence is the same in API and ISO but is more strict in NORSOK

requiring 3s gust rather 5s gust for areas with length less than 50m. Also, NORSOK requires the use of the 1-min speed for global wind loads combined with waves. By contrast, both API and ISO allow 1-h wind for static conditions where dynamic aspects are not significant and 1-min wind when dynamic response is important.

The calculation of the wind force is equivalent in the three standards with difference only in presentation in NORSOK giving the force normal to the member instead of in direction of the wind The current blockage factors are identical in the three standards. With regards to ice loading the API RP 2A and NORSOK N-003 refer to API RP 2N while the ISO 19902 points to the ISO 19906 standard.

With regards to deck clearance requirements, it is noted that all three codes require 1.5m (5 ft) air gap above the 100-year wave crest elevation. As stated in Section 2.2.1, Bulletin 2INT-DG gaves guidance on design using the new metocean criteria of 2INT-MET and significantly increased the requirement for deck height elevation by adding 15% for local random wave crest to the maximum wave crest . The 1000-year wave crest was also recommended for robustness consideration. The ISO 19902 gives more details on how to calculate the deck elevation and has an additional criterion of 30% of wave crest elevation as governing clearance if greater than the 1.5m. The NORSOK N-003 and N-004 require a positive air gap for the 10,000 year wave crest in addition to the 1.5m above the 100 year wave crest requirement. It should be noted that there is a large difference between the three codes on this issue. This is important for the probability of failure. The requirement in ISO of 30 % increase and in NORSOK of 10 000 year crest will add meters to the air gap. It is therefore not understandable that the old 1.5 m requirement is still present in these two codes. For a fixed platform this may be the single requirement that is different in API and ISO (NORSOK) with the largest impact on the probability of failure.

API RP 2T is more comprehensive than RP 2A in defining the loads and load combinations due to the sensitivity of the Tendon Leg Platform to its payload. API 2FPS refers to both API RP 2A and 2T for guidance related to environmental conditions and load definition.

Both API RP 2A and 2T utilize WSD approach for the design of the structure. Notably, the RP 2T 3rd Edition (latest) specified the limit states design approach for the tendon design which was not the case in the previous editions of the document.

The current first edition of API RP 2FPS 1st Edition issued in March 2001 refers to API RP's 2A and 2T for the definition of the environmental criteria for GOM floating production systems.

	API RP 2A/API 2INT-MET	ISO 19901-1/ISO 19902		NORSOK N-003			
Waves	Section 2.3.1	Annex A8		Se	ction 6		
Wave Kinematics factor	API RP 2A, 2.3.1 0.85 to 0.95 for tropical storms 0.95 to 1.00 for extra-tropical storm	ISO 19902, A.24.7.3 0.88 for tropical cyclones 1.0 for winter storms	N-003, 6.2.4 0.95 for North \$	Sea Conditions			
	API RP 2A, 2.3.4	ISO 19901-1, C.2.8 & C.4	N-003, 6.6.1				
	1.5" (38mm) from MHHW to -150 ft (-48 m) in GoM;	Table C.1 for UK Sector Table C.2 same as NORSOK for Areas offshore Norway;	Water Depth	Area Offsho 56° to 59°	pre Norway only 59° to 72°		
Marine Growth		GoM: LAT +3 m to -50 m: 38mm;	m	mm	mm		
		Chishole southern and central California. 200mm are common	Above + 2	0	0		
			-2 to -40	100	60		
			Under -40	50	30		
	API RP ZA, Z.3.1 smooth C.=0.65: C=1.6	ISO 19902, 9.5.2 smooth C.=0.65: C=1.6	N-003, 6.2.4 smooth C.=0.6	5: C=1.6			
Drag and Inertia Coefficient	rough C ₄ =1.05; C _m =1.0	rough C ₄ =1.05; C _m =1.0	rough C _a =1.05	C=12			
Ŭ	Applicable to $U_{mo}T_{app}/D > 30;$	Applicable to $U_{mo}T/D > 30;$	Applicable to U	J _{max} T _i /D > 30;			
	API RP 2A, 2.3.1	ISO 19902, 9.5.2	N-003, 6.2.4 (re	eferred to ISO 1990	02)		
	Figure 2.3.1-4, applicable to $U_{mo}/T_{app}/S > 5\pi$ (extreme waves);	Figure 9.5-2, applicable to $U_{mo}/T_{app}/S > 5\pi$ (extreme waves);					
	For less severe waves, with Umo/Tapp/S < 5p as in fatigue analyses,	For less severe waves, with Umo/Tapp/S < 5p as in fatigue analyses, the					
	there may be less shielding	shielding shall not be invoked.					
Conductor Shielding Factor	figure 2.1.1Shieling Factor for Wave Loads on Concuctor Array on a Punction of Concuctor Brance 2.1.1Shieling Factor for Wave Loads on Concuctor	$F_{p} = \frac{1}{12} $					
Wind	Section 2.3.2 Wind						
Wind profiles and Gusts	API RP 2A, 2.3.2 $u(z,t) = U(z) \times [1-0.41 \times I_u(z) \times \ln(t/t_o);$ $U(z) = U_o \times [1 + C \times \ln(z/32.8)]$ $C = 5.73 \times 10^{-2} \times (1+0.0457 \times U_o)^{1/2}$ $I_u(z) = 0.06 \times [1+0.0131 \times U_o] \times (z/32.8)^{-0.22}$ where $U_o(ft/s)$ is the 1 hour mean wind speed at 32.8 ft	$\begin{split} & \textbf{ISO 19901-1, C.7.3} \\ & U_{w,T}(z,t) = U_{w,1h}(z) \times [1\text{-}0.41 \times I_u(z) \times In(T/T_o); \\ & U_{w,1h}(z) = U_{w0} \times [1 + C \times In(z/z_r) \\ & C = 5.73 \times 10^{-2} \times (1\text{+}0.15 \times U_{w0})^{1/2} \\ & I_u(z) = 0.06 \times [1\text{+}0.043 \times U_{w0}] \times (z/z_r)^{-0.22} \\ & \text{where } U_{w,1h}(m/s_j) \text{ is the 1 hour mean wind speed at } Z_r\text{= 10 m; (SI units)} \end{split}$	N-003, 6.3.2 $u(z,t) = U(z) \times [$ $U(z) = U_0 \times [1 + C]$ $C = 5.73 \times 10^{-2}$ $I_u(z) = 0.06 \times [1 + C]$ where $U_0 (m/s)^{-1}$	1-0.41 x $I_u(z)$ x $In(t)$ C x In(z/32.8) x (1+0.15 x U_o) ^{1/2} +0.043 x U_o] x (z/1 s the 1 hour mean	/t _o); 0) ^{-0.22} wind speed at 10m; All in SI units		
Wind Spectra	API RP 2A, 2.3.2 $S(f) = [3444 x(U_0/32.8)^2 x(z/32.8)^{0.45}]/(1+^{r}f^n)^{(5/3n)}$ $f = 172 x f (z/32.8)^{2/3} x (U_0/32.8)^{-0.75}$ where n = 0.468 $S(f) (ft^2/s^2/Hz) =$ spectral energy density at frequency f (Hz) z(ft) = height above sea level Uo (ft/s) = the 1 hour mean wind speed at 32.8 ft above see level	ISO 19901-1, A.7.4 $S(f,z) = [320 \text{ m/s}^{2} x (U_{w0}/U_{ref})^{2} x (z/z_{r})^{0.45}]/(1+^{r}f^{n})^{(5/3n)}$ $^{r}f = 172 x f (z/z_{r})^{2/3} x (U_{w0}/U_{ref})^{0.75}$ where n = 0.468, U _{ref} = 10m/s $S(f) (m^{2}/s^{2}/Hz) = \text{spectral energy density at frequency f (Hz)}$ $z(m) = \text{height above mean sea level}$ Uw0 (m/s) = the 1 hour mean wind speed at z_{r}	N-003, 6.3.2 S(f,z) = [320 x (~f = 172 x f (z/ where n = 0.46 S(f) (m²/s²/Hz) z(m) = height a Uw0 (m/s) = th	U _o /10) ² x (z/10) ^{0.45} 10) ^{2/3} x (U _o /10) ^{-0.75} 8, U _{ref} = 10m/s = spectral density bove sea level e 1 hour mean win]/(1+~f ⁿ) ^(5/3n) at frequency f (Hz) nd speed at 10m above see level		

Table 2-11 Comparison Table – Environmental Criteria and Loading Conditions

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Spatial Coherence	 API RP 2A, 2.3.2 3 second gust is approriate for determining the maximum static wind load on individual member; 5 seconds gusts are appropriate for maximum total loads on structures whose maximum horizontal dimension is less than 164 ft (50 m); 15 seconds gusts are appropriate for the maximum total static wind load on larger structures; 1 minute sustained wind is appropriate for total static super structure wind loads associated with maximum wave forces for structure that respond dynamically to wind excitation but which do not require a full dynamic wind analysis; One-hour sustained wind is appropriate for total static superstructure wind forces associated with maximum wave forces. 	3 second gust is approriate for determining the maximum quasi-static wind load on individual member; 5 seconds gusts are appropriate for maximum quasi-static local or global actions on structures whose maximum horizontal dimension is less than 50 m; 15 seconds gusts are appropriate for the maximum quasi-static global actions on larger structures; For structures that are moderately dynamically sensitive, but do not require a full dynamic analysis, 1 minute sustained wind is appropriate for total static super structure wind loads associated with maximum wave forces for structure that respond dynamically to wind excitation but which do not require a full dynamic wind analysis; For structures with negligible dynamic response, 1h sustained wind can be used to determine quasi-static global actions caused by wind in conjunction with extreme or abnormal quasi-static actions due to waves and currents; For structures with significant dynamic response to excitation with periods longer than 20s, a full dynamic response analysis to fluctuating winds should be considered.	N-003, 6.3.3 In case of structures or structural parts where the maximum dimension is less than approximately 50m, 3s wind gusts may be used when calculating static wind actions; In the case of structures or structural parts where the maximum length is greater than 50m, the mean period for wind may be increased to 15s; When design actions due to wind need to be combined with extreme actions due to waves and current, the mean wind speed over a 1 min period can be used.
Wind speed and force relationship Shape Coefficient	API RP 2A, 2.3.2 $F = (\rho/2)u^2C_sA$ F = wind force; $\rho = mass density of air, (slug/ft3, 0.0023668 slugs/ft3 for standard temperature and pressure) u = wind speed (ft/s)C_s = shape coefficientA = Area of object (ft2)API RP 2A, 2.3.2Beams - 1.5Sides of buildings - 1.5Cylindrical Sections - 0.5Overall projected area of platform - 1.0$	ISO 19902, 9.7 $F = (\rho_a/2)U_w^2C_sA$ $F = wind force; in wind velocity direction \rho_a = mass density of air (at standard temperature and pressure), 1.226 kg/m3 U_w = wind speedC_s = shape coefficientA = Area of object; normal to wind velocity directionISO 19902, 9.7Flat walls of building - 1.50Overall projected area of structure - 1.00Beams - 1.50Cylinders - Smooth, Re > 5 x 105, 0.65Smooth, Re <= 5 x 105, 1.20Rough, all Re, 1.05Covered with ice, all Re, 1.20$	N-003, 6.3.3 $F = (\rho/2)U_m^2C_sA \sin(\alpha)$ $F = wind force; acting normal to the member axes or surface \rho = mass density of airU_m = wind speedC_s = shape coefficientA = Area of the member or surface area normal to the direction of the force \alpha = the angle between the direction of the wind and the axis of theexposed member or surfaceSection 6.3.3C_s = 0.65 for Reynold's number > 5 x 105C_s = 1.20 for Reynold's number < 5 x 105Tubular structures covered with ice, C_s = 1.2 for all Reynolds numbersFurther Details, refer to ENV 1991-2-4 and DNV Classification Note30.5$
Current Blockage Factor	API RP 2A, 2.3.2 # of Legs Heading Factor 3 all 0.9 4 end-on 0.8 diagonal 0.85 broadside 0.8 6 end-on 0.75 diagonal 0.85 broadside 0.8 8 end-on 0.7 diagonal 0.85 broadside 0.8 8 end-on 0.7 diagonal 0.85 broadside 0.8 8 end-on 0.7 diagonal 0.85 broadside 0.8	ISO 19902, A.95 # of Legs Heading Factor 3 all 0.9 4 end-on 0.8 broadside 0.85 broadside 0.8 6 end-on 0.75 diagonal 0.85 broadside 0.8 8 end-on 0.7 diagonal 0.85 broadside 0.8 8 end-on 0.7 Details refer to ISO19906 - Arctic Offshore Structures;	N-003, 6.2.3 Section 6.2.3.2 - 0.9 for 3 legs, 0.85 for more than 3 legs; Refer to ISO 19902 for further details. Section 6.4 with details data
Snow and Ice	Constructing Fixed Offshore Platforms in Ice Environments	19901-1 Annex C2.8.3 - UK sector 19901-1 Annex C6 - East Coast of Canada	Snow 0.5 Kpa for the entire Norwegian Continental Shelf Sea ice and iceberge referred to API Bulletin 2N

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Deck Clearance	API RP 2A, 2.3.4 Omindirectional guideline wave heights with a nominal return period of 100 years, together with the applicable wave theories and wave steepness should be used to compute wave crest elevations above storm water level, including guideline storm tide. A safety margin, or air gap, of at least 5 feet should be added to the crest elevation to allow for platform settlement, water depth uncertainty, and for the possibility of extreme waves in order to determine the minimum acceptance elevation of the bottom beam of the lowest deck to avoid waves striking the deck.	ISO-19902 A.6.3.3.2 If storm surge is not expected to occur at the same time as the abnormal wave crest, deck elevation $h = (a^2 + s^2 + t^2)^{1/2} + f$ If storm surge is expected to occur at the same time as the abnormal wave crest, $h = [(a + s)^2 + t^2]^{1/2} + f$ where: a is the abnormal wave crest height; s is the extreme storm surge; t is the maximum elevation of the tide relative to the mean sea level f is the expected sum of subsidence, settlement and sea level rise over the design service life of the structure For deep and intermediate water depth a can be approximated to $a > 1.3 a_{100}$ $a > a_{100} + 1.5 m$ a_{100} is the extreme wave crest height with a return period of 100 years	N-004 K4.4. passage of 1 Stokes 5th o N-003 10.2.3 determining an air gap m for fulfilling U The ALS cri demonstratir
Earthquake	API RP 2A, 2.3.6 Separate comparison table provided	ISO 19902 Section 11 & ISO 19901-2 Separate comparison table provided	N-003, 6.5 Separate co
Regional Design Metocean Criteria	Section 2.3.4 Hydrodynamic Force Guidelines for US Waters, and 2.3.4c hurricanes to be replaced by API 2INT-MET	Annex C Regional Information;including North-west Europe, West coast of Africa, US Gulf of Mexico, US West Coast of California and East coast of Canada	NORSOK Norefers to ISC

Note: 1. API RP 2A focuses on GoM and hurrican criteria(2.3.4c & 17.6.2a are replaced by API 2INT-MET);

2. ISO 19901-1 provides environmetal guidelines for the regions all over the world including North-west Europe, West coast of Africa, US Gulf of Mexico, US Coast of California and East coast of Canada;

3. NORSOK N-003 mainly focuses on North west coast of Europe and refers to ISO;

Deck clearance criteria:

a) 1.5 m or 5 ft air gap required for API/ISO;

b) but different way of calculation the maximum wave crest: API and ISO use the 100-yr return period waves;

NORSOK provides two options: ULS: 10⁻² wave crest + 1.5 m or free passage of 10⁻⁴ wave without hitting deck members

4 - The air gap should be sufficient to allow for the free 10⁻⁴ wave without hitting deck members when described as order kinematic theory.

5.5 - due to the complexity and uncertainty associated with actions associated with waves hitting the platforms decks, nargin of 1.5 m on the 10-2 wave event, is recommended ULS criteria;

iteria may be fulfilled by a positive air gap or by

ng survival of the platform subject to a 10⁻⁴ event.

mparison table provided

-003 mainly focuses on North-West Coast of Europe and

The differences between WSD and LRFD design philosophies were briefly discussed in Section 1.4. It was explained there that WSD methodology suffers from the inability to allocated different safety factors to different loads depending on their uncertainty level. However the WSD is simpler in that it requires only one number as the safety factor. By contrast, the LRFD, or the LSD, methods have to define load/action factors plus one resistance factor for each design condition/limit state.

The operating WSD acceptable stress is normally set as 0.6 F_y (where F_y = yield strength) which would be equivalent to 1.45 load factor and 1.15 resistance factor. Therefore if the unfactored loads are the same, the WSD design should be more conservative. For the extreme condition the API 1/3rd increase in allowable stress leads to 0.8 F_y as the acceptable stress and equivalent uniform load factor of 1.09 with 1.15 resistance factor indicating that the LRFD approach would be considerably more conservative for any significant environmental loading condition.

In order to calculate the load factors an acceptable failure probability is specified in the standards in the form of annual probability or reliability index as noted in Table 2-12, for API Section 17 and NORSOK, Table 2-13 from ISO 19906 which is also applicable to ISO19902, Table 2-14 from DNV CN 30.6 (2002), and Table 2-15 from DNV/Riso guidelines for wind turbine design. The reliability index β is defined as

$$\beta = -\Phi^{-1}(\mathbf{P}_{\mathrm{f}}),\tag{2.3}$$

where Φ^{-1} is the inverse normal distribution function.

Table 2-12 does not represent any target reliability, but is a comparison of the probability of failure between API section 17 and NORSOK for two cases of uncertainty in the resistance formulation. This should not therefore be viewed as target reliability for NORSOK but only as an indication to that effect. The shown annual P_f was calculated using probabilistic analysis software (PROBAN) with a limit state function that defines failure as action exceeding resistance.

These are shown to be very similar across the standards. The load/action factors are calculated using a calibration procedure described in; e.g., ISO 2394 (1998). The calibration procedure involves many assumptions and approximations that are not spelled out in the codes. However, the acceptability of the proposed factors is demonstrated by application to actual structures that exhibit adequate performance under actual design environmental conditions.

Table 2-16 compares the load/action factors specified in API, ISO, and NORSOK standards. Again this table presents a side-by-side comparison of the three codes. Because API RP 2A 21st Edition is a WSD code, the 1993 API RP 2A LRFD was used for the comparison with the ISO and NORSOK codes which use the LSD which is same as LRFD.

As noted earlier in Sections 2.2, 2.3 and 2.5, the load/action factors are similar in 2A LRFD and ISO 19902. It is our understanding that the API document was utilized as a starting point for the ISO standards development that started in the 1990's. Therefore the ISO document have improved considerably on the 2A LRFD document not only in providing more guidance to the designer but also in correcting and clarifying several issues that existed in 2A LRFD such as the separation of the inertia component of the load with different load factor and the definition of an operating environmental condition.

CoV(X _R) API		Norsok					
Capacity	Unmanned	Manned	Unmanned	Manned (ULS)	Manned (ALS)		
0.2	5 · 10 ⁻²	1 · 10 ^{-3 *)}	1 · 10 ⁻⁴	5 · 10 ⁻⁵	2 · 10 ⁻⁵		
0.1	3 · 10 ⁻²	3 · 10 ⁻⁴	$2 \cdot 10^{-4}$	6 · 10 ⁻⁵	2 · 10 ⁻⁵		

Table 2-12 Annual P_f in API Sec. 17 and NORSOK for unmanned and manned platforms

*) Calibrated value

Table 2-13 ISO 19906 Reliability Targets for ULS and ALS

Exposure Level	Maximum Acceptable Annual Failure Probability
L1*	1.0 x 10 ⁻⁵
L2*	1.0 x 10 ⁻⁴
$L3^*$	1.0 x 10 ⁻³

*L1=high consequence/manned non-evacuated, L2=Medium consequence/manned evacuated or unmanned or Manned Evacuated with low consequence, and L3= low consequence unmanned structures.

Table 2-14 DNV Classification Notes 30.6 (1992) Annual Pf and Target Reliability Indices

Class of Failure	Less Serious Consequence	Serious Consequence
I. Redundant structure	$P_{\rm F} = 10^{-3}$ $\beta = 3.09$	$P_{\rm F} = 10^{-4}$ $\beta = 3.71$
II. Significant warning prior to occurrence of failure in a non- redundant structure	$P_{\rm F} = 10^{-4}$ $\beta = 3.71$	$P_{\rm F} = 10^{-5}$ $\beta = 4.26$
III.No warning before the occurrence of failure in a non- redundant structure	$P_{\rm F} = 10^{-5}$ $\beta = 4.26$	$P_{\rm F} = 10^{-6}$ $\beta = 4.75$

	Table 2-3. Target annual failure probabilities P_{FT} and corresponding reliability indices β_T .							
			Failure consequence					
Failure type		Less serious LOW SAFETY CLASS (small possibility for personal injuries and pollution, small economic consequences, negligible risk to life)	Serious NORMAL SAFETY CLASS (possibilities for personal injuries, fatalities, pollution, and significant economic consequences)	Very serious HIGH SAFETY CLASS (large possibilities for personal injuries, fatalities, significant pollution, and very large economic consequences)				
	Ductile failure with reserve capacity (redundant structure)	$P_{\rm F} = 10^{-3}$ $\beta_{\rm T} = 3.09$	$P_{\rm F} = 10^{-4}$ $\beta_{\rm T} = 3.72$	$P_{\rm F} = 10^{-5}$ $\beta_{\rm T} = 4.26$				
	Ductile failure with no reserve capacity (significant warning before occurrence of failure in non- redundant structure)	$P_{\rm F} = 10^{-4}$ $\beta_{\rm T} = 3.72$	$P_{\rm F} = 10^{-5}$ $\beta_{\rm T} = 4.26$	$P_{\rm F} = 10^{-6}$ $\beta_{\rm T} = 4.75$				
	Brittle failure (no warning before occurrence of failure in non- redundant structure)	$P_{\rm F} = 10^{-5}$ $\beta_{\rm T} = 4.26$	$P_{\rm F} = 10^{-6}$ $\beta_{\rm T} = 4.75$	$P_{\rm F} = 10^{-7}$ $\beta_{\rm T} = 5.20$				

Table 2-15 Guidelines for Design of Wind Turbines, DNV/Riso, 2002^{*}

*Reference NKB, 1978.

It should be noted that the probability of failure though defined in design codes as the probability the load/action exceeds the strength/resistance to avoid failure; the code rarely defines the failure itself. As noted in this report, even in Limit State Design philosophy, the load/action factors and resistance factors ensure the safety of the structure under extreme environmental conditions. The uncertainty in the loading would lead to ultimate strength response of the structure.

	API RP 2A - WSD	ISO 19901-1/ISO 19902					NORSOK N-001, N003									
	API RP 2A -WSD Section 2.2.2	ISO 19902 Table 9.10-1 - Partial action factors for in-place situations				tions and exposure level L1			N-001, Table 1 - Partial action factor for the limit state							
	The loading conditions should include environmental conditions combined with	Desire Constitute			Partial	action fact	ors		Limit Olivi	Actio	n conmbina	tions	Permane	Variable	Environmental	Deformation
	appropriate dead and live loads in the following manner:	Design Condition	Ϋ 1 ,G1	γr,62	Yr,Q1	Yr, q.2	Ύf,Eo	Υt,Ee	Limit State				nt actions (G)	actions (Q)	actions (E) ^d	actions (D) ^e
	 Operating environmental conditions combined with dead loads and maximum live loads appropriate to normal operations of the platform. 	Permanent and variable actions only	1.3	1.3	1.5	1.5	0.0	0.0	ULS		aª		1.3	1.3	0.7	1.0
	2. Operating environmental conditions with dead loads and minimum live loads	Operating situation will corresponding wind,	1.2	1.2	1.5	1.5	0.0-	0.0	111.0		<u>۲</u>		1.0	1.0	1.2	1.0
	appropriate to the normal operations of the platform	wave, and/or current conditions	1.5	1.0	1.0	1.0	0.9/1E	0.0	ULS		b		1.0	1.0	1.3	1.0
	Design environmental conditions with dead loads and maximum live loads appropriate for combining with extreme conditions.	Extreme conditions when the actions effects							CI C				1.0	10	10	1.0
	 Design environmental conditions with dead loads and minimum live loads 	due to permanent and variable actions are additive	1.1	1.1	1.1	0.0	0.0	7t,E	SLS				1.0	1.0	1.0	1.0
	appropriate for combining with extreme conditions	Extreme conditions when the actions effects													·	
		due to permanent and variable actions are	0.9	0.9	0.8	0.0	0.0	Υr.e	ALS	Ab	normal effe	ct ^b	1.0	1.0	1.0	1.0
s.		oppose													ļ	
tion	API RP 2A - LRFD Section C	$F_{\rm d} = \gamma_{\rm LG1} G_1 + \gamma_{\rm LG2} G_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} (E_0 + \gamma_{\rm LG2} \mathcal{Q}_2) + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm LG2} \mathcal{Q}_2 + \gamma_{\rm LG1} \mathcal{Q}_1 + \gamma_{\rm$	$D_0 + \gamma_{f,Ce} (E_e \cdot$	$+ \gamma_{LD} D_e$					ALS	Dam	naged condi	tion ^c	1.0	1.0	1.0	1.0
ina	Design Conditions Dr. D. L. L. W. W. D.								FLS				1.0	1.0	1.0	1.0
đ,	Eactored Gravity Loads 13 13 15 15 -	where,							a For permar	nent actions an	d/or variable	actions, an ac	tion factor	of 1.0 shall be	e used where this giv	ves the most
ပိ		G1, G2 are the permanent actions defined in 9.2							unfavourable	action effect						
ing.	Operating Wind Wave and Current Load 1.3 1.3 1.5 1.5 1.2 - 1.5	E is the exclusion actions defined in 9.2	and the second second						b Actions wit	h annual proba	bility of exce	edance = 10 ⁻⁴				
oad	effects due to permanent and variable 1 1 1 1 1 1 1	D ₀ is the equivalent quasi-static action recreating dyna	eraung winu, wave mic response in ac	cordance wit	h 9.8. but caused b	w the wave cond	ition that correspond	is with that for Eo	c Environme	ntal actions wit	h annual pro	bability of exce	eedance =	10 ⁻²		
Ē	actions are additive	Ee is the extreme quasi-static action due to wind, waves, a	and current as def	ined in 9.4 an	d taking account of	the requirement	ts of 9.5 to 9.7		d Earthquake	e shall be hand	led as envire	onmental action	n within the	limit state de	sign for ULS and AL	S (abnormal
sig	Extreme conditions when the actions	De Is the equivalent quasi-static action representing dynamic	mic response defin	ned in 9.8.1					effect) e Applicable	for concrete st	uctures					
പ്	effects due to permanent and variable 0.9 0.9 0.8 1.35 1.6875	$\gamma_{f,G1}, \gamma_{f,g2}, \gamma_{f,Q1}, \gamma_{f,Q2}$ are the partial action for the various j	permanent and var	riable actions	discussed in 9.9 ar	nd for which valu	es for different desig	n situations are given	- reprisedute	tor contracte 50						
ļ	actions are oppose	in Table above;							G = Permane	ent actions - the	actions that	t will not vary i	in magnitud	e, position or	direction during the	time period
	D1 = self weight of the structure	$\gamma_{\rm f,EO}$ $\gamma_{\rm f,EO}$ are the partial action for the various permanent and v	variable actions dis	scussed in 9.9	and for which valu	ues for different o	iesign situations are	given in Table above;	considered.	antions the		ata fanas ana	al an e	of the store i	and some in the second	
	D2 = the load imposed on the platform by weight of equipment and other objects	$\gamma_{\rm f,E,}~\gamma_{\rm f,D}$ are the partial action factors for the environmental action	ans discussed in 9	.9 and for whi	ch appropriate vaiu	ues shall be dete	mined by the owner	r	and direction	during the peri	ctions origin iod consider	ate from norma red	al operation	of the struct	ire and vary in position	on magnitude
		Where no information on partial action factors	s that are sp	ecific to t	he case unde	er consider	ation is availa	ble these	E = Environn	nental actions						
	L1 = Live load including the weight of consumable supplies and fluids in pipes and tanks	factors may be taken to be $\gamma_{tE} = 1.35$ and γ_{tD}	= 1.25						D = Deforma	tion actions - th	ne actions ca	aused by defor	mations, in	posed on the	structure. They may	y be caused
	L ₂ = the short duration force exerted on the structure from operations								by the struct	ure's function o	r the surrou	nding environm	nental cond	itions, or by c	onstruction processe	25.
	Wo = the owner defined operating wind wave and current load								N-003. Table 4 - Conbination of environmental actions with expected mean values and annual probability							
	We = the force applied to the structure due to the combined action of the extreme wave															
	(typically 100-yr return period) and associated current and wind								of exceedance 10 ² and 10 ⁴							
-	 Typically, a 1-year to 5-year winter storm is used as an operating condition in 	One of three methods is normally used for de	efining an en	vironmen	t that genera	tes the evi	reme direct a	ction Ee and	Line and Li	Wind	Wayes	Current	Ice	Snow	Earthouake	Sealevel
	the Gulf of Mexico.	generally also the extreme action effect, cause	sed by the co	ombined	extreme wind	d, wave and	d current cond	litions	Limit State	-2		J	100	SHOW	Laranquarte	Jea Level
	2. Earthquake load, where applicable, should be imposed on the platform as a	a) 100 year return period wave height (signifi	cant or indiv	idual) wit	h associated	wave perio	od, wind and o	current		10~	10~	10	-	-	-	10 ⁻⁴
	separate environmental loading conditions.	velocities;			400				1.114	10"	10**	10**	-	-	-	10""
		b) 100 year return period wave height and period current velocity, all determined current velocity, all determined in the second se	ined by extra	ed with th applation	of the individ	eturn perio	a wind speed eters consider	and the 100	Limit State	10 ⁻¹	10 ⁻¹	10 ⁻¹	10-2	-	-	m
22		independently;	med by extra	apoiation	or the individ	adar param	eters consider		chine orace	-	-	-	-	10 ⁻²		m
tions		-) - · · · · · · · · · · · · · · · · · ·	nt and period	l, wind sp									1			m
ndtions		c) any reasonable combination of wave neigh-			eed and curr	rent velocit	y that results i	in		-	-	-	-	-	10 ⁻²	
I Condtions		 c) any reasonable combination of wave neight the global extreme environmental action of a colourate action of 	n the structu	re with a	return period	rent velocit d of 100 ye	y that results i ars, or	in 		- 10 ⁻⁴	- 10 ⁻²	- 10 ⁻¹	-	-	10 ⁻²	m*
ntal Condtions		 c) any reasonable combination or wave neign the global extreme environmental action or a relevant action effect (global response) or period of 100 years 	n the structu of the structu	ire with a ire (e.g. b	eed and curr return perioc ase shear or	rent velocit d of 100 ye r overturnin	y that results i ars, or g moment) wi	in ith a return		- 10 ⁻⁴ 10 ⁻²	- 10 ⁻² 10 ⁻⁴	- 10 ⁻¹ 10 ⁻¹	-	-	10'2	m* m*
nemtal Condtions		 c) any reasonable combination of wave neigr the global extreme environmental action of a relevant action effect (global response) of period of 100 years. 	n the structu of the structu	ire with a ire (e.g. b	eed and curr return perioc ase shear or	rent velocit d of 100 ye r overturnin	y that results i ars, or Ig moment) wi	in ith a return	Accidental	- 10 ⁻⁴ 10 ⁻²	- 10 ⁻² 10 ⁻⁴	- 10 ⁻¹ 10 ⁻⁴	-	-	10 ⁻²	m* m*
vrionemtal Condtions		 c) any reasonable combination of wave neigr the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico of 	n the structu of the structu designs	ire with a ire (e.g. b	eed and curr return perioc ase shear or	rent velocit d of 100 ye r overturnin	y that results i ars, or ig moment) wi	in ith a return	Accidental Limit State	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴	-			m* m* m*
Evrionental Condtions		c) any reasonable combination of wave neight the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico of b) has been used in the North Sea and b) has been used in the North Sea and	n the structu of the structu designs id many othe	re with a re (e.g. b er areas	eed and curr return period ase shear of	rent velocit d of 100 ye r overturnin	y that results i ars, or g moment) wi	inth a return	Accidental Limit State	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ -	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹	- 10 ⁻¹ 10 ⁻⁴ -	- - - 10 ⁻⁴	-		m* m* m* m
Evrionemtal Condtions		 any reasonable combination of wave neight the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available 	n the structu of the structu designs id many othe able when a	re with a ire (e.g. b er areas database	eed and curr return period ase shear or ase shear or	rent velocit d of 100 ye r overturnin urrences of	y that results i ars, or g moment) wi f wind, waves	in ith a return and current	Accidental Limit State	- 10 ⁻⁴ 10 ⁻² -	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ -	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ -	- - - 10 ⁻⁴	- - - -	10 ² - - - - 10 ⁴	m* m* m* m
Evrionem tal Condtions		 any reasonable combination of wave neight the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suiti is available. 	n the structu of the structu designs ad many othe able when a	re with a re (e.g. b er areas database	eed and curr return period ase shear of ase of joint occu	rent velocit d of 100 ye: r overturnin urrences of	y that results i ars, or g moment) wi (wind, waves	in a return ith a return and current	Accidental Limit State m - Mean se	- 10 ⁻⁴ 10 ⁻² - - a level	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ -	- 10 ⁻¹ 10 ⁻⁴ -	- - - 10 ⁻⁴	- - - - -	10 ² - - - - 10 ⁴	m* m* m* m m
Evrionem tal Condtions		 any reasonable combination of wave neight the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suitility is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to 	n the structu of the structu designs id many othe able when a o 5 year winta	er areas database er storm i	eed and curr return period ase shear of e of joint occi s used as an	rent velocit d of 100 ye r overturnin urrences of n operating	y that results i ars, or g moment) wi wind, waves wind, wave a	in ith a return and current nd current	Accidental Limit State m - Mean se m ^w - mean w	- 10 ⁻⁴ 10 ⁻² - - a level ater level, inclu	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - -	- 10 ⁻¹ 10 ⁻⁴ - - ect of possible	- - - 10 ⁻⁴ -	-	10 ² - - - - 10 ⁴	m* m* m* m
Evrionemtal Condtions		 c) any reasonable combination of wave neight the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico of b) has been used in the North Sea an c) is a more recent development, suitility is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a o 5 year winte	er areas database	eed and curr return perioc ase shear or e of joint occi s used as an	operating	y that results i ars, or g moment) wi wind, waves wind, wave au	in ith a return and current nd current	Accidental Limit State m - Mean se m [*] - mean w Seismic resp sensio = f	- 10 ⁻⁴ 10 ⁻² - - a level ater level, inclu	- 10 ⁻² 10 ⁻⁴ - - ding the effe	- 10 ⁻¹ 10 ⁻⁴ - - ect of possible arried out for th	- - - 10 ⁻⁴ storm surg- e most crti	- - - - - - - - - - - - - - - - - - -	10 ² - - - - 10 ⁴	m* m* m* m
Evrionemtal Condtions		 any reasonable combination of wave neign the global extreme environmental action of 	n the structu of the structu designs Id many othe able when a o 5 year winte	re with a re (e.g. b er areas database er storm i	eed and curr return perioc ase shear or e of joint occi s used as an N-003, Tabl	ent velocit d of 100 ye. r overturnin urrences of n operating le 5 - Chara	y that results i ars, or g moment) wi wind, waves wind, wave ai ateristic actic	in ith a return and current nd current ons and action Temp	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination: carpt Conditi	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons	- 10 ⁻² 10 ⁻⁴ - - ding the effe	- 10 ⁻¹ 10 ⁻⁴ - - ect of possible arried out for th	- - - 10 ⁻⁴ - storm surg- e most crti-	- - - - - al water leve	10 ²	m* m* m* m
Evrionemtal Condtions		 any reasonable combination of wave neign the global extreme environmental action of 	n the structu of the structu designs id many othe able when a o 5 year winte	ire with a ire (e.g. b er areas database er storm i	eed and curr return perioc ase shear or e of joint occi s used as an N-003, Tabl	rent velocit d of 100 year overturnin urrences of operating le 5 - Chara	y that results i ars, or g moment) wi wind, waves wind, wave au ateristic actio Servicecabilit	in ith a return and current nd current ons and action Temp Fatigue limit	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination: orary Conditi Ultimate	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi	- 10 ⁻² 10 ⁻⁴ - - ding the effe should be ca	- 10 ⁻¹ 10 ⁻⁴ - - - - - - - - - - - - -	- - - 10 ⁻⁴ - storm surg- e most crti-	- - - - sal water leve Normal Op. Ultimate	10 ² - - - - 10 ⁴ ! *rations Accidental limit state	m" m" m" m
Evrionemtal Condtions		 any reasonable combination of wave neigh the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an o) is a more recent development, suitivity is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a o 5 year winte	rre with a irre (e.g. b er areas database er storm i	eed and curr return perioc ase shear or e of joint occi s used as an <u>N-003, Tabl</u>	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Char	y that results i ars, or g moment) wi f wind, waves wind, wave a ateristic actio Servicecabilit y limit state	in ith a return and current nd current ons and action Temp Fatigue limit state	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal	- 10 ⁻² 10 ⁻⁴ - - ding the effe should be ca t state Damaged	- 10 ⁻¹ 10 ⁻⁴ - - - - - - - - - Serviceability limit state	- - - 10 ⁻⁴ - storm surg e most crtii Fatigue limit state	- - - - - al water leve Normal Op- Ultimate limit state	10 ^{°2} 10 ^{°4} 1 erations Accidental limit state	m" m" m" m m
Evrionemtal Condtions		 any reasonable combination of wave neigh the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suiti is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a o 5 year winte	rre with a rre (e.g. b er areas database er storm i	eed and curr return perioc ase shear or a of joint occu s used as an N-003, Tabl	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Chara	y that results i ars, or g moment) wi f wind, waves wind, wave an ateristic action Servicecabilit y limit state	in ith a return and current nd current <u>ons and action</u> <u>Temp</u> Fatigue limit state	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal I effect d	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ - ect of possible arried out for th Serviceability limit state	- - - 10 ⁻⁴ - storm surg e most crtii Fatigue limit state	- - - - - al water leve Normal Op. Ultimate limit state	10 ² 10 ⁴ I erations Accidental limit state	m" m" m m m Damaged conditions
Evrionemtal Condtions		 any reasonable combination of wave neign • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit, is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a o 5 year winte	rre with a rre (e.g. b er areas database er storm i	eed and curr return perioc ase shear or e of joint occi s used as an <u>N-003, Tabl</u> Permanent 1.	ent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Char: actions	y that results i ars, or g moment) wi f wind, waves wind, wave a ateristic actio Servicecabilit y limit state	in ith a return and current nd current <u>Temp</u> Fatigue limit state	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s s ons Accidental limi Abnormal l effect o	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions EXPEC	- 10 ⁻¹ 10 ⁻⁴	- - 10 ⁴ - storm surg e most crtin Fatigue limit state	- - - - - - - - - - - - - - - - - - -	10 ² 10 ⁴ I erations Accidental limit state	m" m" m m m Damaged conditions
Evrionemtal Condtions		 any reasonable combination of wave neign • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit, is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a o 5 year winte	re with a rre (e.g. b er areas database er storm i	eed and curr return perioc ase shear or e of joint occi s used as an <u>N-003, Tabl</u> <u>Permanent 1</u> <u>Variable fun</u>	ent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Char. ctions uctions	y that results i ars, or g moment) wi f wind, waves wind, wave ai ateristic actio Servicecabilit y limit state	in ith a return and current nd current ons and action Temps state Expected	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s s ons Accidental limi Abnormal effect o	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions EXPEC SPECIF res taken	- 10 ⁻¹ 10 ⁻⁴ - ect of possible arried out for th Serviceability limit state TED VALUE TED VALUE TED VALUE	- - 10 ⁴ - Fatigue limit state	- - - - - - - - - - - - - - - - - - -	10 ² 10 ⁴ I erations Accidental limit state Abnormal effect - Annual probability	m" m" m" m m Damaged conditions
Evrionemtal Condtions		 any reasonable combination of wave neign • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a o 5 year winte	re with a rre (e.g. b er areas database er storm i	eed and curr return perioc ase shear or s used as an N-003, Tabl Permanent : Variable fun Environmea actions	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Chara actions actions ictional intal	y that results i ars, or g moment) wi wind, waves wind, wave and ateristic action Servicecabilit y limit state Dependent on	in ith a return and current ons and action Temp Fatigue limit state Expected action history	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination: orary Conditi Ultimate limit state Value depen	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal l effect l dent on measu	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions EXPEC SPECIF res taken	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴	- - - - storm surgree most critic Fatigue limit state	- - - - cal water leve Ultimate limit state	10 ² 10 ⁻⁴ I erations Accidental limit state Abnormal effect Annual probability of exceedance = 10 ⁰	m" m" m m m Damaged conditions
Evrionem tal Conditions		 a) any reasonable combination of wave neign • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available. ISO-19802 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a 0.5 year winte	re with a re (e.g. b er areas database er storm i	eed and curr return perioc ase shear or s used as an <u>N-003, Tabl</u> <u>Permanent</u> Variable fun Environmea actions	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Chara actions letional intal	y that results i ars, or g moment) wi wind, waves wind, wave and ateristic action Servicecabilit y limit state Dependent on operational	in ith a return and current ons and action Temp Fatigue limit state Expected action history	Accidental Limit State m - Mean se m [*] - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal effect dent on measu	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effection should be car t state Damaged conditions EXPEC SPECIF res taken	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ ect of possible arried out for th Serviceability limit state TED VALUE TED VALUE Dependent on perational requirements	- - - - storm surgree most critic Fatigue limit state Expected action history	- - - - al water leve Ultimate limit state Probability of	10 ⁻² - - - - 10 ⁻⁴ I Accidental limit state Abnormal effect - Annual probability of exceedance = 10 ⁻⁴	m" m" m" m m Damaged conditions
Evrionem tal Condtions		 any reasonable combination of wave neign • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available. ISO-19802 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a 0.5 year winte	re with a re (e.g. b er areas database er storm i	eed and curr return perioc ase shear or s used as an <u>N-003, Tabl</u> <u>Permanent</u> Variable fun Environmea actions	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Chara actions letional intal	y that results i ars, or g moment) wi wind, waves wind, wave and ateristic action Servicecabilit y limit state Dependent on operational requirements	in a return ith a return and current ons and action Temp. Fatigue limit state	Accidental Limit State m - Mean se m* - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal effect dent on measu	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effi should be ca t state Damaged conditions EXPEC SPECIF res taken	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ ect of possible arried out for th Serviceability limit state TED VALUE TED VALUE Dependent on operational requirements	- - - - storm surg e most crtii Fatigue limit state Expected action history	- - - - - - - - - - - - - - - - - - -	10 ⁻² - - - - 10 ⁻⁴ I erations Accidental limit state Abnormal effect Annual probability of exceedance = 10 ⁻⁴	m" m" m" m m Damaged conditions
Evrionem tal Condtions		 a) any reasonable combination of wave heigh the global extreme environmental action of a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a 0.5 year winte	re with a re (e.g. b er areas database er storm i	eed and curr return period ase shear or s used as an <u>N-003, Tabl</u> <u>Permanent</u> . <u>Variable fun</u> Environmea actions	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Charr actions letional intal	y that results i ars, or g moment) wi f wind, waves wind, wave at ateristic action Servicecabilit y limit state Dependent on operational requirements	in ith a return and current ons and action Temp Fatigue limit state Expected action history	Accidental Limit State m - Mean se m* - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal effect dent on measu	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions EXPEC SPECIF res taken	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ ect of possible arried out for th Serviceability limit state TED VALUE TED VALUE Dependent on operational requirements TED VALUE	- - - storm surgree most crtii Fatigue limit state Expected action history	- - - - - al water leve Normal Op Ultimate limit state	10 ⁻² - - - 10 ⁻⁴ I erations Accidental limit state Abnormal effect Annual probability of exceedance = 10 ⁻⁴	m" m" m" m m Damaged conditions
Evrionem tal Conditions		 a) any reasonable combination of wave heigh • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a 0.5 year winte	re with a re (e.g. b er areas database er storm i	eed and curr return perioc ase shear or s used as an <u>N-003, Tabl</u> <u>Permanent</u> . <u>Variable fun</u> Environmea actions <u>Deformation</u> <u>Accidenta</u>	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Charr actions letional intal	y that results i ars, or g moment) wi f wind, waves wind, wave and ateristic action Servicecabilit y limit state Dependent on operational requirements	in a return ith a return and current ons and action Temp. Fatigue limit state Expected action history	Accidental Limit State m - Mean se m* - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal effect dent on measu	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions EXPEC SPECIF res taken EXPEC	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ ect of possible arried out for th Serviceability limit state TED VALUE TED VALUE TED VALUE TED VALUE TED VALUE TED VALUE Not appl	- - - - storm surgree most crtii Fatigue limit state Expected action history	- - - - - al water leve Normal Op- Ultimate limit state	10 ⁻² - - - 10 ⁻⁴ - - - - - - - - - - - - - - - - - -	m" m" m" m m Damaged conditions
Evrionemtal Condtions		 a) any reasonable combination of wave heigh • the global extreme environmental action of • a relevant action effect (global response) of period of 100 years. Method a) has been used for Gulf of Mexico (b) has been used in the North Sea an c) is a more recent development, suit is available. ISO-19902 A.9.10.3.2.1: Typically a 1 year to condition in the Gulf of Mexico. 	n the structu of the structu designs id many othe able when a 0.5 year winte	re with a re (e.g. b er areas database er storm i	eed and curr return perioc ase shear or e of joint occurs s used as an <u>N-003, Tabl</u> <u>Permanent :</u> <u>Variable fun</u> <u>Environmea</u> actions <u>Deformation</u>	rent velocit d of 100 ye, r overturnin urrences of n operating le 5 - Charr actions letional intal	y that results i ars, or g moment) wi f wind, waves wind, wave a ateristic action Servicecabilit y limit state Dependent on operational requirements	in a return ith a return and current ons and action Temp. Fatigue limit state Expected action history Not applicable	Accidental Limit State m - Mean se m* - mean w Seismic resp combination: orary Conditi Ultimate limit state	- 10 ⁻⁴ 10 ⁻² 10 ⁻¹ - a level ater level, inclu onse analysis s ons Accidental limi Abnormal effect dent on measu Dependent on measures	- 10 ⁻² 10 ⁻⁴ 10 ⁻¹ - - ding the effe should be ca t state Damaged conditions EXPEC SPECIF res taken EXPEC	- 10 ⁻¹ 10 ⁻¹ 10 ⁻⁴ ect of possible arried out for the Serviceability limit state TED VALUE TED VALUE TED VALUE TED VALUE TED VALUE TED VALUE Not appl	- - - - storm surge e most crtii Fatigue limit state Expected action history	- - - - - al water leve Normal Op- Ultimate limit state	10 ⁻² - - - - 10 ⁻⁴ I erations Accidental limit state Abnormal effect Annual probability of exceedance = 10 ⁻⁴ Annual probability of exceedance: 10 ⁻⁴	m" m" m" m m m Damaged conditions Annual probability of exceedance = 10 ⁻² Not applicable

Table 2-16 Load/Action Factors

3 STRUCTURAL STEEL AND CONNECTIONS DESIGN

3.1 Tubular Members

The main differences among API WSD, API LRFD, ISO, and NORSOK are illustrated in this section. The comparison is also made through case studies presented in Section 11 herein.

a. Material Validity

ISO 19902 and NORSOK N-004 consider steel with yield strength of up to 500 MPa whereas in the API codes this limit is 414MPa. It appears that API will adopt the 500 MPa limit on yield strength in the future.

b. Axial Tension

API LRFD, ISO and NORSOK formulations for axial tension, bending and hydrostatic pressure are identical. The allowable axial tensile stress in API WSD is naturally the lowest among all four codes because it is based on WSD methodology employing actual operating or extreme loads without any load factors (i.e. load factor = 1.0). The second lowest is given in NORSOK because it adopts a material factor of 1.15 which is higher than the resistance factor of 1.05 in ISO (same as 1/0.95 in API LRFD).

c. Overall Column Buckling

The same level of axial compression capacity is provided in both the API LRFD and the ISO. The range of material factors in NORSOK is 1.15 - 1.45, which is dependent on elastic local buckling strength and elastic hoop buckling strength.

- d. Local Buckling
- 1. Local buckling check is based on only geometric parameters in API WSD whereas in API LRFD, ISO and NORSOK it depends on geometry and elastic modulus of members.
- 2. In local buckling equations, the API allows an upper limit of D/t ratio of up to 300 whereas ISO and NORSOK limit D/t to a maximum of only 120 which means that NORSOK is significantly more conservative. It should be remembered that NORSOK assumes that the platforms will be manned during an extreme environmental event.
- e. Bending
- 1. The bending stress equations in API LRFD, ISO and NORSOK contain elastic section modulus, plastic section modulus and yield strength whereas API WSD equations only contain the yield strength. This is because the WSD methodology limits the stress to a fraction of the yield

whereas the LSD and LRFD approaches allow full plasticity in the section and therefore allow the section to go beyond first yield.

- 2. The same level of bending capacity is provided in the API LRFD as well as in the ISO. The range of material factors in NORSOK is 1.15 1.45, which is dependent on elastic local buckling strength and elastic hoop buckling strength. This is considerably higher than the resistance factor of 1.05 (1/0.95 in API LRFD) and therefore NORSOK is more conservative in capacity evaluation.
- f. Hydrostatic Pressure
- 1. Critical hoop buckling stress F_{hc} in API WSD is different from the other three codes. In API WSD, design formulae for critical hoop buckling strength are provided for four elastic stress ranges. The equations in API LRFD, ISO and NORSOK are identical. ISO and NORSOK provide three ranges of elastic hoop buckling strength for whereas API LRFD has two such ranges.
- 2. The formula for elastic hoop buckling strength is same in all four codes. However, in API WSD the elastic buckling coefficient C_h is provided for five ranges, whereas API LRFD, ISO and NORSOK include four ranges for this parameter.
- g. Shear

Shear stress factors in API LRFD and ISO 19902 are same, whereas NORSOK specifies reduced value due to the conservatism associated with the material factor as discussed earlier in this section. The API WSD allowable shear stress is much lower because it is to be compared with unfactored operating or extreme (with the 1/3 allowable stress increase) load conditions.

- h. Combined Loads without Hydrostatic Pressure
 - i) Axial Tension and Bending
- 1. The formulae in all four codes are different. API LRFD adopts a cosine form equation. API WSD and ISO use linear formulae.
 - ii) Axial Compression and Bending
- 1. The formulae from all four codes are different. As in i) above, API LRFD utilizes a cosine form equation while API WSD and ISO use a linear form.
- 2. When axial compressive stress is small (fa/Fa ≤ 0.15), API WSD provides an alternative equation.
- 3. All four codes provide the same formulae for moment reduction factor C_m .

- 4. Effective Length Factor for Jacket brace buckling check exhibit differences as shown in
- 5. Table 3-2. NORSOK and ISO are same while API WSD and LRFD give slightly higher factor for X-brace longer segment length (0.9 vs. 0.8) and main diagonals (0.8 vs. 0.7). Also API WSD and LRFD give effective length factors for deck truss web members.
- i. Combined Loads with Hydrostatic Pressure
 - i) Axial Tension and Bending
- 1. API WSD and LRFD provide the same formulae. However, the safety factor on resistance provided in API WSD is by definition higher than that in the API LRFD (1.67-2.00 vs. 1/0.95=1.05 and 1/0.80 = 1.25).
- 2. Both ISO and NORSOK provide similar format. The only difference between these two codes is that the partial resistance factor in ISO is 1.05 for combined tension and bending and the material factor in NORSOK is in the range of 1.15 to 1.45.
- 3. There are two methods provided in NORSOK for design axial stress in tension and compression respectively. In Method A, design axial stress excludes the effect of capped-end axial compression arising from external hydrostatic pressure. In Method B, the calculated member axial stress includes the effect of the hydrostatic capped-end axial stress.
 - ii) Axial Compression and Bending
- 1. API LRFD has a cosine format equation. NORSOK provides two methods for the combined stress formulae as noted in i) Axial Tension and Bending, item 3 above.
- 2. The basic formulae in ISO and NORSOK are identical.
- 3. As in i) Axial Tension and Bending, item 3 above, two methods A and B are provided in NORSOK for design axial stress in tension and compression respectively excluding or including the effect of capped-end axial compression arising from external hydrostatic pressure.

When the compressive stress combination is greater than half of hoop compressive stress, the formulae in the four codes are identical.

Interaction formulae for shear plus bending moment and shear plus bending moment and torsional moment are provided in NORSOK.

3.2 Tubular Joints

As shown in Table 3-5 the following may be noted:

- 1. API LRFD requires that the connections at the ends of tension and compression members develop the strength required by design loads, but not less than 50% of the effective strength of the member. There is no validity range provided in the code.
- 2. Formulae for joint basic capacity are identical in the four codes, but the API LRFD moment capacity equation includes the numerical factor of 0.8 on d in equation for M_{uj} .
- 3. For strength check, cosine format is presented in API LRFD. The formula is of the same format in API WSD, ISO and NORSOK. However, an additional formula is provided in ISO for critical joints to ensure that the joint strength exceeds the brace member strength. This is a subject of discussion in the ISO committee regarding the implication on design and the actual need for this conservatism.
- 4. In ISO and NORSOK, the strength factor Q_u is identical. Different values are suggested in API WSD and API LRFD.
- 5. Formulations for chord load factor Q_f in API WSD are very different from those in API LRFD, ISO and NORSOK. The same equation is used in API LRFD, ISO and NORSOK, but the coefficients "C" are different among the three codes.

3.3 Code Comparison Summary

The API RP 2A WSD, API RP 2A LRFD, ISO 19902 and NORSOK N-004 provisions for checking the adequacy of tubular members are similar in that all four codes give formulations for each load effect type acting alone and for all load effects acting in combination.

Table 3-1, Table 3-2, Table 3-3, and Table 3-4 summarize and compare the provisions of the four codes. Many of the provisions shown are similar or equivalent across all four codes. For instance the API LRFD, ISO and NORSOK formulations for axial tension, bending and hydrostatic pressure are identical. The most significant differences lie with axial compression, particularly with respect to local buckling, and with some of the combined effect interaction equations.

The overall column buckling formula in API WSD uses the AISC formulation and differs from API LRFD, ISO and NORSOK which are LSD or LRFD based. The API LRFD, ISO and NORSOK use a similar formula but employ different coefficients. The same capacity is given by API LRFD and ISO, while a lower capacity is given by NORSOK meaning that NORSOK is more conservative. The local buckling strengths in API WSD and API LRFD are given by the same equations and, when expressed as a proportion of the yield stress, is only a function of geometry parameters. The local buckling strengths in ISO and NORSOK are given by the same equations and are noted as being a function of material as well as geometric properties.

The interaction formulae in API WSD, ISO and NORSOK are linear combinations, whereas the API LRFD used a cosine term in the interaction equation. The API 2A LRFD code is currently suspended and will be replaced by the API RP 2A 23rd Edition which will use the ISO 19902 as basis similar to other API RP's currently being produced. The original intention of publishing only an API "wrapper" and attaching the ISO document to it has now been changed to reproducing the ISO standard edited to incorporate GOM and US west Coast specific requirements.

BOEMRE TA&R NO. 677 Final Report on Comparison of API, ISO, and NORSOK Offshore Structural Standards

Tubular Members Code Provisions -	TABLE 1							
API WS	SD .	API LRF	D	ISO		NORSOK		
Stress/		Stress/		Stress/		Stress/		
Parameter Formulation	Limits	Parameter Formulation	Limits	Parameter Formulation	Limits	Parameter Formulation	Limits	
3.2.1 AXIAL IE	INSION		NSION	13.2.2 AXIAL 11	ENSION	6.3.2 AXIAL IE	NSION	
	IDDESION	$I_t = \psi_t \Gamma_y$		0t 0t≤ t/7Rt 42.2.2 AVIAL COM	$\gamma_{Rt} = 1.05, t_t = t_y$	$N_{Sd} = N_{t,Rd} - A_{ly} \gamma_M$		
3.2.2 AXIAL COM	IPRESION	D.Z.Z AXIAL COW	4 - 0.85	13.2.3 AXIAL COM	WPRESION v= = 1.19	0.3.3 AXIAL COM	PRESION	
		ic ic≃voion	φ _c = 0.85	Oc Oc I OTRC	/Rc = 1.10	NSG = 14C,Rd = 746/1M	$\lambda < 0.5$	
Octores Duckling	D# - 00	Calvera Bud	ulia a	Onlynna Dynhlinn		7M = 1.15	05-01-0	
Column Buckling	D/l ≤ 60	Column Buc	kiing	Column Buckling		$\gamma_{\rm M} = 0.85 \pm 0.00 \Lambda_{\rm S}$	0.5 1.0	
						γ _M = 1.45	λ < 1.0	
$F_a = \frac{(1-(Kl/r)^2/(2C_c^2))F_y}{5/3+3(Kl/r)/(8C_c)-(Kl/r)^3/(8C_c)}$	Kl/r⊲C。 C₀³)					$\lambda_{s} = \sigma_{cSd} (f_{y} / f_{de})^{1/2} / f_{cl} + (\sigma_{pSd})^{1/2}$	$(f_{n})^{2}(f_{y}/f_{ne})^{1/2}$	
		$F_{cn} = (1-0.25\lambda^2)F_v$	$\lambda < 2^{0.5}$	$f_c = (1-0.278\lambda^2)f_{vc}$	λ ≤ 1.34	$f_c = (1 - 0.28\lambda^2)f_v$	λ < 1.34	
$F_a = 12\pi^2 E/[23(Kl/r)^2]$	KI/r>Cc	$F_{\nu}\lambda^{2}$	$\lambda \ge 2^{0.5}$	$0.9f_w/\lambda^2$	λ > 1.34	$0.9f_{\nu}/\lambda^2$	λ > 1.34	
	Ū.	- y				,		
$C_c = (2\pi^2 E/F_y)^{1/2}$		$\lambda = [KI/\pi r](F_y/E)^{0.5}$		$\lambda = (KI/\pi r)(f_{yo}/E)^{1/2}$		$\lambda = k l / \pi i (f_{cl} / E)^{1/2}$		
F _y in above eqn is lesser o F _{xe} , F _{xc} , or F _y	ſ	F_{y} in above eqn is lesser of F_{xe},F_{xc},orF_{y}		F _{yc} in above eqn is given by lesser of expressions below	У N	f _{cl} in above eqn is given by lesser of expressions below	,	
Local Buckling		Local Buck	ling	Local Buckling		Local Buckling		
Elastic Local Buckling Stress		Flastic Local Buckling Stress		fue = fu	f./f.,, ≤ 0.17	$f_{el} = f_{el}$	f,/f _{ete} ≤ 0.17	
E _{ve} = 2CEt/D C=0.3	60< D/t <300 [.] t>= 6 mm	$F_{vo} = 2C_v F(t/D) C_v = 0.3$	D/t < 300:	$f_{\rm rec} = (1.047 - 0.274f_{\rm rec})f_{\rm rec}$	$0.17 < f_{\rm s}/f_{\rm sc}$	$f_{el} = (1.047 - 0.274f_{el})f_{el}$	$0.17 < f_{\rm eff} < 1.911$	
1 XE 20200, 0 0.0	00 211 000,1 01111	: xexe(0,0); 0,x 0.0	2.11 000,	iye (non oler nyngeriy	0	$f_{ij} = f_{ij}$	f./f., > 1 911	
Inelastic Local Buckling Stress		Inelastic Local Buckling Stress		f., = 2C.Ft/D	C =0.3	f _{in} = 2C. Et/D	C.=0.3	
$F_{m} = F_{m} [1.64-0.23(D/t)^{1/4}] \le F_{m}$	60< D/t <300: t>= 6 mm	$F_{} = F_{} [1.64-0.23(D/t)^{1/4}]$	D/t > 60	.xe 20x202	CX CIC	.0e 20e-00	0,000	
$F_{xc} = F_{xc}$	for (D/t) < 60	$F_{xc} = F_{y}$	D/t < 60					
323 BEND	ING	D 2 3 BEND	ING	13.2.4 BENI	DING	634 BEND	NG	
SIZIO DEND		f _b ≤ φ _b F _{bn}	φ ₀ . 0.95	$\sigma_b = M/Z_e \le f_b/\gamma_{Rb}$	γ _{Rb} = 1.05	$M_{Sd} \le M_{Rd} = f_m W/\gamma_M$	see above for γ_M	
$F_b = 0.75F_y$	D/t ≤ 10340/F _y (SI Units)	$F_{bn} = (Z/S)F_{y}$	D/t ≤ 10340/F _y (F _y in MPa)	$f_b = (Z_p/Z_e)F_y$	f _y D/Et ≤ 0.0517	$f_m = (Z/W)F_y$	f _y D/Et ≤ 0.0517	
$F_{b} = [0.84 - 1.74F_{y}D/Et]F_{y}$	$10340/F_y < D/t \le 20680/F_y$	$F_{bn} = [1.13-2.58F_yD/Et](Z/S)F_y$	$10340/F_y \le D/t \le 20680/F_y$	$f_{b} = [1.13-2.58F_{y}D/Et](Z_{p}/Z_{e})F_{y}$	0.0517 < f _y D/Et ≤ 0.1034	$f_m = [1.13-2.58F_yD/Et](Z/W)F_y$	0.0517 < f _y D/Et ≤ 0.1034	
F _b = [0.72-0.58F _v D/Et]F _v	20680/F,< D/t ≤300	F _{be} = [0.94-0.76F _v D/Et](Z/S)F _v	20680/F.,< D/t ≤ 300	f _b = [0.94-0.76F _v D/Et](Z _z /Z _a)F _v	0.1034< f,D/Et ≤ 120f,/E	fm = [0.94-0.76FvD/Et](Z/W)Fv	0.1034< f,D/Et ≤ 120f,/E	
5 - y - y	,	Z: plastic section modulu	s ,	$Z_{a} = \pi/64[D^{4}-(D-2t)^{4}]/(D/2)$	y y	$W = (\pi/32)[D^4 - (D-2t)^4]/D$, ,	
		S: elastic section modulu	-	$Z_{2} = [D^{3} - (D-2t)^{3}]/6$		$Z = [D^{\circ} - (D-2t)^{\circ}]/6$		
3.2.4 SHE/	AR	D.2.4 SHE	AR	13.2.5 SHE	AR	6.3.5 SHE/	AR	
Beam Shear		Beam Shear		Beam Shear		Beam Shear		
$F_v = 0.4F_y$		f _v f _v ≤≬ _v F _{vn}	f _v =2V/A φ _v = 0.95	$\tau_{b}=2V/A\leq f_{v}/\gamma_{Rv}$	$f_v = f_y/3^{0.5}$ $\gamma_{Rv} = 1.05$	$V_{Sd} \le V_{Rd} = 0.5 A f_y / (3^{0.5} \gamma_M)$	γ _M = 1.15	
			$F_{vn} = F_{vtn} = f_y/3^{0.5}$					
Torsional Shear		Torsional Shear	f - M D/0	Torsional Shear	f_f/000	Torsional Shear		
$F_{vt} = 0.4F_y$		T _{vt} T _{vt} ≤ φ _{vt} ⊢ _{vtn}	$I_{vt} = M_{vt} D/2I_p$	$\tau_t = M_{vt} \cup I \ge I_p \le T_v / \gamma_{Rv}$	$r_v = r_y/3^{-1}$ $\gamma_{Rv} = 1.05$	$M_{TSd} \le 2I_p T_y / (D3^{\gamma} \gamma_M)$	γ _M = 1.15	

 Table 3-1 Tubular Member Design Check -1

 Table 3-2 Effective Length Factor

API W	SD / API LRFD		ISO	19902		NOR		
3.3.1.d Member Slenderness /	D.3.2.3 Slenderness R Factor	atio and Reduction	13.5 Effective lenghts and	d moment reducti	on factors	6.3.8.2 Axial compr	ession and bend	ling
Situation	Effective Length Factor K	Reduction Factor C _m	Structural component	к	Cm	Structural element	k	Cm
Superstructure Legs Braced Portal	1.0 K	a a	Topside Legs Braced Portal	1.0 К	a a	Superstucture Legs Braced Portal	1 k	a a
Jacket legs and piling Grouted Composite Section Ungrouted Jacket Legs Ungrouted Piling Between Shim Points Deck Truss Web Members In-Plane Action Out-of-plane Action	1.0 1.0 1.0 0.8 1.0	c c b aorb	Structure legs and piling Grouted Composite Section Ungrouted Jacket Legs Ungrouted Piling Between Shim Points Structure brace members Primary diagonals and horizontals K-Braces X-braces	1.0 1.0 1.0 0.7 0.7 0.8	c c b b or c b or c	Jacket legs and piling Grouted Composite Section Ungrouted Jacket Legs Ungrouted Piling Between Shim Points Jacket braces Primary diagonals and horizontals K-Braces Longer segments of X-braces	1 1 0.7 0.8	c c b b orc c
Face-to-face length of Main Diagonals Face of leg to Centerline of Joint Length of K Braces Longer Segment Length of: X Braces Secondary Horizontals	0.8 0.8 0.9 0.7	borc c c	Full length	0.7 0.7	borc borc	Secondary horizontals	0.7	с
Deck Truss Chord Members a 0.85 b 0.6 - 0.4 (M ₁ /M ₂), but not less th c 1 - 0.4(f _a /F _e '), or 0.85, whicheve K Use Effective Length Alingment	1.0 nan 0.4, nor more than e er is less Chart in Commentary o	a, b or c 0.85 of AISC	a 0.85 b 0.6 - 0.4 (M ₁ /M ₂), but shall not be lai c 1 - 0.4(σ _c /f _e), or 0.85, whichever is le K See Effective Length Alingment Cha	rger than 0.85 ess ırt		a 0.85 b 0.6 - 0.4 (M _{15d} /M _{25d}) c 1 - 0.4(N _{5d} /N _e), or 0.85, whichever is k Use Effective Length Alingment in Cla	less use 12	

Table 3-3 Tubular Member Design Check (Contd.)

COMPARISON - TABLE 2							
API	VSD	APIL	RFD		ISO		NORSOK
Stress/ Parameter Formulation	Limits	Stress/ Parameter Formulation	Limits	Stress/ Parameter Formula	tion Limits	Stress/ Parameter Forr	nulation Limits
3.2.5.b Hoo	o Buckling	D.2.5.2 Hoo	p Buckling	13.2.6.2	Hoop Buckling	6.3	.6.1 Hoop Buckling
f _h = pD/2t≤ F _{ho} /SF _h		f _h = pD/2t ≤ φ _h F _{hc}	φ _h = 0.80	$\sigma_h = pD/2t \le f_h$	YRh Y _{Rh} = 1.25	σ _{p,Sd} = p _{Sd} D/2t	$\leq f_{hRd} = f_{h}/\gamma_{M}$ γ_{M} , See Table 1
F _{hc} = F _{he}	$F_{he} \le 0.55F_y$	$F_{hc} = 0.7F_y(F_{he}/F_y)^{0.4} \le F_y$	$F_{he} > 0.55F_y$	$F_{h} = F_{y}$	$2.44F_y < F_{he}$	$f_{h} = f_{y}$	$2.44F_y < F_{he}$
$F_{hc} = 0.45F_{y} + 0.18F_{he}$	$0.55F_y \leq F_{he} \leq 1.6F_y$	F _{hc} = F _{he}	$F_{he} \le 0.55F_y$	$F_{h} = 0.7F_{y}(F_{he}/F_{y})^{0.4}$	$0.55F_y \leq F_{he} \leq 2.44F_y$	$f_h = 0.7 f_y (f_{he}/f_y)^{0.4}$	$0.55F_y \le F_{he} \le 2.44F_y$
$F_{hc} = 1.31F_{y/}(1.15 + F_y/F_{he})$	$0.55F_y \le F_{he} \le 1.6F_y$			F _h = F _{he}	$F_{he} \le 0.55F_y$	$f_{h} = f_{he}$	$F_{he} < 0.55F_{y}$
F _{hc} = F _y	$6.2F_y \le F_{he}$						
$F_{he} = 2C_hEt/D$		$F_{he} = 2C_hEt/D$		F _{he} = 2C _h Et/D		f _{he} = 2C _h Et/D	
$\begin{array}{l} C_{h}=0.44t/D\\ C_{h}=0.44t/D+0.21(D/t)^{3}/M\\ C_{h}=0.736/(M-0.636)\\ C_{h}=0.755/(M-0.559)\\ C_{h}=0.8 \end{array}$	1.6D/t < M ^{1™} 0.825D/t < M < 1.6D/t 3.5 ≤ M < 0.825D/t 1.5 ≤ M < 3.5 M < 1.5	$C_{h} = 0.44t/D$ $C_{h} = 0.44t/D + 0.21(D/t)^{3}/M$ $C_{h} = 0.737/(M-0.579)$ $C_{h} = 0.8$	1.6D/t ≤ M 0.825D/t ≤ M < 1.6D/t 1.5 ≤ M < 0.825D/t M < 1.5	$C_{h} = 0.44t/D$ $C_{h} = 0.44t/D + 0.21(I$ $C_{h} = 0.737/(\mu - 0.579)$ $C_{h} = 0.8$	1.6D/t ≤ μ D/t) ^s /μ ⁴ 0.825D/t ≤ μ < 1.6D/t 1.5 ≤ μ < 0.825D/t μ < 1.5	$\begin{array}{l} C_{h}=0.44t/D\\ C_{h}=0.44t/D+0.21\\ C_{h}=0.737/(\mu-0.57)\\ C_{h}=0.8 \end{array}$	1.6D/t ≤ μ (D/t)°/μ ⁴ 0.825D/t ≤ μ < 1.6D/t ′9) 1.5 ≤ μ < 0.825D/t μ < 1.5
$M = L/D (2D/t)^{1/2}$		$M = L/D (2D/t)^{1/2}$		μ = L/D (2D/t) ^{1/2}	1	$\mu = L_r/D (2D/t)$	1/2
3.3.2 TENSION	and BENDING	D.3.1 TENSION	and BENDING	13.3.2 TEN	SION and BENDING	6.3.8.1	TENSION and BENDING
$f_a/(0.6F_y) + (f_{bz}^2 + f_{by}^2)$	^{1/2} /F _b < 1.0	$1-\cos[(\pi/2)f_t/(\phi_t F_y)] + [f_{by}^2 + f_{bz}^2]^{0.5}/\phi_b F_t$	$\phi_t = \phi_b = 0.95$	$(\gamma_{Rt}\sigma_{ty}/f_t + \gamma_{Rb}(\sigma_{by}^2 + \sigma_{bz}^2)^{1/2}/f_b <$	1.0 $\gamma_{Rt} = 1.05, \gamma_{Rb} = 1.05$ f. = f.	$(N_{Sd}/N_{tRd})^{1.75} + (M_{ySd}^2 + $	$(M_{zSd}^2)^{1/2}/M_{Rd} \le 1.0$
3.3.1 COMPRESSS	ION and BENDING	D.3.2 COMPRESSS	ION and BENDING	13.3.3 COMPRE	ESSSION and BENDING	6.3.8.2 COM	IPRESSSION and BENDING
$f_a/F_a + C_m(f_{bx}^2 + f_{by}^2)^{1/2}/[(1-f_a/F_e')F_b]$	< 1.0	$f_c/(\phi_c F_{cn}) + \{[C_{my}f_{by}/(1-f_c/(\phi_c F_{ey})]^2 + [C_{cn}]$	$\int_{mz} f_{bz} / (1 - f_c / (\phi_c F_{ey})]^2 \}^{0.5} / (\phi_b F_{bn}) \le 1.0$	$\gamma_{Rc}\sigma_c/f_c + \gamma_{Rb}/f_b{[C_{my}\sigma_{by}/(1-\sigma_c/f_e)]$	$_{y})]^{2+} [C_{mz}\sigma_{bz}/(1-\sigma_{c}/f_{ez})]^{2}]^{0.5} \le 1.0$	N _{so} /N _{cRd} + 1/M _{Rd} {[C _{my} M _{ySa} /(1-M	$(N_{so}/N_{ey})^2 + [C_{mz}M_{zSo}/(1-N_{So}/N_{ez})]^2)^{0.5} \le 1.0^{-1}$
$f_a/F_a + \{[C_{mx}f_{bx}^2/[(1-f_a/F_{ex}')]^2 + [C_{my}f_{by}]^2 \}$	$2/[(1-f_a/F_{ey}')]2\}^{1/2}/F_b < 1.0$	$\frac{1-\cos[(\pi/2)f_{c}/(\phi_{c}F_{xc})] + [f_{by}^{2}+f_{bz}^{2}]^{0.5}/(\phi_{t}F_{xc})}{1-\cos[(\pi/2)f_{c}/(\phi_{c}F_{xc})]^{0.5}/(\phi_{t}F_{xc})]^{0.5}}$	_b F _{bn)} ≤ 1	$\gamma_{Rc}\sigma_o/f_{yc}+\gamma_{Rb}(\sigma_{by}^2+\sigma_{bz}^2)^{0.5}/f_b \le$	1.0	N_{S0}/N_{cIRd} + $(M_{ySd}^2 + M_{zSd}^2)^{1/2}/M_{f}$	_{ad} ≤ 1.0
$f_a/(0.6F_{y)} + (f_{bz}^2 + f_{by}^2)^{1/2}/F_b < 1.0$ $f_a/F_a + (f_a^2 + f_a^2)^{1/2}/F_b < 1.0$	for f./F. < 0.15 only	$F_{c} \leq \phi_{c}F_{xc}$	$\varphi_{c}=0.85 \hspace{0.1in} \varphi_{b}=0.95$	$f_{ey} = \pi^2 E/(K_y L_y/r)^2$ K and C_m from the $r_{ey} = 1.18$, where $r_{ey} = 1.18$,	$f_{ez} = \pi^2 E/(K_z L_z/r)^2$ Section 3.3.1.d = 1.05	$\label{eq:NciRd} \begin{split} N_{ciRd} &= f_{ci} A / \gamma_M \qquad \qquad N_{Ey} = \pi \\ k \text{ and } C_m \text{ from} \end{split}$	$r^{2}EA/[kl/i]_{y}^{2}$ $N_{Ez} = \pi^{2}EA/[kl/i]_{z}^{2}$ Table 6-2
far a ' (162' 169') / / D ' 1.0	lor lar g = 0.10 only			THC - 1.10 TRD	- 1.00	6.3.8.3	SHEAR and BENDING
						$M_{Sd}/M_{Rd} \leq (1.4 - \bigvee_{Sd}/\bigvee_{Rd})^{0.5}$	$V_{\text{Sd}}/V_{\text{Rd}} \geq 0.4$
						$M_{Sd}/M_{Rd} \le 1.0$	$V_{\rm Sd}/V_{\rm Rd} \leq 0.4$
						6.3.8.4 SHE	AR, BENDING and TORSION
						$M_{\mathrm{Sd}}/M_{\mathrm{RedRd}} \leq (1.4 - \bigvee_{\mathrm{Sd}}/\bigvee_{\mathrm{Rd}})^{0.5}$	$V_{Sd}/V_{Rd} \ge 0.4$
						$M_{Sd}/M_{RedRd} \le 1.0$	$V_{Sd}/V_{Rd} \le 0.4$
						$\begin{split} M_{RedRd} &= Wf_{mRed} / \gamma_{M} \\ f_{mRed} &= f_{m} [1\text{-}3(\tau_{TSd} / f_{d})^2]^{U.S} \end{split}$	$\tau_{TSd} = M_{TSd}/(2\pi R^2 t)$ $f_d = f_y/\gamma_M$

 Table 3-4 Tubular Member Design Check (Contd.)

API WSD	API LRFD	ISO	
Stress/	Stress/	Stress/	Stress/
Parameter Formulation	Parameter Formulation	Parameter Formulation	Parameter Formula
3.3.3 TENSION, BENDING AND HYDROSTATIC PRESSURE	D.3.3 TENSION, BENDING AND HYDROSTATIC PRESSURE	13.4.2 TENSION, BENDING AND HYDROSTATIC PRESSURE	6.3.9.1 TENSION, BE
			Method A (σ_{aSd} in tension)
A ² + B ² + 2vIAIB ≤ 1.0	$A^2 + B^2 + 2vIAIB \le 1.0$	$\gamma_{Rd}\sigma_{tc}/f_{th} + \gamma_{Rb}(\sigma_{by}^2 + \sigma_{bz}^2)^{0.5}/f_{bh} \le 1.0$	If σ _{aSd} ≥ σ _{qSd} (net axial tension α
	A - 15 - 16 - 0.55 W/A F	$s = s r(t, 0, 000^2 - 20, 0.5, 0, 000)$	$(\sigma_{aSd} - \sigma_{qSd})/T_{bRd} + ($
$A = [(t_t + t_b - 0.5t_h)/F_y]SF_x$	$A = [\mathbf{r}_t + \mathbf{r}_b - \mathbf{U}.\mathbf{O}\mathbf{r}_h]/(\mathbf{q}_t\mathbf{P}_y)$	$T_{th} = T_y ((1+0.09B - B^{-1}) - 0.3B)$	$T_{thRd} = T_y \gamma_{M} [(1+0.09B - B)]$
	$B = T_{h}/(\phi_h F_{hc})$	t _{bh} = t _b [(1+0.09B ⁻ -B ⁻⁺) - 0.3B]	$T_{mhRd} = T_m \gamma_{ML} (1+0.09B^{-}-B^{-})$
v = 0.3	v = 0.3	$B = \gamma_{Rh}\sigma_h/F_h$ $B \le 1.0$	γ _M = see Table 1
SF _x = Axial Tension Safety Factor (see below)	$\eta = 5 - 4F_{hc}/F_y$	$\eta = 5 - 4t_{\rm h}/t_{\rm y}$	$\eta = 5 - 4t_h/t_y$
SF _h = Hoop Compression Safety Factor (see below)	φ _t = 0.95	$\gamma_{Rt} = \gamma_{Rb} = 1.05$	$B = \sigma_{pSd}/f_{hRd}$
Looding	φ _h = 0.80		lf σ _{aSd} < σ _{qSd} (net axial compress
Axial Axial $Axial^{++*}$ Boog Design Condition Tension Beaching Compt Compt 1. Where the basic allow- $1.67 - F_j/F_b^{++}$ 1.67 to 2.0 = 2.0			$I\sigma_{aSd} - \sigma_{qSd}I/f_{cIRd} + ($ $f_{cIRd} = f_{cI}\gamma_M$
whether the set of the			when $\sigma_{cSd} > 0.5 f_{he}/\gamma_M$ and $f_{cle} > 0.5 f_{he}$, the $(\sigma_{cSd} - 0.5 f_{he}/\gamma_M)/(f_{cle}/\gamma_M - 0.5 f_{he}/\gamma_M) + [\sigma_{cSd}]$
installation or life of the structure.			$\sigma_{rSd} = \sigma_{mSd} + \sigma_{nSd} - \sigma_{nSd}$
2. Where the one-third $1.25 \ F_y/1.33 \ F_b \ 1.25$ to $1.5 \ 1.5$			$\sigma_{mSd} = (M_{zSd}^2 + M_{ySd}^2)^{0.5}/W$
e.g., when considering interactions with starm			Method B (σ _{acSd} is in tension)
lasda.			$\sigma_{acSd}/f_{thRd} + (\sigma_{mySd}^2 + \sigma_{mySd}^2)$
3.3.4 COMPRESSION, BENDING AND HYDROSTATIC	D.3.4 COMPRESSION, BENDING AND HYDROSTATIC PRESSURE	13.4.3 COMPRESSION, BENDING AND HYDROSTATIC PRESSURE	6.3.9.2 COMPRESSION,
PRESSURE			
			Method A (σ_{aSd} is in compression)
$[(t_a + 0.5t_h)/F_{xc}]SF_x + t_b/F_y(SF_b) \le 1.0$	$t_h = pD/2t \le \phi_h F_{hc}$	$\gamma_{Rc}\sigma_{cc}/t_{yc} + \gamma_{Rb}[\sigma_{by}] + \sigma_{bc}]/t_{bh} \le 1.0$	$\sigma_{\alpha Sd} t_{chRd} + 1/t_{mhRd} [C_{my}\sigma_{mySd} / (1-\sigma_{\alpha Sd} / t_{Ey})]^{-1}$
If./E. 19E. < 1.0	$E_{\rm r} = 0.7E (E_{\rm r}/E_{\rm r})^{0.4} \le E_{\rm r} \ge 0.55E$	and $y_{-} \sigma f_{+} + y_{-} f_{+} f[C_{-} \sigma_{+} (1 - \sigma f_{-})]^{2+} [C_{-} \sigma_{+} / (1 - \sigma f_{-})]^{2} v^{0.5} \le 1.0$	and $(\sigma_{ab} + \sigma_{ab})/f_{ab} + (\sigma_{ab}^2 + \sigma_{ab}^2)^{0.5}/f_{ab}$
	$E_{re} = E_{re} \qquad \qquad E_{re} \le 0.55E_{re}$	(Receiven / Revenue myclogic receiveg)] [Comzobz((receivez))] = 1.0	(Case : Cqsd)//clRd : (CmySd : CmzSd) //mnR
If f. ≥ 0.5E., then	and and	$f_{rs} = 0.5f_{rs}(1.0-0.278\lambda^2) - 2\sigma_s f_{rs} + I(1.0-0.278\lambda^2)^2 + 1.12\lambda^2\sigma_s f_{rs}]^{0.5}$	$f_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_$
	$f_{e}/(\phi_{e}F_{en}) + \{[C_{en}f_{en}/(1-f_{e}/(\phi_{e}F_{en})]^{2} + [C_{en}f_{en}/(1-f_{e}/(\phi_{e}F_{en})]^{2}\}^{0.5}/(\phi_{e}F_{en}) \le 1.0$	for $\lambda \leq 1.34 [(1-2\sigma_{o}/f_{u^{-}})^{-1}]^{0.5}$	$f_{abed} = 0.5(f_a/\gamma_a)[\xi - 2\sigma_{abd}]$
$(f_{r} = 0.5F_{ha})/(F_{ha} = 0.5F_{ha}) + (f_{h}/F_{ha})^2 \le 1.0$	and	$f_{ch} = 0.9 f_{cr} / \lambda^2$ for $\lambda > 1.34 [(1-2\sigma_c / f_{cr})^{-1}]^{0.5}$	-cing
Ena = Ena /SEn	$1 - \cos[(\pi/2)f_r/(\dot{q}_r F_{wr}] + [f_{hw}^2 + f_{hw}^2]^{0.5}/(\dot{q}_h F_{hn}) \le 1$		$f_{cb,Pd} = 0.9 f_c / (\lambda^2 \gamma_M)$
Faa = Fva/SFv	and	If $\sigma_v > 0.5 f_{hu}/v_{Ph}$ and $f_{vu}/v_{Ph} > 0.5 f_{hu}/v_{Ph}$ the following eqn shall also be satisfied:	
$f_{\mu} = f_{\mu} + f_{\mu} + 0.5f_{\mu}$; f_{μ} should reflect the maximum compressive	f. < o.F.,	- A - He Hul - Ae Hu He Hul,	when $\sigma_{red} \ge 0.5 f_{red}/v_{red}$ and $f_{red} \ge 0.5 f_{red}$ the
stress combination	- TO AC	$(\sigma_v - 0.5 f_{he}/v_{Bh})/(f_{ve}/v_{Bh} - 0.5 f_{he}/v_{Bh}) + (v_{Bh}\sigma_h/f_{he})^2 \le 1.0$	$(\sigma_{c8d} - 0.5f_{be}/\gamma_M)/(f_{c1e}/\gamma_M - 0.5f_{be}/\gamma_M) + [\sigma_{c8d}$
	if $f_v > 0.5 \phi_n F_{he}$, then	for a construct for the for a construct from a const	$\sigma_{rBd} = \sigma_{mBd} + \sigma_{nBd} + \sigma_{aBd}$
	$(f_{v}-0.5\phi_{h}F_{he})/(\phi_{r}F_{ve}-0.5\phi_{h}F_{he}) + [f_{h}/(\phi_{h}F_{he})]^{2} \le 1.0$	$\gamma_{\rm Bh} = 1.25 \gamma_{\rm Br} = 1.18$	
	$f_v = f_c + f_b + 0.5f_b$		Method B (Gacad in Compression)
	φ _b = 0.95 φ _c = 0.85 φ _b = 0.80		(a) $(\sigma_{acSd} > \sigma_{nSd})$
			$(\sigma_{acSd} - \sigma_{aSd})/f_{chRd} + 1/f_{mhRd} [[C_{mv} \sigma_{mvSd}/(1-(\sigma_{acSd} - \sigma_{aSd})/f_{chRd}]]$
			and
			$\sigma_{acSd}/f_{cIRd} + (\sigma_{mySd}^2 + \sigma_{mzSd}^2)^{0.5}/f_{mhRd} \le 1.0$
			when $\sigma_{cSd} > 0.5~f_{he}/\gamma_M$ and $f_{cle} > 0.5f_{he}, the$
			$(\sigma_{cSd} - 0.5f_{he}/\gamma_M)/(f_{cle}/\gamma_M - 0.5f_{he}/\gamma_M) + [\sigma_{pSd}$
			$\sigma_{cSd} = \sigma_{mSd} + \sigma_{acSd}$
			$\sigma_{mSd} = (M_{zSd}^2 + M_{ySd}^2)^{0.5}/W$
			(b) $(\sigma_{acSd} \le \sigma_{qSd})$
			$\sigma_{acSd}/f_{cIRd} + (\sigma_{mySd}^2 + \sigma_{mzSd}^2)^{0.5}/f_{mhRd} \le 1.0$
			when $\sigma_{cSd} > 0.5~f_{he}/\gamma_M$ and $f_{cle} > 0.5f_{he}$ the
			$(\sigma_{cSd} - 0.5f_{he}/\gamma_M)/(f_{cle}/\gamma_M - 0.5f_{he}/\gamma_M) + [\sigma_{pSd}$
			$\sigma_{cSd} = \sigma_{mSd} + \sigma_{acSd}$
			$\sigma_{mSd} = (M_{zSd}^2 + M_{ySd}^2)^{0.5}/W$

NORSOK

NDING AND HYDROSTATIC PRESSURE

condition) $(\sigma_{my8d}^{2} + \sigma_{ma8d}^{2})^{0.5} / f_{mhRd} \le 1.0^{m})^{0.5} - 0.3B]$

B ≤ 1.0

sion condition) (σ_{myGd}²+σ_{mzSd}^{2)0.5}/f_{mhRd}≤1.0

e following eqn should be satisfied, ${_{id}}{'(f_{he}{'}\gamma_M)]^2} \le 1.0$

+σ_{mzSd}²)^{0.5}/f_{mhRd} ≤ 1.0 BENDING AND HYDROSTATIC PRESSURE

 $^{2+}[C_{mz}\sigma_{mzSd}/(1-\sigma_{aSd}/f_{Ez})]^{2}\}^{0.5} \le 1.0$

_{td} ≤ 1.0

$$\begin{split} [kl/i]_{z}^{\ 2} & \\ \sqrt{f}_{cl} + (\xi^{2} + 1.12\lambda^{2}\sigma_{qSd}/f_{cl})^{0.5}] \\ & \quad \text{for } \lambda < 1.34[(1-2\sigma_{qSd}/f_{cl})^{-1}]^{0.5} \\ & \quad \text{for } \lambda \geq 1.34[(1-2\sigma_{qSd}/f_{cl})^{-1}]^{0.5} \\ & \quad \lambda = kl/(\pi i)(f_{cl}/E)^{112} \end{split}$$
 we following eqn should be satisfied, $\frac{1}{3d}(f_{he}/\gamma_{M})]^{2} \leq 1.0 \end{split}$

 $\sigma_{acSd} - \sigma_{qSd} / (f_{Ey})^{2} + [C_{mz} \sigma_{mzSd} / (1 - (\sigma_{acSd} - \sigma_{qSd}) / f_{Ez})^{2}]^{0.5} \le 1.0$

e following eqn should be satisfied, $\left| d'(f_{he}'\gamma_M) \right|^2 \le 1.0$

e following eqn should be satisfied, $\left| d'(f_{he}'\gamma_M) \right|^2 \le 1.0$

Table 3-5 Tubular Joint Check

	API WSD				4	API LRFD)		Т	IS	O 19902			NORSOK N-004				
4.3.1 Validity Range 0.2 ≤ β ≤ 1.0 10 ≤ γ ≤ 50 30° ≤ θ ≤ 90° F _w ≤ 72 ksi (500 MPa)				E.1 CONNECTIO	0 NS OF TEN [γτsin(θ)]/[1 E.3 T	ISION AND (I1+1.5/β](F _{yb} UBULAR JO	COMPRESS /F _y)≤1.0 INTS	SION MEMBER	S 14.3.1 V	/alidity Range 0.2 ≤ β ≤ 1.0 10 ≤ γ ≤ 50 30° ≤ θ ≤ 90° f. ≤ 500 N/mm ²				6.4.3.1 Validity Range $0.2 \le \beta \le 1.0$ $10 \le \gamma \le 50$ $30^\circ \le \theta \le 90^\circ$ $\alpha/D \ge -0.6$ (for K joints)				
g/D > -0.6 (for K joints)				Ultimate Capacity	,				gT > -1.2γ (for K joints)					g/0 = 0.0 (for (fjornd) F _v ≤ 72 ksi (500 MPa)				
4.3.2 Basic Capacity P _a = Q _u Q _r F _{yc} T ² /(FSsinθ) M _a = Q _u Q _r F _{yc} T ² d/(FSsinθ) (plus 1/3 increase in both cases wh		$P_{uj} = F_y T^2 Q_u Q_y (sin(\theta))$ $M_{uj} = F_y T^2 (0.8d) Q_u Q_y (sin(\theta))$ Strength Check				14.3.2 F	14.3.2 Basic Joint Strength P _{ul} = Q _u Q _i f _y T ² /(sinθ) M _{ul} = Q _u Q _i f _y T ² d/(sinθ)				6.4.3.2 Basic Resistance $N_{Rd} = Q_u Q_l f_y T^2 / (\gamma_M \sin \theta)$ $M_{Rd} = Q_u Q_l f_y T^2 d / (\gamma_M \sin \theta)$ $\gamma_M = 1.15$							
FS = 1.60					$P_D \le \phi_j P_{uj}$													
4.3.6 Strength Check				1-cos[π/2(P _D /φ _j P _u	M _D < φ _J M _{uJ}) + [(M _D /φ _J M _u	_i) _{ipb} ² + (M _D /φ _j	M _{uj}) _{opb} ²] ^{0.5} ≤	1.0	14.3.6 s Uj	Strength Check = IP _B /P _d I + (M _B /M _d) _{lpb} ² + IN	1 _B /M _d l _{apb} ≤ 1.0	for all jo	oints	6.4.3.6 St	trength Check N _{Sd} /N _{Rd} + (M _{ySd} /M _{yRd}) ² +	$M_{zSd}/M_{zRd} \le 1$		
$IR = IP/P_{a}I + (M/M_{a})_{ipb}^{2} + IM/M_{a}I_{opb} \le 1.0$				φ_j = 0.95 except for tension loaded Y, T and X joints when φ_j = 0.90			Uj	$ \begin{array}{l} Uj=IP_{\text{B}}/P_{\text{d}}I+\left(M_{\text{B}}/M_{\text{d}}\right)_{\text{lpb}}^{2}+IM_{\text{B}}/M_{\text{d}}I_{\text{opb}}\leq U_{\text{b}}/\gamma_{\text{zl}} & \text{for critical joints} \\ U_{\text{b}}=\text{the utilization of brace at the end adjoining the joint, which may concervatively be taken as the maximum utilization along the brace or even more conservatively as unity \\ \gamma_{\text{zl}}=1.17 \text{ normally; may be relaxed to a value within the range 1.0-1.17 if this can be justified by designer, giving a total resistance factor between 1.05 and 1.23 \\ P_{\text{d}}=P_{\text{u}}/\gamma_{\text{Rj}} \end{array} $				r						
4.2.2 Strongth Easter O				Values for O					Values	$M_d = M_{ul} / \gamma_{Rl}$	γ _{RI} = 1.05			Values for	- 0			
4.5.5 Strength Pactor Qu				values for Q ₀	Axial	Axial			values	Axial	Axial			values to	Axial	Axial		T
	Brace Load	_		Joint	Tension	Compr.	IPB	OPB	Joint	Tension	Compression	IPB	OPB	Joint	Tension	Compression	IPB	OPB
Joint Axial Tension	Axial Compr.	IPB	OPB	к	(3.4+19β)C	2,	(3.4+19β)	(3.4+19β)Q _g	К	(1.9+19β)Q _β ^{0.5} Q _g	(1.9+19β)Q _β ^{0.5} Q _g	4.5βγ ^{0.5}	3.2γ ^(0.562)	К	(1.9+19β)Q _β ^{0.5} Q _g	(1.9+19β)Q _β ^{0.5} Q _g	4.5βγ ^{0.5}	3.2y ^(0.5p2)
(16+1.2γ)β	3 ^{1.2} Q,			T & Y	(3.4+19β)		(3.4+19β)	(3.4+19β)Q _g	Y	306	(1.9+196)Q ₈ 0.5	4.56v ^{0.6}	5 3.2v ^(0.502)	Y	306	(1,9+196)Q ₈ 0.5	4.56v ^{0.5}	3.2v ^(0.502)
K but ≤ 40β T/Y 30β	2.8+(20+0.8γ)β ^{1.6}		2 0 5 4 5 0 0 1026	Cross Joint W/O	(3.4+19β)	(3.4+19β)Q _β	,		x	23β for β ≤ 0.9			5 (0.502)	х	23β for β<=0.9			(0.502)
×	but ≤ 2.8+36β ^{1.6}	(5+0.7γ)β~	2.5+(4.5+0.2γ)p	diaphragms						20.7+(β-0.9)(17γ-220) for β>0.9	[2.8+(12+0.1γ)β]Q _β	4.5βγ**	3.2γ.		21+(β-0.9)(17γ-220) for β>0 9	2.8+14pQp	4.5βγ**	3.2y ^(,p1)
23p for p ≤ 0.9 20.7+(β-0.9)(17γ-220) for β>0	[2.8+(1.2+0.17))p]Qp 0.9			diaphragms	(3.4	+19p)												
Q _p = 0.3/[β(1-0.833β)] Q _p = 1.0	for $\beta > 0.6$ for $\beta \le 0.6$				Q _ρ = 0.3/[β Q _ρ = 1.0	i(1-0.833β)]	for β > 0.6 for β ≤ 0.6	3		$Q_{\beta} = 0.3/[\beta(1-0.833\beta)]$ for $\beta > 0.6$ $Q_{\beta} = 1.0$ for $\beta \le 0.6$				$Q_p = 0.3/[\beta(1-0.833\beta)]$ for $\beta > 0.6$ $Q_p = 1.0$ for $\beta \le 0.6$				
Q _g = 1+0.2[1-2.8g/D] ³ but Qg ≥	for g/D ≥ 0.05 1.0				Q _g =1.8-0.1 Q _g =1.8-4g/	g/T ′D	forγ≤20 forγ>20		for -2.0	$Q_g = 1.9 - 0.7 \gamma^{-0.5} (g/T)^{0.5}$ < g/T < +2.0, the gap facto	forg/T≥2.0, butQ _g rQg maybe found by	≥ 1.0 linear in	terpolation.		Q _g = 1.9 - (g/D) ^{0.5} but ≥ 1.0	for g/T ≥ 2.0, but Q 0	g≥1.0	
$Q_g = 0.13 + 0.65 \phi \gamma^{0.5}$	for g/D ≤ -0.05	where $\phi = t$	Fyb/(Tfy)		-	but Qg ≥ 1.0	0			$Q_g = 0.13 \pm 0.65 \phi \gamma^{0.5}$	for g/T \leq -2.0 where ϕ = tf _{st} /(Tf _s)				$Q_g = 0.13 \pm 0.65 \phi \gamma^{0.5}$	for g/T ≤ -2.0 where å = tf _{vb} /(Tf _v)		
4.3.4 Chord Load Factor Q _f					Q _f = 1.0- λ	A ²				$Q_{f} = 1.0 - \lambda q_{A}^{2}$					Q _f = 1.0- λA ²			
$Q_{f} = [1+C_{1}(FSP_{c}/P_{y})-C_{2}(FSM_{t})]$	_{lpb} /M _p)-C ₃ A ²]				λ =	0.030 for bra	ace axial str	ess		λ =	= 0.030 for brace axia	l stress			λ =	= 0.030 for brace axi	al stress	
$A = [(FSP_c/P_y)^2 + (FSM_c/M_p)^2]$] ^{0.5}					0.045 for bra	ace IPB stre	255			0.045 for brace IPB	stress				0.045 for brace IPE	stress	
where 1/3 increase applicable, FS=1.20			FS=1.20			0.021 for bra	ace OPB str	ess		$q_{A} = \left[C_{1}(P_{c}/P_{y})^{2}+C_{2}(M_{c}/M_{p})_{bb}^{2}+C_{2}(M_{c}/M_{b})_{abb}^{2}\right]^{2}\gamma_{Ra}$				0.021 for brace OPB stress $A^2 = C_1(\sigma_{aSd}/f_y)^2 + C_2[(\sigma_{mySd}^2 + \sigma_{mzSd}^2)/1.82f_y^2]$				
Value for C1, C2, C3			- -		A =	$(f_{ax}^{2} + f_{lpb}^{2} +$	$f_{opb}^{2})^{1/2}/(\phi_{q}F)^{1/2}$	y)		Y _{Rq} =	= 1.05							
Joint Type	C1	C2	C3	4	$\phi_q =$	0.95			Values	for the coefficient C ₁ and C	2		-	Values for C ₁ and C ₂				
 Joints under brace axial loading 	0.2	0.2	0.3			5 1				Joint Type		C1	C2	T	Joint Type		C1	C2
1/1 joints under brace axial loading	0.3	0	0.8	Set Q _f = 1.0 when	i all extreme	nore stresse	s in the cho	ro are tensile	torces	And a standard and a standard		25	11	I/Y joints	under brace axial forces		25	11
∧ join, under brace axial loading β≤ α=	0.9 0.2	0	0.5						X joints	for calculating strength aga for calculating strength aga	ainst brace axial	20	22	X joints un	nder brace axial forces	forces	20	22
All joints under brace moment loading 0.2 0 0.4						All Joints	is for calculating strength ag	gainst brace moment	5 25	43	All Joints	under brace moments	01065	25	30			

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

API WSD	API LRFD	ISO 19902	NC		
3.4.1.c Unstiffened Cone-cylinder Junctions	D.4.1.3 Unstiffened Cone-Cylinder Junctions	13.6 Conical transitions	6.5 Strength of conical transit		
1. Longitudinal Stress	1. Longitudinal Stress	α ≤ 30 deg			
$f_{b}' = [0.6t (Dt + Dt_{c})^{0.5} (f_{a} + f_{b}) \tan \alpha]/t_{e}^{-2}$	$f_{b}' = [0.6t (Dt + Dt_{c})^{0.6} (f_{a} + f_{b}) \tan\alpha]/t_{e}^{2}$	13.6.2.1 Equivalent axial stress	6.5.2.1 Equivalent design axial		
2. Hoop Stress	2. Hoop Stress	$\sigma_{a,eq} = (\sigma_{ac} + \sigma_{bc})/\cos \alpha$	$\sigma_{\tt equBd} = (\sigma_{\tt asBd} + \sigma_{\tt mcBd})/cos \; \alpha$		
$f_{h}' = 0.45 (D/t)^{0.5} (f_{a} + f_{b}) \tan \alpha$	$f_{h}^{*} = 0.45 (D/t)^{0.5} (f_{a} + f_{b}) \tan \alpha$	$\sigma_{ac} = P_{s} / [\pi (D_{s} - t_{c} \cos \alpha) t_{c}]$ $\sigma_{bc} = 4 M_{s} / [\pi (D_{s} - t_{c} \cos \alpha)^{2} t_{c}]$	$\sigma_{acBd} = N_{Bd} / [\pi(D_s - t_c \cos \alpha)t_c]$ $\sigma_{mcBd} = M_{Bd} / [0.25\pi(D_s - t_c \cos \alpha)^2]$		
$f_h' \leq 0.6 F_y$	$f_h' \leq \varphi_t \; F_y$	13.6.2.2.2 Bending stress	6.5.2.2 Local bending stress at		
$f_h' \leq 0.5 F_{hc}$	$f_h' \leq \phi_h F_{hc}$	$\sigma_{b,jt} = \{0.6t \left[D_j(t+t_c)\right]^{0.5} (\sigma_{at} + \sigma_{bt}) \tan \alpha \}/t^2$	$\sigma_{mitod} = 0.6t [D_j (t + t_c)]^{0.5} [(\sigma_{atod} + \sigma_{c})^{0.5}] = 0.6t [D_j (t + t_c)]^{0.5} [(\sigma_{atod} + \sigma_{c})^{0.5}] = 0.6t [D_j (t + t_c)^{0.5}] = 0.6t [D_j (t + t_c)^{0.5}]$		
$\begin{array}{ll} F_{hc} = F_{he} & F_{he} \leq 0.55F_y \\ F_{hc} = 0.45F_y + 0.18F_{he} & 0.55F_y < F_{he} \leq 1.6F_y \\ F_{hc} = 1.31F_y/(1.15 + F_y/F_{he}) & 0.55F_y < F_{he} < 1.6F_y \end{array}$	$F_{hc} = F_{he}$ $F_{he} \le 0.35F_y$ $F_{hc} = 0.7F_y(F_{he}/F_y)^{0.4} \le F_y$ $F_{he} \ge 0.55F_y$	$\sigma_{b,jc} = \{0.5t [D_{j}(t + t_{c})] (\sigma_{at} + \sigma_{bt}) \tan \alpha_{j}/t_{c}$ 13.6.2.2.3 Hoop stresses	6.5.2.3 Hoop stress at unstiffen		
$F_{hc} = F_y$ $6.2F_y < F_{he}$ $F_{he} = 0.4 Et/D$	F _{he} = 0.4 Et/D	$σ_{h,t} = 0.45 (D/t)^{0.5} (σ_{at} + σ_{bt}) \tan α$ $σ_{h,c} = 0.45 (D/t)^{0.5} (t/t_c) (σ_{at} + σ_{bt}) \tan α$	$\sigma_{\text{hcBd}} = 0.45 \; (\text{Dy/t})^{0.5} \; (\sigma_{\text{atBd}} + \sigma_{\text{mtBd}})$		
		13.6.3.2 Strength requirements without hydrostatic pressure	6.5.3 Strength requirements wi		
		13.6.3.2 Local buckling	6.5.3.1 Local buckling under ax		
		$\sigma_{\mathbf{a},\mathbf{eq}} \leq (\mathbf{f}_{yc}/\gamma_{Rc})$	$\sigma_{equBd} \le (f_{clc}/\gamma_M) \qquad f_{clc}$ - local b		
		13.6.3.3 Junction yielding	$\begin{aligned} \mathbf{f}_{cic} &= \mathbf{f}_y \\ \mathbf{f}_{cic} &= (1.047 - 0.274 \mathbf{f}_y / \mathbf{f}_{cie}) \mathbf{f}_y \end{aligned}$		
		<u>if σ_{max} is tensile:</u> <u>if σ_{max} is compressive:</u>	$f_{cic} = f_{cie}$		
		$[\sigma_{max}^{2} + (\sigma_{j})^{2} - \sigma_{j}\sigma_{max}]^{0.5} \leq f_{y}/\gamma_{Rt} \qquad \qquad [\sigma_{max}^{2} + (\sigma_{j})^{2} - \sigma_{j}\sigma_{max}]^{0.5} \leq f_{y}/\gamma_{Rt}$	$f_{cle} = 2C_eEt/D_e$ $C_e=0.3$		
		$ \begin{aligned} \sigma_{max} &= \sigma_{at} + \sigma_{bt} + \sigma_{bjt} & \text{for tubular side of the} \\ \sigma_{max} &= (\sigma_{ac} + \sigma_{bc})/\cos\alpha + \sigma_{bjc} & \text{for cone side of the junction} \end{aligned} $	6.5.3.2 Junction yielding		
		13.6.3.4 Junction buckling	$\frac{\text{if } \sigma_{\text{totad}} \text{ is tensile:}}{(\sigma_{\text{totad}}^2 + \sigma_{\text{hc8d}}^2 - \sigma_{\text{hc8d}} \sigma_{\text{totad}})^{0.5}} \leq f_{\text{totad}}$		
		if σ_{max} is tensile: if σ_{max} is compressive:	$\begin{split} \sigma_{\text{totBd}} &= \sigma_{\text{atBd}} + \sigma_{\text{mtBd}} + \sigma_{\text{mtBd}} \\ \sigma_{\text{totBd}} &= (\sigma_{\text{acBd}} + \sigma_{\text{mcBd}})/\text{cos} \; \alpha + \sigma_{\text{m}} \end{split}$		
		$A^2 + B^{4\eta} + 2vAB \le 1.0$ $\sigma_{max} \le f_h / \gamma_{Rh}$ $\sigma_j \le f_h / \gamma_{Rh}$	6.5.3.3 Junction buckling		
		$B = \gamma_{Rh}\sigma_{J}/f_{h}$	<u>if σ_{totar} is tensile:</u>		
		13.6.4 Strength requirements with external hydrostatic pressure	a ² + b ^{2¶} + 2vab ≤ 1.0 a = %.⊄		
		13.6.4.1 Hoop buckling	$b = \gamma_M \sigma_{hcBd} / f_h$		
		Similar to member design (Sec. 13.4), substituting:	6.5.4 Strength requirements wi		
		D => D_{eq} = D'/cos α D' - diameter at the larger end of the cone σ_{eq} => σ_{eq} or σ_{eq} (as appropriate)	6.5.4.1 Hoop buckling		
			$(\sigma_{equSd} + \sigma_{qSd})/f_{cIRd} + (\sigma_{mySd}^2 + \sigma_{ms})$		

ORSOK N-004

ions

I stress in the cone design

²t.]

t unstiffened junctions

+ σ_{mt8d})/t²] tan α + σ_{mt8d})/t_c²] tan α

ned junctions

₃) tan α

ithout external hydrostatic pressure

xial compression

buckling strength of conical transition

f_y/f_{cle} ≤ 0.17 0.17 < f_y/f_{cle} < 1.911 f_y/f_{cle} > 1.911

 $D_e = D_s / \cos \alpha$

$$\frac{if \sigma_{totad}}{(\sigma_{totad}^2 + \sigma_{hcBd}^2 + \sigma_{hcBd}|\sigma_{totad}|)^{0.5} \le f_y/\gamma_M}$$

mic3d

if omntation is compressive:

$$\begin{split} &\sigma_{\text{tot3d}} \leq f_{\text{clj}} / \gamma_{\text{M}} \\ &\sigma_{\text{hc3d}} \leq f_{\text{h}} / \gamma_{\text{M}} \end{split}$$

ith external hydrostatic pressure

 $m_{zSd}^2)/f_{mhRd} \le 1.0$

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

			$\begin{split} &(\sigma_{\text{equGd}} - \sigma_{\text{qGd}}) / f_{\text{chRd}} + 1 / f_{\text{mhRd}} [[C_{\text{my}} \sigma_{\text{myBd}} / (1 - (\sigma_{\text{acGd}} - \sigma_{\text{qGd}}) / f_{\text{Ey}})]^2 + \\ &+ [C_{\text{mz}} \sigma_{\text{mzGd}} / (1 - (\sigma_{\text{acGd}} - \sigma_{\text{qGd}}) / f_{\text{Ez}})]^2]^{0.5} \leq 1.0 \end{split}$		
	13.6.4.2 Junction yielding and buckling	1	6.5.4.2 Junction yielding and buckling		
	$\sigma_{hj} = \sigma_j + \sigma_h$		$\sigma_{\rm hJSd}=\sigma_{\rm hcSd}+\sigma_{\rm hSd}$		
	<u>if σ_h, is tensile:</u>		if σ _{μβα} is tensile:		
	$[{\sigma_{max}}^2 + (\sigma_{hj})^2 - \sigma_{hj}\sigma_{max}]^{0.5} \leq f_y \gamma_{Rt}$, for tensile σ_{max}	$(\sigma_{\text{totad}}^2 + \sigma_{\text{hjad}}^2 - \sigma_{\text{hcad}}\sigma_{\text{totad}})^{0.5} \leq f_y f \gamma_M$, for tensile σ_{totad}	
	$[{\sigma_{max}}^2 + (\sigma_{hj})^2 - \sigma_{hj} \sigma_{max}]^{0.5} \leq f_y / \gamma_{Rt}$, for compresive σ_{max}	$(\sigma_{\text{tot3d}}^2 + \sigma_{\text{hj3d}}^2 + \sigma_{\text{hc3d}} \sigma_{\text{tot3d}})^{0.5} \leq f_y / \gamma_M$, for compressive σ_{totBd}	
	if σ _{tel} is compressive:		if σ _{nµ8rt} is compressive:		
	$\begin{aligned} A^2 + B^{2\eta} + 2vAB &\leq 1.0 \\ A &= \gamma_{Rt} \sigma_{max} / f_y \\ B &= \gamma_{Rh} \sigma_j / f_h \end{aligned}$, for tensile σ_{max}	$\begin{aligned} a^2 + b^{2\eta} + 2vab &\leq 1.0 \\ a &= \gamma_M \sigma_{\text{totBd}} / f_y \\ b &= \gamma_M \sigma_{\text{hJBd}} / f_h \end{aligned}$, for tensile σ_{totad}	
	$\sigma_{max} \le f_h / \gamma_{Rh}$ $\sigma_{hj} \le f_h / \gamma_{Rh}$, for compresive σ_{max}	$\sigma_{\text{totad}} \leq f_{\text{cl}} / \gamma_{\text{M}} \text{and} \qquad \sigma_{\text{hjBd}} \leq f_{\text{h}} / \gamma_{\text{M}}$, for compressive σ_{totBd}	

4 FATIGUE

4.1 General

This section compares the fatigue requirements given in the three codes. The comparison addresses both simplified and detailed fatigue methodologies and associated fatigue criteria. The ISO does not give requirements for simplified fatigue because it mandates detailed fatigue for all structures. Only API WSD and NORSOK are compared in this case, Table 4-2 at end of this section.

The detailed fatigue requirements in API, ISO, and NORSOK are compared in Table 4-3.

It should be stated that DNV has published several state-of-the-art documents on fatigue that are instructive and provide supporting and more detailed methodology for fatigue assessment of offshore structures, see References 24 to 26.

4.2 Code Validity

API RP 2A mainly focuses on the fixed structure. Its fatigue assessment is based on the assumption that the connection has full-penetration single or double sided welding.

Basic WJ and CJ curves in API are based on steels with yield strength less than 72 ksi (500 MPa).

ISO 19902 and 19904 are applicable to the fatigue design of new structures as well as the fatigue assessment of existing structures. The fatigue assessment in ISO 19902 is based on the same assumption as API RP 2A and mainly gives guidance for fixed structures. ISO 19904 provides general guidance for plated structures and detailed analysis methods and procedures refer to Recognized Classification Society (RCS) rules, such as ABS, DNV etc..

In ISO, representative S-N curves for tubular joints (TJ), cast joints (CJ) and other joints (OJ) are based on steels with a yield strength less than 500 MPa.

NORSOK refers to DNV fatigue codes directly. Experience gained by DNV over the more than 60 years of offshore operation assessing the performance of both new and existing structures with respect to fatigue susceptibility has been incorporated in its most recent recommended practice RP-C203 (April 2010). Another RP-C206 (April 2007) gives guidance on "Fatigue Methodology of Offshore Ships" applicable to ship-shaped offshore units.

DNV-RP-C203 is valid for steel materials in air with yield strength less than 960 MPa. For steel materials in seawater with cathodic protection or steel with free corrosion the RP is valid up to 550 MPa. It may be used for stainless steel.

DNV-RP-C203 is valid for material temperatures of up to 100°C. For higher temperatures the fatigue resistance data may be modified with a reduction factor.

Finite element analysis and hot spot stress methodology is important for plated structures and this is included in DNV-RP-C203 but not in ISO 19902/19904 and hardly in API-RP2A.

4.3 Fatigue Parameter

4.3.1 Loading

API RP 2A recommends that steepness between 1:20 to 1:25 is generally used for the Gulf of Mexico and a minimum height equal one foot and a maximum height equal to the design wave height should be used.

ISO recommends that steepness between 1:20 to 1:25 is generally used and a wave height equal to the wave height with a one year return period should be normally be used as a maximum.

NORSOK states that the wave periods shall be determined based on a wave steepness of 1:20 in lack of site specific data.

Both ISO and NORSOK require that the partial action factors shall be taken as 1.0 and resistance factor shall also be taken as 1.0.

Hot spot stress formula for tubular joints in API and ISO are identical. For other than tubular joints, API RP 2A refers to ANSI/AWS D.1.1 for details.

4.3.2 Stress Concentration Factor

The Efthymiou's equations are used in all three codes. SCF formulas for T/Y joints in all three codes are identical for T- and Y-joints at crown positions for long chord members where DNV-RP-C203 is improved. This is considered to reduce engineering work and improve the reliability of fatigue analysis.

All three codes give the same SCF formulas for X joints under the conditions of balanced axial load, in-plane bending and balanced out-of plane bending. DNV-RP-C203 gives additional two sets of formulas for axial load in one brace only and out-of-plane bending on one brace only.

For K-joints and KT-joints, all three codes provide the same formulas for the conditions of balanced axial load, unbalanced in-plane bending and unbalanced out-of plane bending. DNV-RP-C203 also gives additional three sets of formulas for axial load in one brace only, in-plane bending on one brace only and out-of-plane bending on one brace only.

4.3.3 S-N Curve

Fatigue analysis may be based on different methodologies depending on what is found most efficient for the considered structural detail. It is important that stresses are calculated in agreement with the definition of the stresses to be used together with a particular S-N curve. DNV-RP-C203 gives the three different concepts of S-N curves:

1. Nominal stress S-N curve: Normal stress is a stress in a component that can be derived by classical theory such as beam theory. In a simple plate specimen with an attachment, the nominal stress is simply the membrane stress that is used for plotting of the S-N data from the fatigue testing.

- 2. Hot spot stress S-N curve for plated structures and tubular joints: Hot spot stress is the geometric stress created by the considered detail.
- 3. Notch stress S-N curve: It can be used together with finite element analysis where local notch is modeled by an equivalent radius. This approach can be used only in special cases where it is found difficult to reliably assess the fatigue life using other methods.

S-N curves in all three codes are valid for high cycle fatigue. API RP 2A only gives two S-N curves for two joint classes (WJ for tubular joints and CJ for cast joints) and there is nothing for plated structures.

Except S-N curve for tubular joints and cast joints which are identical to API, ISO provides additional eight S-N curves for the other connection details.

In DNV-RP-C203, all tubular joints are assumed to be class T. Other types of joint, including tube to plate, fall in one of 14 classes depending on:

- The geometrical arrangement of the detail
- The directional of the fluctuating stress relative to the detail
- The method of fabrication and inspection of the detail

DNV-RP-C203 also gives some guidance on assessment of a design S-N curve based on a limited number of test data. Finite element analysis and hot spot stress methodology is important for plated structures. Only DNV-RP-C203 provides the guidance for the calculation of hot spot stress by finite element analysis.

When the thickness effects are considered, the reference material thickness is the same (16 mm) in API and ISO. In API-RP-2A, the reference thickness is 25 mm for welded connections other than tubular joints; 25 mm for tubular joints and bolts.

4.3.4 Design Fatigue Factors (DFF's)

As shown in Table 4-1 and Table 4-3, NORSOK recommends DFF's varying from 1, 2, 3, and 10 whereas API DFF are 2, 5, and 10 only. NORSOK has DFF ranges for below and above splash zone while API does not make this distinction. NORSOK considers all structural joints deeper 150m to be inaccessible for inspection.

		-	_					
Classification of structural components	Access for inspection and repair No access or Accessible							
based on damage consequence	in the splash zone	Below splash zone	Above splash zone					
Substantial consequences	10	3	2					
Without substantial	3	2	1					
consequences								

Table 4-1 NORSOK N-004 Design Fatigue Factors

Table 8-1

Design fatigue factors

"Substantial consequences" in this context means that failure of the joint will entail danger of loss of human life; significant pollution;

major financial consequences.

4.3.5 Fatigue Damage Accumulation

All three design codes suggest that the fatigue life may be calculated based on S-N fatigue approach under the assumption of linear cumulative damage (Palmgren-Miner rule). Even though the cumulative fatigue damage passing criteria looks different, but the basic principle is all the same. Only difference is that where the design safety factor (DFF) is introduced.

4.4 Fatigue Analysis Methods

4.4.1 Simplified Fatigue

API allows simplified fatigue calculations only for Category L-3 template type platforms that are constructed of notch-tough ductile steels, have redundant inspectable structure, and have natural period of less than 3s or for preliminary design of all structure categories in water depth up to 400 ft (122m). As shown in Table 4-2 API RP 2A WSD defines in Section 5.1 and its commentary the fatigue design wave and allowable peak hot spot stresses. Simple tubular joints SCF formulas are also presented in addition to recommended DFF (Design Fatigue Factor) depending on criticality of the fatigue failure and accessibility for inspection see Table 4-2.

NORSOK refers to DNV-RP-C203, Section 5 for the details of the methodology and the allowable stress range as function of the Weibull shape parameter and applicable fatigue curve (depending on the joint detail and stress field configuration; i.e., the fatigue curve) for 20 years' service life (10⁸ cycles). The simplified fatigue given in DNV-RP-C203 is applicable to mass dominated structures such as Semisubmersible, ships, FPSOs and TLPs in conceptual design phase. It is less appropriate for drag dominated structures such as jackets and truss towers with slender tubular members.

4.4.2 Detailed Fatigue

The comparison made in Table 4-3 covers the assumptions, loading definitions, hot spot stress range calculation, stress concentration factor formulas, S-N curves for tubular joints and plated structures, and DFF required values. Detailed comparison has been given in Section 4.3.

4.4.3 Fracture Mechanics

Fracture mechanics may be used for fatigue analyses as supplement to S-N data. Fracture mechanics can be used to assess the acceptable defects, evaluate the acceptance criteria for fabrication and for planning in-service inspection.

API RP 2A refers to ISO 19902. ISO 19902 and DNV-RP-C203 give the similar guidance. They all refer to BS 7910 "Guide on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures". API RP 2A refers to 1999 edition, ISO 19902 refers to 1991edition and DNV-RP-C203 refers to 2005 edition.

4.5 Welding Improvement Techniques

In all three codes, the welding improvement techniques are all the same and the achievable improvement factors on fatigue performance are identical.

4.6 Summary of Fatigue Comparison

API allows simplified fatigue calculations only for Category L-3 template type platforms that are constructed of notch-tough ductile steels, have redundant inspectable structure, and have natural period of less than 3s or for preliminary design of all structure categories in water depth up to 400 ft (122m).

NORSOK refers to DNV-RP-C203, Section 5 for the details of the simplified fatigue methodology and the allowable stress range as function of the Weibull shape parameter and applicable fatigue curve (depending on the joint detail and stress field configuration; i.e., the fatigue curve) for 20 years' service life (10^8 cycles).

Detail fatigue assumptions, loading definitions, hot spot stress range calculation, stress concentration factor formulas, S-N curves for tubular joints, and required DFF values are specified in all three codes. In addition, details of the spectral analysis, utilization of fracture mechanics, and fatigue life improvement techniques are also compared. The requirements are quite similar.

The Efthymiou's equations are used in all three codes. SCF formulas for T/Y joints in all three codes are identical for T- and Y-joints at crown positions for long chord members where DNV-RP-C203 is improved. This is considered to reduce engineering work and improve the reliability of fatigue analysis.

Finite element analysis and hot spot stress methodology is important for plated structures and this is included in DNV-RP-C203 but not in ISO 19902/19904 and hardly in API-RP2A.

BOEMRE TA&R No. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Table 4-2 Simplified Fatigue

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

<u> </u>												
Jo a	The peak hot spot stress at a joint should be taken as the maximum value of the following expression calcula at both the chord and brace sides of the tubular joint:											
888 M 2	SCF	f _{ax} +√[SCF _{ip}	_{bb} f _{ipb}) ² +(SCF	opb opb) ²] (C	5.5-1)							
Str												
ğå	where t	sce and for	pb are the nor	minal member	r end axial, in-plane b ing stress concentrati	ending and	out-of-plane bending stresses;					
S to	of-plane	e bending str	resses for the	e chord or the	brace side.	Uns lactor it	or axial, implane bending and out					
Ť	Table C5.1-1 includes SCF's developed from the referenced examples, to be used with equation (C5.1-1) for											
Peal	simple joints.											
								De	sign fation	e factor in DNV-RP-C203 refers to DNV-OS-C101 Section 6. Table A1, which is valid for units v		
								be	demonstra	ated that the structure satisifies the requirement to damaged condition according to the ALS with		
	Table 5	Table 5.2.5-1 Fatigue Life Safety Factors						dar	nage.			
	Failure critical Inspectable Not Inspectable			Not Inspectable			Table A1 Design fatigue factors (DFF)					
		No 2 5			5	1			DFF	Structural element		
ц,		NO	· · ·	2	5	1				Internal structure, accessible and not welded directly to the submerged part.		
	Yes 5 10								1	External structure, accessible for regular inspection and repair in dry and clea		
	 A reduced safety factor is recommended for Category L-2 and L-3 conventional steel jacket structures on the 						al steel jacket structures on the		2	Internal structure, accessible and welded directly to the submerged part.		
	basis of in-service performance data: SF=1.0 for redundant diver or ROV inspectable framing, with safety factors						ctable framing, with safety factor	5	2	External structure not accessible for inspection and repair in dry and clean co		
	for othe	for other cases being half those in the table;							3	Non-accessible areas, areas not planned to be accessible for inspection and re		
	Table (544 Cala	the discontinue		incla Ininta			NC	RSOK N-0	004, Tables 8-1 and K.4-1 also give the DFFs and are included in Detailed Fatigue comparison on feat tables is interacting and the DFFs and are included in Detailed Fatigue comparison		
	Table C	Joint Tumo	cted SUF Fo	ormulas for a	and In Plan	Bonding	Out of Plana Reading	SCF Formulas for tubular joints are given in DNV-RP-C203 Appendix B "SCF's for Tubular Joints"; SCF's f Appendix C:				
		K	α 1.0	Axial L		e benuing	Out-or-Plane Bending	-				
	5	T&Y	1.7									
	s g	v	24	- 4		24	2024					
l	Ê,	Λ B < 0.98	2.4	αA		(3A	3/2A					
SC	Ŭ	х	1.7									
	Brace	β ≥ 0.98			4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m ^{0.5} c c	5 12 4 2	4				
	brace a	JOF 5			1.0+0.375 [1	+(τ/β) SC	F _{chord} ≥ 1.8	4				
	Where A d = Brace	 1.8 γ^{ab} τ sin (θ outside diameti),β=d/D,γ=D er, in, (mm)	X(2T), τ = VT								
	D - Chor) - Chord outside diameter, in: (mm)										
	T = Chore	wail thickness a wall thickness	at intersection, in at intersection, in	i. (mm) In. (mm)								

Table 4-3 Detailed Fatigue

	Tab	le - Detailed Fatigue		
F		API RP 2A - WSD	ISO 19902/19904	Norsok N-0
		The laugue assessment or welded joints is based on the assumption that the connection has full-penetration single or double sided welding	- The requirements in this ISO are applicable to the fatigue design of new structures as well as the fatigue assessment of existing structures. However, they only relate to fatigue evaluations of	 In unis standard, the requirements in relation and fracture mechanics
		nas na peneration single of double sided welding.	"uncracked" locations: therefore, in the case of exisitna structures, the proviso is that there be no	-Reference is made to DNV-RP-C203 for mo
	×		crack already present.	- DNV RP-C203
	idit		-The fatigue assessment of welded joints is based on the assumption that the connection has full-	1) It is valid for steel materials in air with yield
	Vali		penetration single or double sided welding, unless otherwise stated.	in seawater with cathodic protection or steel
	-			It may be used for stainless steel.
				2) This RP is valid for material temperatures
				fatigue resistance data may be modified with
Γ		The wave force calculations should follow the procedures described in Section 2.3.1 with	- In determining stress variations for a fatigue analysis the partial action factors shall be taken as	- In determining stress variations for a fatigue
		the following exceptions:	1.0.	as 1.0.
		 Current - may be neglected and considerations for apparent wave period and current blockers are not acquired; 	 The partial resistance factor on the fatigue assessment shall also be taken as 1.0. 	- The partial resistance factor on the fatigue
		Diockage are not required, - For the Gulf of Maxico a steepness between 1:20 and 1:25 is generally used. A minimum.		 Fatigue analysis can normally be counducted Wave kinematics factor = 1.0
		beight equal one foot, and a maximum beight equal to the design wave beight should be		- Conductor shielding factor = 1.0
	g	used.		- For small waves with KC referred to the me
	ip	- Wave kinematics factor = 1.0		hydrodynamic coefficients can be taken to be
	ő	- Conductor shieding factor = 1.0		$C_d = 0.65$ and $C_m = 2.0$ (smooth member);
	_	- For small waves (1.0 < K < 6.0 for platform legs at mean water level), values of $C_m = 2.0$,		- In lack of site specific data, the wave period
		$C_d = 0.8$ for rough members and $C_d = 0.5$ for smooth members		of 1/20.
		 Use 60 to 150 sea states each with its wave energy spectrum 		- For a stochastic fatigue analysis, it is impor
				amplifications and cancellations are included
				analysis should not be less than 20, and be i
┢		hot spot stress and hot spot stress range (HSSR)	geometric stress (GS) and geometric stress range (GSC)	hot spot stress and hot spot stress range
		- A minimal of eight stress range locations need to be considered around each chord-brace	-Tubular Joints	- Tubular Joints and Members
		intersection in order to adequately cover all relevant locations. These are: chord crowns	- A minimum of eight stress range locations need to be considered around each chord/brace	The stresses are calculated at the crown and
		(2), chord saddles (2), brace crowns (2) and brace saddles(2).	intersection weld in order to adequately cover all relevant locations. These are: the chord sides at	$\sigma_1 = \text{SCF}_{AC} \sigma_x + \text{SCF}_{MP} \sigma_{my}$
		- HSS for saddle and crown are given by:	two crown positions, the brace sides at two crown positions, the chord sides at two saddle	$\sigma_2 = \frac{1}{2} (SCF_{AC} + SCF_{AS}) \sigma_x + \frac{1}{2} \sqrt{2} SCF_{MP} \sigma_{ey} - \frac{1}{2} \sqrt{2} SCF_{MOP}$
		HSS _{5a} = SCF _{axsa} t _{ax} +/- SCF _{opb} t _{opb}	posotions and the brace sides at two saddle positions.	$\sigma_3 = SCF_{AS} \sigma_x - SCF_{MOP} \sigma_{ne}$
		HSS _{cr} = SCF _{axcr} t _{ax} +/- SCF _{Ipb} T _{ipb} +CE	- The GSRs for the chord and the brace side of the weld are determined:	$\sigma_4 = \frac{1}{2}(SCF_{AC} + SCF_{AS})\sigma_x - \frac{1}{2}\sqrt{2}SCF_{MF}\sigma_{my} - \frac{1}{2}\sqrt{2}SCF_{MCF}$
		sa = saddlo	$\sigma_{GS,s}(t) = C_{ax,s}\sigma_{ax}(t) + C_{opb,s}\sigma_{opb}(t)$	$\sigma_s = SCF_{AC}\sigma_s - SCF_{MEP}\sigma_{av}$
		cr = crown	$O_{GS,c}(l) = C_{ax,c}O_{ax}(l) + -C_{lpb,c}O_{lpb}(l) + O_{C,c}(l)$	$\sigma_s = \frac{1}{2} (SCF_{AC} + SCF_{AS}) \sigma_s = \frac{1}{2} \sqrt{2} SCF_{MP} \sigma_{avv} + \frac{1}{2} \sqrt{2} SCF_{MCP}$
		ax = axial	where σ_{GS} = the geometric stress on the chord or the brace side of the weid between chord and	$\sigma_{r} = SCF_{an}\sigma_{r} + SCF_{ance}\sigma_{mr}$
		ipb = in-plane bending	Diace σ = the nominal axial strose in the brace (or stub)	$\sigma_n = \frac{1}{2}(SCF_{nn} + SCF_{nn})\sigma_n + \frac{1}{2}\sqrt{2}SCF_{nn}\sigma_{nn} + \frac{1}{2}\sqrt{2}SCF_{nn}\sigma_{nn}$
		opb = out-of-plane bending	σ_{ax} - the nominal axial success in the brace (or stub)	
		CE = the effect of nominal cyclic stress in the chord	$\sigma_{\rm ipb}$ = the nominal in-plane bending stress in the brace (or stub)	- Welded connections other than tubular
		- Other than tubular joints Where variations of stress are applied to convertise shund data its identified in the	v_{opb} - the nominal out-or-plane behavior stress in the brace (of stub)	a) at the weld too on the plates surface at on
	Jge	where variations of stress are applied to conventional weld details, idetified in the ANSI/AWS D1.1 2002 Table 2.4, the associated S.N. curves provided in Figure 2.11	O _{C,0} = the stress concentration factor for avial brace stress	b) at the weld toe around the plate edege of
	Rar	should be used, dependent on degree of redundancy	C_{ax} – the stress concentration factor for in-plane bending stresses in the brace	c) along the weld of an attached plate (weld i
	SS	onolia bo aboa, apponaoni on abgroo on odanaanoj.	C_{ijp} = the stress concentration factor for out-of-plane bending stresses in the brace	
	tre		t = time	
	S		s = the subscript denoting the saddle position	
			c = the subscript denoting the crown position	
			- The effect of nominal variable stresses in the chord member can be covered by including	
			the stress due to axial force in the chord can member, combined with an axial SCF	
			of 1.25, i.e. $\sigma_{c,c}(t) = 1.25 \sigma_{ax,c}(t)$	· /
			- Other than tubular joints	
			- The stree range indicated in Tables A.16.10-7 to A.16.10-11 and used as the GSR is the	Figure 4-3
			maximum principle stress range adjacent to the detail under consideration, except for the throat of load carrying fillet or partial penetration wolds, for which it is the shear stress	Lutterent hot potition:
			rance calculated on the minimum throat area	
			- For details that are not expressly classified, the following minimum classification class	
			should be used, unless a higher class can be justified from published experimental work, or by	
			specific tests:	
			 W₁ for load carrying fillet or partial penetration weld metal; 	
			- F ₂ for other cases	

004/DNV RP-C203

- ion to fatigue analyses are based on fatigue tests
- ore details with respect to fatigue design.
- eld strength less than 960 MPa. For steel materials I with free corrosion the RP is valid up to 550 MPa.
- s of up to 100°C. For higher temperatures the h a reduction factor.
- ue analysis the partial action factors shall be taken
- assessment shall also be taken as 1.0. ted with no current.
- ean water level in the range 1.0<KC<6, the be:
- C_d = 0.80 and C_m = 2.0 (rough members) ds shall be determined based on a wave steepness
- prtant to select periods such that response d. Also selection of way periods in relation to the mportant. The number of periods inlcuded in the in the range from T = 2 s to at least T = 20 s.
- d the saddle ponits.

- joints
- at weld toes can be identified:
- nding attachment
- f an ending attachment
- toes on both the plate and attachment surface)

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Stress Concentration Factor (SCF)	1. The SCF should include all stress raising effects associated with the joint geometry and type of loading, except the local (microscopic) weld notch effect, which is included in the S-N curve. 2. The geometric stress or strain is defined as the total range that would be measured by a strain guage adjacent to the toe of the weld and oriented perpendicular to the weld so as to reflect the stress which will be amplified by the weld toe discontinuities. Typical geometric strain gauges are centred within 6 mm to 0.1(rt) ^{0.5} from the weld toes with a guage length of 3 mm. r and t refer to the outside radius and thickness of the member instrumented, whether chord or brace. 3. The Effhymiou equations (in Tables C5.3.2-1 to C5.3.2-4) are recommended because this set of equations is considered to offer the best option for all joint types and load types and is the only widely vetted set that covers overlapped K and KT joints. The validity ranges for the Effhymiou parametric SCF equations are as follows: $\beta = d/D$ from 0.2 to 1.0 $\tau = t/T$ from 8 to 32 $\alpha = L/2D$ (length) from 4 to 40 θ from 20 to 90 degresss $\xi = g/D$ (gap) from -0.6β/sin(θ) to 1.0 4. For all welded tubular joints under all three types of loading, a minimum SCF of 1.5 should be used. 5. SCFs for internally ring-stiffened joints can be determined by applying the Lloyds reduction factors to the SCFs for the equivalent unstiffened joint. For ring-stiffened joints analyzed by such means, the minimum SCF for the brace side under axial or OPB loading should be taken as 2.0. A minimum value of 1.5 is recommended for all other locations.				SCF = the range of the effect) / the range of the effect) / the range of the effect) / the range of the effect of	the GS at a f the nomin S-N curves a hisistent. uations are option or a very vers overlap s for the Efth .2 to 1.0 to 32 h) from 4 to - 0 degresss om -0.6b/sin rd wall thick loubling of th reduced coi tubulars are 6.10-4 "Equa	SCF = hot spot stress range/nominal str - The local weld notch effect is excluded by region and extrapolating these (linearly) to maximum principal stress, i.e. the stress co then used in Mohr's Circle to establish the normal to the weld toe, used in the US defi important saddle location the two are virtua - SCF Formulas for tubular joints are given Joints", Table B1 - B5; SCF's for Penetrati - The validity range for the equations in Ta $\beta = d/D$ from 0.2 to 1.0 $\tau = t/T$ from 0.2 to 1.0 $\gamma = g/2T$ from 8 to 32 $\alpha = L/2D$ (length) from 4 to 40 θ from 20 to 90 degresss $\xi = g/D$ (gap) from -0.6b/sin(q) to 1.0						
	The basic tubular joint S-N curve has been derived from an analysis of data on tubular joints manufaured using welds conforming to a standard flat profile given in AWS. The basic design S-N curve is of the form: $Log_{10}(N) = Log_{10}(k1) - mLog_{10}(S)$ (5.4.1-1) where N = the predicted number of cycles to failure under stress range S, k1 = a constant, m = the inverse slope of the S-N curve				The basic design S-N log ₁₀ (N) = log ₁₀ (where N = the predic k1 = a constant m = the inverse S = the constan	A curve is of k1) - mlog ₁₀ ted number t, (k1 = N for e slope of the nt amplitude	the form: (S) (16.11-1) of cycles to failu S=1) e S-N curve stress range, wh	re under constant am nich is the geometrica	plitude stress range S, I stress range	The basic design S-N curve is of the form: $\log_{10}(N) = \log (\tilde{a}) - m \log_{10}(\Delta \sigma)$ (2.4.1 where N = the predicted number of cycles t m = negative inverse slope of the S-N $\Delta \sigma$ = stress range $\log \tilde{a} = \log a - 2s$ intercept of log N-ax a = constant relating to mean S-N curves s = standard deviation of log N			
	Table 5.5.1-1 - Basic Des	sign S-N Curve	s		Table 16.11-1 - Basi	Table 2-1 S-N Curve in Air and Table 2-2							
							Air	Sea water with adeo	uate corrosion protection			Air	
	Curve	log ₁₀ (k1) Sin ksi	log ₁₀ (k1) S in MPa	m	Curve	log ₁₀ (k1) S in MPa	m	log ₁₀ (k1) S in MPa	m	S-N Curve	log ā ₁ S in MPa	r	
	Welded Joints (WJ)	9.95	12.48	3 for N < 10 ⁷	Welded Joints (WJ)	12.48	3.0 for N≤10 ⁷	12.18	3.0 for N≤ 1.8 x 10 ⁵	Т	12.164	3.0 for	
	Cost Jainta (CJ)	11.92	16.13	5 for N > 10 ⁷	Cost Joints (CI)	16.13	5.0 for N>10 ⁷	16.13	5.0 for N>1.8 x 0 ⁶		15.606	5.0 for	
	Cast Joints (CJ)	11.80	15.17	4 for N < 10 ⁷	Cast Joints (CJ)	15.17	4			L C	12.592	3.0 for	
		13.00	17.21	5 for N > 10 ⁷	Other joints (OJ)	I	ļ	ļ	ļ	Other joints (OJ)		3.0 101	
	- The basic design S-N curves g	given in Table 5.5.1	-1 are applicable for jo	ints in air and submerged coated joints.	В	15.01	4.0 for N≤10′	14.61	4.0 for N≤10°	B1	15.117	4.0 for	
	 These S-N curves are based or The W-I curve is based on 5/8. 	on steels with yield : -in (18mm) reference	strength less than 72 l	ksi (500 MPa) vrial thickness above the reference		17.01	5.0 for N>10 ⁷	17.01	5.0 for N>10 ⁵		17.146	5.0 for	
	thickness, the following thickness	ss effect should be	applied for as-welded	joints:	С	13.63	3.5 for N≤10'	13.23	3.5 for N≤4.68 x 10°	B2	14.885	4.0 for	
2	$S = S_0 (t_{ref} t)^{0.25}$ where, the first state of the second				D	10.47	3.0 for N≤10 ⁷	11.78	3.0 for N≤10 ⁵	C1	12.449	3.0 for	
tion	S = allowable stress ran	"": tref = the reference thickness, 5/8-inch (16 mm), S = allowable stress range				15.63	5.0 for N>107	15.63	5.0 for N>10 ⁶		16.081	5.0 for	
Dec	So = the allowable stress range from the S-N curve				E	12.02	3.0 for N≤10′	11.62	3.0 for N≤10°	C2	12.301	3.0 for	
on	- The material thickness effect for	or castings is given	by:			15.37	5.0 for N>10'	15.37	5.0 for N>10°		15.835	5.0 for	
arc	$S = So (t_{ref}/t)^{0.15}$	is 1.5 is (20				15.00	5.0 for N>10 ⁷	15.00	5.0 for N>10 ⁶		15.606	5.0 for	
pul	- For Welded Joints in seawater	ref is 1.5 in (38 mm) r with adequate cath	hodic protection, the n	n = 3 branch of the S-N curve should be	F ₂	11.63	2.0 for N=10 ⁷	11.23	2.0 for N=10	E	12.010	2.0.6-	
PE.	reduced by a factor of 2.0 on life	e, with the m = 5 bra	anch remaining uncha	nged and the position of the slope		14.71	5.0 for N>10 ⁷	14.71	5.0 for N≥10 ⁶		15.350	5.0 for	
2	change adjusted accordingly.				L		0.010FN=10		3.0 IOT N= 10	1		3.0 101	

I by using stress values just outside the weld notch to the weld toe. The European definition is based on components are extrapolated to the weld toes and he maximum principal stress at the toe. The stress definition, is somewhat lower than this, but for the all- tually identical. ven in DNV-RP-C203 Appendix B "SCF's for Tubular rations with Reinforcements are given in Appendix C; Table B-1 to Table B-5 is as follows:									
1.0									
m:									
.4.1 DNV R	P-C203)	litudo stross rando Ad							
S-N curve	e under constant amp	induce stress range 20,							
-axis by S-I	N curve								
curve									
2.2 S.N.CII	rve in seawater with	a cathodic protection							
2 2 0 11 00	Sea water with adeq	uate cathodic protection							
	log 10 (k1)								
m	S in MPa	m							
for N $\leq 10^{7}$ for N $\geq 10^{7}$	11.764 15.606	3.0 for N≤ 10° 5.0 for N≥10 ⁶							
for N≤10 ⁷	12.192	3.0 for N≤ 10 ⁶							
for N>10 ⁷	16.320	5.0 for N>10 ⁶							
for N≤10′	14.971	4.0 for N≤ 10°							
for N>10'	17.146	5.0 for N>10°							
TOF N≤10'	14.685	4.0 for N≤ 10 [×]							
for N<10'	10.850	5.0 for N>10° 3.0 for N<10°							
for N>10 ⁷	16 081	5.0 for N≥10 ⁶							
for N≤10′	for N≤10′ 11.901 3.0 for N≤10°								
for N>10 ⁷	15.835	5.0 for N>10 ⁶							
for N≤10′	11.764	3.0 for N≤10 ^b							
for N>10 ⁷	15.606	5.0 for N>10 ⁶							
for N≤10 ⁷	11.610	3.0 for N≤10 ⁶							
for N>107	15.350	5 0 for N>10 ⁶							

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

sfc	- The curve for cast joints is only	applicable to castings having an adequa	ate fabrication	G	11.40	3.0 for N≤10 ⁷	11.00	3.0 for N≤10 ⁶	F	11.855	3.0 for
Z	inspection plan.				14.33	5.0 for N>10'	14.33	5.0 for N>10°	F 4	15.091	5.0 for
Cu				W ₁	10.97	3.0 for N≤10 ⁷	10.57	3.0 for N≤10°	F1	11.699	3.0 for
Z,					13.02	5.0 for N>10'	13.02	5.0 for N>10°		14.632	5.0 for
s				- The basic design S-N cur protection	ves given in T	Table 16.11-1 are app	blicable for joints in air and	seawater with adequate corrosion	F3	11.546	3.0 for
				- These S-N curves are ba	sed on steels	with yield strength les	ss than 500 MPa.			14.576	5.0 for
				- The WJ curve is based or	n 16mm) mat	erial thickness. For m	aterial thickness above 16	mm, the following thickness	G	11.398	3.0 for
				effect should be applied for	as-welded jo	pints:				14.330	5.0 for
				$S = S_0 (16/t)^{-10}$					W1	11.261	3.0 for
				So = the stress range	of S-N curve e from the S-I	e, when adjusted for tr N curve in Table 16.1	1ckness effects			14.101	5.0 for
				t = member thickne	ss in mm for	which the fatigue life is	s predicted		W2	11.107	3.0 for
				- The material thickness eff	fect for castin	gs is given by:				13.845	5.0 for
				S = So (38/t) ²¹³	s only applica	ble to eastings having	an adequate fabrication		W3	10.970	3.0 for
				inspection plan.	s only applica	to castings having	g an adequate rabilitation			13.617	5.0 for
									- S-N curves are obtained	from fatigue test	ts. The des
									standard-deviation curves	for relevant exp	erimental o
									- The thickness effect is ac	counted for by a	a modificati
									than the reference thickne	ss reads:	
									log ₁₀ (N) = log (ā) - ml	$\log_{10}(\Delta \sigma(t/t_{ref})^k)$	(2.4.3 DN
									where t _{ref} = reference thick	ness equal 25 m	nm for weld
									k = thickness exponent of	nm. For bolts t _{ref} n fatique strengt	r= 25 mm h as given
									k = 0.10 for tubular butt w	elds made from	one side
									k = 0.25 for threaded bolt	s subjected to s	tress varia
									 It is recommended to use For forged nodes the B1 	e the C curve for curve may be use	cast node
									designs with DFF less than	n 10 it is recomm	nended to
									cracks should occur durin	g service life.	
	Table 5.2.5-1 Fatigue Life	e Safety Factors		ISO 19902 - Table A.	16.121 -	Fatigue damage	design factors, γ_{FD}		Table 8-1 Design Fa	tigue Factor	s (DFF's
	Failure critical	Inspectable	Not Inspectable	Failure critical com	ponent	Insp	pectable	Not Inspectable	classification of strue damage	ctural compoi e consequent	nents ba ce
	No	2	5	No			2	5			
	Yes	5	10	Yes			5	10			
	- Table above is for asses	sment of Category L-1 structures	;	- The factors given in	Table A.16	6.12-1 should be (considered to relate to	o exposure Level L1, but	Substantial conseque	nces	
	 A reduced safety factor is 	s recommended for Category L-2	and L-3 conventional steel	should also be used for	or exposur	nsufficient background to	Without substantial consequences				
	jacket structures on the ba	isis of in-service performance da	ta: SF=1.0 for redundant diver	establish different fact	tors for low	"Subtantial consequences" significant pollution: major	" in this context r	means tha			
SIC	or ROV inspectable framin	ig, with safety factors for other ca	ases being haif those in the			"Without substantial conse	quences" is und	lerstood fa			
acto	table,					requirement to damaged o	ondition accordi	ng to the A			
nfa											
sig				ISO 19904 Table 6- F	atigue da	mage design saf	fety factors		Table K.4-1 Fatigue	design facto	ors in jac
de				Consequence of i	auliure	Degree	of accessionity for in	psection and repair	damage	e consequent	nenis ba
age				Substantia		Not accessible	Underwater access	Dry access	daniag	oonooquon	
am				Non substant	ial	5	2	-	+		
еd				Non-Substan	liai	5	2	I	Research to sheed would	e ie meie leedte	- forming i
igu									 Brace/stub to chord weld vertical plans 	s in main loadtra	insterring j
Fat									 chord/cone to leg welds, 	between leg con	nections
									- Brace to stub and Brace	to Brace welds i in vertical plans	n main
									- Shear plates and yoke pl	ates incl. stiffeni	ng
									 Piles and bucket foundat 	ion plates incl. st	tiffening
									- Brace/stub to chord weld	s in joints in hori	zontal plan
									 chord/cone to leg welds, Chord/cone to brace weld 	between leg con is and welds bei	inections tween sect
									horizontal plans		
									- Appurtenance supports		
				1					- Anoues, doubler plates		
									- Outlitting steel		
	The cumulative fatigue da	mage ratio, D,		A linear accumulation	of fatigue	damage under co	onstant amplitude stre	ess ranges, according to the	- Under the assumption	on of linear c	umulativ
	The cumulative fatigue da $D = \sum (n/N)$	mage ratio, D, (5.2.4-1)		A linear accumulation Palmgren-Miner rule:	of fatigue	damage under co	onstant amplitude stre	ess ranges, according to the	- Under the assumption	on of linear c	umulativ

r N≤10′	11.455	3.0 for N≤10 ^b					
r N>10 ⁷	15.091	5.0 for N>10 ⁶					
r N≤10 ⁷	11.299	3.0 for N≤10 ⁶					
r N>10 ⁷	14.832	5.0 for N>10 ⁶					
r N≤10 ⁷	11.146	3.0 for N≤10 ⁶					
r N>10 ⁷	14.576	5.0 for N>10 ⁶					
r N≤10 ⁷	10.998	3.0 for N≤10 ⁶					
r N>10 ⁷	14.330	5.0 for N>10 ⁶					
r N≤10 ⁷	10.861	3.0 for N≤10 ⁶					
r N>10 ⁷	14.101	5.0 for N>10 ⁶					
r N≤10 ⁷	10.707	3.0 for N≤10 ⁶					
r N>10 ⁷	13.845	5.0 for N>10 ⁶					
r N≤10 ⁷	10.570	3.0 for N≤10 ⁶					
r N>10 ⁷	13.617	5.0 for N>10 ⁶					
ion S-N ounces which follows are based on the mean-minus-two-							

design S-N curves which follows are based on the mean-minus-two tal data. The S-N curves are associated with 97.6% probability of

fication on stress such that the design S-N curve for thickness larger

DNV RP-C203)

welded connections other than tubular joints. For tubular joints the

iven in Tables 2-1, 2-2 and 2-3

ariation in the axial direction

odes. t_{ref} = 38 mm may be used.

nodes designed with a Design Fatigue Factor equal to 10. For I to use the C-curve to allow for wled repair if fatigue

Access for inspectio	n and repair							
No access or in the	Accessibility							
splash Zone								
	Below splash zone							
10	3							
3	2							
at failure of the joint will entail danger of loss of human life; ailure where it can be demonstrated that the structure satisfy the ALSs with failure in the actual joint as the defined damage								
Access for inspection and repair								
No access or in the splash zone	Accessibility							
	Below splash zone							
10	3							
3	2							
	Access for inspectio No access or in the splash zone 10 3 the joint will entail danger re it can be demonstrated failure in the actual joint a Access for inspectio No access or in the splash zone 10							

ative damage (Palmgren-Miner rule)

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Fatigue damage accumulation	where n = number of cycles applied at a given stress range N = number of cycles for which the given stress range would be allowed by appropriate S-N curve When faigue damage can occur due to other cyclic loadings, such as tansportation, the following equations should be satisfied: $\sum_{j} SF_{j} D_{j} \le 1.0 \qquad (5.2.5-1)$ where Dj = the fatigue damage ratio for each type of loading SFj = the associated safety factor	$D = k_{\text{LE}} \cdot \gamma_{\text{FD}} \cdot \sum_{i} \frac{n_{i}}{N_{i}} $ (16.12-1) where $D \text{is a non-dimensional number, the Palmgren-Miner sum or damage ratio for a time T;} k_{\text{LE}} \text{is a local experience factor, see 16.12.3;} \gamma_{\text{FD}} \text{is a fatigue damage design factor, see 16.12.2;} n_{i} \text{is the number of cycles of stress range, } S_{i}, \text{ occurring during time period, } T; N_{i} \text{is the number of cycles to failure under constant amplitude stress range, } S_{i}, \text{ taken from the relevant } S_{-N} \text{ curve.}$	$D = \sum_{i=1}^{k} \frac{n_i}{N_i} = \frac{1}{a} \sum_{i=1}^{k} n_i \cdot (\Delta \sigma_i)^m \le 0$ where $D = \text{accumulated fatigue d}$ $\overline{a} = \text{intercept of the design}$ $m = \text{negative inverse slope}$ $k = \text{number of stress block}$ $n_i = \text{number of stress cycle}$ $N_i = \text{number of stress cycle}$ $N_i = \text{number of cycles to fat}$ $\eta = \text{usage factor}$ $= 1 / \text{Design Fatigue Fat}$
Spectral Analysis Technique	 Transfer functions developed using regular waves in the time domain Charaterize the wave climate using either the two, three, four and eight parameter format Select a sufficient number of frequencies to define all the peaks and valleys inherent in the jacket response transfer functions Select a wave height corresponding to each frequency; For GoM, a steepness between 1:20 and 1:25 is generally used. A minimum height of one foot and a maximum height equal to the design wave height should be used. Compute a stress range transfer function at each point where fatigue damage is to be accumulated for a minimum of four platform directions (end-on, broadside and two diagonals). More directions may be required for jackets with unusual geometry or where wave directionality or spreading or current is considered A minimum of four hot spot locations at both the brace and chord side of the connection should be considered. Compute the stress response spectra. Transfer functions developed using regular waves in the frequency domain This approach is similar to method (1) except that the analysis is linearized prior to the calculation of structural response. Transfer functions developed using random waves in the time domain: Nonliearities arising from wave-structure interaction can be taken into account and difficulties in selecting wave the histories of finite length for a few selected reference sea states Compute response stress time histories at each point of a structure where fatigue life is to be determined and transform the response stress time histories into response stress spectra Generate "exact" transfer functions from wave and response stress spectra Ge	 A pratical method that is best able to represent the random nature of the wave environment only applicable to linear system as it is based on superimposition of many individual frequency components; this formal constraint can be overcome by suitable linearization of non-linear elements. Stress transfer functions to be determined by performing global stress analyses directly in the frequency domain; if this method is chosen, the global analyses shall be performed using linear wave theory and the drag term in Morison's equation shall be linearized. The calculated stresses are linearly dependent on the wave height and non-linear wave height influences are not included. to be determined by performing global stress analyses in the time domain by stepping a full wave cycle past the structure. Various wave theories can be used and linear drag term can be allowed. Selection of wave frequencies Selection of wave heights Typical wave steepness values are in the range of 1:15 to 1:20. A wave height equal to the wave height with a one year return period should normally be used as a maximum. Typically, a broadside, an end-on and a diagonal wave direction are considered as a minimum. Short-term stress range statistics Long-term stress range statistics 	Refer to DNV Classification Notes 30.7 - F
chanics	The details refer to ISO 19902 Clause A.16.15	 Typical applications: 1) to assess the fitness-for-purpose of a component with or without known defects 2) to assess the inspection requirements for a component with or without known defects 3) to assess the inspection requirements for components which may not be subjected to PWHT 4) to assess the structural integrity of castings The principal modes of failure in offshore structures: 1) crack growth driven by fatigue followed by the onset of fracture due to exceedance of the fracture toughness at a critical crack size (not necessarily through-thickness) 2) the occurrence of plastic collapse Fatigue crack growth law 	 This method is recommeded for use in as acceptance criteria for fabrication and for p. This can be achieved by performing the a 1) crack growth parameter C determined 2) a careful evaluation of initial defects th account the actual NDE inspection method 3) use of geometry functions that are on t4) use of utilization factors similar to thos data The Paris' equation may be used to predict

$\sigma_i^{m} \leq \eta$ (2.	.2.1)
igue damage	
design S-N curve with the log N a	axis
e slope of the S-N curve s blocks	
s cycles in stress block i	
s to failure at constant stress range	$\Delta \sigma_i$
ue Factor from OS-C101 Section tates.	6
0.7 - Fatigue Assessment of Ship St	ructures
se in assessment of acceptable defe	cts, evaluation of
nd for planning in-service inspection. Ing the analysis according to the follow mined as mean plus 2 standard devi- fects that might be present in the stru- method used to detect cracks during are on the safe side to those used when the fatigue analy-	wing procedures: iation ucture when taking into fabrication
predict the crack propagation or the	fatigue life:

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Fracture Mec						whe da/dN N = tr $\Delta K =$ C and whe $\Delta K = T$ $\Delta 0 = 0$	- $C (\Delta K)^m$ the number of cycles to failure the stress intensity factor range d m = parameters of the crack grow $(\Delta \sigma) \sqrt{\pi a}$ stress intensity factor	wth rate		$\frac{da}{dN} =$ where _AK = N - Nun a - crac C, m - r K = c s - nom g - fact - See BS	$C(\Delta K)^{m}$ Kmax - Kmin here of cycles to failure k depth. It is assumed that the naterall parameters, see BS 7 $\sigma g \sqrt{\pi a}$ mai stress in the member nor or depending on the geometry 7910 for more detail	e crack depth/length ratio is low 1910 mai to the crack of the member and the crack led guidelines related	(less than 1:5) d to fatigue assessmen	ıt
Weld Improvement Techniques	 Welding profilin Weld Toe Grindi Experimental data performance by a f The grinding procession Welded to grinding the plate thicknession For Welded toolar Full Profile Grining For welded tubular qualified for both the exponent applicable Hammer Peening The groove depth The recommended The benefits of hall adoption of adequate Peened weld toes with MPI Post-Weld Heat 	g indicate that this techn factor of 2. edure should ensure than the to a depth not less than the maximum depth of s, whichever is less. required after grinding ictions, it is important the ding, e.g., Butt Welds r nodes, full grinding of the life improvement face le to geometrically simily g - The objective is to of should be at least 0.3m d fatigue performance in mmer peening on fatigue ate quality control process should be inspected dii Treatment Table 5.5.3-1—Fa Improv Weld Improvement Technique Profile per 11.1.3d Weld toe burr grind Hammer peening * Chord side only.	ique can lead to at all defects in th han 0.5mm below of local grinding s to verify that no hat the required to the surface profi- tor of 2 on curve lar notch-free sca obtain a smooth g im, but should no mprovement fact up performance of edures. rectly after peeni factors on Fatigue ement Technique Improvement Factor on S a $\tau^{-0.1}$ 1.25 1.56	an increase in the weld toe regio w the bottom of a should not excee significant defect hroat size is main le to a radius of r WJ, and the 0.1 ale-ups groove at the we of exceed 0.5 mm for is 4. can only be realized ing and any burr Life for Weld es Life for Weld es Life for Weld es 2 4	ne fatigue In have been Iny visible Id 2 mm or 5% of ts remain, for Its remain	- Post-weld joints; the kr up stresses - Weld toe Experimenta by a factor of - Grinding of - Hammer p The groove The recomm The benefits adequate qu Table	I heat treatment (PWHT) - have a howledge of the residual stress disis required. profiling - no clear evidence that we grinding of tubular joint welds - al data indicate that this technique of 2. of butt welds - to improve the join beening - The objective is to obtait depth should be at least 0.3mm, I hended fatigue performance improves of hammer peening on fatigue public to control procedures. 16.16-1 — Achievable improve Weld improvement technique Weld toe burr grinding Hammer peening	a beneficial effect on the fatigue bel stribution including the contribution weld profiling leads to improved fati especially beneficial at low stress is a can lead to an increase in the fatig in a smooth groove at the weld toe. but should not exceed 0.5 mm. ovement factor is 4. erformance can only be realized the ement factors on fatigue perfor ement techniques Improvement factor 2 4	haviour of welded of long-range fit- igue performance ranges; gue performance rough adoption of	- Welding The maxin fatigue life - Weld to Where loo may be in The thick - TIG dres - Hamme 1) only be 2) overloa 3) It is rec suitable fo enough to	profiling by mach mum improvement f e grinding cal grinding of the w creased by a factor hess effect may be r ssing r peening with the used on members d in compression m commended to grind or the hammer head or the hammer head to reach weld toe. Table 7-1 Improve Improvement method Grinding TIG dressing Hammer peening ³) 1) The maximum ment is C1 or C execution see T 2) $f_y = characteris3) The improvementmanship. Thererespect to hamfatigue testing (peening) before$	ining and grinding factor from the grinding factor from the grindin eld toes below any vi- given in Table 7-1. reduced to an expone- following limitation where failure will be v- ust be avoided a steering groove by to be used for the pu- ter on fatigue life b Minimum specified yield strength Less than 350 MPa Higher than 350 MPa Higher than 350 MPa Less than 350 MPa Higher than 350 MPa S-N class that can be cl depending on NDE ar fable A-5 in Appendix. tic yield strength for th ent effect is dependent of freely and detail (with a factor on improvem	isible undercuts is perfect ent k =0.20 is: without substantial con- y means of a rotary bur- eening. The peening tip y different methods Increase in fatigue life (factor on life) ¹¹ 0.01 f_y 3.5 0.01 f_y 3.5 0.01 f_y 4.0 aimed by weld improve- d quality assurance for A. e actual material. on tool used and work- without experience with mended to perform and without hammer ent is decided.	ed to a factor 2 on formed the fatigue life isequences rr of a diameter p must be small

5 FOUNDATION DESIGN

A comparison is made between requirements given to pile foundation design by the following codes:

- API-RP 2A WSD, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design, October 2007
- ISO 19902:2007(E), Petroleum and natural gas industries Fixed steel offshore structures
- NORSOK standard N-001, Structural design, Rev. 4, February 2004, in combination with NORSOK standard N-004, Design of steel structures, Rev. 2, October 2004, and in particular the Annex K therein, Special design provisions for jackets.

The comparison focused mainly on safety format related to axial pile capacity and to requirements and recommendations for calculation of axial pile capacity.

5.1 Comparison of Safety Format and Safety Level

The main difference between the codes is that the API-RP 2A WSD makes use of total safety factors whereas the ISO and the NORSOK standards use load and resistance factor design. Table 5-1 gives the comparison of the load combinations among three codes.

Code – design condition	Load combinations	Pile material coefficient
ISO – extreme condition	$1.1D_1+1.1D_2+1.1L_1+\gamma_{f,Ee}(E_e+\gamma_{f,D}D_e)$ or	1.25
	$0.9D_1 {+} 0.9D_2 {+} 0.8L_1 {+} \gamma_{f,Ee}(E_e {+} \gamma_{f,D}D_e)$	
ISO – operating condition	$1.3D_1 \!+\! 1.3D_2 \!+\! 1.5L_1 \!+\! 1.5L_2 \!+\! 0.9\gamma_{f,\text{Ee}}(E_e\!+\!\gamma_{f,\text{D}}D_e)$	1.5
API LRFD – extreme condition	$1.1D_1$ + $1.1D_2$ + $1.1L_1$ + $1.35(E_e$ + $1.25D_e)$ or	1.25
	$0.9D_1$ + $0.9D_2$ + $0.8L_1$ + $1.35(E_e$ + $1.25D_e)$	
API LRFD – operating condition	$1.3D_1+1.3D_2+1.5L_1+1.5L_2+1.2(E_e+1.25D_e)$	1.5
NORSOK – extreme ULS	1.0D+1.0L ₁ +1.3E or	1.3 (applied to pile group)
	1.3D+1.3L1+0.7E	
NORSOK - 10 000 y ALS	1.0D+1.0L1+1.0E	1.0

 Table 5-1 Load combinations in API, ISO and NORSOK

The limit state design condition can be formulated as follows for design in accordance with the three codes considered. Note that notations used below generally differ from those used in the codes since the three codes use different notations. It is rather chosen to use the same notations for all three codes.

5.1.1 API-RP 2A WSD:

$$F_{c,ax} = P + V + E \le Q_{c,ax} / SF$$
(5.1)

P is permanent load, V is variable load and E is environmental load. $Q_{c,ax}$ is characteristic axial pile capacity.

SF shall be taken equal to 1.5 for extreme condition and 2.0 for operating condition.

5.1.2 ISO 19902:2007:

$$F_{d,ax} = \gamma_{f,P} \cdot \mathbf{P} + \gamma_{f,V} \cdot \mathbf{V} + \gamma_{f,Es} \cdot (\mathbf{E}_s + \gamma_{f,Ed} \cdot \mathbf{E}_d) \le Q_{d,ax} = Q_{c,ax} / \gamma_m$$
(5.2)

Here E_s and E_d are static respectively dynamic part of environmental load. Note that ISO defines two types of permanent as well as of variable loads, but this relates to which part should be included in different phases. The load factors do not differ between the two types of P or V loads.

5.1.3 NORSOK:

$$F_{d,ax} = \gamma_{f,P} \cdot \mathbf{P} + \gamma_{f,V} \cdot \mathbf{V} + \gamma_{f,E} \cdot \mathbf{E} \le Q_{d,ax} = Q_{c,ax} / \gamma_m$$
(5.3)

Table 5-2 gives load factors defined by ISO and NORSOK for different loading conditions.

	$\gamma_{\rm m}$	γ _{f,P}	γ _{f,V}	$\gamma_{f,E} or \gamma_{f,Es}$	$\gamma_{f,Es}$
NORSOK comb.a	1,30	1,30	1,30	0,70	n.a.
NORSOK comb.b	1,30	1,00	1,00	1,30	n.a.
ISO, extreme-c	1,25	1,10	1,10	1,35	1,25
ISO, extreme-t	1,25	0,90	0,80	1,35	1,25
ISO, operation	1,50	1,30	1,50	1,22	1,25

Table 5-2 Load factors in ISO and NORSOK

Generally according to ISO $\gamma_{f,Es}$ and $\gamma_{f,Ed}$ are to be defined by National Authorities, but in the Appendix to the standard $\gamma_{f,Es} = 1.35$ and $\gamma_{f,Es} = 1.25$ are recommended for Gulf of Mexico and Extreme condition. For operating condition $\gamma_{f,Es} = 0.9 \cdot 1.35 = 1.22$ is recommended.

By comparing required characteristic axial capacity $Q_{c,ax}$ from above limit state formulations one can calculate equivalent total safety factor SF_{eqv} corresponding to the partial safety factors defined by ISO or NORSOK for defined loading conditions. For simplicity all weights are defined as permanent load, i.e. neglecting the difference between load factors for permanent and variable loads defined by ISO. The equivalent safety factors can then be expressed as follow.

DRSOK:

$$SF_{eqv} = \gamma_m \cdot \frac{\gamma_{f,E} \cdot E + \gamma_{f,P+V} \cdot (P+V)}{E + (P+V)}$$
(5.4)

NC

$$SF_{eqv} = \gamma_m \cdot \frac{\gamma_{f,E} \cdot E / DAF \cdot (1 + \gamma_{f,D} \cdot (DAF - 1)) + \gamma_{f,P+Q} \cdot (P + V)}{E + (P + V)}$$
ISO:
(5.5)

$$DAF = \frac{E_s + E_d}{E_s} = \frac{E}{E_s}$$

where

 SF_{eav} has been calculated as function of E/(P+V) for extreme as well as operating condition. For the ISO calculations for DAF = 1.0 and 1.3 are presented. The results of the calculations are shown on Figure 5-1 for extreme condition and Figure 5-2 for operating condition. As E approaches –(P+V), the calculated SF_{eqv} approaches $-\infty$ or $+\infty$. The various curves for the NORSOK and the ISO combinations always change sign at E/(P+V) = -1, since that corresponds to the characteristic load E+P+V=0. Negative value means that the factored design load has different sign than the characteristic load. The range $-1 \le E/(P+V) \le 0$ is of no interest for piles since here the pile is in compression with a force lower than for static weight. Apart from for structures in very benign areas the extreme condition is governing for design of piles. Typically for governing piles in compression E/(P+V) is between 0.5 for platforms with heavy topside to 2 or maybe 3 for platforms with very light topside. From Figure 5-1 it is seen that there are generally small differences between the three standards for these conditions. Whereas platforms with heavy topside may not have piles in tension (E/(P+V)) always bigger than -1) piles of light weight platforms may be governed by tensile capacity. This is particularly so when the capacity in compression has a large contribution from end bearing. It is seen from Figure 5-2 that in that case there is a significant difference in safety requirements between API on one hand and NORSOK and ISO on the other hand. This reflects the weakness of the allowable stress standards for design of elements where the load effect results from a difference between large load contributions.

Figure 5-1 Comparison of safety levels for axial pile capacity design - extreme condition

Figure 5-2 Comparison of safety levels for axial pile capacity design – operating condition

5.2 Axial Pile Capacity – Methods of Calculation

The following main comparison points are made:

- API and ISO prescribes the same "traditional API methods" for calculation of pile capacity in sand and in clay
- Both API and ISO allow for alternative methods and in particular describe four alternative methods for calculation of pile capacity in sand in the commentary part of the standard.
- Both API and ISO require that the designer shall evaluate in each case whether higher resistance factors are required when using these methods. They do not state whether one or all methods shall be checked and how different capacities from different methods shall be handled.
- NORSOK does not prescribe specific methods but provides references to alternative methods and states: "The relevance of alternative methods should be evaluated related to actual design conditions. The chosen method should as far as possible have support in a data base which fits the actual design conditions related to soil conditions, type and dimensions of piles, method of installation, type of loading etc.."

5.3 Pile Structure Interaction and Definition of Pile Failure

The following main comparison points are made:

- All codes specifies that the nonlinear soil resistance shall be accounted for in the pile structure interaction model
- NORSOK specifies that pile structure interaction shall be based on characteristic soil resistance. API and ISO is not specific on that although common practice. Doing pile structure interaction based on factorized soil resistance could be very un-conservative by allowing for redistribution of pile forces and thus removing the redundancy in the pile system.
- NORSOK specifies that the resistance factor for axial pile capacity shall apply to the total pile group axial force, and thus allows for lower resistance factor on individual piles. This is not specified by API or ISO practice is varying.

Table 5-3 includes additional comparison of pile design requirements specified in the three codes (API, ISO, and NORSOK) from a structural perspective.

REPORT FOR BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT DRAFT FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

5.4 Summary

The following summarizes the results from the comparison made in this section:

- Code requirements and recommendations are very comparable between the three standards, and the choice of standard will not be decisive for the safety related to pile design
- No calibration of safety factors towards probability of failure is performed (documented) as background for the chosen safety factors of the standards.
- A small structure with few legs/piles has less redundancy than a structure with many legs and piles and correspondingly a higher probability of failure
- The designers choice of relevant pile capacity calculation method and of related soil shear strength parameters are more important for the overall safety related to pile foundation
- Effects not normally accounted for in pile design may have large influence on the 'real safety', such as ageing effects and effects of cyclic loading.

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

API WSD	API LRFD	ISO 19902	
3.3.1.b Cylindrical Piles	D.3.2.2 Piles	17.3.4 (a) Pile strength	
$\begin{split} f_{g} & (0.8F_{xc}) + (f_{bz}^{-2} + f_{by}^{-2})^{1/2} / F_{b} < 1.0 \\ F_{xc} &= F_{y} [1.84 - 0.23 (D/t)^{1/4}] \leq F_{xc} & 60 < D/t < 300; t >= 6 \text{ mm} \\ F_{xc} &= F_{y} & \text{for } (D/t) \leq 60 \end{split}$	$1 - \cos[(\pi/2)f_c/(\phi_c F_{xc})] + [f_{by}^2 + f_{bz}^2]^{0.5}/(\phi_b F_{bn}) \le 1$ where $\phi_c = 0.85 \phi_b = 0.95$ fby the should include secondary moments of P-A effects	The pile strength shall be verified using the steel tubular strength checking equations given in 13.3 or 13.4 for conditions of combined axial force and bending.	
3.3.1.c Pile Overload Analysis P/A + 2/π{arc sin[(M/Z)/F _{xc}]} ≤1.0 where the arc sin term is in radians and A = cross-sectional area, in ² . (m ²) Z = plastic section modulus, in ³ (m ³) P, M = axial loading and bending moment computed from a nonlinear analysis, including the (P-Δ) effect F _{xc} = Critical local buckling stress with a limiting value of 1.2F _y considering the effect of strain hardening	by, the should include secondary moments of 1-2 energy		
6.3.4 Pile Penetration The allowable pile capacities are determined by dividing the ultimate pile capacity by approriate factors of safety which should not be less than the following values: Load condition Safety Factor 1 Design environmental conditions with appropriate drilling loads 2 Operating environmental conditions during drilling operations 3 Design environmental conditions with appropriate producing loads 4 Operating environmental conditions during producing operations 5 Design environmental conditions with minimum loads (for pullout)	G3.4.2 Foundation Capacity The axial pile capacity should satisfy the following conditions: P _{DE} ≤ φ _{PE} Q _D P _{DO} ≤ φ _{PO} Q _D where Q _D = ultimate axial pile capacity determined from a coupled linear structure and nonlinear foundation model using factored loads φ _{PE} = pile resistance factor for extreme environmental conditions (=0.8) φ _{PO} = pile resistance factor for operating environmental conditions (= 0.7)	17.3.4 (b) Pile Axial Resistance The axial pile capacity should satisfy the following conditions: $P_{d,e} \leq Q_d = Q_e/\gamma_{R,Pe}$ $P_{d,p} \leq Q_d = Q_e/\gamma_{R,Pp}$ where Q_d = design axial pile capacity Q_r = the representative value of the axial pile capacity $P_{d,e}$ = design axial action on the pile,determined from a coupled linear structure and non-linear foundation model using the design actions for extreme conditions $P_{d,p}$ = design axial action on the pile,determined from a coupled linear structure and non-linear foundation model using the design actions for permanent or variable actions or the design axial action for operating situations $\gamma_{R,Pe}$ = the pile partial resistance factor for extreme conditions (= 1.25) $\gamma_{R,Pp}$ = the pile partial resistance factor for permanent and variable actions or operating situations (= 1.50)	For determ in ULS de characteri When late resistance ALS, usin resistance $\gamma_M = 1.3 \text{ f}$ $\gamma_M = 1.0 \text{ fe}$
6.10 Pile Wall Thickness For piles that are to be installed by driving where sustained hard driving (250 blows per foot[820 blows per meter] with the largest size hammer to be used) is anticipated, the minimum piling wall thickness used should not be less than: t = 0.25 + D/100 or t = 0.35 + D/100 (Metric Formula) where t = wall thinkness, in. (mm) D = diameter in. (mm)	G.10.6 Minimum Wall Thickness For piles that are to be installed by driving where sustained hard driving (250 blows per foot[820 blows per meter] with the largest size hammer to be used) is anticipated, the minimum piling wall thickness used should not be less than: t = 0.25 + D/100 or t = 0.35 + D/100 (Metric Formula) where t = wall thinkness, in. (mm) D = diameter in (mm)		

Table 5-3 Pile Design Formula Comparison

6 IN-SERVICE INSPECTION AND MAINTENANCE

A comparison of the requirements for the in-service inspection and maintenance is carried out based on the API, ISO, and NORSOK standards discussed in Sections 6.1 to 6.3 below. A summary of the comparison is given in Table 6-2.

6.1 API 2A, 2T, and 2FPS

The API RP-2A (WSD) is the main document where specific guidance with regards to the in-service inspection scope and frequency for fixed platforms is available. The in-service inspection requirements in the API standards addressing the design and operational aspects for floating production units (2FPS) and tension leg platforms (2T) are also included herein and compared to those given in the API RP -2A.

Generally speaking, the API RP-2A represents the traditional approach for the in-service survey requirements, focusing on the minimum intervals for the different inspection levels. Section 14 states that the time interval between periodical in-service inspections for the fixed platforms should not exceed the intervals presented in Table 6-2. The frequency of the in-service inspections/surveys is based on the exposure categorization and the consequence of failure considerations. These intervals may be adjusted based on case-by-case evaluation if justification of different intervals can be supported by engineering calculations or operational experience. No specific guidance for the evaluation procedure supporting the adjustment of the inspection frequency is however presented.

API RP-2A also specifies in detail the scope for each of the inspection levels (see Table 6-2).

In addition to the periodical survey program, the RP highlights the need for special surveys which should be conducted following:

- design environmental event, such as hurricane or earthquake (minimum Level I survey is recommended).
- severe accidental loading that could lead to structural degradation; e.g., boat collision or dropped objects (Level II survey is recommended)
- structural repairs of the members/areas critical for the structural integrity of the platform, approximately 1 year after the repairs (Level II or Level III survey, in presence of an extensive marine growth)

API RP-2T 3rd Edition gives detailed in-service inspection requirements in Section 15 that covers annual, intermediate and special periodical surveys with 1, 2-3, and 5 year intervals. The API RP 2T allows also a 'continuous survey' as an alternative to the special periodical survey. The requirements cover internal and external examinations, joints and connections, tendons, flex joints and foundations and include underwater inspections. The requirements do not however distinguish between the type of TLP and the built in redundancies and robustness.

The API RP 2FPS provides only a high-level guidance regarding survey requirements (see Section 7.6 of the RP). Alternatively, 2FPS allows the preparation of the in-situ inspection and maintenance program following the guidelines of Recognized Classification Societies (RCS). This approach is preferred by a large percentage of owners (operators) since it is mandatory for all units certified by RCS. It should however be stated that significant risk management requirements are present in the 2FPS document (Sec. 14) in comparison to 2A (Sec. 18.5) which may account for some reduction in the survey requirements if one applies the Risk Based Inspection (RBI) principles.

6.2 ISO 19902 and 19904-1

As discussed below, the ISO approach to in-service inspection requirements adopts the Structural Integrity Management (SIM) methodology and also applies RBI procedures.

The main focus of Clause 23 of the ISO 19902 is on the detailed guidance and the requirements for the SIM system for fixed offshore structures. The standards specify that they apply to "fixed steel offshore structures located anywhere in the world, built to any design and fabrication standards, and of any age", highlighting inherently that the degradation mechanisms and failure modes of structures installed in the marine environment are similar, regardless of the basis for design. However, consideration needs to be given to the specifics of the installation degradation rates, resulting from the design and site environmental factors, the loading and operating history, and the effectiveness of the preventive measures (i.e. coating or cathodic protection system). The high-level schematic of the SIM cycle is shown in Figure 6-1. The four stages of the SIM are shown to involve data collection and evaluation and development of inspection strategy and a detailed inspection program.

Figure 6-1 Phases of a structural integrity management cycle (ISO 19902)

The ISO 19902 also provides detailed description of each these four activities within the SIM programme. The standard states that the inspection strategy should contain scheduled and unscheduled inspections. The scheduled inspections are divided into the following sub-categories:

- Baseline inspection inspection conducted as soon as practical after installation and commissioning (if possible, within first year of operation) to establish the as-installed condition
- Periodic inspection regular in-service inspection, with timing and scope of work determined based on the inspection strategy and inspection programme
- Special inspection- to monitor known defects, damage, scour, etc. and to assess the performance of repairs undertaken to assure fitness-for-purpose of the structure (conducted approximately 1 year after completion of the repair)

Similar to API RP 2A, the unscheduled inspections are required to evaluate a structure's condition following an environmental event (i.e. hurricane) or incident (i.e. boat collision).

As an alternative to the SIM, the ISO 19902 presents the requirements for the default periodical inspection requirements. As shown in Table 6-2, the ISO standard follows the API RP-2A philosophy (API requirements were directly adopted, with some minor changes for inspection intervals where ISO requires the lower bounds of the API allowable timeframe for corresponding inspection levels).

The philosophy of the in-service inspections and maintenance of the floating installations presented in the ISO 19904-1 (Clause 18 of the standard), follows the above discussed philosophy of the ISO 19902. The default inspection intervals and scope are also presented. However, similar to ISO 19902, the ISO 19904 focuses on the requirements for the SIM program. It is also stated that the requirements of the RCS which classified the unit should be implemented in the inspection program. A separate issue of the inspection planning related to confined spaces and usually closed areas is also addressed.

6.3 NORSOK N-005

The N-005 standard /27/ presents only high level requirements regarding in-service inspection program. The platform operator is responsible for preparing this program based on the characteristic of the structure, loading history, and inspection findings. No specific requirements regarding the inspection intervals are presented. However the document includes details regarding preparations for inspection and underwater inspection methods (see Table 6-1). More detailed guidelines regarding the in-service inspection of various types of structures (jackets, column stabilized units, ship-shaped vessels and concrete structures) are presented in the normative Annexes C through F, of the standard, respectively.

Methods/techniques		Capability	Technical description	ROV	Cost related aspects	
Visual	Without cleaning	Scour, sea floor instability, gross damage, signs of gross damages, existence of anodes	Video based reporting.	ROV	Fast	
	With cleaning	Follow-up investigation of general damage	Video based reporting	Work class ROV	Time consuming	
Electro nic	MPE	Fatigue damage	Existence and length of surface crack.	Work class ROV	Cleaning required. Time consuming	
	EC	Fatigue damage	Length of surface crack, may also be used for depth measurement. Independent evaluation possible	ROV	Relatively fast. Through coating up to ca. 10mm.	
ACPD		Fatigue damage	Depth of surface crack. Supporting MPE.	Work class ROV	Cleaning required. Time consuming	
	ACFM	Fatigue damage	Both length and depth of surface crack. Independent evaluation possible.	ROV	Relatively fast. Through coating up to ca. 10mm.	
Ultrasoni	ic	Wall thickness, corrosion, fatigue and fabrication defect, post-repair inspection	Embedded defects.	Work class ROV, Usually performed by diver	Cost level depends on different applications.	
FMD		Fatigue damage and post-event damage	Through thickness crack. Excellent tool for rapid screening.	ROV	Fast No cleaning necessary.	
Cathodic Potential		Corrosion	Anode performance. Often combined with visual inspection.	ROV	Field calibration necessary, but the readings can be taken quickly	
Other Dimensional measurement		Scour, subsidence, marine growth, dent, out-of straightness, corrosion pit size, etc.	For special purposes.	May be performed by ROV, but with limited capability		
	Stress&def. monitoring	Structural behaviour monitoring	For special purposes.			
Radiography		E.g. testing of hyperbaric welds	Internal defects			

Table 6-1 Underwater Inspection Methods

6.4 Summary

All standards emphasize the importance of keeping records of performed in-service inspections, maintenance and structural modifications of the platform. The synergy between different phases of the structural integrity management is highlighted as one of the most important factors extending the lifetime of the structure and increasing the safety of operations.

The standards also define Owner's responsibility for preparation and proper execution of the inspection program, which may result in decreased (or increased, depending on an outcome of the evaluation and findings of the historical surveys) pre-defined frequencies for different levels of inservice inspections. It is also highlighted that analyzing the inspection findings and implementing a SIM program can reduce costs related to maintenance.

In the ISO and NORSOK standards more significant attention is given to the risk assessment and probability based inspection methods. This approach often requires using of advanced analysis methods and is aligned with current trends and developments in the field of structure integrity management. The API current standard, representing more traditional approach, allows for the adjustment of the inspection scope and frequency. However, it does not provide requirements for

SIM. Detailed guidance for SIM and the Risk Based Inspection (RBI) planning will be implemented into the API system in the planned API RP-2SIM for publication in 2011 or 2012.

All standards also include list of preselected areas and minimum inspection requirements for periodical inspections. These minimum requirements for floating installations should also be reviewed and updated based on the requirements of the RCS classifying the vessel, if they are found to be more conservative.

Table 6-2 In-Service Inspection Requirements Comparison

API RP 2A WSD/LRFD	ISO 19902	
14. SURVEY		
14.3 SURVEY LEVELS	23 IN-SERVICE IN SPECTION AND SIM	5
LEVEL I	LE VE L I	
Below water verification of performance of the cathodic protection system (i.e. dropped cell), and an	Below water verification of perform ance of the cathodic protection system (i.e. dropped cell), and an	The detailed con
above water visual survey to determine the effectiveness of corrosion protection system, detect	above water visual survey to determine the effectiveness of corrosion protection system, detect	on the design an
deteriorating coating systems, excessive corrosion, and bent, missing and damaged members. Genera	deteriorating coating systems, excessive corrosion, and bent, missing and damaged members. General	the inspection m
examination of all structural members in splash zone and above water, concentrating on condition of	examination of all structural members in splash zone and above water, concentrating on condition of	should be put or
the more critical areas such as deck legs, girders, trusses, etc.	the more critical areas such as deck legs, girders, trusses, etc.	the accuracy and
Survey should identify indications of obvious overloading, design deficiencies, and use inconsistent with	Survey should identify indications of obvious overloading, design deficiencies, and use inconsistent with	inspection metho
the platform's original purpose. If above-water damage is detected, NDT should be used when visual	the platform's original purpose. If above-water dam age is detected, NDT should be used when visual	
inspection can't fully determine the extent of damage.	inspection can't fully determine the extent of damage.	
Should Level I survey indicate that underwater damage could have occured, a Level II inspection	Should Level I survey indicate that underwater damage could have occured, a Level II inspection	
LEVEL II	LE VEL II	
General underwater visual inspection by divers or ROV to detect presence of excessive corrosion,	General underwater visual inspection by divers or ROV to detect presence of excessive corrosion,	
accidental or environmental overloading, scour and seafloor instability, fatigue damage, design or	accidental or environmental overloading, scour and seafloor instability, fatigue damage, design or	
constructruction deficiencies, presence of debris, and excessive marine growth. The survey should	constructruction deficiencies, presence of debris, and excessive marine growth. The survey should	
in clude measurement of cathodic potentials of pre-selected critical areas.	include measurement of cathodic potentials of pre-selected critical areas.	
Detection of significant structural damage during Level II survey should become the basis for initiation	Detection of significant structural damage during Level II survey should become the basis for initiation	
of Level III survey, which should be conducted as soon as conditions permit.	of Level III survey, which should be conducted as soon as conditions permit.	
LEVEL III	LE VE L III	1
An underwater visual inspection of preselected areas and/or, based on results of Level II survey, areas	An underwater visual inspection of preselected areas and/or, based on results of Level II survey, areas	
known or suspected damage. Such areas should be sufficiently cleaned of marine growth to permit	known or suspected damage. Such areas should be sufficiently cleaned of marine growth to permit	
thorough inspection. FMD can provide an acceptable alternative to close visual inspection (CVI). CVI	thorough inspection. FMD can provide an acceptable alternative to close visual inspection (C VI). CVI	
for corrosion monitoring should be included as part of Level III survey.	for corrosion monitoring should be included as part of Level III survey.	
Detection of significant structural damage during Level III survey should become the basis for initiation	Detection of significant structural damage during Level III survey should become the basis for initiation	
of Level IV survey, where CVI alone can't not determine the extent of damage. Level IV survey, if	of Level IV survey, where CVI alone can't not determine the extent of damage. Level IV survey, if	
required, should be conducted as soon as conditions permit.	required, should be conducted as soon as conditions permit.	
LEVEL IV	LE VE L IV	
An underwater NDT of preselected areas and/or, based on results of Level III survey, areas known or	An underwater NDT of preselected areas and/or, based on results of Level III survey, areas known or	
suspected damage. Level IV survey should also include detailed inspection and measurements of	suspected damage. Level IV survey should also include detailed inspection and measurements of	
dam aged areas.	damaged areas.	
A Level III and/or Level IV survey of fatigue-sensitive joints and/or areas susceptible to cracking could	A Level III and/or Level IV survey of fatigue-sensitive joints and/or areas susceptible to cracking could	
be necessary to determine if damage has occured. Monitoring fatigue-sensitive and/or reported crack-	be necessary to determine if damage has occured. Monitoring fatigue-sensitive and/or reported crack-	
like indications, can be an acceptable alternative to analyctical verification	like indications, can be an acceptable alternative to analyctical verification	1

NORSOK N-005

5 PROGRAMME FOR CONDITION MONITORING

endition monitoring programme of loadbearing structures depends and mainenance philosophy, the current condition, the capability of methods availible, and the intended use of the structure. The focus on the identified safety critical components, in addition to improving and reliability of prediction of structural performance and in-service nods.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

	14 4				1	23.7 DE FAILLT PE				1	
Frequency of surveys	ories of the platform	for both life safetv	In absence of an in-service structural inspection strategy, following default requirements shall apply. Operate								
and consequence of	faliure consideration	S.			These requirements address only the concerns of sefeguarding life and protecting the environment. systema					systematic n	
Survey Intervals						Additional inspections can be needed to meet statutory requirements, owner's corporate policy or strategy					
Exposure Category		Survey	y Level		industry standards/p	ractices. Compliance	with default require	ments does not guara	antee structural	long term ins	
Level	I	II		IV	reliability or fitness-f	or-purpose.				The conditio	
L-1	1 yr	3-5 yrs	6-10 yrs	ź						involves mar	
L-2	1 yr	5-10 yrs	11-15 yrs	*	Survey Intervals					conditions, f	
L-3	1 yr	5-10 yrs	*	x	Exposure Level		Inspect	tion Level		of the progra	
* survey should be pe	erformed if required,	based on lower level	inspection findings						IV	methods.	
					L-1	Annual	3 yrs	5 yrs	×	4	
Time interval between	n surveys for fixed p	lattorm's should not e	xceed the intervals :	shown in table above	L-2	Annual	5 yrs	10 yrs	×	Desired in free	
unless experience an	id/or engineering an	alyses indicate that d	ifferent intervals are	justified. Justification	L-3	Annual	5 yrs	not required	not required	Periodic fran	
for changing guide	ine survey intervals	snoula be accument	ed and retained by d	operator. Following	 determined from Le 	ever i il inspection res	uits			Initial anaditi	
factors, which	eitner increase or d	e crease survey interv	ais, should be taker	n into account:	la se satis a requirem d	anta laga than dafault	een he justified who	a an increation strate	and in developed and	Initial conditi	
					mspection requireme	ents less than delaut	can be justified whe	en an inspection strate	egy is developed and		
1. Original design/ass	sessment criteria				maintaineo.					Periodic con	
2. Present structural	condition										
Service history of p	platform				Special inspections	; 					
Platform structural	redundancy				Special inspections a	shall be undertaken:	to assess perform an	ice of repairs undertai	ken to ensure the		
Criticalness of plat	form to other operat	ions			ntness-tor-purpose o	of structure, conducte	d approximately 1 y	ratter completion of th	ne repair, and to		
6. Platform location					monitor known defec	cts, damage, lo cal co	rrosion, scour, or otr	ter conditions which o	could potentially		
7. Damage					affect the fitness-for-	-purpose of the struc	ure				
8. Fatigue sensitivity											
					Unscheduled inspe	ctions					
Special Surveys											
Level I survey should	be conducted after	direct exposure to a o	design environmenta	I event.	An inspection shall b	e conducted as soor	as practical after th	e occurrence of an er	nvironmental event		
Level II survey should	ibe conducted after	severe accidental loa	ading that could lead	to structural	exceeding that for which structure was designed or assessed, or of a significant accidental action. The						
degradation (i.e. boat	collisonn, dropped	objects), or after an e	vent exceeding the	olat form;s original	minimum scope shall include the following: a visual inspection without marine growth cleaning that						
design/assessment c	riteria.				provides full coverage	je from sea floor to to	op ofstructure, cond	uctors, risers, and var	rious appurten aces,		
Areas critical to the s	tructural integrity of	the platform, which h	ave undergone struc	tural repair, should	and which includes checking the seabed conditions at legs/piles and looking for debris and damage.						
be subjected to a Lev	el II survey approxir	nately one year follov	ving completition of t	he repair. A Level I II							
survey should be per	formed when exessi	ve marine growth pre	vents visual inspecti	on of the repaired							
areas.											
Level II scour surveys	s in scour-prone are	as should take accou	nt of local experien o	e, and are usually							
more frequent than in	tervals indicated in t	table above.									
	14.5 PRE	SELECTED SURVE	YAREA S								
During initial plat form	design and any sub	sequent reanalysis, o	critical members and	joints should be							
identified to assist in (d e fining requirem en	ts for future platform	surveys. Selection o	f critical areas should							
be based on such fac	tors as joint and me	mber loads, stresses	, stress concentratio	ns, structural							
redundancy, and fatig	ue lives determined	during platform desi	gn/assessment.								
		14.6 RECORDS				23.2 DAT	A COLLECTION AN	D UPDATE			
Records of all survey	s should be retained	by the operator for the	he life of plat form. S	uch records should	Records of all origina	aldesign analyses, fa	abrication, transporta	ation, installation and i	in service	Operator sha	
contain detailed acco	unts of survey findin	igs, including video ta	pes, photographs, n	neasurements, and	inspections, enginee	ring evaluations, rep	aits, and incidents s	hall be retained by the	e owner for the life of	from condition	
other pertinent survey	yresults. Records sl	nould also identify the	survey levels perfo	rmed.	the structure and tra	nsterred to new owne	ers as necessary.			data may inc	
Description of detected	ed damage should b	e thoroughly docume	nted and included w	ith survey results.						evaluation a	
Any resulting repairs	and engineering eva	aluations of the platfor	rm's condition shouk	d be documented and						Such data re	
retained.										actual scope	
1					1					1	

4.3 CONDITION MONITORING PRINCIPLE S

all monitor the condition of operated offshore installation in nanner, This may include development of an overall philosophy and condition monitorning, establishing in-service inspection systems and spection programs, etc..

n monitoring programme is subject to continuous updating as It ny factors in the nature of uncertainity such as environmental failure probabilities, damage development, etc. In addition, a revision amme may also be necessary as a result of development of tools and

5.3 INTERVALS FOR CONDITION MONITORING

me work programme - usually 3-5 years

ion survey - within 1 year after instalation

ndition monitoring - "shall be carried out regularly"

6.4 IN SPECTION RECORD

all maintain an up to date filing system for results and evaluations on monitoring programme throughout the lifetime of installation. The clude video tape, inspection log, first hand inspection report, and recommendations.

e cords should also include tools/te chniques em ployed, planned and e of work and description of findings and any anomalies discovered.

7 ASSESSMENT OF EXISTING PLATFORMS AND FLOATERS

7.1 General

Offshore structures have been built since the 1940's in the GOM and around the world. Design codes evolve as knowledge is attained through actual operational experience. The first Edition of API RP 2A was published in 1969 with a total of 16 pages. The API RP 2A 21st Edition of 2000 with supplements added in 2002, 2005, and 2007 is now 274 pages long which indicates that considerable guidance and experience have been accomplished. Naturally some existing structures will not meet the full requirements of newer editions of the standards and hence the need for a methodology for the assessment of these existing structures.

The assessment of existing structures methodology applies risk based principles and even though it allows the use of reduced assessment design criteria compared to the criteria for design of a new structure, it stipulates that the risks are managed effectively and that consequences of damage/or failure are acceptable to the operators and regulators.

Table 7-1 depicts a comparison between requirements for assessment of an existing structure compared to design criteria for a new structure covering environmental criteria, loading conditions, foundation design, modeling, stress analysis, and acceptance criteria. The table demonstrates that for assessment of existing structures actual platform data and experience is taken into account thus eliminating some of the conservatism employed in design of a new structure. The acceptance of local yield is possible for an existing structure provided alternative load paths through redundancy are demonstrated by analysis.

	Design Criteria	Assessment Criteria
Environment	Forecast from existing data collection	As criteria for "new" platform, with inclusion of recent data collection and use of : - current state of art review - experience from adjacent fields - additional data from actual field sea-states
Loading	Possibly conservative evaluation from proposed use of structure	Conservative evaluation from as-built records and use of recent survey info on: - marine growth - appurtenances - removals/additions/modifications - topsides weight control - wind areas
Foundation	Forecast from site investigation and laboratory testing of soils	As criteria for "new" platform with inclusion of: - subsidence information - current state-of-the-art review - experience form adjacent fields - post-drive foundation analyses - scour survey and maintenance
Modeling	Topology and dimensions may be changed. No service inspection available. Conservative modeling using global percentages to cover not- finalized details and simple geometric assumptions	The structure dimensions are fixed and known. In-service inspection may be applied. Actual characteristic strength of steel based on actual material certificates may be used. Structural performance may have been measured and used to update structural analysis.
Stress Analysis	The time for analysis is critical. Strict compliance with code of practice and regulatory documents.	The quality of the analysis is critical. Sufficient time for model tests, removing of conservatism where possible, redundancy studies to determine ultimate strength of structure and foundation, sensitivity studies on various parameters to improve confidence levels
Results Evaluation	Structure has members and joints with acceptable utilization.	Structure has some stresses up to yield stress, but some assessment standards allow for some yielding if the structure has proven strength and redundancy.

7.2 API RP 2A and Bulletin 2INT-EX

This standard gives detailed existing structures assessment procedures included in Section 17 of API RP 2A and its commentary section. Section 17 defines reduced design criteria for assessment purposes that are applicable only for the assessment of platforms designed in accordance with the 20th or earlier editions and prior to the first edition of API RP 2A. The specified reduced environmental criteria are not intended to be used to justify modifications or additions to a platform that will result in an increased loading on the structure for platforms that have been in service less than five years. For structures designed according to the 21st or later Editions, assessment is required to be in accordance with the criteria originally used for the design of the platform, unless a special study can justify a reduction in Exposure Category as defined in Section 1 of API RP 2A.

The trigger elements of selection of platforms for assessment, categorization of safety level for the installation and condition assessment in API RP 2A do not differ from those given in ISO 19902. The assessment process is depicted in the flow charts given in Figure 7-1 and Figure 7-2 taken from Section 17 of API RP 2A.

As stated in Section 2.2.1 API issued Bulletin 2INT-EX in order to provide guidance to operators and designers on the application of the new Metocean criteria given in API Bulletin 2INT-MET which had significant wave height increase of \sim 30% in the central region. The Bulletin described assessment ultimate strength procedures and recommended a minimum reserve strength ratio (RSR) of 1.2 for A-1 or L-1 structures. The RSR is defined as the ratio of the ultimate lateral load the structure can sustain before collapse to the base shear calculated for the 100-year Metocean condition.

Both API RP 2A Section 17 and API Bulletin 2INT-EX will be replaced by the upcoming API RP 2SIM which will employ Structural Integrity Management (SIM) and Risk Based Inspection (RBI) methodologies in performing the assessment.

There are two potential sequential analysis checks mentioned in API RP 2A WSD, a design level analysis and an ultimate strength analysis. The analysis itself seems to be the same as mentioned in ISO 19902, but the environmental loads are different. The environmental load in API RP 2A may be reduced to 85% of the 100-yr condition for high consequence platforms, and to 50% for low consequence platforms in other U.S. areas except GoM. API states that the design level analysis is not applicable for platforms with inadequate deck height and the one-third increase in allowable stress is permitted for design level analysis (all categories).

As defined above, in the ultimate strength analysis, the Reserve Strength Ratio (RSR) is the ratio of the platforms ultimate lateral load carrying capacity to its 100-yr environmental condition lateral loading. As noted in Figure 7-1, an RSR of 1.6 is required for high consequence platforms and 0.8 for low consequence platforms in US waters other than the GOM. No RSR values are specified however for the GOM structures. Instead the ratio of the maximum wave height corresponding to ultimate capacity and the design wave height is evaluated to be about 1.3. The reduced assessment criteria are given the Commentary to Section 17 as shown in Table 7-2 for 400 ft. water depth.

	Wave Height Criteria Gulf of Mexico, 400 ft. Water Depth*					
API RP 2A Criteria	Design Level Assessment Height / Annual Return Period	Ultimate Strength Assessment Height / Annual Return Period				
New Design (Section 2, L-1)	70 ft / 100 yr.	Not Applicable				
A-1 High (Section 17)	57 ft / 30 yr.	74 ft. / 200 yr.				
A-2 Medium (Section 17)	48 ft / 15 yr.	62 ft. / 45 yr.				
A-3 Low (Section 17)	38 ft / <10 yr.	48 ft. / 15 yr.				

Table 7-2 Comparison of Wave Criteria for New L-1 and Assessment Criteria

The requirement to deck elevations versus water depth is provided for GoM in API Figures 17.6.2-2b 17.6.2-3b. The following guidelines are recommended in the code:

- 1. The ultimate strength of undamaged members, joints, and piles can be established using the formulas of Sections 3, 4, 6 and 7 (API) with all safety factors removed. The ultimate strength of joints may also be determined using a mean "formula or equation" versus the lower bound formulas for joints in Section4 (API).
- 2. The ultimate strength of damaged or repaired elements of the structure may be evaluated using a rational, defensible engineering approach, including special procedures developed for the purpose.
- 3. Actual (coupon test) or expected mean yield stresses may be used instead of nominal yield stresses. Increased strength due to strain hardening may also be acknowledged if the section is sufficiently compact, but not rate effects beyond the normal (fast) mill tension tests.
- 4. Studies and tests have indicated that effective length (K) factors are substantially lower for elements of a frame subjected to overload than those specified in 3.3.1d (API). Lower values may be used if it can be demonstrated that they are both applicable and substantiated.

In addition, three alternative assessment procedures subject to specified limitations are considered as acceptable:

- assessment of similar platforms by comparison
- assessment through the use of explicit probabilities of failure
- assessment based on prior exposure, surviving actual exposure to an event that is known with confidence to have been either as severe or more severe than the applicable ultimate strength criteria based on the exposure category

The assessment process described in Section 17 of API RP 2A WSD and API Bulletin 2INT-EX include significant detail covering initiators, categories A-1 to A-3, surveys, environmental loading, structural analysis, and mitigation alternatives. The assessment also includes fatigue, and strength evaluations. The ultimate strength analysis is only required to determine the RSR as stated above.

Figure 17.5.2—Platform Assessment Process—Metocean Loading

Figure 7-1 Platform Assessment Process

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Figure 17.5.2—Platform Assessment Process—Metocean Loading (Continued)

Figure 7-2 Platform Assessment Process (Continued)

7.3 ISO 19902 (2007)

Assessment of existing structures is covered in Clause 24 of ISO 19902. It states that the owner shall maintain and demonstrate the fitness-for-purpose of the structure for its specific site conditions and operational requirements. A structure is deemed fit-for-purpose when the risk of structural failure leading to unacceptable consequences is sufficiently low. The acceptable level of risk depends on regulatory requirements supplemented by regional or industry standards and practice. The aims and procedures are applicable to the assessment of existing fixed steel offshore structures as well as topsides structures. The ISO 19902 states that it is permissible to accept limited individual component "failure" for existing structures, provided that both the reserve strength against overall system failure and deformations remain acceptable. The ISO 19902 assessment procedure includes both a check of the ultimate limit state and the fatigue limit state.

A flow chart of the assessment is shown in Figure 7-3 (see ISO 19902 Fig. 24.2-2). Three potential assessment checks are specified in order of complexity:

- a) Screening the structure in comparison with similar structures
- b) Design level analysis: a check of the structure following the same approach as for a new design
- c) Ultimate level analysis: intended to demonstrate that a structure has adequate strength and stability to withstand a significant overload. Local overstress and potential local damage are acceptable, but total collapse or excessive/damaging deformations shall be avoided.

Further details of the assessment initiators, acceptance criteria, platform condition, actions, resistance, and screening, design level, ultimate strength assessment parameters are given in the Table 7-2. ISO does not give any specific requirement to the reliability of existing platforms. The owner needs to develop them in addition to the code. Making reference to only ISO can lead to any level of safety.

Figure 7-3 Flow chart of the assessment process

7.4 NORSOK N-006

This standard was first published in 2009 and covers general principles and guidelines for assessment of existing offshore structures as a supplement to high level NORSOK N-001. NORSOK N-006 should be used in conjunction with NORSOK N-003, NORSOK N-004 and NORSOK N-005 on actions, design, and condition monitoring of offshore structures, respectively.

The general principles given in this standard are applicable to:

- All types of offshore structures including bottom founded structures as well as floating structures
- Different types of materials used including steel, concrete, aluminum, etc.
- The assessment of complete structures including substructures, topside structures, vessel hulls, foundations, marine systems, mooring systems, subsea facilities and mechanical outfitting that contributes to maintain the assumed load conditions of the structure

The initiation elements for selection of platforms for assessment for the installation and condition assessment do not differ much from those given in ISO 19902 and API RP 2A.

The flow chart of the assessment process is shown in Figure 7-4 and it is applicable to all relevant limit states. The same principles for check of ULS, ALS and FLS as for design of new structures apply to assessment of existing structures.

There is some special guidance in this standard not covered in API and ISO:

- The resistance of damaged steel members and corroded steel members can be calculated according to NORSOK N-004, Section 10
- Resistance to cyclic storm actions included in Section 8.4
- Risk based inspection is included in Section 9.
- Existing facilities where the primary structure does not meet the criteria for ULS or ALS related to environmental actions that can be forecast like wave and wind actions, may continue to be used if the following four requirements are fulfilled:
 - shut-down and unmanning procedures are implemented. The procedure for shut down and unmanning should meet criteria given in 6.3.
 - > requirements to unmanned facilities according to NORSOK N-001 are satisfied.
 - the environmental actions will not jeopardize any other main safety function (other than structural integrity) relevant for the facility during the storm, see 6.4
 - ▶ the risk of significant pollution is found acceptance. see 6.5

Figure 7-4 Flow Sheet of the Assessment Process

More detailed comparison of the assessment requirements is given in Table 7-3 for the three codes and methods for assessing damaged/corroded members and damaged joints are presented in Table 7-4 for the ISO and NORSOK. No such guidance is given in API. It should be noted that unlike API and ISO, NORSOK does not allow lower assessment criteria than the highest L-1 or A-1 for manned platforms. However, in N-001 relaxed requirements are formulated to for platforms that are normally unmanned.

7.5 Summary of Assessment of Existing Platforms Comparison

The methodology for assessment of existing structures applies risk based principles. Reduced assessment design criteria (compared to the criteria for design of a new structure) are specified in API 2A Section 17.

The ISO 19902 does not have reduced assessment criteria but allows local damage to be sustained provided reserve strength is verified. NORSOK requires that existing structures be able to resist ULS and ALS conditions at same safety level as new structures. If they fail to meet these requirements, mitigation measures must be implemented. ISO does not give any specific requirements for assessment of existing structures.

BOEMRE TA&R NO. 677 Final Report on Comparison of API, ISO, and NORSOK Offshore Structural Standards

	Table 7-5 Assessmen	it of Existing Flatte	orms and Proater's Comparison	
	API RP 2A- WSD Section 17 (To be replaced by API RP 2SIM)		ISO 19902	NORSOK N-006
Limitation	Only for the assessment of the following platforms: - designed in accordance with the provisions in the 20th and earlier editions - the platforms designed prior to the first editions	 the assessment of existing purpose also applicable to topsides s fit-for-purpose when the risk sufficiently low. 	fixed steel offshore structures to demonstrate their fitness-for- structures a of structural failure leading to unaccepatble consequences is	 applicable to all types of offshore structures, including bottom founded structures as well as floating structures; As the majority of ageing facilities are fixed structures of the jacket type, the detailed recommendations given are most relevant for this type of structure; applicable to different types of materials used including steel, concrete, aluminium; applicable to the assessment of complete structures including substructures, topsides structures, vessel hulls, foundations, marine systems, mooring systems, subsea facilities and mechanical outfitting that contributes to maintain the assumed load conditions of the structure
Assessment Process	 Platform selection (Section 17.2) Categorization (Section 17.3) Condition assessment (Section 17.4) Design basis check (Sections 17.5 and 17.6) Analysis check (Sections 17.6 and 17.7) Consideration of mitigations (Section 17.8) 	 24.2 a) assemble data on the structure b) determine if any assessment c) determine acceptance crited d) assess the condition of the e) assess the actions, see 24 f) screen the structure in common g) perform a resistance asses 1) design level analysis 2) ultimate strength level a 3) prevention and mitigation 	cture, its history and exposure level, see 24.3 ent initiators are triggered, see 24.4 eria, see 24.5 e structure, see 24.6 4.7 nparison with similiar structures, see 24.8 ssment, see 24.9 using analysis on, see 24.10	 4.1 design, fabrication and installation resume and as-built drawings doucmentation of as-is condition planned changes and modifications of the facility updated design basis and specifications calibration of analysis models to measurements of behavior if such measurements exist the history of degradations and incidents prediction of future degradations and incidents the effect of degradation on future performance of the structure a documentation of technical and operational integrity planned mitigations a plan or strategy for the maintenance and inspection
Platform Assessment Initiators	Section 17.2 Definition of Significant: The total of the cumulative changes in greater than 10% - Additional of personnel: life safety level changed to a more restrictive level - Addition of facilities: addition of facilities or the consequence of failure level changed significantly - Increased loading on structure: the new combined environmental/operational loading significantly increased - Inadequate deck height: platforms with inadequate deck height for its exposure category and not designed for the impact of wave loading on the deck - Damage found during inspections: significant damage to primary structural components found during any inspection	24.4 a) Changes from the origin 1) addition of personnel or fac 2) modification to the facilitie 3) more onerous enviromenta 4) more onerous component 5) physical changes to the s 6) inadequate deck height, s impact the deck, and provided b) Damage or deterioration c) Exceedance of design s - the fatigue life (including s: - degradation of the structur required extended service life An extension of the design if inspection of the structur and corrosion) has not bec to the design	hal design or previous assessment basis, including cilities as al conditions and/or criteria or foundation resistance data and/or criteria structure's design basis, e.g. excessive scour or subsidence such that waves associated with previous or new criteria will d such action was not previously considered. In of a primary structural component ervice life afety factors) is less than the required extended service life re due to corrosion is present, or is likely to occur, within the service life can be accepted without a full assessment re shows that timeb-dependent degradation (i.e. fatigue come significant and that there have been no changes	 4.2 a) changes from the original design or previous assessment basis, including modification to the facilities, more onerous environmental conditions and/or criteria, more onerous component or foundation resistance data physical changes to the structure's design basis inadequate deck height b) damage or deterioration of a primary structural component or a mechanical component c) exceedance of design service life, if either the remaining fatigue life (including design fatigue factors) is less than the required extended service life degradation of the structure beyond design allowances, or is likely to occur within the required extended service life
Platform Assessment Categories	Section 17.3 Assessment categories based on: Life safety, Consequence of failure Life Safety - Manned-Non-Evacuated - Manned-Evacuated - Unmanned Consequence of failure - A-1 - High Assessment Category: existing major platforms and/or those platforms that have potential for well flow of either oil or sour gas in the event of failure; All platofrms in water depths greater than 400 ft are considered A-1 - A-2 - Medium Assessment Category: exisiting platforms where production would be shut-in during the design event; exisiting platforms that do not meet the A-1 or A-3 definitions - A-3 - Low Assessment Category: exisiting platforms where production would be shut-in during the design event;	24.3.2 Acceptance criteria for asses Table 6. Life-safety category S1 Manned non-evacuated S2 Manned evacuated S3 Unmanned	ssment depend on the exposure level of the platform. .6-1 — Determination of exposure level Consequence category C1 High consequence C3 Low consequence L1 L1 L1 L1 L1 L2 L2 L1 L2 L3	NORSOK defines lower safety factors for unmanned platforms
Condition Assessment	Section 17.4 - Topsides - only require the annual Level I survey: topside arrangement and configuration, platform exposure category, structural framing details etc. - Underwater - Level II survey - Soil Data - Available on- or near-site soil borings and geophysical data should be reviewed.	24.6 - Topsides surveys - Underwater and splash zo - Foundation data: available	one surveys: Level II inspection as a minimum e on-site or near-site soil borings shall be reviewed.	See 4.1

Table 7-3 Assessment of Existing Platforms and Floaters Comparison

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Sectio	n 17.5, 17	'.6 and 1	17.7								- Methods for	r determinin	g acceptance (24.5)			Exsiting structures shall meet the
Meth	ods for de	etermini	ing accept	ance criter	ria						a) through the	e use of explic		Exisiting facilities where the prim		
1) des	ign level a	nalysis	voio								b) through risk	k based struc	tural reserve strength ratio fact	ors (RSR) deve	loped for location	or ALS related to environmental a
2) UITI	nate stren	igtn anaiy of similar	ysis : platforme k	ov comparie	son						c) by compari	ison with simi	lie exposure level lier platforms, a structure shal	l not he conside	red as fit-for-	- shut-down and unmanning procedu
assessment of minimal platforms by comparison									purpose by co	omparison to	a similiar structure which itself	has been deter	mined to be fit-for	and unmanning should meet criteria		
5) ass	essment b	based on	prior expo	sure, survivi	ng actual exposu	re to an e	vent th	at is know	vn with confide	ence to have been	purpose by co	omparison to a	another structure			- requirements to unmanned facilities
either a	as severe o	or more s	severe than	the applica	ble ultimate strer	ngth criteri	a base	ed on the e	exposure cate	gory	d) based on p	rior exposure	, e.g. survival of an event that i	s known with co	onfidence to have	- the evironmental actions will not jec
											been as sever	re as, or more	severe than, the event that we	ould be conside	red in the actual	structural integrity) relevant for the fa
											ultimate syste	em strength a	nalysis			- the risk of significant pollution is fou
											Acceptance c	riteria may be	e developed for different expos	ure levels in tern	ns of	
											- reduced activ	ions to be app	blied in the assessment, e.g. o	orresponding to	shorter return	
											- revised resis	stance criteria	, e.g. reduced RSRs			
Asse	ssment fo	r Metoce	ean Loadi	ng							- Metocean p	parameters a	nd Evrionmental Actions (2	4.7.2)		ULS and ALS (section 8)
	Table 17	7.5.2b–ASS	ESSMENT CRIT	ERIA-OTHER U. 2)	S. AREAS		Table 17	7.5.2a–ASSESSN	AENT CRITERIA-U.S.	SULF OF MEXICO	The Matocea	n data require	ed for an assessment are the s	ame as for a ne	ew structure	- The same principles for check of U
Assessme	nt Exposure Consequence	Category	Design La	evel Analysis tes1 and 2)	Ultimate Strength Andives	Assessment Category	Exposu Consequenc	re Category e Life Sefety	(see Table 17.5.2-1) Design Level Analys (see Notes 1 and 2	is Ultimate Strength	return period r	may be consid	dered for assessment, see Cla	ause 24.5.	es, a reduced	structures.
Canago	ofFailure	Mannada	85% of late	ral loading	Presente strength ratio		of Failure	Manned- Non-Evacuated,	High Consequence	High Consequence						
A-1	High	Non-Evacuat or	ated caused by environme	100-year ntal conditions	(RSR) ³ 1.6 (res Section 17.6 3b)	~	High	Manned- Evacuated or Unmanned	analysis loading (see Figure 17.6.2-2a)	analysis loading (see Figure 17.6.2-2a)	- Deck Elevat	tion and Add	litional Environmental Actio	ons (24.7.3)	ha haaad aa	- Effects of degradation of the structu
		Unmanned	(see Sectio	n 17.6.2b)	(see Section 17302b)	A-2	Modium	Manned-	Sudden hurricane design level	Sudden hurricane ultimate strength	If wave inunda	ation of the de	CK IS expected, resistance as	sessment shall	be based on	need to be properly monitored and ad
A-3	Low	Unmanned	50% of late caused by	ralloading 100-yaar	(RSR) ³ 0.8	~~	Mealum	Evacuated or Unmanned	analysis loading (see Figure 17.6.2-3a)	analysis loading (see Figure 17.6.2-3a)	uitimate stren	igin analysis.				- Resistance of damaged steel mem
	2011	0	environme (see Sectio	ntal conditions n 17.6.2b)	(see Section 17.6.20)		law		Minimum consequence design level analysis	Minimum consequence ultimate strength	- Design Leve	el Analvsis				Section 10.
Notes	Design level and Discretion of the contract	alysis not applica ase in allowable :	able for platforms wit stress is permitted fo	h inadequate deck he r design level analysis	ight. : (all categories).	~~	ши	Unmanned	loading (see Figure 17.6.2-5a)	analysis loading (see Figure 17.6.2-5a)	1. The assess	sment of struc	rtural members shall comply	with the requirer	nents of Clause	
											13;					- The action and material factors acc
NOTES:	1. RSR - del	fined as th	ne ratio of a p P 2A criteria f	lattorm's ultim or new desig	ate lateral load carry	ing capacity	to its 1	00-yr L-1 er	nvironmental con	dition lateral loading,	2. Assessmer	nt of structura	a exceptions shall comply wi	in the requireme	ents of Clauses	that are assessed according to N-00
2. The a	ssessment p	process de	escribed here	in is applicabl	le for areas outside o	of the U.S., v	w ith the	exception c	of the use of the	reduced criteria w hich are	- there is no	requirement f	or joint strength to be limited t	o its brace men	nber strenaths.	- Structures that are checked in ULS
applicat	le for indicat	ted U.S. ar	reas only.								- the strengt	h of ungrouted	d and grouted joints may be ba	ased on experim	iental or	to be checked for cyclic failures durin
			Table 1	7.6.2-1—U.S	. Gulf of Mexico Met	tocean Crite	eria				analytical stud	dies		·		
				A-1	A	-2		A	4-3		3. Fitness-for-	-purpose				- Further cyclic checks are usually n
			Full Popula	ation Hurricanes	Sudden F	Iunicanes		Winter	r Storms		If all components within the structure and foundation are assessed to have utilizations				e utilizations	restricted to all of the following requir
	Criteria	_	Design Level	Ultimate Stre	ngth Design Level	Ultimate Stre	ength I	Design Level	Ultimate Strength		less than or e	equal to unity,	the structure may be conside	red to be fit-for-p	ourpose, and no	1) no structural components will exp
Wave 1	eight and storm	tide, ft	Fig. 17.6.2-2a	Fig. 17.6.2-	2a Fig. 17.6.2-3a	Fig. 17.6.2-	, 3a B	Fig. 17.6.2-5a	Fig. 17.6.2-5a		further analysi	is us required				to NORSOK IN-004
Deck h	eight, ft		Fig. 17.6.2-2b	Fig. 17.6.2-	2b Fig. 17.6.2-3b	Fig. 17.6.2-	36 F	rig. 17.6.2-5b	Fig. 17.6.2-5b		- Ultimate St	rength Analy	/sis			3) no plastic mechanism is formed
Wave a	nd current direct	tion (Omni-directional*	Fig. 2.3.4-	4 Omni-directional**	Fig. 17.6.2-	4 01	mni-directional	Omni-directional		1. Local overs	stress and pot	ential local damage are accep	table, but total of	collapse or	4) no part of the foundation has react
Curren Warren	t speed, knots		1.6	2.3	1.2	1.8		0.9	1.0		excessive/dar	maging deform	nations shall be avoided.			5) joints are, by inspection, proven to
Wind s	peed (1 hr @ 10	m), knots	65	85	55	70		45	50		2. Reserve St	rength Ratio:				calculated fatigue loading is negligible
Note: f	t = feet; hr = hou	u; m = meters	5.								$R_{RS} = F_{colla}$	_{apse} /F ₁₀₀				The evolution should of the dimensional
*If the **If th	wave height or c e wave height or	current versus current versu	s direction exceed us direction excee	s that required by ds that required fo	Section 2, L-1 criteria for n r ultimate-strength analysis	ew designs, the , then the ultima	n the Sect ate-streng	ion 2 criteria wi th criteria will g	ill govern. jovern.		where: F _{collaps}	e is the unfac	tored global environmental act	ion which, when	co-existing	probability characteristic actions and
											unfactored per	rmanent and	variable are added, causes col	lapse of the stru	ucture	NORSOK N-001.
Notes:	1. Both hurr	ricanes an	d winter stori	ms are importa	ant to the assessmer	nt process.	In calcu	lating wave	forces based or	Section 2.3, a wave	F ₁₀₀ IS	the unfactore	d 100 year global environment	al action calcula	ated in	
unernau	Table C1	17.1-1—Co	omparison of S	Section 2 L-1 V	Vave Criteria and Sec	tion 17 Wave	e Criteri	a for 400 ft. \	Water		3 If the minim	num RSR valu	e calculated from the the ultin	nate strength an	alvsis meets	- No DFF should be applied when ch
				Dept	h, Gulf of Mexico						or exceeds th	e acceptance	criteria from 24.5.1, the struc	ture may be cor	nsidered to be	ELS (section 7 and 9)
Г					Wave	Height Criteri	a				fit-for-purpose	e, and no furth	ner analysis is required.	-		- Exsting facilities where structural d
				Decim La	Gulf of Mexi	co, 400 ft. Wate	er Depth*	rongth Accord	ant		4. In the abse	ence of specifi	c acceptance criteria, fitness-	or-purpose shal	l be assessed	may continue to be used if requirement
L	API	I RP 2A Crite	eria	Ann	ual Return Period	He	eight / An	inual Return Pe	riod		against the R	SR value requ	ired for a new structure with th	ne same exposu	ire level and in	- Clause 7: Check of fatigue limit sta
1	lew Design (Sec	ction 2, L-1)		1	70 ft / 100 yr.		Not	Applicable			the same loca	allon.				The fatigue life is considered to be a
4	-1 High (Sectio	on 17)			57 ft / 30 yr.		74:	ft. / 200 yr.			Table A.9.9-1 failure rate	1 — Values o Pr < 3 × 10 ⁻⁵ / ₂	f partial action factor γ _{f,E} and π for new manned installatio	I RSR to achiev	/e target evel L1)	life times the DFF.
-	2 I and Cartin	ection 17)			48 ft / 15 yr.		62	ft. / 45 yr.				1 1 1 0 × 10 1			I	Otherwise a more detailed assessme
Ľ	Warn heighte a	n 17)	riade for other pr	tar donths and in	offer regions will differ		40	n. / 15 yr.				nvironment	Partial action factor, $\gamma_{\rm f,E}$	Mean RSR		measurements of action effects and/
	wave neights a	and return per	nous for other w.	ater depuis and in	other regions will dirier.							AUS	1,59	2,18		- Clause 9: Requirements to in-service
۹ platfo	rm ow ner sh	nould take	into account f	the higher risk	of platform failure in	extreme hu	urricane	s, in compar	rison to new des	ign, w hen using the		NS	1,40	1,92		1) Inspection intervals shall be adjust
educed	Section 17	criteria.														likelihood of fatigue cracks as more f
											•					-

e requirements of NORSOK N-001. nary structure does not meet the criteria for ULS actions that can be forecast like wave and wind I if the following four requirements are fulfilled: ures are implemented. The procedure for shut down givein in 6.3.

- according to NORSOK N-001 are satisfied.
- opardize any other main safety function (other than
- acility during the storm, see 6.4
- ound acceptable. see 6.5

ILS and ALS as for design of structures as given in and NORSOK N-004 apply to assessment of exisiting

ure (e.g. corrosion, wear or damages from impacts) accounted for in the assessments.

bers can be calculated according to NORSOK N-004,

cording to NORSOK N-001 shall be used for structures 06.

S and ALS by use of linear analyses need normally not ing a storm.

not required in cases where the structural resistance is irements:

perience local or global buckling determined according

e the capacity in NORSOK N-004 (first crack limit)

thed the ultimate soil capacity o be free from fatigue cracks or the ble

ing storm should be made on low d 5% fractile resistance according to

necking the cyclic storm actions.

details do not satisfy the criteria for FLS ents in Clause 7 and Clause 9 are fulfilled. ates (FLS) acceptable and within normal design

s longer than the total design service

nent including results from performed /or inspections throughout the prior service life is

ce inspection after assessment sted to take into account an increased fatigue damage is being accumulated.

BOEMRE TA&R No. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

	Table A.9.9-2 — rate P _f < 5	- Values of part 5 × 10 ⁻⁴ /yr for n	rtial action factor, _{ʔ,E} and R new unmanned installation	SR to achieve t s (exposure lev	target failure L2)	2) The time interval for inspection shall be planned such that potential fatigue cracks can be detected with a large certainty before they grow so large that		
		invironment	Partial action factor, $\gamma_{f,E}$	Mean RSR]	the integrity of the structure is endangered.		
		AUS	1,17	1,60	1	3) Components where a failure can lead to sustantial consequences and have		
		GoM	1,17	1,60		passed their fatigue design life shall be inspected by an appropriate NDT method.		
		NS	1,09	1,49]	These components shall have a maximum inspection interval of 5 years if calculated		
	It is emphasized structures. For exisitng struct as reasonably pr Fatigue Limit S - the results of a fatigue lives of all life, and the inspi- - a fatigue asses the lowest fatigue or unexplained d - where fatigue liv design service lit may be assume predictions of fati	that the resu ctures, the cr acticable. itate fatigue asses I members ar ection history sment in acc e lives and pe amage ves of any me fe of the struct d to be fit-for- ioue crack on	ults in Table A.9.9-2 relat riteria may be relaxed, pr ssment in accordance w nd joints are at least equ y shows no fatigue crack cordance with Clause 16 eriodic inspection of thes embers and joints are ca cture and fatigue damage -purpose, provided conse cowth demonstrate adea	e to new, unm ovided the rist th Clause 16 al to the total s or unexplain has identified e joints finds r culated to be has been ide rvative fracture ate future life	- hanned (evacuated) k is kept as low shows that the design service hed damage the joints with ho fatigue cracks less than the total entified, the structure e mechanics and periodic	 interval gives a longer period. 4) If there is less than 5 years of corrosion allowance for the components that have experienced significant corrosion, corrosion inspections are required at intervals not exceeding 2 years. 5) Risk based inspection may be recommended for planning of in-service inspection for fatigue cracks. 6) The acceptance criterion when planning in-service inspection for fatigue cracks based on RBI is depending on consequence of failure. The risk of a structural failure due to fatigue cracks should not be larger than risk of other failure modes. Methodology for low cycle fatigue of joints is given in 8.4. 		
- Assessment for Seismic Loading	- Seismic desig	n considerat	ition (24.7.4)					
Assessment for metocean loading is not a requirement for seismic zones 0, 1 and 2 Assessment for metocean loading should be performed for all seismic zones		ns are as give	en in Clause 11. ocedure shall be follower	•				
3. Perform assessment for ice loading, if applicable.	- Ultimate limit	state (ULS)	for strength and stiffness	when subject	ed to an extreme leve			
4. Design basis check - the platforms are acceptable to seismic loading if no significant new faults in the local area have been	earthquake (ELE), from which	n it should sustain little o	no damage.				
discovered, or any other information regarding site seismic hazard characterization has been developed that significantly	- Abnormal leve	el earthquak	ke (ALE) to ensure that i	meets reserv	e strength and energy			
increases the level of seismic loading used in the platform's original design	dissipation requir	rements. The	e strutcure may sustain c	onsiderable da	amage from ALE, but			
5. Design level analysis - to be an operator's economic risk desicion and not applicable for seismic assessment purposes.	structural failures	s causing loss	s of life and /or major en	iromental dan	nage shall not be			
6. Ultimate strength analysis - is requiremed if the platform does not pass the design level check or screening; Level A-1	expected to occu	ure.						
platforms withstand loads associated with a median 1000-yr return period earthquake without system collapse; Level A-3								
prations withstand loads associated with a median 500-yr return period earthquake without system collapse		1.4.11						
- Assessment for Ice Loading	- Ice Conditions	s and Action	is due to Ice (24.7.5)					
TOIIOW API RP 2N for guidance on the selection of appropriate ice criteria and loading	Guidance on ice	conditions ar	nd actions due to ice is g	iven in ISO 19	9901-1 for certain			
	areas.			4				

BOEMRE TA&R NO. 677 Final Report on Comparison of API, ISO, and NORSOK Offshore Structural Standards

	ISO 1		NC	DRSOK N-004	
Stress/	100 1	2002. 2001	Stress/		
Parameter	Formulation	Limits	Parameter	Formula	tion
	13.7 Dented	l tubular members			
13.7.2.2 AXIAL	TENSION			10.6	.2 AXIAL TENSION
$\sigma_{t,d} = T/A$	$\sigma_{t,d} \leq f_t / \gamma_{R,t,d}$	$\gamma_{R,t,d} = 1.05, f_t = f_y$		$N_{Sd} \le N_{dent,t,Rd} = A_0 f_y / \gamma_M$	γ _M =1.15
T = the member	axial tensile force		N _{8d} = design axial force		
A = the cross-se	ctional area of the undamaged section		N _{dent,t,Rd} = design axial ten	sion capacity of the dented	section
$\gamma_{R,t,d}$ = the partial	I resistance factor for axial tensile strength	for dented members	A ₀ = cross-sectional area	of the undamaged section	
13.7.2.3 AXIAL	COMPRESION			10.6.2.2	AXIAL COMPRESSION
$\sigma_{c,d = P/A}$	$\sigma_{c,d} \le f_{c,d}/\gamma_{R,c,d}$	$\gamma_{R,c,d} = 1.18$		$N_{Sd} \le N_{dent_ic,Rd} = N_{dent_ic}/\gamma_M$	γ _M =1.15
$\sigma_{c,d}$ = the axial co	ompressive stress due to forces from facto	ored actions on the undamaged cross-section			
P = the member	axial compressive force		N	$d_{ent,c} = (1.0-0.28\lambda_d^2)\xi_c f_y A_0$	for λ _d ≤ 1.34
f _{c,d} = the represe	entative axial strength of dented members,	in stress unit		0.9 ξ _c f _y A ₀ /λ _d ²	for λ _d > 1.34
$\gamma_{R,c,d}$ = the partia	I resistance factor for axial compressive st	rength for dented members	N _{dent,c,Rd} = design axial cor	mpressive capacity of the d	lented section
			N _{dent.c} = charateristic axial	compressive capacity of d	ented member
	Column Buckling		$\lambda_n = (\xi_r / \xi_M)^{0.5} \lambda_n$	reduced slendernes	s of the dented member
fed = feda	2	for ∆y/L ≤ 0.001	$\lambda_0 = reduced slenderness$	of undamaged member	
fealfean + Ifea Aa	$(\Delta v - 0.001L)V[(1-f_{r,d}/(\xi_{r,f_{r,d}})\xi_{m,f_{r,r}}] = 1.0$	for ∆y/L > 0.001	$\xi_r = e^{-0.08h/t}$	for h/t ≤ 10.0	
rejariejajo erejaria	(E. = e ^{-0.06h/t}	for h/t ≤ 10.0	
Δy = the maximu L = the unbraced $f_{c,d,o}$ = the repres $f_{c,d,o}$ =	um out-of-straightness of the dented memb d member length, in place of buckling whic sentative axial compressive strength of der = (1-0.278λ _d ²) ξ _c f _{yc} 0.9 ξ _c f _{yc} /λ _d ²	ber h coincides with the plane of Δy and the members when $\Delta y/L \le 0.001$ $\lambda_d \le 1.34$ $\lambda_d > 1.34$	δ = dent depth t = wall thickness		
f _b = the represent	native bending strength as defined in 13.2.	4, in suess units			
T _{e,d} = the Ettler b	uckling strength of the dented member, in	stress units			
Zo - the election	$\text{Te}, \text{d} = \pi^- E/(K_d L/r_d)^-$			2 +8	7 /
$\lambda = (f / f)^{1/2}$	the elenderness peremeter of the dented	, member			
$K_{a} = (h_{yc} n_{e,d})$ $K_{a} = the effective$	e length factor of the dented member which	the may be assumed to be the same as that for the umdamaged			
member as defin	ned in 13.2.3.2		/	45 /	
$r_d = (I_d/A_d)$	the radius of gyration of the dented mem	ber	. (
l _a = ξ _m l _a	the effective moment of inertia of the der	ted cross-section	1		
lo = the moment	t of inertia of the undamaged member, as (defined in 13.2.3.2			
$A_d = \xi_c A$ the eff	fective cross-sectional area of the dented s A = the cross-sectional area of the undar $\xi_r = e^{-0.08ht}$	ection naged section, as defined in 13.2.3.2 for h/t ≤ 10.0		2	
	$\xi_{\rm m} = e^{-0.06h/t}$	for h/t ≤ 10.0			
	h = the maximum depth of the dent t = the thickness of the member			Figure 10-1	Definition of axes for

Table 7-4 Damaged Members Formula Comparison

L	imits	
dented s	section	

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

	ISO 19902: 2007		NORSOK N		
Stress/	F	1	Stress/	E	
Parameter	Formulation	Limits	Parameter	Formulation 10.6.2.3 Bending	
	$\sigma_{pd}^* = M^*/Z_* \leq f_0/\gamma_{p,p,d}$	γ _{e b.d} = 1.05	Mod ≤ Mdent Rd = čM MR	if the den	
fb = the represe	entative bending strength defined in 13.2	2.4. in stress units	M _{Rd}	otherwise	
$\sigma_{bd}^{\dagger} = the positi$	tive bending stress due to forces from fa	ctored actions with respect to the undamaged cross-section			
$\gamma_{P,h,d}$ = the parti	al resistance factor for bending strength	for dented members			
10,0,0	13.7.2.4.3 Negative Bending				
	$\sigma_{b,d} = M'/Z_e \le \xi_m f_b / \gamma_{R,b,d}$				
σ້ _{b,d} = the nega	tive bending stress due to forces from fa	actored actions with respect to the undamaged cross-section			
	13.7.2.4.4 Neutral Bending σ _{b.d} = M ['] /Z _e ≤ f _b /γ _{B.b.d}				
$\sigma_{b,d}$ = the neutr	ral bending stress due to forces from fac	tored actions with respect to the undamaged cross-section			
	13.7.2.5 Shear				
	$\tau_{b,d} = 2V/A$	for h ≤ 0.25D			
	$\tau_{b,d} = (2V/A)/(1.5-2h/D)$	for 0.25D < h ≤ 0.3D			
13.7.3 Dented	tubular members subjected to combi	ned forces	10.6.2.4 Combined loading		
	13.7.3.1.2 Axial Tension, Positive I	Bending and Neutral Bending		<u>α</u> ()2	
	$\gamma_{R,t,d} \sigma_{t,d} / f_{y} + \gamma_{R,b,d} [(\sigma_{b,d})^* + (\sigma_{b,d})^*]^{3/4}$	₆ ≤ 1.0			
	13.7.3.1.2 Axial Tension, Negative	Bending and Neutral Bending	$\frac{N_{sd}}{M_{sd}} + \frac{N_{sd}\Delta y_2 + C_{ml}M_{sd}}{M_{sd}\Delta y_2 + C_{ml}M_{sd}}$	$\frac{I_{1,\text{sd}}}{I_{1,\text{sd}}}$ + $\frac{N_{\text{sd}}\Delta y_1 + C_{\text{m2}}M_{2,\text{sd}}}{I_{2,\text{sd}}}$	
	$\gamma_{R,t,d} \sigma_{t,d} / f_v + \gamma_{R,b,d} [(\sigma_{b,d})^{\alpha} + (\sigma_{b,d})^2]^{0.5} / f_b$, ≤ 1.0	$N_{dent,c,Rd}$ $\left \left(1 - \frac{N_{sd}}{N_{sd}}\right) M_{sd} \right $	$(1-\frac{N_{sd}}{M_{rd}})$ M _{rd}	
	α = 2 - 3h/D		(N _{E,dent}	$(N_E) $	
	13.7.3.2.2 Axial Compression, posi	tive bending and neutral bending			
	$\gamma_{R,c,d}\sigma_{c,d}/f_{c,d}+\gamma_{R,b,d}\{[\sigma^*_{b,d}/(1-\sigma_{c,d})/f_{e}]^2+$	$[\sigma_{b,d}^{'}(1-\sigma_{c,d}^{'}f_{e}^{'})^{2}]^{0.5}]/f_{b} \le 1.0$	N _{st}	$\left(I_{1,sd} \right)^{\alpha} \left(M_{2,sd} \right)^{2} = 1$	
	$\gamma_{R,c,d} \sigma_{c,d} / f_y + \gamma_{R,b,d} [(\sigma_{b,d}^*)^2 + (\sigma_{b,d}^*)^2]^{0.5}$	lf _b ≤ 1.0	$\frac{1}{N_{\text{trans}}} + \sqrt{\frac{1}{M_{\text{trans}}}}$	$\frac{1}{M_{\text{Rd}}}$ + $\frac{1}{M_{\text{Rd}}}$ ≤ 1	
f _{yc,d} = the repres	sentative local buckling strength of the d	lented member, in stress units, ξ _c f _{yc}	dent, Cita	aent,Ka / Ka /	
f _{yc} = the represe	entative local buckling strength of the un	idamaged member			
fe = the smaller	of the Euler buckling strengths of the ur	ndamaged member in the positive and neutral bending directions, in	$\alpha = 2-3\delta/D$ if the o	dented area acts in compression	
stress units	127222 Avial Compression nega	tive bending and neutral bending	N _{sd} = design axial force on the dented s	section	
	13.7.3.2.5 Axial Compression, nega	ave bending and neutral bending	M _{1,8d} = design bending moment about a	an axis parallel to the dent	
	Ir i		$M_{2,8d}$ = design bending moment about a	dented section for buckling in-line with	
	YR,c,d oc,d + YR,b,d ob,d	$+ \frac{\gamma_{R,b,d} \sigma_{b,d}}{10} \leq 10$	k = effective length factor, as defined in	Table 6-2	
	Jed 1- red to the	$\left(1-\frac{\sigma_{c,d}}{\sigma_{c,d}}\right)f_{b}$	I _{dent} = moment of inertia of the dented of	cross-section, which may be calculated	
	L &c Je,d) M JO	[[fe]]]	I = moment of inertia of undamaged se	ction	
	-	-	Δy_1 = member out-of-straightness perp	endicular to the dent	
	(max and ((max and)) ^a (max	2 ² ^{0,5}	Δy_2 = member out-of-straightness in-lin	e with the dent	
	$\frac{7R_{,C,d} \circ C,d}{f_{m-d}} + \frac{7R_{,D,d} \circ D,d}{c_{m-d}} + \frac{7R_{,D}}{c_{m-d}}$	$\frac{b_1 a - b_1 a}{f_2} \le 1.0$	C _{m1} ,C _{m2} = moment reduction, as define	ed in Table 6-2	
	JAS'Q [(ewine) (·• /]			

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

ISO 19902	2: 2007		NORSOK N-004	
Stress/		Stress/		
Parameter Formulation	Limits	Parameter	Formulation	
A13.8 Corroded tubular members One approach to estimate the strength of an approximately unifor for the entire member. The reduced thickness should be consistent with the average ma The member with the reduced thickness can then be evaluated a This reduced thickness approach is generally conservative. Another common case of corroded members is the presence of s This form of corrosion can not be approximated as uniform.	rmly corroded member is to assume a reduced thickness aterial loss due to corrosion. as an undamaged member. severe localized corrosion in the form of patches.	10.6.3 Corroded members In lieu of refined analysis, the str loass for the entire member. The reduced thickness should be The member with the reduced th In lieu of refined analyses, the st treating the corroded part of the 10.6.2. $\delta/D = 0.5(1-\cos\pi A_{Corr}/A)$ δ = equivalent dent depth D = tube diameter A_{Corr} = corroded part of the cross	rength of uniformly corroded members cab e cosistent with the average material loss of nickness can then be evaluated as an unda trength of members with severe with sever cross-section as non-effective, and using t s-section	
		A = full cross section area		
14.8 Damaged Joints Joints in existing structures sometimes become damaged as a re accidental). In such cases, the reduced joint strength shall be est reduced area or section modulus, or else shall be based on more experimental evidence.	esults of fatigue, corrosion, or overload (environmental or timated either from simple models, e.g. based on the use of e extensive numerical analysis using FEA models or	10.7 Cracked members and joi 10.7.2 Partially cracked tubula Partially crakced members with t discussed for dented tubulars. $\delta/D = 0.5(1-\cos\pi A_{Crack}/A)$ where δ = equivalent dent depth D = tube diameter A_{crack} = crack area A = full cross section area Partially cracked members with t considering tearing mode of failu For fatigue sensitive conditions, 10.7.3 Tubular joints with crack The stastic strength of a cracked cracked geometry taken from 6.4 The reduced strength is given by $N_{crack,Rd}$ = $F_{AR} N_{Rd}$ $M_{crack,Rd}$ = $F_{AR} N_{Rd}$ where $N_{crack,Rd}$ = bending resistance of the $M_{crack,Rd}$ = the joint design axial resist M_{Rd} = the joint design bending m	ints ar members the cracked area loaded in compression ca the cracked area loaded in tension should ure and ductile crack growth a fatigue evaluation of the cracked member ks d tubular joint can be calculated by reducing 4.3, with an appropriate reduction factor ac y: e cracked joint the cracked joint tance noment resistance	
		$F_{AR} = (1-A_c/A)(1/Q_{\beta})^{mq}$ $A_c = cracked area of the brace / and a second s$	chord intersection intersection or, given in 6.4.3.3	

Limits

be assessed by assuming a uniform thickness

- due to corrosion.
- amaged member.
- re localised corrosion can be assessed by
- the provisions given for dented tubulars, see

an be treated in a similar member to the one

be subject to a fracture mechanics assessment

er should also be considered.

ng the joint resistances for a corresponding unccounting for the reduced ligament area.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

ISO 19902: 2007		NORSOK N-004			
Stress/			Stress/		
Parameter	Formulation	Limits	Parameter	Formulation	
13.9 Grouted tubular n	13.9 Grouted tubular members Subalayse 13.0 applies to both fully grouted undergood members and fully grouted depted tubular members, with the dept		10.8 Repaired and strengthened	members and joints	
depth h limited to either h < 0.3D or h < 10t		10.8.2.1 Axial tension			
13.9.2.2 Axial tension		$N_{Sd} \leq N_{ta, Rd} = f_v A_s / \gamma_M$		γ _M =1.15	
Gta ≤ fr/Yeta			where		
where			Net = design axial force on the grouted section		
σ_{ta} = the axial tensile str	ress in the steel tubular member du	e to forces from factored actions, neglecting the grout	N _{tn Rn} = design axial tension resista	nce of the grouted member, c	omposite sed
f_t = the representative axial tensile strength of the steel, f_t = f_v		$A_{s} = qross steel area = \pi Dt$,		
γ_{Pto} = the partial resistance factor for axial tensile strength of the grouted member, γ_{Pto} = 1.05					
Where it can be demons	strated that complete grouting of the	e tubular has been achieved, ft may be taken as 1.12fv.			
13.9.2.3 Axial compres	sion		10.8.2.2 Axial Compression		
$\sigma_{c,q} \leq f_{c,q} / \gamma_{R,c,q}$			$N_{Sd} \le N_{cq,Rd} = N_{cq}/\gamma_M$		γ _M =1.15
$\sigma_{c,q}$ = the axial compress	sive stress in the fully grouted men	ber due to forces from factored actions acting on the transformed	N _{cg} = (1	1.0-0.28λg ²)Nug	for λ _g ≤ 1.
area, σ _{c,q} = P/A _{tr}		_	(0	.9/λg ²) N _{ug}	for $\lambda_g > 1$.
f _{c,g} = the representative	axial compressive strength of the g	routed member, in stress units	$\lambda_g = (N)$	ug/Neg) ^{0.5}	
= (1.0-0	0.28λg ²)f _{ug}	for λ _g ≤ 1.34	where		
(0.9/λ	g ²) f _{ug}	for λ _g > 1.34	N _{sd} = design axial force on the grou	ited section	
$\lambda_g = (f_{ug}/f_{eg})$	0.5	the column slenderness parameter of the grouted member	N _{cg,Rd} = design axial compression r	esistance of the grouted mem	ber
γ _{R.c.g} = the partial resista	ance factor for axial compressive si	trength of the grouted member, $\gamma_{R,c,g} = 1.18$	Nug = axial yield resistance of the co	omposite cross-section = A _s fy	+ 0.67A _G f _{cg}
P = the axial compression	ve force in the grouted member due	e to factored actions	N_{eg} = elastic Euler buckling load of the grouted member = $\pi^2 (E_s I_s + 0.8 E_G I_G)/(10^{-10} M_{\odot})$		
Atr = the tranformed area	a of the fully grouted member = As	+ Ag/m	fog = characteristic cube strength of	grout	
As = the cross-sectional	area of the steel		As = cross-sectional area of the stee	el = πDt, for intact sections	
= (D-t) t	[π - (α _g - sinα _g)]		= 1	πDt[1-(α-sinα)/π), for dented s	ections
α _g = 1	/{cos[1-2h/(D-t)]}		A_G = cross-sectional area of the grout = $\pi D^2/4$, for intact		ons
$A_g = (D - 2t)^{2l}\pi - \alpha_g + 0.5$	5sin(2α _g)]/4		$= \pi(D^2/4)[1-\alpha/\pi+1/2\sin(\alpha/\pi)]$		for dented se
m = the ratio of elastic n	n = the ratio of elastic moduli of steel and grout, m = E _s /E _g (m=18, in lieu of actual data)		Is = effective moment of inertia of g	rout cross section	
E_{s} = Young's modulus of	of elasticity for steel		= 1	π(D ³ t/8)[1-α/π-sin(2α) / (2π)+(2	2sinαcos ² α)/
Eg = the modulus of elas	sticity of grout		IG = effective moment of inertia of g	rout cross section	
h = the maximum dent d	depth, if present		= 1	π(D ⁴ /64)[1-α/π-sin(4α) / (4π)]–	A _G e _G ²
D = the outer diameter of	of the steel tubular member		Es = modulus of elasticity of the ste	el	
t = the thickness of the s	steel		E _G = modulus of elasticity of the gro	out	
f _{ug} = the axial squash st	rength of the grouted member, in st	tress units	m = modular ration of E _s /E _G		
= (A _s f ₎	_y + 0.67Agf _{cu})/A _{tr}		es = distance from centroid of dented steel section to the centroid of the		l of the intact
f _{cu} = the representative	unconfined cube strength of the gro	out, in stress units	$= D^2 t \sin\alpha (1 - \cos\alpha) / (2A_{\delta})$		
f _{eg} = the Euler buckling s	strength of the fully grouted membe	er, in stress units = π²(E _s I _s + 0.8E _G I _G)/[A _{tr} (KL)²]	eG = distance from centroid of dente	ed grout section to the centroi	d of the intac
K = the effective length	factor		=	(Dsinα) ³ /(12A _G)	
L = the longer of the unit	braced lengths in the y- and z- direc	ctions	$\alpha = \cos^{-1}(1-2\delta/D)$		
Is = the effective moment	nt of inertia of the steel cross-section	$\frac{2}{3}$	$\delta = \text{dent depth}$		
= {(D-t)°	= {(D-t) ⁻ t[π - α_{g} - 0.5sin(2 α_{g}) + 2 sin(α_{g}) cos ⁻ (α_{g})]/8} - A _s e _s ⁻		D = tube diameter		

Limits	
5	
ection	
r	
5 1.34	
1.34	
g2	
//(kl) ⁻	
sections	
$(1)/\pi]-A_{s}e_{s}^{2}$	
ict steel section	
act grout section	

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Ig = the effective moment of inertia of the grout cross-sect	ion					
$= \{ (D-2t)^{4} [\pi - \alpha_{g} + 0.25 \sin(4\alpha_{g})]/64 \} - A_{g} e_{g}^{2}$						
$e_s = 0.5(D-t)^2 t \sin(\alpha_q) (1 - \cos\alpha_q)/A_s$						
$e_g = (D-2t)^3 \sin^3(\alpha_g)/(12A_g)$						
13.9.2.4 Bending			10.8.2.3 Bending			
$\sigma_{b,g} = M/Z_e \le f_{b,g}/\gamma_{R,b,g}$		M _{Sd} ≤ M _{g,Rd} = W _{tr} f _{bg} /γ _M				
$\sigma_{b,g}$ = the bending stress due to forces from factored actions and when $\sigma_{b,g} > f_{b,g}$, is to be considered as an equivalent elastic v			where			
bending stress, $\sigma_{b,g} = M/Z_e$			M _{Sd} = design bending moment for the grouted section			
M = the bending moment in the grouted member due to factored actions			M _{g,Rd} = design bending resistance of the grouted member			
f _{b,g} = the representative bending strength of the grouted member, in stress units			Wtr = elastic section modulus of the transformed, composite section			
= Z _p /Z _e f _y δ (1+ 0,01k)				≈ 2/D(I _s + I _G /m)		
$\delta = 1 - 0.5h/D - 1.6(h/D)^2$			m = modular ration of E _a	m = modular ration of E _s /E _G ≈ 18, in lieu of actual data		
$k = 5.5\delta(\rho D/t)^{0.66}$		f _{bg} = charateristic bendin	ng strength of grouted member			
$\rho = 0.6 f_{cu}/f_v$		$= 4/\pi f_v \xi_x (1 + \xi_m/100)$				
$Z_{e} = \pi/64 \text{ [D}^{4} - (D-2t)^{4} V(D/2)$ elastic section modulus			$\xi_s = 1 - 0.5 \delta/D - 1.6 (\delta/D)^2$			
$Z_{\rm p} = [D^3 - (D - 2t)^3)/6$	plastic section modulus		$\xi_m = 5.5 \xi_s (0.6 f_m / f_v D/t)^0$	0.66		
γ _{R.b.g} = the partial resistance factor for bending strength of	the grouted member, $\gamma_{Rb,q} = 1.0$	5	an as og y			
13.9.3.2 Axial compression and bending			10.8.2.5 Combined axia	al compression and bending		
$(\gamma_{R,c,g} \sigma_{c,g}/f_{c,g} + (\gamma_{R,b,g} T_1 \sigma_{c,g}/f_{b,g+} [T_2 (\gamma_{R,b,g} \sigma_{b,g})^2]/f_{b,g}^2 \le 1.0$) for (γ _{R.c.g}	$\sigma_{c,g})/f_{c,g} \ge K_2/K_1$	N _{Sd} /N _{cg,Rd} + T ₁ M _{Sd} /M _{g,Rd}	$_{d}$ + T ₂ (M _{Sd} /M _{g,Rd}) ² \leq 1	for N _{S0} /I	
$(\gamma_{R,b,q} \sigma_{b,q}) / f_{b,q} \le 1.0$	for (Y _{R.c.g}	$\sigma_{c,q})/f_{c,q} < K_2/K_1$	M _{Sd} /M _{q,Rd} ≤ 1	-	for N _{S0} /I	
where			where			
$T_2 = 4K_3/K_2$			$T_2 = 4K_3/K_2$			
$T_1 = 1 - K_2/K_1 - T_2$			T ₁ = 1- K ₂ /K ₁ - T ₂			
$K_1 = Ncg/Nug$ 1.0-0.28 λ_g^2	for λ _g ≤ 1.34		K ₁ = Ncg/Nug	= 1.0-0.28λg ²	for λ _g ≤	
0.9/λg ²	for λ _g > 1.34			0.9/λg ²	for λ _g >	
$K_2 = K_{20} [115-30(2\beta-1)(1.8-\theta)-100\lambda_0]/[50(2.1-\beta)]$ $0 \le K_2 \le K_{20}$			K ₂ = K ₂₀ [115-30(2β-1)(1	1.8-γ)-100λg]/[50(2.1-β)]	0 ≤ K ₂ ≤	
$K_{20} = (0.9\theta^2 + 0.2) \le 0.75$			$K_{20} = (0.9\gamma^2 + 0.2) \le 0.75$			
$K_3 = K_{30} + \lambda_q [0.5\beta+0.4)(\theta^2 - 0.5) + 0.15]/(1 + \lambda_q^3)$			$K_3 = K_{30} + \lambda_q [0.5\beta + 0.4)(\gamma^2 - 0.5) + 0.15]/(1 + \lambda_q^3)$			
K ₃₀ = 0.04 - θ/15 ≥ 0	$K_{30} = 0.04 - \theta/15 \ge 0$			K ₃₀ = 0.04 - γ/15 ≥ 0		
$\theta = [0.67A_{g}(f_{cu} + C_{1}f_{v}t/D)]/(f_{ug}A_{tr})$	$\theta = [0.67A_0(f_{cu} + C_1f_v t/D)]/(f_{un} A_{tr})$			$\gamma = [0.67A_0(f_{cq} + C_1f_v t/D)]/N_{uq}$		
β = 1, provided no end moments apply, otherwise it is the	ratio of the smaller to the larger	end moment	β = 1, provided no end moments apply, otherwise it is the ratio of the smaller			
$C_1 = 4 \phi \epsilon / (1 + \phi + \phi^2)^{-0.5}$			$C_1 = 4 \phi \epsilon / (1 + \phi + \phi^2)^{-0.5}$			
$\phi = 0.02(25-KL/D) \ge 0$			$\phi = 0.02(25 - kl/D) \ge 0$			
$\varepsilon = 0.25(25-kl/D) \ge 0$			$\varepsilon = 0.25(25\text{-kl/D}) \ge 0$			
K = effective length factor			k = effective length factor			
L = length of member			i = length of member			

v/Nac Brt > Ko/Ka
30 ⁻¹ Cg,Rd = 122131
3d/N _{cg,Rd} < K ₂ /K ₁
≤ 1.34
> 1.34
< Kan
2 = 120
ller to the larger end moment
ller to the larger end moment
iller to the larger end moment
ller to the larger end moment
ller to the larger end moment
ller to the larger end moment

8 FIRE, BLAST, AND ACCIDENTAL LOADINGS

8.1 General

Side-by-side comparison of the API, ISO, and NORSOK requirements for fire, blast, and accidental loading is given in Table 8-2. The table presents the assessment process, ship collision criteria, dropped objects, fire and blast requirements as specified in the API RP 2A, ISO 19902, and NORSOK N-004.

Section 18 of API RP 2A and its commentary cover the design criteria of fire, blast and accidental loading. The probability of an event leading to a partial or total platform collapse occurring and consequence resulting from such an event varies with platform types. In API RP 2A, implementing preventive measures is considered as the most effective approach in minimizing the probability of occurrence of an event and the resultant consequences of the event. API RP 2A also states that consideration of preventive measures coupled with established infrastructure, open facilities and relatively benign environment have resulted in a good safety history and detailed structural assessment should therefore not be necessary for typical U.S. Gulf of Mexico-type structures and environment.

The design criteria under accidental situations are included in Clause 10 of ISO19902. In this standard, only designing for hazards for structures of exposure level L1 is qualified; specification of relevant design situations and criteria for exposure levels L2 and L3 is intended to be included in a future edition. ISO 19902 states that designers can choose between avoiding a hazard (e.g. by taking special preventive measures such as operational restrictions), minimizing the consequences of the considered hazard or designing for resistance of the hazard.

Design guidance against accidental actions is included in Annex A of NORSOK N-004. It states that the overall goal of the design against accidental actions is to achieve a system whose main functions of the installation are not impaired. The main functions include usability of escape-ways, integrity of shelter areas and global load bearing capacity.

8.2 Assessment Process

8.2.1 API RP 2A

API states that the assessment process is intended to be a series of evaluations of specific events that could occur for the selected platform over its intended service life and service functions.

Figure 8-1 is copied from API RP 2A Fig. 18.2-1. It charts the assessment process in the form of six main tasks and three risk levels utilizing the ALARP principle and assessing the consequences in a structured manner. The necessity of further study or analysis is based on the appropriate risk level for the selected platform with assigned exposure category and event with certain probability of occurrence. To determine the risk level (1, 2, or 3), a 3x3 risk matrix is defined using the platform

exposure categories L-1, L-2, and L-3 on one axis and the high, medium, and low probability of occurrence on the other axis.

Figure 8-1 Assessment Process (API RP 2A)

8.2.2 ISO 19902

In general, ISO Clause 10 defines a hazard as the potential for human injury, damage to the environment, damage to property or a combination of these. In this standard, the hazards are grouped into three main groups according to a probability of occurring or return period of being exceeded:

- Group 1 hazards with return periods of the order of 100 years
- Group 2 hazards with return periods of the order of 1000 to 10000 years
- Group 3 hazards with return periods well in excess of 10000 years

Designing for hazards of group 1 is normally treated by the regular design process. Other hazards belonging to group 1 and not treated by the regular design process along with hazards belonging to group 2 are specially addressed by ALS requirements. Hazards falling into group 3 are considered as residual accidentals and may normally be ignored for design.

As indicated in ISO 19900, the accidental situations are related to two types of hazards:

- Hazards associated with specially identified accidental events, such as vessel collisions, dropped objects and fires and explosions.
- Hazards associated with abnormal environmental actions including abnormal earthquake. Abnormal design situation may be based on a return period of 10000 years for an exposure level L1 platform.

When checking accidental limit states (ALS) for accidental or abnormal events, all partially action and resistance factors are to be taken as 1.0.

8.2.3 NORSOK

NORSOK N001, N-004 and N-006 state that the structure shall be checked for all ALSs for the design accidental actions defined in the risk analysis recommended in the standards. The material factor is taken as 1.0 in the ALS check.

According to NORSOK N-001, the structure is to be checked in two steps:

- Step 1: Resistance of the structure against design accidental actions the structure is to maintain the prescribed load carrying capacity for the defined accidental loads
- Step 2: Post-accident resistance of the structure against environmental actions If local damage occurred from step 1, the facility shall continue to resist defined environmental conditions without suffering extensive failure, free drifting, capsizing and sinking etc.

Typical accidental actions include ship collisions, dropped objects and fire and explosion. NORSOK N-004, Annex A gives the design recommendations for these actions.

8.3 Ship Collisions

All three codes provide similar impact energy calculation formula. The formula in API and ISO are the same. NORSOK gives three formulas for fixed installations including jacket structures, compliant installations including semi-submersibles, TLPs and production vessels, and articulated columns. Jack-ups may be classified as fixed or compliant structures depending on mode of operation.

In API, an 1100 short-ton (1,000 metric ton) vessel with impact velocity of 1.64 ft/s (0.5 m/s) is set as minimum collision requirement for application in the GOM. No guidance is provided for other areas.

ISO 19902 recommends the following minimum impacting ship displacement requirements for different geographic locations:

- Northern North Sea: 8000 metric tons
- Southern North Sea: 2500 metric tons
- GOM: 1000 metric ton (55m to 60 m)

The impact velocity is given for two energy levels in ISO:

- a) Low energy impact: 0.5 m/s; representing a minor accidental "bump" during normal maneuvering of the vessel
- b) High energy impact: 2 m/s; representing a vessel drifting out-of-control in a sea state with significant wave height of 4 m.

In API and ISO, the added mass is introduced as an added mass factor (1.4 for broadside collision, 1.1 for bow/stern collision). ISO indicates that these added mass coefficients are typical for large (5000 t displacement) supply vessels and a slightly higher value, e.g. 1.6 should be applied for a typical 2500 t supply vessel. Accordingly, it seems that the added mass factor in API for a 1000 metric ton vessel should probably be increased. For small supply vessels, the impact energy calculated using ISO added mass factor is larger compared to that predicted using API added mass coefficients.

NORSOK N-003 states that for collision energy the mass of the supply ship should normally not be less than 5000 tons and the speed not less than 0.5 m/s and 2 m/s for ULS and ALS design checks, respectively. This recommendation is consistent with ISO requirements.

All three codes require that the platform survives the initial collision and that the residual strength requirements are complied with.

API requires that the platform survives the initial impact and retain sufficient residual strength after impact to withstand the one-year environmental storm loads in addition to normal operating conditions.

ISO states that impact energy level a) (defined above) represents a serviceability limit state and that the owner can set his own requirements based on practical and economic considerations; and level b) represents an ultimate limit state in which the structure is damaged but progressive collapse shall not occur.

NORSOK requires two steps of ALS check: remain intact with the damage imposed by the ship collisions and meet residual strength requirements under undamaged condition.

In NORSOK, force-deformation relationships for a large column impact, tubular and beam type, are provided for supply vessels with displacement of 5000 tons which is commonly used in the North Sea. The detailed resistance for different types of members is also given. Compared to API and ISO, the designer may find more guidance in NORSOK to determine appropriate boat impact forces.

8.4 Dropped Objects

API recommends that the safe handling practice and preventive operational procedures can reduce the risk of dropped objects. The platform should survive the initial impact and meet the post-impact criteria as defined for vessel impact.

ISO suggest that a rigorous impact analysis be evaluated depending on the consequences with regard to the integrity of the structure. Indirect means should be incorporated into design, such as, avoiding weak elements in the structure (particularly at joints), selecting materials with sufficient toughness, and endurance and ensuring that critical components are not placed in vulnerable locations. No guidance is provided for design check methodology.

Compared to API and ISO, NORSOK gives considerably more guidance (see Table 8-2) for evaluating the effect of dropped objects. Energy considerations for the dropped objects combined with simple elastic-plastic methods are given in NORSOK. It is noted that dropped objects are rarely critical to the global integrity of the installation and will mostly cause local damage. The major threat to global integrity is probably puncturing of buoyance tanks, which could impair the hydrodynamic stability of a floating installation.

8.5 Fire and Blast

Commentaries 18.7, 18.8 and 18.9 of API RP 2A provide the design guidelines for fire, blast and interaction between fire and blast. Both fire and blast assessment need to demonstrate that the escape routes and safe areas will survive.

Three methods are given in API RP 2A:

- 1. Zone method: it is based on the assumption that a member utilization ratio calculated using basic allowable stress will remain unchanged for the fire load condition if the allowable stress is increased to yield, but the yield stress itself is subject to a reduction factor of 0.6
- 2. Linear elastic method (for example, a working stress code): a maximum allowable temperature in a steel member is assigned based on the stress level in the member prior to the fire and the member utilization ratio remains below 1.00
- 3. Elastic-plastic method (for example, a progressive collapse analysis): a maximum allowable temperature in a steel member is assigned based on the stress level in the member prior to the fire and the member utilization ratio may go above 1.00

API summarizes the factors influencing the magnitude of the loading generated by a blast as follows:

- the type and volume of hydrocarbon released
- the amount congestion in a module
- the amount of confinement,
- the amount of venting available
- the amount of module congestion caused by equipment blockage
- mitigation efforts such as water spray

A blast can cause two types of loading: overpressure and drag loading; Overpressure is likely to govern the design of structures such as blast walls and floor/roof systems. API states that the blast overpressures in a platform can vary from zero on a small, open platform to more than 2 bars (1 bar = 14.7 psi) in an enclosed or congested installation. Drag loading is caused by blast-generated wind.

Critical piping, equipment, and other items exposed to the blast wind should be designed to resist the drag loading. Static or dynamic analysis can be performed based on the duration of the blast loading relative to the natural period of the structure.

The following acceptable criteria are given in API:

- 1. Strength limit: API RP 2A is a working stress design. The allowable stresses can be increased so that the safety factor is 1.0.
- 2. Deformation limit: the API recommendations are given in Table 8-1.

Type of Loading	Strain Limit
Tension	5%
Bending or compression	
Plastic sections	5%
Compact sections	3%
Semi-compact sections	1%
Other sections	< yield strain

Table 8-1 Blast Strain Limits

The determination of the yield point is essential to blast analysis. API states that actual yield stress should be used in the analysis and strain rates and strain hardening effects should be included in determining the yield stress and general material behavior.

API 2A suggests that fire and blast assessments should be performed together and the effects of one on the other are carefully analyzed.

The API RP 2FB 1st Ed. /8/ published in 2006 contains significantly more comprehensive treatment of the fire and blast design than previous included in API RP 2A. The document covers the required risk analyses and design methodologies against fire and blast on GOM offshore structures. As an example, the recommended structural fire and blast assessment procedures are depicted in Figure 8-2.

Figure 8-2 Structural Fire and Blast Assessment

ISO 13702 contains requirements and recommendations for control and mitigation of fires and explosions. New ISO 19901-3 (2010) contains more specific requirements for topsides structures.

NORSOK N-004 refers to Norwegian Standard NS-ENV 1993-1 for fire load effect assessment. NORSOK states that the response to explosion loads may either be determined by non-linear dynamic finite element analysis or by simple calculation models based on SDOF analogies and elastic-plastic methods of analysis. Details for both methods are given in Annex A.6 of N-004 issued in 2004 prior to publication of the API RP 2FB.

8.6 Summary of Accidental Loadings Comparison

For design against fire and blast, API RP 2A charts the assessment process in the form of six main tasks and three risk levels utilizing the ALARP principle and assessing the consequences in a structured manner. In ISO 19902 hazards are grouped into three main groups according to a probability of occurrence or return period of being exceeded. NORSOK N001, N-004 and N-006 state that the structure shall be checked for all ALSs for the design accidental actions defined in the risk analysis recommended in the standards. With regards to ship collision ALS design, NORSOK gives the most comprehensive guidance of the three codes.

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

		10.0 40000 Clause 40	None
	API RP ZA- WSD Section 18	150 19902 Clause 10	NURa
	 Implementing preventive measures has historically been, and will continue to be, the 	 In this standard, only designing for hazards for structures of exposure level L1 is qualified. 	 The overall goal of the design against accidental action
	most effective approach in minimizing the probability of occurrence of an event and the	 The main hazards that faced by an offshore structure include: 	installation are not impaired.
an a	resultant consequences of the event.	a) vessel collisions	 The material factor to be used for checks of accidental
88	 In U.S. GOM, considerations of preventative measures coupled with established 	b) Dropped objects	
8	infrastructure, open facilities and relatively benign environment have resulted in a good	c) fire and explosions	
4	safety history. Detailed structural assessment should therefore not be necessary for	 abnormal environmental actions, including abnormal seismic actions 	
ŧ	typical U.S. GOM-type structures and environment	 When checking accidental limit states (ALS) for accidental events, all partial action and resistance 	
₽ E	Assessment Process	factors may be set to 1.0	
88	 Initially corean those platforms considered to be at low sick, thereby not requiring detailed 		
88	 Initially screen nose platforms considered to be acrowinsk, thereby not requiring detailed ethichtical association. 		
As.	2. Evaluate the structural performance of these platforms considered to be at high risk from a		
	 Evaluate the structural performance of place platforms considered to be at high risk from a life safety and/or consequences of failure point of view, when subjected to fire, blast, and 		
	assidental leading quests		
	accidental loading events.		
	 The platform should survive the initial collision and meet the post-impact criteria. 	 Vessel impact shall be addressed for the structures with exposure levels L1 and L2. 	 The load bearing function of the installation shall r
	 All exposed elements at risk in the collision zone of an installation should be assessed 	- Two energy levels shall be considered:	action. In addition, the residual strength requirement
	for accidental vessel impact during normal operations.	a) low energy level, representing the most frequent condition, based on the type of vessel that would routinely	 Methods used to determine the structural effects f
	1. The collision zone is the area on any side of the platform that a vessel could impact in an	approach alongside the platform (e.g. a supply boat) and that would have a velocity representing normal	a) non-linear dynamic finite element analysis
	accidental situation during normal operations.	manoeuvring of the vessel approaching, leaving, or standing alongside the platform	b) energy considerations combined with simple elastic-
	2. The vertical height of the collision zone should be determined from the considerations of	This level is a serviceability limit state to which the owner can set his own requirements based on practical and	- Three levels for the strain energy dissipation cons
	vessel draft, operational wave height and tidal elevation.	economical considerations.	1) local cross-section
	3. Elements carrying substantial dead load, except for platform legs and piles, should not be	b) high energy level, representing a rare condition, based on the type of vessel that would operate in the platform	2) component/sub-structure
	located in the collision zone. If such elements are located in the collision zone they should be	vicinity, drifting out of control in the worst sea state in which it would be allowed to operate close to the platform	3) total system
	assessed for vessel impact.	This level represents an ultimate limit state in which the structure is damaged but progressive collapse should	- Strain energy
	- Energy Absorption	not occur.	onumenciay
	An offshore structure will absorb energy primarily from:	- The kinetic energy of a vessel:	Fixed installations Complian
	a. Localized plastic deformation of the tubular wall	$E = 0.5 \text{ sm}^2$	Pixeo instantations Compilar
	b. Elastic/platstic bending of the member	Where F = the kinetic energy of the vessel	E 1/2
	c. Elastic/platstic elongation of the member	a = added mass factor (14 for broadside collision 11 for how/stem collision)	$E_s = \frac{1}{2}(m_s + a_s)v_s$
	d. Fendering device, if fitted	m = vaced mass	$E_{1} = \frac{1}{2}(n)$
	e Global platform deformation (that is sway)	II = velocity of vessel at impact	Articulated columns 2
	f. Shin deformation and/or rotation	 a deal mess coefficients diven above are binical values for large (5000 t displacement) supply uses els 	()3
	Damane Assessment	a) The added mass operating signed above the type of values for large (bdod t displacement) supply vesses.	$1-\frac{\mathbf{v}_i}{\mathbf{v}_i}$
92	Two oscos should be considered:	For smaller vessels, a value signity nighter than 1.4 should be applied, e.g. 1.0 for a typical 2000 t supply vessel.	$\mathbf{E} = \frac{1}{(m+1)} \left(\mathbf{v}_{i} \right)$
ē	1 Impact (energy absorption and suppival of platform)	b) For the northern yourn Sea, a vesse mass can be obbit, whereas in the southern yourn Sea a mass of second se	$L_{s} = \frac{1}{2} (m_{s} + a_{s}) \frac{1}{m_{s} z^{2}}$
ŝ	This make the second of the second and second to show the second data in the second second second to the second seco	around 2000 this more normal.	1+
8	Primary framework should be designed and configured to absorb energy during impact, and to	c) For Gow structures in mild environments and reasonably close their base of supply, a full typesel structure is the second structure in the second structure is the secon	-
ă	control the consequences of damage after impact. Some permanent deformation of members	represents a typical so m to ou m (180 ff to 200 ff) supply vessel. For deeper and more remote locations in the	m, = ship mass
Æ	may be allowable in this energy absorption. The kinetic energy of a viscosity	Gow the vessel mass can be different. The masses of vessels that could collide with the platform when drifting	a, - ship added mass
	The kinetic energy of a vessel:	out-of-control should be specifically considered.	v _a = impact speed
	E = 0.5 a m v [*]	 For low energy impacts, a vessel velocity of 0.5 m/s is commonly used, representing a minor accidental 	m - mass of installation
	Where E = the kinetic energy of the vessel	"bump" during normal manoeuvring of the vessel while loading or unloading or while standing alongside the	a = added mass of installation
	a = added mass factor, (1.4 for broadside collision, 1.1 for bowfstern collision)	platform.	v _i = velocity of installation
	m = vessel mass	e) For high energy conditions, a vessel velocity of 2 m/s is commonly used, representing a vessel drifting out-of-	J = mass moment of inertia of installation (including added mass) with distance of inertia of installation (including added mass) with
	v = velocity of vessel at impact	control in a sea state with significant wave height of approximately 4 m.	2 = distance from pivot point to point or contact lacket structures, can normally be considered as fixed.
	For platforms in mild environments and reasonably close to their base of supply, the following		packet structures can normally be considered as tixed. I
	minimum maniferments should be used unless other esteria can be demonstrated:		Normally be considered as compliant. Jack-ups may be
	Versel Mass = 1100 short tags (1.000 metric tags)		More details provided in this provision
	vessel wass = 1100 short tons (1,000 metric tons)		A.3.0 Ship Collision Forces
	Impact velocity = 1.04 insec (0.0 invsec)		A.3.0 Porce-deformation relationships for denting of tub
	The True-Short-ton vessel is chosen to represent a typical 180-200-foot-long supply		A.3.7 Force-deformation relationships for beams
	vessel in the dom.		A.3.8 Strength of connections
	2. Post-impact (platform to meet post-impact criteria)		A.3.9 Strength of adjacent structure
	a)The platform should retain sufficient residual strength after impact to withstand the one-year		A.3.10 Ductility limits
	environmental storm loads in addition to normal operating loads.		A.3.11 Resistance of large diameter, stiffened columns
	b) Special attention should be given to defensible representation of actual stiffness of damaged		A.3.12 Energy dissipation in floating production vessels
	members or joints in the post-impact assessment. Damaged members may be considered		A.3.13 Global integrity during impact
	totally ineffective providing their wave areas are modeled in the analysis.		

Table 8-2 Fire, Blast, and Accidental Loading Comparison

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

	 Certain locations such as crane loading areas are more subject to dropped or swinging objects. The probability of occurrence may be reduced by following safe handling practices. The consequnces of damage may be minimized by considering the location and protection of facilities and critical platform areas. Operation procedures should limit the exposure of personnel to overhead material transfer. The platform should survive the initial impact and meet the post-impact criteria as defined for vessel collision. 	 When evaluating the impact risk from dropped objects, the nature of all crane operations in the platform vicinity shall be taken into account. Depending on the consequences for the structural integrity of the structure, the need for a rigorous impact analysis shall be determined. Robustness in relation to dropped objects should be incorporated into the design by indirect means such as a) avoiding weak elements in the structure (particularly at joints) b) selecting materials with sufficient toughness c) ensuring that critical components are not placed in vulnerable locations 	- Dropped objects threat to global int installations. - The structural eff combined with sim - Kinetic energy of E _{kin} = 0.5 mv ² E _{kin} = 0.5 (m+a)v ² a - hydrodynami For impact in air v = (2ps) ^{p.5} s - travited dista v = v ₀ at sea sur	are rarely critical egrity is probably jects may either b ple elastic-plastic a falling object: for objects falling for objects falling added mass for cons the velocity is given by note from drop point face	to the global integr ouncturing of buoy e determined by no methods. in air g in water Idered motion
			Table A.4-1 T	erminal velocities for	objects falling in wat
			Item	Weight [kN]	Terminal velocity [m/s]
			Drill collar	28	23 to 24
			Winch, Riser pump	250	
			BOP annular preve	rater 50	16
			Mud pump	330	7
Dropped objects			- Resistance/Energy 1) Stiffened plates The energy dissipat $E_{ep} = \frac{x^2}{2\chi} \left(1 + 0.46 \frac{w_e}{w}\right)$ $K = \frac{1}{2} n f_y \left(\frac{1 + 5 \frac{d}{\tau} - 6e}{0} \frac{1 + 5 \frac{d}{\tau}}{0}\right)$ $f_y = -e^{-2\pi \left(\frac{-4}{2}\right)}$ $R = \pi d \pi$ $m_z = -p_y \pi r^2 t$ $m_z = m_z$ $\rho_p = m_z$ $d = sm_z$ $r = sm_z$ 2) Limits for energe a) pipes on plate $\frac{\pi}{T}$	by dissipation subjected to drill ed in the plating subjected in the plating subjected in the plating subject $\left(\frac{2}{2r}, \frac{4}{2r}\right)^2$: still aracteristic yield stree = contact force f = mass of plate of ans of dropped object ass density of steel plating aller distance from t glacent stiffeners/gird y dissipation the maximum sheet $a = f_a \left(0.42 \pm 0.41\frac{a}{d}\right)$ $f_a = ubt$	collar impact exted to drill collar imp ffness of plate enclose ngth for $\tau \leq \tau_{a}$ see A.4.5.11 enclosed by hinge circl ate aded end of drill colla te point of impact to t ens, see Figure A.4-3. It stress for pluggin imate material tene
			 b) Blunt objects For stability of cross 	ss-sections and te	nsile fracture, see

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Fire	 If the assessment process identified that a significant risk of fire exists, fire should be considered as a load condition; the structural assessment must demonstrate that the escape routes and safe areas are maintained to allow sufficient time for platform evacuation and emergency response procedures to be implemented. If the assessment process identified that a significant risk of blast exists, blast should be considered as a load condition; the blast assessment need to demonstrate that the escape routes and safe areas survive. The fire and blast analyses should be performed together and the effects of one on the other carefully analyzed. Fire as a load condition requires that the following be defined: I. Fire scenario: fire type, location geometry and intensity Heat flow charateristics from the fire to unprotetoted and protected steel members - to determine the temperature of the member as a function of time. The amount of radiant heat arriving at the surface of a member is determined using a geometrical "configuration" or "view" factor. For engulfed members, a configuration factor of 1.0 is used. Properties of steel at elevated temperatures and where applicable a) themal properties - required for the calculation of the steel temperature b) mechanical properties - used to verify that original design still meets the strength and serviceability requirements. Properties of fire protection systems (active and passive) a) They may be required to ensure that the maximum allowable member temperatures are not exceeded for a designated period when fire occur. b) The design for fire There are the following approaches to be used in the design for fire: 1.Zone method a) The zone method of design assigns a maximum allowable temperature that can develop in a steel member without reference to the stress level prior to the fire. b) The assumption of this method is that a me	The industry assolications have produced their own more detailed guidance applicable to particular types of operation and circumstances. - API, which can be used for Gulf of Mexico type platforms - UKOA, which area suited to larger platforms operated in a safety case regime - NORSOK which contains explicit analytical requirements. - ISO 13702 contains requirements and recommendations for fires and explosions	The assessment of fire load effect and mechanical n a) simple calculation methods applied to individual me Eurocode 3: Design of steel structures, Part 1.2. Gent b) general calculation methods - should be based on t Assessment of ultimate strength is not needed if the may have to be checked for impairment of main safet
	 (UR) remains below 1.00 (the member continues to behave elastically) b) With an unmatched reduction in both yield strength and Young's modulus, the governing design condition may be affected; thus, the linear elastic method may not be applicable. 3. Elastic-plastic method (e.g. a progressive collapse analysis) a) A maximum allowable temperature in a steel member is assigned based on the stress level in the member prior to the fire. A the temperature increases, the member utilization (UR) may go above 1.00 (the member behavior is elastic palstic). b) A nonlinear analysis to be performed to verify that the structure will not collapse and will still meet the serviceability criteria. Notes: 1) Regardless of the design method, the linearization of the nonlinear stress strain relationship of steel at elevated temperatures can be achieved by the selection of a representative value of strain. 2) A value of 0.2% is commonly used and has the benefit of giving a matched reduction in yield strength and Young's modulus, but has the disadvantage of limiting the allowable temperature of the steel to 400°C. 		

- response shall be based on either nembers should be based on the provisions given in NS-ENV 1993-1 neral rules Structural fire design n the provisions given in NS-ENV 1993 1-1, Part 1.2, Section 4.3 we maximum steel temperature is below 400°C., but deformation criteria
- ty function.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

	 Due to the complexity in predicting blast loads, the pressure-time curves should be 	The industry assoications have produced their own more detailed guidance applicable to particular types of	- The	reponse to explos	ion loads may	y either be deten
	generated by an expert in this field.	operation and circumstances.	a) no	n-liear dynamic fini	ite element ar	nalysis
	2 A blast can cause two types of loading:	- API, which can be used for Gulf of Mexico type platforms	b) sin	nple calculation mo	dels based o	n SDOF analogi
	2) Overressure - results from increases in pressure due to expanding combustion products	 UKOOA, which are suited to larger platforms operated in a safety case regime 	- Sug	ested analysis m	odel and refe	rence to applicat
	a) over pressure - results norm moreases in pressure due to expanding combustion products	NORSOK which contains evoluting analytical requirements				
	It likely to govern the design of structures such as blast wails and hoorroof systems.	ISO 12772 contains explore and your requirements.	Т	able A.6-1 Analysis u	aodels	
	 Drag loading - caused by last-generated wind 	- 130 13702 contains requirements and recommendations for mes and explosions	Г		Simplified	
	Critical piping, equipment, and other items exposed to the blast wind should be designed to		1 6	Failure mode	analysis model	Resistance models
	resist the predicted drag loads		2	Electic-plastic defocuation.	spor	A.0.6
	Environmental loads can be neglected in a blast analysis.		3	Stiffener plactie	SDOF	Stiffener: A.6.9.1and
	4. Structural Resistance		- I'	- plate clastic		A.6.92 Flats: A.6.8.1
	- Strength limit		3	Shiffener playtic	SDOF	Stiffener: A.6.9.1md
	Failure is defined to occur when the design load or load effects exceed the design strength		- I'	- plate plastic		A.0.7.2
	Defension init					Plate: A.6.5
	Determination innu		1	- stiffener and plating	spor	A 6.9.2
	Ty to part of the structure impinges on chucal operational equipment		•	slantic		Flate: A.6.5
	 The deformations do not cause collapse of any part of the structure that supports the safe 			Orinder plantic	SDOF	Order: A.6.9.1and
	area, escape routes, and embarkation points within the endurance period. A check should be		-	- stiffener elactio		A 692
	peroformed to ensure that integrity is maintained if subsequent fire occurs.		i i	- plate plastic Gider and stiffener plastic	MDOF	Girder and stiffener:
	Deformation limits can be based on a maximum allowable strain or an absolute		ŀ	- plate elantic		A.69.1md A.69.2
	displacement			Girder and stiffener plastic	MDOF	Girder and stiffener:
	 a) Strain limit: most types of structural steel used offshore have a minimum strain capacity of 		-	- plate plastic		A.691apl A.692
	approximately 20 percent at low strain rates.		5	v grder vitfleper plantic is under	rated for the maximum	rists A.5.5
	They usually have sufficient touchness against brittle fracture not to limit strain canacity					
	initial and the bid strain stars acquired with blast propose for popular U.S. GOM					
	significantly at the right strain rates associated with blast response for nonlinar 0.0. Com					
	temperature range.					
ti i	Recommended strain limits for different types of loading are as follows:					
÷						
-	Type of Lossing Strain Limit					
	Tension 5%					
	Beading or compression					
	Plastic sections 5%					
	Compact sections 3%					
	Semi-comment sections 1%					
	Other sectors					
	The strain limits above assume that lateral torsional buckling is prevented					
	h) absolute limits - adopted where there is a risk of a deforming element striking some					
	of Pasolite limits - adopted where there is a risk of a deforming element straking some					
	E Determinention of Vield Deint		1			
	J Determination of field Point		1			
	 a) Actual yield stress, usually higher than the minimum specific, should be used in the analysis; 		1			
	strain rates and strain hardening effects should be included in determining yield stress and		1			
	general material behavior.		1			
	b) If maximum reaction forces are required, it is necessary to design using an upper bound		1			
	yield stress. If maximum deflections are required, the design should use a lower bound yield		1			
	stress.		1			
	8 Analysis Methods		1			
	a) Static analysis (a long load duration relative to the structure's natural period): The neak		1			
	process analysis (a long to define the loading		1			
	pressure should be used to define the foculty. h) Dumania analysis (load duration is possible the structure's patient pariady. The actual		1			
	b) Dynamic analysis (load duration is near to the structure's natural period): The actual duration is near to the structure's natural period).		1			
	pressure-time curve can be applied to the structure.		1			
	7. Mitigation		1			
	The blast effects can generally be minimized by making the vent area as large as possible;		1			
	To minimize blast pressure, ven areas should be located as close as possible to likely ignition		1			
	SOURCES.		1			

mined by

ies and elastic-plastic methods of analysis ble resistance function are listed in Table A.8-1

Comment
Elastic, effective flange of plane
Effective width of plate stand span. Elastic, effective flaupe of plate at ends.
Elastic, effective flange of plate with concentrated loads (stiffener reactions). Stiffener mass included.
Effective width of plate at girder mid open and ends. Stiffener many included
Dynamic reactions of stiffeners -> Inading for girders
Dynamic reactions of stiffeness + loading for girden

the elaytic lands wa

9 INSTALLATION AND TEMPORARY CONDITIONS

9.1 General

Side-by-side comparison of the API, ISO, and NORSOK requirements for installation and temporary conditions is given in Table 9-2. The specific document and location within is given in the table header row.

API 2A WSD states that basic allowable stresses for member design may be increased by 1/3 for installation forces including environmental effects during transportation and launch. The details of the requirements for temporary conditions are given in Sections 2.4 and 12 of the API RP 2A.

Clauses 8 and 22 of ISO 19902 provide the LSD methods for temporary condition design.

NORSOK N-004 Clause K.4.4.6 states that transportation and installation design and operation shall comply with the requirements given in NORSOK J-003. It is noted that NORSOK J-003 (1997) requirements have been completely incorporated in the more recent ISO 19901-6 "Marine Operations" issued in 2009. Therefore, the comparison made here is actually a comparison between API and ISO.

9.2 Lifting

9.2.1 Dynamic Effects

API gives the dynamic load effects for the following conditions:

- 1. At open, exposed sea: padeyes and other internal members including both connections framing into the joint where the padeye is attached and transmitting lifting forces within the structure should be designed for a minimum load factor of 2.0 applied to calculated static loads. All other structural members transmitting lifting forces should be designed using a minimum load factor of 1.35.
- 2. For other marine situations, the selection of load factors should meet the expected local conditions but should not be less than a minimum 1.5 and 1.15 for the two conditions as listed above.
- 3. For land-based lifting, dynamic load factors are not required.

Dynamic amplification factors are given in ISO 19902 Clause 8 and more details are included in ISO 19901-6 Clause 18, see Table 9-1. The maximum DAF in ISO is 1.3 compared to API's 1.35. Also ISO DAF is >1.0 on land when moving elements are involved whereas API allows no DAF (i.e., DAF=1.0). Also the ISO reduces the DAF with the increase in the weight lifted which is a logical process not yet adopted by API RP 2A.

Mass of lifted objects	Gross weight,	k _{DAF} in air						
Mass of filled object-	W	kN offshore insh	Inchore	teno	nore ^b			
WHITED	kN		manore	moving	static			
≼ 100	<i>W</i> ≤ 1 000	1,30	1,15	1,15	1,00			
from 100 to 1 000	1 000 < ₩ ≤ 10 000	1,20	1,10	1,10	1,00			
from 1 000 to 2 500	$10\ 000 < W \leqslant 25\ 000$	1,15	1,05	1,05	1,00			
from 2 500	25 000 < W	1,10	1,05	1,05	1,00			
a This column is included	^a This column is included to facilitate the comparison with weight reporting.							
b Lifts by land-based crai	nes involved with marine ope	rations such a	s loadouts.					

Table 9-1 DAF for a single crane on a vessel

For onshore lifts, where the crane can move horizontally, the "moving" column in Table 9-1 shall apply. ISO 19901-6 also states that the DAF values in Table 9-1 shall be multiplied by a further factor of 1.1 for offshore lifts by cranes on two or more similar vessels.

Compared to API, ISO recommends DAF that includes the crane number effects (rigging factors) and local factor except lifting conditions.

9.2.2 Effect of Fabrication Tolerance

The dynamic load factors are affected by fabrication tolerance and sling length tolerance which are addressed in both API and ISO.

API requires that the fabrication tolerances do not exceed the requirements of Section 11.5.1 of API RP 2A and the variation in length of slings does not exceed $\pm 0.25\%$ of nominal sling length, or 1.5 inches. The total variation from the longest to the shortest sling should not be greater than 0.5% of the sling length or 3 inches. If the tolerances exceed these limits, a detailed analysis including these tolerances should be performed.

ISO's requirements are intended to apply to the situations where fabrication misalignments are consistent with Annex G of ISO 19902 and where the variance on the length of slings does not exceed the greater of 0.25% of the nominal sling length or 40 mm, which is close to API requirements.

9.2.3 Allowable Stresses and Action Factors

API does not allow the increase of allowable stresses in lifting design due to short-term loads. It requires that all critical structural connections and primary members should be designed to have adequate reserve strength to ensure structural integrity during lifting.

In API, the lifting eyes and the connections to the supporting structural members should be designed for a horizontal force of 5% of the static sling load, applied simultaneously

with the static sling load. This horizontal force should be applied perpendicular to the padeye at the center of the pinhole. This is not required by ISO.

In ISO, member and joint strengths should be checked using one of the following formulae (Equation 9.1 and 9.2):

$$F_{d} = k_{\text{DAF}} \gamma_{\text{f,dl}} \gamma_{\text{f,lf}} (\gamma_{\text{f,GT}} G_{\text{T}} + \gamma_{\text{f,QT}} Q_{\text{T}} + \gamma_{\text{f,T}} T)$$
(9.1)
$$S = k_{\text{DAF}} \gamma_{\text{f,dl}} \gamma_{\text{f,lf}} \gamma_{\text{f,Sun}} S_{\text{un}}$$
(9.1)

(9.2)

$$F_d$$
 = design action

.

S = internal force

 k_{DAF} = dynamic amplification factor; 1.10 for heavy lift by semi-submersible crane vessel for in air offshore lifts or in air onshore or in sheltered waters ; 1.30 in other cases for offshore in air.

 $\gamma_{f,dl}$ = the rigging factor, 1.10 for a dual lift; 1.00 for single crane

 $\gamma_{f,lf}$ = local factor, for lifting attachments, spreader beams, and internal members attached to lifting point: 1.25 (for a lift in open waters), 1.15 (for a lift on shore or in shelter waters); 1.00 for other structures;

 $\gamma_{f,sun} = partial factor, 1.30$

 G_T = the action imposed either by the weight of the structure in air, or by the submerged weight of the structure in water

 Q_T = the action imposed by the weight of the temporary equipment or other objects, including any rigging installed or carried by the structure

T = the lifting actions and hydrostatic pressure on the structure

9.2.4 Slings, Shackles and Fittings

Both API and ISO require that slings should have a total resistance factor of 4.0 on the manufacturer's rated minimum breaking strength of the cable compared to the calculated sling force. The total resistance factor may be reduced to a minimum of 3.0 for carefully controlled conditions.

ISO and API also have the same requirements for shackles and fittings. Shackles and fittings should be selected so that the manufacturer's rated working load is greater than or equal to the calculated sling force, provided the manufacturer's specifications include a minimum resistance factor of 3.0 on minimum breaking strength.

In addition, ISO recommends that the slings should be assumed to carry the lift point force in a 45:55% split of the lift point force between the two slings, where two slings are connected to one padeye, or where a split of the lift point force between the two slings. API doesn't require it.

9.3 Loadout

API gives short descriptions of two scenarios of loadout: direct lift and horizontal movement onto barge. If the lifting arrangement by a direct lift is different with that to be used in the offshore installation, the lifting forces should be evaluated. Since the lifting in open sea will impose more severe conditions, it is sufficient to check the latter case. During the horizontal movement onto barge, impact need not be considered since the movement is normally slow.

ISO gives the same recommendations to direct lift and horizontal movement onto barge. In addition, it also gives guidelines to self-floating structures. Actions should be evaluated for the full travel of the structure down the ways. ISO clearly states that the guideline for self-floating structures does not apply to self-floating structures built in dry dock and floated by flooding the dock.

9.4 Transportation

The basic guidelines in API and ISO are the same, including environmental criteria, determination of forces and special considerations (slamming, VIV, fatigue etc.). These guidelines are summarized in Table 9-2.

Compared to API, ISO suggest that the environmental conditions used to determine the tow motions should be established by the owner. It also gives the following guidelines:

- For long ocean tows where the structure and barge are unmanned, the extreme environmental conditions are typically selected to have a probability of exceedance during the tow duration in the range of 1% to 10%. The specific value will depend on an evaluation of acceptable risks and consequences.
- For short duration tows, the environmental conditions should generally have a return period of not less than 1 year for the season in which the tow takes place.

9.5 Launching and Uprighting Forces

ISO requires that a structure shall not be launched from the barge if the significant wave height exceeds 2.0 m or if it is expected to exceed 2.0 m before sufficient on-bottom stability is achieved. The rest of guidance in both API and ISO is identical.

9.6 On-bottom Stability

On-bottom stability requirements are given in Section 12.4.5 of API RP 2A and Clause 8.7.6 of ISO 19902. The on-bottom stability check is to ensure that the structure will remain at planned elevation, location and attitude until the piles can be installed. Both codes require that the mudmats or footings have adequate capacity against sliding and bearing failure and structural members supporting these have adequate strength to avoid being damaged.

ISO only provides general considerations on on-bottom stability check. No detailed design requirements are given. In contrast to ISO, the following detailed requirements are given in API:

- The factors of safety against bearing capacity failure recommended are 2.0 for on bottom gravity loads alone and 1.5 for including the design environmental condition applicable for the installation period.
- At the operator's discretion, with supporting analyses, an alternative of limiting penetration criteria may be used.
- Allowable steel stresses may be increased by one-third when wave loading is included.

9.7 Summary of Installation and Temporay Conditions Comparision

The details of the requirements for temporary conditions in API RP 2A are given in Sections 2.4 and 12. Clauses 8 and 22 of ISO 19902 provide the LSD methods for temporary condition design. NORSOK N-004 Clause K.4.4.6 states that transportation and installation design and operation shall comply with the requirements given in NORSOK J-003. It is noted that NORSOK J-003 (1997) requirements have been completely incorporated in the more recent ISO 19901-6 "Marine Operations" issued in 2009. Therefore, the comparison made here is actually a comparison between API and ISO and it demonstrated that they are similar with different level of guidance and some minor quantitative differences.

BOEMRE TA&R NO. 677 Final Report on Comparison of API, ISO, and NORSOK Offshore Structural Standards

<u> </u>	API RP 2A- WSD Section 2.4 & Section 12	1		ISO 19902 (Clause 8 and 22			NORSOK N-004 An
	- For those installation forces that are experienced only during transportation and launch, and	- Internal force	es due to factor	red actions (8	.2.4.1)			- NORSOK N-004 Clause K.4.4.6 Installation analysis states t
	which inicude environmental effects, basic allowable stresses for member design may be	E					(8.3.1)	comply with the requirements given in NORSOK J-003. NORS
	Increased by 1/3.	70 - A.OT -	4 * / LOT 84 * /LT -				(0.2-1)	Operations having been issued as DIS.
		where						
		G _T is the structure	action imposed eth ire in water, durin	er by the weight og the transient	of the structure in air, situation being corr	or by the submerg sidered, including	any permanent	
		equipri	nent or other object	ts and any piles	or conductors installe	d on the structure	, as well as any	
		Contensi	mouned in or carry	ed by the structure	-,			
		Q _T is the rigging	action imposed by installed or carried	by the structure,	to temporary equipm during the transient sit	ant or other object luation being consid	ts, including any dered;	
		7 repres	ents the actions fro	m the transient sit	uation being consider	sd, including:		
		a) w	hen appropriate, en	vironmental action	15,			
		b) w	hen appropriate, a s	uitable represent	ation of dynamic effect	s (see A.8.1 and 8.	2.4.2).	
		c) fo	r lifting, the effects ad for a dual lift as d	of fabrication tole letailed in 8.3.4.	stances and variances	in sling length as	detailed in 8.3.3	
		d) fo	r loadout, allowance	is for misalignme	nt as detailed in 8.5,			
		e) fo	r transportation, ar	ry hydrostatic an	d hydrodynamic actio	ns on the structur	e, including any	
			ertal actions result rinstaliation, the lift	ing from acceleration	ons of the structure (s	ee 8.6), and	10 (1000 B 7)	
_		1, 13	incanancii, une inc	ing actions and in	provident provide act	AT IS ON THE SECURIT	(case (1.7))	
era		AGE ROL	and H _{IT} are the part	sal action factors.				
8		The three desig	n situations in Table	e 8.2-1 shall all be	considered.			
Ŭ			Table 8.2-1 —	Partial action fa	ctors for calculating	internal forces		
			Rituation		Partial action factor]	
				Tear	Papar	70		
			1	1,3	1,3	1,0		
			2	1,1	1,1	1,35		
			NOTE Situation	1 poverts for cons	orents in which permane	t and variable action		
			effects are dominant, destinant, and in which	Situation 2 governs fe	r components in which tran	sient action effects are the maceitudes of the		
			internal forces. Situation of the second sec	tion 3 governs for co	variable actions decrease	ent action effects are the magnitudes of the		
			internal forces.				J	
		- Internal force	es due to unfac	tored actions	(8.2.4.2)			
		Server S						
		Where F _{un} = total a	action due to the unf	actored actions G	r, Qr and T defined ab	we;		
		S _{un} = the Inf	temal force resulting	from Fun				
		Y _{tSun} = partial	factor to be applied	to S _{un} , usually 1.3	3			
\vdash	- Lifting forces on padeves and on other members of the structure should include both vertical	- Ovnamic Effe	cts (8.3.2)	1120 13301-6				- 19901-6. Clause 18 gives regulrements and guidance for the
	and horizontal components, the latter occurring when lifting slings are other than vertical. Lifting	A dynamic amp	plication factor (I	DAF), k _{DAF} , ac	counting for dynan	lic effects of the	e orane taking	and offshore). It covers lifting operations by floating crane ves
	forces on the lift should include buoyancy as well as forces imposed by the lifting equipment.	up the load and	d for movements	s of the crane of	or of the lifted stru	ture, shall be d	erived from the	submersible crane vessels. Onshore lifts by land-based crane
	 To compensate for any side loading on inting eyes which may occur, in addition to the calculated horizontal and vertical components of the static load for the equilibrium lifting 	following:	liffic in size					such as a loadout.
	condition, lifting eves and the connections to the supporting structural members should be	1) keys = 1.10	for heavy lift by	semi-submers	ible crane vessel			- Additional monitorion of mong operations out be found in te
	designed for a horizontal force of 5% of the static sling load, applied simultaneously with the	2) k _{DAF} = 1.30	In other cases;	the lower DAF	vaule may be use	d based on spe	cial	
	static sling load. This horizontal force should be applied perpendicular to the padeye at the	Investigations,	but shall not les	s than 1.10;	-			
	center of the pinhole.	b) For lifts in al	r, onshore or in	sheltered wate	rs,			
	a) When suspended, the lift will occupy a position such that the center of gravity of the lift and	K _{DAF} 1.10	ally as fully in us	the back		instead in blass land		
	the centroid of all upward acting forces on the lift are in static equilibrium. The position in this	factors includin	ally of fully in wa	ement the orig	be specially inves	igated taking in Estructure, the i	ratio account	
	state should be used to determine forces in the structure and in the slings.	allowable hook	load to the lifted	d weight, the d	rag loads on the life	ted structure an	d the motions	
	o) I ne movement of the lift as it is picked up and set down should be taken into account in determining official combinations of vertical and betractive former at all points, including these	of the boom tip	In the environm	ental condition	ns in which the lift	s to be made		
	to which lifting slings are attached.	d) More details	see 19901-6 Cl	ause 18.				
	- Dynamic Load Factors (2.4.2.c)	- Effect of Tol	erances (8.3.3)	action factors	bara are intender	to apply to the	cituations	
	a) For lifts to be made at open, exposed sea , padeyes and other internal members (and both	where fabricate	on misalionment	ts are consiste	nt with the toleran	ces specified in	Annex G and	
	end connections) framing into the joint where the padeye is attached and transmitting lifting	where the varia	ance on the leng	th of slings do	es not exceed the	greater of 0.25	% of the	
	calculated static loads. All other structural members transmitting lifting forces should be	nominal sling le	ength or 40 mm.	-				
	designed using a minimum load factor of 1.35.	D) The results in	sing force shoul	to be increased	by a factor of not	less than 1.25	(1.15 for	
	b) For other marine situations, the selection of load factors should meet the expected local	c) The effector	tolerances in a	iff analysis of a	a standard four-oo	int life may be t	aken into	
	conditions but should not be less than a minimum of 1.5 and 1.15 for the two conditions	account by the	one of the follow	wing methods:				

Table 9-2 Comparison of Installation and Temporary Conditions

Annex K (ISO 19901-6) s that Transport and installation design and operation shall RSOK J-003 is volded as a consequence of ISO 19901-6 Marine he design and execution of listing operations (onshore, inshore essels, including crane barges, crane ships and semi-nes are also included when they form part of a marine operation ISO 19902:2007, Clause 8 and 22.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

	Lifting	 previously listed. (c) For typical fabrication yard operations where both the lifting derrick and the structure or components to be lifted are land-based, dynamic load factors are not required. For special procedures where unusual dynamic loads are possible, appropriate load factors may be considered. - Allowable stresses (2.4.2.d) (a) basic allowable stresses as specified in Section 3.1 (b) The AISC increase in allowable stresses for short-term loads should not be used. (c) All ortical structural connections and primary members should be designed to have adequate reserve strength to ensure structural integrity during lifting. - Effect of Tolerances (2.4.2.e) (a) The load factors recommened in 2.4.2 o are intended to apply to situations where fabrication tolerances do not exceed the requirements of 11.5, and where the variation in length of slings does not exceed plus or minus 1/4 of 1% of nominal sling strength, or 1.5 inches. (b) The total variation from the longest to the shortest sling should not be greater than 1/2 of 1% of the sling length or 3 inches. (c) If either fabrication tolerance or sling length tolerance exceeds these limits, a detailed analysis taking into account these tolerances should performed to determine the redistribution of forces on both slings and structural members. The same type analysis should also be performed when unusual deflections of particularly stiff structural systems may also affect tolad distribution. - Slings, Shackies and Fittings (2.4.2.f) (a) For normal offshore conditions, slings should be any individual sling, as calculated in 2.4.2.a, and e, by taking into account all components of loading and the equilibrium position of the int. (c) This factor of safety should be increased when usually severe conditions are anticipated, and may be reduced to a minimum of 3 for carefully controlled conditions. (c) Shackies and fittings should be inc	1) an analysis with one pair of opposite slings assumed to carry 75% and the other pair of 25% of the hook force, and vice versa 2) an analysis with modifying sling lengths, e.g. two diagonally opposite slingd with increased length, each by an amount corresponding to the total tolerance, to each diagonal in turn. • Member and joint strength (8.3.6) $F_d = k_{DAF} \mathcal{H}_{cl} \mathcal{H}_{T} \mathcal{H}_{CGT} G_T + \mathcal{H}_{CT} \mathcal{Q}_T + \mathcal{H}_{T} \mathcal{T}$) $S = h_{DAF} \mathcal{H}_{cl} \mathcal{H}_{T} \mathcal{H}_{SDM} S_{un}$ Where $\mathcal{H}_{d} = rigging factor, specified in 8.3.4; 1.10 for dual lift, and 1.00 for single crane lifts gf. if - local factor, specified in 8.3.5; a) For lifting attachments (padeyes, trunnions, padears), spreader beams, and internal members (including both end connections) framing into the joint where the lifting attachment is attached and transmitting lift forces: • 1.15 (for a lift in open waters) • 1.15 (for a lift in open waters) • 1.10 Ming attachments (8.3.7) a) Uffing attachments (8.3.7) a) Uffing attachments (8.3.7) a) Uffing attachments (8.3.7) b) For other structural members • 1.00 • Lifting attachments (8.3.7) a) Uffing attachments (8.3.7) b) This lateral force of 5% of the sling force, in addition to the calculated horizontal and vertical components of the sling force (including DAF, rigging factor, local factor and partial action factors) for equiliblum lifting condition. b) This lateral forces acts simultaneously with the static sling force and shall be applied perpendicular to the lifting attachment at the centre of the plinhole or tubular. Where a spreader bar is directly connected to one padeye, or where a sling is doubled over a trunnion, the padeye or trunnion should be designed for a 45:55% split of the lift point force between the two slings. • Slings, Shackles and fitting (8.3.8) a) For normal offshore conditions, slings should have a total resistance factor of 4.0 on the manufacturer's rated minimum breaking strength of the cable compared to the calculated sling force. b) Th$	
-	Loadout	- Direct Lift (2.4.3.a) Lifting forces for a structure loaded out by direct lift onto the transportation barge should be evaluated only if the lifting arrangement differs from that to be used in the installation, since lifting in open water will impose more severe conditions. - Horizontal Movement Onto Barge(2.4.3.b) Structures skidded onto transportation barges are subject to load conditions resulting from movement of the barge due to tidal fluctuations, nearby marine traffic and/or change in draft, load conditions imposed by location, slope and/or settlement of supports at all stages of the skiding operation. Since movement is normally slow, impact need not be considered.	 Direct Lift (8.5.1) Action on a structure that is lifted onto the transportation barge shall be evaluated in accordance with 8.3. If the lifting arrangement is the same as that used to offload the structure from the transportation barge at sea, it will suffice to check the latter load cases only. Horizontal movement onto barge (8.5.2) Structures skidded onto transportation barges are subject to actions resulting from movement of the barge due to tidal fluctuations, nearby marine traffic and/or change in draft, load conditions imposed by location, slope and/or settlement of supports at all stages of the skiding operation. Since movement is normally slow, impact need not be considered. Self-floating structures (8.5.3) Self-floating structures skidde directly into the water at the fabrication yard shall be analysed to determine the actions on the structures as they move down the slipways and into the floating position. Consideration should be given to local environmental conditions and dynamically induced forces. 	 19901-6, Clause 11 applied to the loadout of variou structures, TLPs, spars, FPSs, modules, components Information can be found in ISO 19902:2007, Clause - 19901-6, Clause 11 applied particularly to skilded a Recommendations for grounded loadouts or loadouts
		 Environmental Criteria (2.4.4.b) The selection of environemntal conditions to be used should consider the following: Previous experience along the tow route Exposure time and reliability of predicted "weather windows" Accessibility of safe havens 	 For long ocean tows where the structure and barge are unmanned, the extreme enviornmental conditions are typically selected to have a probability of exceedance during the tow duration in the range of 1% to 10%. The specific value will depend on an evaluation of acceptable risks and consequences. For short duration tows, the environmental conditions should generally have a return period 	 ISO 19906-1, Clause 12 applies to offshore transpo using either wet tow or dry tow. Additional information 19903:2006, Clause 11.

us types of structure, including, but not ilmited to, steel and concrete ts and bridges onto floating or grounded barges ans ships. Additional es 8 and 22.

and trailer-transported floating loadouts in tidal waters. s accomplished by lifting are also included.

ortation, inshore transportation and transportation in sheitered areas, n can be found in ISO 19902:2007, Clause 8 and 22, and ISO

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

Transportation	 4. Seasonal weather system 5. Appropriateness of the recurrence interval used to determine maximum design wind, wave and current conditions and consider the characteristics of the tow, such as size, structure, sensitivity, and cost - Determination of Forces (2.4.4.c) a) Beam, head and quartering wind and seas should be considered to determine maximum transportation forces in the tow structural elements. b) Tows may be analyzed based on gravitational and inertial forces resulting from the tow's rigid body motions using appropriate period and amplitude by combining roll with heave and pitch with heave. c) Submerged members should be investigated for slamming, buoyancy and collapse force. d) Large buoyant overhanging members also may affect motions and should be considered. e) Tor long slender members of wind-induced vertex shedding vibrations should be investigated. f) For long transocean tows, repetitive member stresses may become significant to the fatigue life of certain member connections or details and should be investigated. 	of not less than 1 year for season in which the tow takes place. - Environmental Criteria (8.6.2) The selection of environemntal conditions to be used should consider the following: 1. Previous experience along the tow route 2. Exposure time and reliability of predicted "weather windows" 3. Accessibility of safe havens 4. Seasonal weather system 5. Appropriateness of the recurrence interval used to determine maximum design wind, wave and current conditions and consider the characteristics of the tow, such as size, structure, sensitivity, and cost. - Determination of Forces (8.6.3) a) Beam, head and quartering wind and seas should be considered to determine maximum transportation responses due to the environmental actions on the overall system. In case of large barge- transported structures, the stiffness of both the structures and the barge shall be included in the structural analysis. b) Tows may be analyzed based on a combination of permanent and inertia actions resulting from the tow's rigid body motions using appropriate period and amplitude by combining roll with heave and pitch with heave. c) Large buoyant overhanging members also may affect motions and should be considered. d) The effects on long siender members of wind-induced vertex shedding vibrations should be investigated.	
Launching Forces and Uprighting Forces	 Guyed Tower and Template Type (2.4.5.a) a) Forces supporting the jacket on the ways should be evaluated for the full travel of the jacket. b) Deflection of the rocker beam and the effect on loads throughout the jackets should be considered. C) Horizontal forces required to initiate movement of the jacket should be evaluated. d) Consideration should be given to wind, wave, current and dynamic forces expected on the structure and barge during launching and uprighting. Tower Type (2.4.5.b) Forces should be evaluated for the full travel of the tower down the ways. Hook Load (2.4.5.c) Floating jackets for which lifting equipment is employed for turning to a vertical position should be designed to resist the gravitational and internal forces required to upright the jacket. 	- Launched structures (8.7.2) a) A structure shall not be lauched from a barge if the significant wave height exceeds 2.0 m or if it is expected to exceed 2.0 m before sufficient on-bottom stability is achieved. b) Barge-launched structures shall be analysed to determine the actions on the structure throughout the launch. Consideration shall be given to hydrostatic pressure, wind and current actions, and the development of dynamically induced actions resulting from the launch. c) Horizontal actions required to initiate movement of the structure should also be evaluated. Expected actions o both the structure and the barge during launching should be considered Crane assisted uprighting of structures (8.7.3) The requirements of 8.3 apply to this situation.	- ISO 19901-1, Clause 9.9.3 and Clause 17.5
On-Bottom Stability	The factors of safety against bearing capacity failure recommended are 2.0 for on bottom gravity loads alone and 1.5 for the design environmental condition applicable for the installation period. - At the operators discretion, with supporting analyses an alternative of limiting penetration oriteria may be used. - Allowable steel stresses may be increased by one-third when wave loading is included. - In the event of rough seas or if the installation equipment must leave the site for other reasons before the jacket has been adequately secured with piles, the effective weight on bottom may require adjustment to minimize the possibility of jacket movement due to skidding, overturning, or soil failure.	The design shall ensure the followings: a) the footings or mudmats have adequate capacity against sliding and bearing failure, and that pin-piles, if any, have adequate strength to avoid being damaged b) the footings, mudmats, or other bearing components and structural members supporting these, have adequate strength to avoid being damaged c) the safety margins against overturning of the structure are adequate, with the recommendation that the structure be checked in a piled condition but without the permanent action of the topsides if placement of the topsides does not follow shortly after structure installation.	NORSOK N-004, K.6.4 The foundation system for the jacket temporary on-bo shall be documented to have the required foundation a for all relevant limit states.

ottom condition prior to installation of the permanent foundation system stability for the governing environmental conditions as specified, and

10 SEISMIC DESIGN GUIDELINES

10.1 General

The requirements in API, ISO, and NORSOK relating to seismic design criteria are compared in Table 10-12 located at end of this section. Both Clause 11 of ISO 19902 (Fixed steel offshore structures) and ISO 19901-2 (Seismic design procedures and criteria) give the guidelines with regard to seismic design and analyses of offshore platforms.

The earthquake design guidelines are included in Section 2.3.6 of API RP 2A. NORSOK seismic design guidelines are briefly given in Clause 6.5 of NORSOK N-003 and Annex K.4.4.5 of NORSOK N-004. Seismicity is not normally a design issue in the North Sea. Therefore, Seismic analysis comparisons are herein mainly focused on ISO and API requirements.

10.2 Design Guidelines Comparison

Summary of API and ISO design guidelines comparison are included in Table 10-12 and discussed below.

10.2.1 Terminology

The terms SLE (Strength Level Earthquake) and DLE (Ductility Level Earthquake) as used in API have been denoted ELE (Extreme Level Earthquake) and ALE (Abnormal Level Earthquake) in ISO.

10.2.2 Seismic Risk Maps

The API RP 2A seismic risk map (Figure C2.3.6-1 in API) provides the effective ground acceleration for seismic active zones in the offshore US. It is intended to be used for SLE design with 200-year return period earthquake and can be used for preliminary design or feasibility studies.

ISO has provided the generic 5% damped spectral accelerations for bedrock outcrop for a 1.0s oscillator period and for a 0.2s oscillator period respectively for worldwide seismic active offshore locations. These accelerations have average return period of 1000 years.

10.2.3 Seismic Zones

ISO provides five seismic site zones as presented in Table 10-1.

$S_{a, map}(1.0)$	< 0.03g	0.03g to 0.10 g	0.11g to 0.25g	0.26g to 0.45g	> 0.45g
Seismic zone	0	1	2	3	4

Table 10-1 Site Seismic Zone in ISO

 $S_{a, map}(1.0)$ is the 1.0s horizontal accelerations

Based on it, the site seismic zones can be determined from worldwide seismic maps.

Six seismic zones are defined in API as shown in Table 10-2 below. The table is based on 200 year return period earthquake.

Z	0	1	2	3	4	5			
G	0.00	0.05	0.10	0.20	0.25	0.40			

Table 10-2 Seismic Zone In API

Where Z = Zone or relative seismicity factor given in Figure C2.3.6-1.

G = Ratio of effective horizontal ground acceleration to gravitational acceleration

10.2.4 Foundation Soil Types

In ISO, the site soil classifications have been expanded to include A/B, C, D, E and F in contrast to the soil types of A, B and C used in API. The details are included in Table 10-3.

Average properties in top 30m of effective seabed				
Site class (ISO)	Soil profile name	Soil shear wave velocity, v_s , m/s		
A/B	Hard rock/Rock, thickness of sediment < 5m	v _s > 750 (API Soil A)		
С	Very dense hard soil and soft rock	$350 < \nu_s \leq 750$		
D	Stiff to very stiff soil	$180 < v_s \le 350 \text{ (API Soil B)}$		
Е	Soft to firm soil	$120 < v_s \le 180$ (API Soil C)		
F	-	Any profile, including those otherwise classified as A to E.		

Table 10-3 Site Class

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

10.2.5 Earthquake Response Spectrum

The API RP 2A response spectrum is defined as follows:

T<0.05 s	$S_{a}/G = 1.0$
0.05 sec < T < 0.125 s	$S_a/G = 20T$
API soil type A :	
0.125 sec < T < 0.32 s	$S_{a}/G = 2.5$
T > 0.32 s	$S_{a}/G = 0.8/T$
API soil type B :	
0.125 sec < T < 0.48 s	$S_a/G = 2.5$
T > 0.48 s	$S_a/G = 1.2/T$
API soil type C :	
0.125 sec < T < 0.72 s	$S_a/G = 2.5$
T > 0.72 s	$S_a/G = 1.8/T$
	. 1 1 1

where G = effective horizontal ground acceleration

The response spectrum defined in ISO 19901-2 is:

$$\begin{split} S_{a,site} (T) &= (3T + 0.4)(C_a)S_{a,map}(0.2) & \text{ for } T \leq 0.2s \\ S_{a,site} (T) &= C_v S_{a,map}(1.0)/T & \text{ for } T > 0.2s \\ \text{ except that} \\ S_{a,site} (T) &\leq C_a S_{a,map}(0.2) \\ S_{a,site} (T) &= 4C_v S_{a,map}(1.0)/T^2 & \text{ for } T > 4 \ s \\ \text{ Where} \end{split}$$

T = natural period of a simple, single degree of freedom oscillator

 $C_a, C_v = site coefficients$

 $S_{a,site}\left(T\right)$ = site spectral acceleration corresponding to a return period of 1000 years and a single degree of freedom oscillator period T

 $S_{a,map}(0.2) = 1000$ year rock outcrop spectral acceleration obtained from maps in Annex 2 of ISO 19901-2 associated with a single degree of freedom oscillator period 0.2 s

 $S_{a,map}(1.0) = 1000$ year rock outcrop spectral acceleration obtained from maps in Annex 2 of ISO 19901-2 associated with a single degree of freedom oscillator period 1.0 s

10.2.6 Earthquake Directional Loads

Both API and ISO suggest that design spectrum should be applied equally (1:1) in both horizontal directions and one-half of that applied in the vertical direction simultaneously, when the response spectrum method is used.

NORSOK also suggest the two horizontal directions and one vertical direction combination. One of the horizontal excitations should be parallel to a main structural axis, with the major

component directed to obtain the maximum value for the response quantity considered. The orthogonal horizontal component may be set equal to 2/3 of the major component and the vertical equal to 2/3 of the major component.

10.2.7 Earthquake Directional Combination

The square root of the sum of the squares (SRSS) is recommended to be used for combining the directional responses in both API and ISO.

ISO also states that the three directional responses may be combined linearly assuming that one component is at its maximum while the other two components are at 40% of their respective maximum values.

10.2.8 Time History Analysis

When a non-linear time history analysis is used, ISO requires that global structural survival shall be demonstrated in half or more of the time history analyses if seven or more time-history records are used. If fewer than seven time-history analyses are used, global survival shall be demonstrated in at least four time-history analyses.

API requires that at least three sets of representative earthquake ground motion time histories should be analyzed.

NORSOK suggests that the load effect should be calculated for at least three sets of time histories.

10.2.9 Structural Components - Tubular D/t Ratio

API suggests that the slenderness ratio (kl/r) of the primary diagonal bracing in vertical frames is limited to 80 and their ratio of diameter to thickness (D/t) is limited to 1900/ F_y (F_y is the yield strength in ksi) or 13100/ F_y (F_y in MPa).

In ISO, the slenderness ratio (kl/r) of primary bracing in vertical frames shall be limited to no more than 80 and $F_yD/E.t \le 0.069$ or $13800/F_y$ (F_y in MPa).

10.2.10 Pile Axial Capacity Requirements

API RP 2A requires a safety factor of pile penetration of 1.50 under the extreme condition and 2.0 under the operating condition.

ISO requires a partial resistance factor for pile axial capacity of 1.25 for extreme condition and a partial resistance factor for the p-y curves of 1.0 is used to determine the lateral pile performance. The partial resistance factors for axial capacity and lateral pile performance under ALE conditions shall be 1.0.

10.3 Seismic Design Comparison

10.3.1 Two Level check

The structure is designed for two levels of earthquakes in API and ISO requirements:

- Strength Level Earthquake (Extreme Level Earthquake): 100 200 year return period; Structural stress should not exceed yield. Under SLE (ELE), structure should sustain little or no damage.
- Ductility Level Earthquake (Abnormal Level Earthquake): 1000-5000 year return. Structural stress may exceed yield but should not collapse.

In NORSOK, earthquake design includes ULS (Ultimate Limit State) check of components based on earthquakes with an annual probability of occurrence of 10^{-2} and appropriate action and material factors; as well as an ALS (Abnormal Limit State) check of the overall structure to prevent its collapse during earthquakes with an annual probability of exceedance of 10^{-4} with appropriate action and material factors.

10.3.2 Action Combinations

ELE Requirements

API states that earthquake loading should be combined with other simultaneous loadings such as gravity, buoyancy and hydrostatic pressure. Gravity loading should include the platform dead weight, actual live loads and 75% of the maximum supply and storage loads. In computing the dynamic characteristics of braced, pile supported steel structures, uniform modal damping ratio of 5% critical should be used. API also states that the basic AISC allowable stresses and those presented in Section 3.2 (Allowable Stresses for Cylindrical Members) may be increased by 70% for strength requirement.

ISO requires that the all members, joints and pile components shall be checked for strength for using internal force resulting from the design action calculated by the following equations:

$F_d = 1.1G_1 + 1.1 \ G_2 + 1.1Q_1 + 0.9 \ E$	(10.1a)
Or $F_d = 0.9G_1 + 0.9 G_2 + 0.8Q_1 + 0.9 E$	(10.1b)

Where

E = the inertia action induced by ELE ground motion, which depends on the exposure level and the expected intensity of seismic events

 G_1 = self-weight of the structure with associated equipment and other objects

 G_2 = self-weight of equipment and other objects that remain constant for long periods of time, but can change during a mode of operation

 Q_1 = the weight of consumable supplies and fluids in pipe, tanks and storage, etc.

A modal damping ratio of up to 5% of critical is the same as the requirement in API.

The inertia action (E) induced by ELE (SLE) ground motion can be determined by dynamic analysis procedures such as response spectrum analysis or time history analysis.

NORSOK N-001 states that earthquake shall be handled as environmental action within the limit state design for ULS and ALS. It can be interpreted into the following equations for ELE:

ULS (a): 1.3G + 1.3Q + 0.7EULS (b): 1.0G + 1.0Q + 1.3 EALS (Abnormal effect): 1.0G + 1.0Q + 1.0 EWhere: G = permanent actions

Q = Variable actions

E = Earthquake action

A modal damping ratio of up to 5% of critical is the same as the requirement in API and ISO.

ALE Requirements

NORSOK also gives the guideline for action combination for ALS: ALS (Abnormal effect): 1.0G + 1.0Q + 1.0 E

10.3.3 Seismic Design Procedures

API gives the basic guidelines for seismic analysis, but there is not straightforward procedure can be followed. Compared to API, ISO gives the detailed procedures which are easy for the designers to follow. The summary of the procedures in ISO is included below.

Two alternative procedures for seismic design are provided in ISO, one is "simplified method" and another is "detailed method". A simplified method may be used where seismic considerations are unlikely to govern the design of a structure, while the detailed method shall be used where seismic considerations have a significant impact on the design. The selection of the appropriate procedure depends on the exposure level of the structure and the expected intensity and characteristics of seismic events. Simple method allows using the generic seismic maps provided in ISO, while the detailed procedure requires a site-specific seismic study. Figure 10-1 presents a flowchart of the selection procedures and the steps associated with both procedures, which are given in ISO 19901-2. ISO also summarizes the seismic design requirements in Table 10-4.

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

^a SRC 3 structures may be designed using either a simplified or detailed seismic action procedure, see Table 4.

Figure 10-1 Seismic design procedures in ISO 19901-2 (Figure 1of ISO 19901-2)

SRC	Seismic action procedure	Evaluation of seismic activity	Non-linear ALE analysis
1	None	None	None
2	Simplified	ISO maps or regional maps	Permitted
30	Simplified	Site-specific, ISO maps or regional maps	Recommended
5	Detailed	Site-specific	Recommended
4	Detailed	Site-specific	Required
For an procedure, preferred a requires re seismic ma	SRC 3 structure, a simplified seisr For evaluation of seismic activity, ind should be used, if possible. Oth suits from a PSHA whereas a simp sps (regional or ISO maps).	nic action procedure is in most cases more cons results from a site-specific probabilistic seismic erwise regional or ISO seismic maps may be use iffied seismic action procedure may be used in o	ervative than a detailed seismic action hazard analysis (PSHA), see 8.2, are d. A detailed seismic action procedure conjunction with ether PSHA results or

Table 10	-4 Seismic	Design Re	quirements	(Table in	ISO 19901-2)
			1	(

The design requirements in Table 10-4 is based on the SRC determination given below.

SRC Determination

The complexity of a seismic action evaluation and the associated design procedure depends on the structure's seismic risk category (SRC). ISO recommends that the following steps shall be followed to determine the SRC.

- 1. Determine the site seismic zone from the worldwide seismic maps in ISO, see Table 10-1.
- 2. Determine the structure's exposure level. The simplified seismic action procedure has been given in Table 10-5.

Exposure Level	$p_{\rm f}$
L1	$4 \ge 10^{-4} = 1/2500$
L2	$1 \ge 10^{-3} = 1/1000$
L3	$2.5 \times 10^{-3} = 1/400$

Table 10-5	Target annual	probability	of failure.	ne
1 abic 10-5	I al get annual	probability	or ranurc,	Pf

3. Determine the structure's seismic risk category, SRC, based on the exposure level and the site seismic zone the SCR is determined from Table 10-6.

Site esigmie zone	Exposure level			
Site seisinic zone	L3	L2	L1	
0	SRC1	SRC1	SRC1	
1	SRC2	SRC2	SRC3	
2	SRC2	SRC2	SRC4	
3	SRC2	SRC3	SRC4	
4	SRC3	SRC4	SRC4	

Tabla	10_6	Soismic	rick	cotogory	SRC
I able	10-0	Seisinic	LISK	category,	SKU

For platforms classified as SRC1, no seismic design or analysis is required.

For platforms classified as SRC2, the simplified method can be used for seismic design and analysis. ISO maps or regional maps can be used for evaluation of seismic activity.

For platforms classified as SRC3, either simplified or detailed method can be used for seismic design and analysis. Site specific, ISO maps or regional maps can be used for the evaluation of seismic activity.

For platforms classified as SRC4, the detailed method shall be used for seismic design and analysis. A site-specific study shall be performed for evaluation of seismic activity.

Only platforms classified as SRC4, non-linear ALE analysis is required.

Simplified Method

The simplified method includes the following steps:

- 1) Soil classification and spectral shape
 - a) Determine site soil classification (Table 10-3)
 - b) Determine site coefficients (C_a, C_v)

 C_a , and C_v depend on the site class and either the mapped 0.2 sec. or 0.1 sec spectral accelerations for shallow foundations, see Table 10-7 and Table 10-8.

Table 10-7 C _a for shallow foundations and 0.2 s period spectral acceleration	(ISO
19901-2 Table 6)	

Elte class	S _{a,map} (0,2)					
alte class	≤ 0,25 g	0,50 g	0,75 g	1,0 g	≥ 1,25 g	
A/B	1,0	1,0	1,0	1,0	1,0	
С	1,2	1,2	1,1	1,0	1,0	
D	1,6	1,4	1,2	1,1	1,0	
E	2,5	1,7	1,2	0,9	0,9	
F		8				
A site-specific geoter	chnical Investigatio	n and dynamic	site response an	alyses shall be p	erformed.	

Site class	S _{a,map} (1,0)				
010001000	≤ 0,1 g	0,2 g	0,3 g	0,4 g	≥ 0,5 g
A/B	1,0	1,0	1,0	1,0	1,0
с	1,7	1,6	1,5	1,4	1,3
D	2,4	2,0	1,8	1,6	1,5
E	3,5	3,2	2,8	2,4	2,4
F	8				

Table 10-8 C_v for shallow foundations and 0.2 s period spectral acceleration (ISO 19901-2 Table 7)

For deep foundations, the coefficients C_a and C_v depend on site class only, see Table 10-9 below.

Site class	C _a	C _v				
A/B	1,0	0,8				
С	1,0	1,0				
D	1,0	1,2				
E	1,0	1,8				
F						
A site-specific geotechnical investigation and dynamic site response analyses shall be performed.						

- c) Determine site 1000-year horizontal acceleration spectrum $S_{a,site}$ (T) for different oscillator periods (T), see /2/.
- d) The site vertical spectral acceleration at a period T shall be taken as half the corresponding horizontal spectral acceleration. The vertical spectrum shall not be reduced further due to water depth effects.
- e) A modal damping corresponding to 5% of critical can be used to obtain the acceleration spectra. For other damping value, the ordinates may be scaled by applying a correction factor D:

$$D = \frac{\ln(\frac{100}{\eta})}{\ln(20)}$$
 where η is the per cent of critical damping

2) Seismic action procedure

The ALE horizontal and vertical spectral accelerations are obtained from the site 1000-year spectral acceleration multiplied by a scale factor of NALE (Table 10-10), which depends on the structure exposure level.

$$S_{a,ALE}(T) = NALE * S_{a,site}(T)$$
(10.2)

Table 10-10 Scale factors for ALE spectra						
Exposure Level	ALE scale factor					
L3	0.85					
L2	1.15					
L1	1.60					

Table 10-1() Scale factor	s for ALE spectra
-------------	----------------	-------------------

The ELE horizontal and vertical spectral acceleration at oscillator period T:

(10.3) $S_{a.ELE}(T) = S_{a.ALE}(T)/C_r$

Cr is platform reserve capacity factor, which is dependent on the platform ductility.

To avoid return periods for the ELE that are too short, Cr values shall not exceed 2.8 for L1 structures; 2.4 for L2 structures; and 2.0 for L3 structures.

Detailed Method

Detailed method is required for the platforms categorized as SRC 3 and 4.

1) Site-specific Study

This study in normally performed by specialists using probabilistic seismic hazard analysis (PSHA) and/or with deterministic seismic hazard analysis (DSHA) as a complement to PHSA. As a result of PSHA, a set of "hazard curves" will be generated in terms of probability of exceedance versus ground motion or response of single degree of freedom oscillator. Each curve represents a spectral response to a specific natural period of the oscillator.

2) Seismic action procedure

This procedure is based on PSHA results. The following steps shall be followed to define the ALE and ELE spectral accelerations:

- a) Plot the site-specific hazard curve for $T = T_{dom}$ on a log_{10} -log_{10} basis
- b) Choose the target annual probability of failure, P_f (Table 10-5 Target annual probability of failure, pf), and determine the site-specific spectral acceleration at P_f , $S_{a,pf}(T_{dom})$.
- c) Determine the slope of the seismic hazard curve (α_R) in the region close to P_f by drawing a tangent line to the seismic hazard curve at P_f . The slope α_R is defined as ratio of the spectral accelerations corresponding to two probability values, at the neighbourhood of P_f. One is larger than P_f and another is less than P_f.
- d) The correction factor C_c is used to capture the uncertainties not reflected in the seismic hazard curve.

Table 10-11 Correction factor C _c													
α_{R}	1.75 2.0		2.5	3.0 3.5									
Cc	1.20	1.15	1.12	1.10	1.10								

- **T 11 10 11 C**
- e) Determine the ALE spectral acceleration by applying the correction factor C_c to $S_{a,pf}(T_{dom})$

$$\mathbf{S}_{a,ALE} \left(\mathbf{T}_{dom} \right) = \mathbf{C}_{c} \ \mathbf{S}_{a,pf} \left(\mathbf{T}_{dom} \right) \tag{10.4}$$

The annual probability of exceedance (PALE) for ALE event can be directly read from the seismic hazard curve.

 $T_{return} = 1/P_{ALE}$ (in years)

f) Once the ALE spectral acceleration $S_{a,pf}(T_{dom})$ is determined, the ELE spectral acceleration can be obtained.

$$\mathbf{S}_{a,\text{ELE}} (\mathbf{T}_{\text{dom}}) = \mathbf{S}_{a,\text{ALE}} (\mathbf{T}_{\text{dom}}) / \mathbf{C}_{r}$$
(10.5)

The annual probability of exceedance (P_{ELE}) for ELE event can be directly read from the seismic hazard curve.

$$T_{return} = 1/P_{ELE}$$
 (in years) (10.6)

10.3.4 Seismic Analysis Methods

Several analysis methods are discussed in these design codes and summarized as follows:

- Linear methods
 - i) Response spectrum analysis
 - ii) Time history method (modal analysis method, or direct time integration numerical analysis method)
- Non-linear methods •

i) Static pushover or extreme displacement method

This method is mentioned in both API and ISO. Only ISO gives the procedure to be followed.

In ISO, the objective of the static pushover analysis is to verify that the seismic reserve capacity factor, C_r , of the structure is greater than that initially estimated for design. C_r is defined as:

$$C_r = C_{sr} C_{dr} \qquad (10.7)$$

Where $C_{sr} = \Delta u / \Delta ELE$, is a factor corresponding to the strengthening region of the actiondeformation.

 C_{dr} is a factor corresponding to the degrading region of the action-deformation curve. It is measure of energy dissipation capacity of the structure beyond the ultimate seismic action and the corresponding deformation.

$$C_{dr} = \sqrt{1 + \frac{A_d}{F_{\rm u}\Delta_{\rm u}}} \qquad (10.8)$$

Where A_d is the area under the action-deformation curve starting from Δ_u and ending with Δ_{CAP} , the deformation capacity of the structure. Δ_{CAP} corresponds to 60% of F_u .

ii) Non-linear time history analysis method

Its objective is to demonstrate that the structure can expected to sustain the ALE seismic event without collapse and without major topsides failure.

The linear methods can be used for ELE (or SLE) design and analysis, while the non-linear methods can be used for ALE (or DLE) design and analysis. Response spectrum analysis method is a relatively simple and cost effective method.

10.4 Summary of Seismic Design Guideline Comparison

Seismicity is not normally a design issue in the North Sea. Therefore, Seismic analysis comparisons are herein mainly focused on ISO and API requirements. The structure is designed for two levels of earthquakes in API and ISO requirements:

a) Strength Level Earthquake (Extreme Level Earthquake): 100 - 200 year return period; Structural stress should not exceed yield. Under SLE (ELE), structure should sustain little or no damage

b) Ductility Level Earthquake (Abnormal Level Earthquake): 1000-5000 year return. Structural stress may exceed yield but should not collapse.

Compared to API, ISO 19901-2 gives the clear requirements for ductility level earthquake analysis and it is easier for the designers to follow.

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

		API RP ZA				ISO 19901-2	
Earthquake Design		SLE (Strength Level Equ	ELE (Extreme Level Eqrthqual ALE (Abnormal Level Earthqua Worldwide Seismic Maps (Appendix B) - The return period selected for the development of th 1000 year. - The maps give generic 5% damped spectral acceler for bedrock outcrop for a 1.0 s oscillator period and for respectively.				
Seismic Risk Map	Figure C2.	3.6.1 - Seismic Risk of United States Co					
Seismic Zones	Zones 0 1 2 3 4 5 Based on 2	0.0g 0.05g 0.10g 0.20g 0.25g 0.40g 200-year earthquake		Zones 0 1 2 3 4 Sa,map(1. correspond	Sa, map (1.0) <0.03g 0.03g - 0.10g 0.11g - 0.25g 0.26g - 0.45g >0.45g 0) is the rock outcr ding to 1000-year e	op 1.0 second horizontal	
Foundation Soil	Soil Class	Soil Profile	Soil shear wave velocity, ft/sec	Soil class	Soil profile name	Soil shear wave velocity	
	A	Rock - crystalline, conglomerate, or shale-like material	> 3000 ft/sec (914 m/sec)	A/B	Hard rock/Rock, thickness of sediments < 5 m	ν _s :	
				с	Very dense hard soil and soft rock	350 <	
	в	Shallow strong alluvium - component sands, silts and stiff clays with shear strengths in excess of about 1500psf (72 kPa), limited to depths of less than about 200 ft (61m), and overlying rock- like materials		D	Stiff to very stiff soil	180 <	
	с	Deep strong alluvium - components sands, silts and stiff clays with thickness in excess of about 200 ft (61m) and overlying rock-like materials		E	Soft to firm soil	120 <	
				F	-	Any profile, including the	
Earthquake Directional Loads (Actions) Earthquake Directional Combinations	1.0:1.0 (tw root of the	o horizontal orthogonal dir.) and 0.5 (ver sum of the squares method(SRSS)	rtical), acted simultaneuously)	1.0:1.0 (two horizontal orthogonal dir.) and 0.5 SRSS or 1 component 100%, and 40% of its n			
Time History Analysis	Minimum 3	sets of time history records		Minimum 4	4 sets of time histor	ry records	
Response Spectrum Shape	T≥4.0 seco	onds, Sa(T) proportional to 1/T		T≥4.0 sec	onds, Sa(T) propor	tional to 1/T ²	
Structural Slenderness (DLE or ALE)	kl/r ≤ 80 (p	rimary diagonal bracing)		kl/r ≤ 80 (p	orimary diagonal br	acing)	
Tubular D/t Ratio (DLE or ALE)	D/t ≤ 1900/	/F _y	D/t ≤ 2000	/F _y			
Pile-Soil Performance for ELE	φ _{ΡΕ} = 0.80	(axial) (1/0.8 = 1.25)	Partial resistance factor - 1.25 (axial) Partial resistance factor - 1.00 (p-y curves)				
Pile-Soil Performance for ALE	φ _{PE} = 1.0 (a	axial)	Partial res	istance factor - 1.0	0 (axial)		
Dila Avial Oceanity Demoisterents (Concert)			Partial res	istance factor - 1.0	0 (p-y curves)		
Pile Axial Capacity Requirements (General)	API-LRFD φ _{PE} = 0.80 φ _{PO} = 0.70	(axial) (extreme conditions) (1/0.8 = 1.2 (axial) (operating conditions) (1/0.7 = 1.	5) 429)	Partial resistance factor - 1.25 (extreme conditions) Partial resistance factor - 1.50 (operating conditions)			
	API-WSD Factor of S Factor of S	afety = 1.50 (extreme conditions) afety = 2.00 (operating conditions)					

Table 10-12 Seismic Criteria Comparison

e) (e) (e) e ground motion maps is ations, expressed in g, a 0.2 s oscillator period spectral acceleration v_s , m/s 750 $v_s \le 750$ $v_s \le 350$ $v_s \le 180$ se otherwise classified as), acted simultaneuously values in other 2	
e ground motion maps is ations, expressed in g, a 0.2 s oscillator period spectral acceleration v_s , m/s ~ 750 $v_s \le 750$ $v_s \le 350$ $v_s \le 180$ se otherwise classified as), acted simultaneuously values in other 2	e) ke)
ations, expressed in g, a 0.2 s oscillator period spectral acceleration v_s , m/s 750 $v_s \le 750$ $v_s \le 750$ $v_s \le 350$ $v_s \le 180$ se otherwise classified as), acted simultaneuously values in other 2	e ground motion maps is
spectral acceleration v_s , m/s 750 $v_s \le 750$ $v_s \le 350$ $v_s \le 180$ se otherwise classified as), acted simultaneuously values in other 2	ations, expressed in g, a 0.2 s oscillator period
spectral acceleration v_{s} , m/s 750 $v_{s} \leq 750$ $v_{s} \leq 350$ $v_{s} \leq 180$ se otherwise classified as), acted simultaneuously values in other 2	
spectral acceleration v_s , m/s 750 $v_s \le 750$ $v_s \le 350$ $v_s \le 180$ se otherwise classified as), acted simultaneuously values in other 2	
spectral acceleration v_s , m/s 750 $v_s \le 750$ $v_s \le 350$ $v_s \le 180$ se otherwise classified as), acted simultaneuously values in other 2	
v_s , m/s ~ 750 $v_s \leq 750$ $v_s \leq 350$ $v_s \leq 180$ se otherwise classified as), acted simultaneuously values in other 2	spectral acceleration
r 750 $v_{s} \le 750$ $v_{s} \le 350$ $v_{s} \le 180$ se otherwise classified as), acted simultaneuously values in other 2	, ν _s , m/s
$v_{s} \le 750$ $v_{s} \le 350$ $v_{s} \le 180$ se otherwise classified as), acted simultaneuously values in other 2	750
v _s ≤ 350 v _s ≤ 180 se otherwise classified as), acted simultaneuously values in other 2	v _s ≤ 750
v _s ≤ 350 v _s ≤ 180 se otherwise classified as), acted simultaneuously values in other 2	
v _s ≤ 180 se otherwise classified as), acted simultaneuously values in other 2	v _s ≤ 350
v _s ≤ 180 se otherwise classified as), acted simultaneuously values in other 2	
se otherwise classified as), acted simultaneuously values in other 2	
se otherwise classified as), acted simultaneuously values in other 2	v ₅ 5 100
), acted simultaneuously values in other 2	se otherwise classified as
values in other 2), acted simultaneuously
	values in other 2

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

		API RP 2A			ISO 19901-2			N
Descriptions Dumonos		 The strength requirements are presented to provide resistance to moderate earthquake, which have a reasonable likelihood of not being exceeded during the life of the platform, without significant structural damage. To prevent collapse of the platform in the event of rare intense earthquake ground motions. 		Provisions Purpose	 The seismic ULS design event is the extreme level earthquake (ELE). The structure shall be designed such that an ELE event will cause little or no damage. The ULS requirements are intended to ensure that no significant structural damage occurs for a level of earthquake ground motion with an adequately low likelihood of being exceeded during the design service life of the structure. The ALE (abnormal level earthquake) requirements are intended to ensure that the structure and foundation have sufficient reserve strength, displacement and/or energy dissipation capacity to maintain the overall structural integrity and avoid structural collapse. 		Provisions Purpose	 ULS (streng an annual prol and material fa 2. ALS check (earthquakes w appropriate ac 3. This provision)
	Structural Modeling (section 2.3.6.c2)	 The analysis model should include the three dimentsional distribution of platform stiffness and mass; Earthquake loading should be combined with other simultaneous loadings such as gravity, buoyancy, and hydrostatic pressure; Gravity loading should include the platform dead weight (comprised of the weight of the structure, equipment, appurtenances), actual live loads and 75% of the maximum supply and storage loads. In computing the dynamic characteristics of braced, pile supported steel structures, uniform modal damping ratios of 5% critical should be used for an elastic analysis. 		Action Combinations	1. Design Action $F_d = 1.1G_1 + 1.1G_2 + 1.1Q_1 + 0.9E$ where E: the inertia action induced by the ELE ground-motion and determined using dynamic analysis procedures such as response spectrum or tme-history analysis G_1 and G_2 : permanent actions; Q_1 : variable action; and shall include actions that are likely to be present during earthquake. When contributions to the action effects due to weight oppose the inertia actions due to the earthquake, $F_d = 0.9G_1 + 0.9G_2 + 0.8Q_1 + 0.9E$ where G_1 , G_2 and Q_1 shall include only actions that are reasonably certain to be present during an earthquake. 2. The mass used in the dynamic analysis: - the permanent actions G1 and G2 - 75% of the variable actions Q1 - the mass of entrapped water, and the added mass 3. A modal damping ratio of 5% of critical may be used in the dynamic analysis of the ELE event.		Action Combinations	1. The number least 90% of th 2. In the abser ratio of 5% of 3. Earthquake limit state desi ULS (a): 1.3G ULS (b): 1.0G
strength Requirement	Response Analysis (section 2.3.6.c3)	 Response spectrum method - one design spectrum is applied equally in both horizontal directions. An acceleration spectrum of one-half that for the given zone should be applied in the vertical direction. The complete quadratic combination (CQC) method may be used for combining modal responses and the square root of the sum of the squares (SRSS) may be used for combining the directional response. At least two modes having the highest overall response should be included for each of the three principal directions plus significant torsional modes. Time history method - the design response should be calculated as the average of the maximum values for each of the time histories considered. 	ıe Level Earthquake Design	Response Analysis	 In both methods, the base excitations shall be composed of three motions, i.e. two orthogonal horizontal motions and the vertical motions. Response spectrum method - When responses due to each directional component of an earthquake are calculated separately, the responses due to the three earthquake directions may be combined using the root of the sum of the squares method. Alternatively, the three directional responses may be combined linearly assuming that one component is at its maximum while the other two components are at 40% of their respective maximum values. Time history method - a minimum of 4 sets of time history records shall be used to capture the randomness in seismic motions. The ELE design is satisfactory if the code utilization maxima are less than 1.0 for half or more of the records; a scale factor of 1.05 shall be applied to the records if less than 7 sets of records are used. 	NLS	Response Analysis	1.Earthquake i motions and th 2. One of the h structural axis, maximum valu accurate calcu component ma vertical compo bedrock. 3. Time history least three set action effects h for design.
5	iction 2.3.6.c4 & 2.3.6e)	 The structural members should not exceed yielding of the complete section or buckling. For strength requirement, the basic AISC allowable stresses and those presented in Section 3.2 (Allowable Stresses for Cylindrical Members) may be increased by 70 percent. For combined earthquake loading and hydrostatic pressure, the suggested safety factors for local buckling and interaction formula listed in Section 3.2 are as follows: Axial Tension 1.0 Axial Compression 1.0-1.2 Hoop Compression 2 	Extrem	rmance	 All primary, secondary structural and foundation components shall sustain little or no damage to the structure. Limited non-linear behaviour (e.g. yielding in steel) is permitted, but brittle degradation (e.g. local buckling in steel) shall be avoided. The internal forces in joints shall stay below the joint strengths, using the calculated (elastic) forces and moments. Masts, derricks and flare structures shall be capable of sustaining the motions transmitted via the structure with little or no damage. For the design of piles for ELE event, a partial resistance factor of 1.25 shall be used to determine the axial pile capacity and a partial resistance factor of p-y curves of 1.0 shall be used to determine the lateral pile performance. 		sessment	Material Facto

ORSOK N-003 & N-004

gth) check of components based on earthquakes with bability of occurrence of 10⁻² and appropriate action factors; of the overall structure to prevent its collapse during with an annual probability of exceedance of 10⁻⁴ with ction and material factors ions mainly focus on Norwegian continental shelf. er of vibration modes in the analysis should represent at the total response energy of all modes. ence of more accurate information, a modal damping critical may be used. e shall be handled as environmental action within the sign for ULS: 3 + 1.3Q + 0.7E + 1.0Q + 1.3E motion can be described by two orthogonal horizontal the vertical motion action simultaneously. horizontal excitations should be parallel to a main , with the major component directed to obtain the ue for the response quantity considered. Unless more ulations are performed, the orthogonal horizontal nay be set equal to 2/3 of the major component and onent equal to 2/3 of the major component, referred to ry method - the load effect should be calculated for at ts of time histories. The mean values of the calculated from the time history analyses may be taken as basis

or γ_M =1.15

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

		API RP 2A			ISO 19901-2			N
	Response Assessment (se	 a) Tubular joints are sized for the yield or buckling capacity of incoming members, so that premature failure of the joints will be avoided and the ductility of the overall structure can be fully developed. b) Joint capacity may be determined in accordance with Section 4.3 except that Equations 4.3-1, 4.3-2, and 4.3-3 should all have the safety factor (FS) set equal to 1.0. See Commentary for the influence of chord load and other detailed considerations. c) Deck-supported structures, and equipment tie-downs, should be designed with a one-third increase in basic allowable stresses. This lower increase in design allowables for strength level earthquake loads compared to a full yield stress allowable typically used for jackets is intended to provide a margin of safety in lieu of performing an explicit ductility level analysis. 		ELE Perfo			Response As	
	Limitaions (section 2.2.6.d2)	 The intensity ratio of the rare, intense earthquake ground motions to strength level earthquake ground motions is 2 or less. Systems are jacket type structures with 8 or more legs. 		Structural Modeling	 Structural and foundation models shall include possible stiffness and strength degradation of componets under cyclic action reversals. The ALS analysis shall be based on best estimate values of modelling parameters such as material strength, soil strength and soil stiffness. A modal damping ratio of 5% of critical may be used in the dynamic analysis of the ALE event. 		Structural Modeling	1. The number least 90% of th 2. In the absen ratio of 5% of c 3. Earthquake limit state desig ALS (a): 1.0G
Ductility Requirements	Desgin Practice (section 2.3.6.d2)	 Jacket legs, including any enclosed piles, are designed to meet the requirements of 2.3.6c4, using twice the strength level seimic loads; Diagonal bracing in the vertical frames are configured such that shear forces between horizontal frames or in vertical runs between legs are distributed approximately equally to both tension and compression diagonal braces, and that "K" bracing is not used where the ability of a panel to transmit shear is lost if the compression brace buckles. Where these conditions are not met, including areas such as the portal frame between the jacket and the deck, the structural components should be designed to meet the requirements of Section 2.3.6c4 using twice the strength level seismic loads. Horizontal members are provided between all adjacent legs at horizontal framing levels in vertical frames and that these members have sufficient compression capacity to support the redistribution of loads resulting from the buckling of adjacent diagonal braces. The slenderness ratio (KI/r) of primary diagonal bracing in vertical frames is limited to 80 and their ratio of diameter to thickness is limited to 1900/Fy where Fy is in ksi (13100/Fy for Fy in MPa). All non-tubular members at connections in vertical frames are designed as compact sections in accordance with the AISC Specifications or designed to meet the requirements of 2.3.6c4 using twice the strength level seismic loads. 	Abnormal Level Earthquake Design	Response Analysis	 In both methods, the base excitations shall be composed of three motions, i.e. two orthogonal horizontal motions and the vertical motions. The following two methods of analysis are allowed for the ALE design check: a) the static pushover or extreme displacement method - to be used to determine possible and controlling global mechanisms of failure, or the global displacement of the structure (beyond the ELE) b) the non-linear time history analysis method - performing a displacement controlled structural analysis. A minimum of 4 sets of time history records shall be used to capture the randomness in seismic motions. If 7 or more time history records are used, global structure survival shall be demonstrated in half or more of the time history analyses. If fewer than 7 time history records are used, global survival shall be demostrated in at least 4 time history analyses. 	ALS	Response Analysis	1.Earthquake n motions and th 2. One of the h structural axis, maximum value accurate calcul component ma vertical compor- bedrock. 3. Time history least three sets action effects fi for design.
	Structural Analysis	 Structure-foundation systems which do not meet the conditions listed in 3.6d2 should be analyzed to demonstrate their ability to withstand the rare, intense earthquake without collapsing. The time history method of analysis is recommended. At least three sets of representative earthquake ground motion time histories should be analyzed. 		ALE Performance	 Structural elements are allowed to exhibit plastic degrading behaviour (e.g. local buckling in steel), but catastrophic failures such as global collapse or failure of a cantilevered section of the deck should be avoided. Stable plastic mechanisms in foundations are allowed, but catastrophic failure modes sych as instability and collapse should be avoided. Joints are allowed to exhibit limited plastic behaviour but should stay within their ultimate strengths. Alternatively, where large deformations in the joints are anticipated, they shall be designed to demonstrate ductility and residual strength at anticipated deformation levels. 		Response Analysis	Material Factor

ORSOK N-003 & N-004

of vibration modes in the analysis should represent at he total response energy of all modes. nce of more accurate information, a modal damping critical may be used. shall be handled as environmental action within the ign for ALS (abnormal effect). + 1.0Q + 1.0E motion can be described by two orthogonal horizontal he vertical motion action simultaneously. norizontal excitations should be parallel to a main with the major component directed to obtain the ie for the response quantity considered. Unless more lations are performed, the orthogonal horizontal ay be set equal to 2/3 of the major component and onent equal to 2/3 of the major component, referred to method - the load effect should be calculated for at of time histories. The mean values of the calculated from the time history analyses may be taken as basis γ_M =1.0

11 CASE STUDIES

This section describes the two case studies performed within the framework of the comparison study, to demonstrate how the differences in the design codes would affect utilization of the structure. Two studies were performed, analyzing a fixed platform and a floating structure separately in order to assess the different methods and applicable standards for types of structures. It should be stated that even though the selected structures are representative, they have only been analyzed with the objective of comparing the standards and not actual design optimization or practical construction considerations.

11.1 Fixed Platform

11.1.1 Introduction

The purpose of the first case study was to analyze a fixed production platform utilizing the loads and utilization formulas described in the API, ISO, and NORSOK design codes. With BOEMRE's agreement, DNV utilized one of the Finite Element models from its archives. The available model of the platform was representing a structure designed for more benign environment than those present in the GoM. Therefore, some modifications were necessary to assure that the platform will more realistic in withstanding the increased wave loads. The strengthening of the platform was realized by simply modifying the cross sectional properties for all structural members of the jacket by increasing the outer diameter (OD) and wall thickness. Several iterations of the FE analyses and code checks, utilizing the FE models with different OD to thickness changed ratios were performed, to assess the effect of increased loads on the structure (due to larger diameter of the members, combined with increased wave loads) on the utilization of the members. The motivation behind this initial process was the limitation of applicability of the code check formulae and the resulting adequate range of the member utilization (close to unity). The code check used in this initial screening procedure was performed according to the API RP 2A which was the original design code used in the design of the platform. Based on the results of this exercise, a model with OD and wall thickness uniformly increased for all members of the jacket structure by 40% was found to be appropriate with utilization of all elements falling within allowable limits. The diameter and wall thickness of the piles were also increased by an identical scaling factor. No modifications were deemed necessary for the topside structural members since they were outside the focus of this study.

Another significant modification of the original platform model was a reduced water depth to simulate the analyzed GoM platform location. The water depth was adjusted to accommodate the increased wave height and to assure positive deck clearance in the extreme weather conditions.

11.1.2 Analysis Methodology

The modeling, load application, analysis and code checking were performed utilizing GeniE, an advanced engineering software tool for designing and analyzing offshore and maritime structures. Several DNV programs are incorporated into GeniE, providing users with ability to perform complete analyses, including pre- and post-processing, within one program.

The concept model developed in GeniE allows the user to define complex model of the structure, apply the permanent, functional and environmental loads, and define model properties used by other programs in the package. The hydrostatic and hydrodynamic forces due to waves and currents, together with wind loads are computed by WAJAC (according to Morison's equation), and are automatically transferred for subsequent structural analyses. The non-linear soil-pile analysis is performed in SPLICE, in combination with SESTRA. SPLICE solves the displacements at the pile-structure interface points for a linear-elastic superstructure modeled with non-linear pile foundations. Finally, the FE analysis is performed in SESTRA, the DNV solver for linear structural FE analysis, and the results are imported into GeniE for further post-processing. The element forces calculated by SESTRA are mapped to the capacity model created within GeniE. The final step of the analysis was performing the unity checks, using the code check formulations which are already implemented in the software.

A two parts comparison was performed within the scope of this case study. The first part focused on the global loads comparison, while the second part compared actual utilization formulae specified in the three codes.

11.1.2.1 Comparison of the Global Loads

The global loads comparison was performed using the output files from the wave analysis in WAJAC. This exercise was performed for the extreme condition, 100-yr hurricane for Central GoM. The purpose of this study was to compare the global loads on the structure generated according to the environmental load recipes and combinations, formulated based on the three standards: API RP 2A with API Bulletin 2INT-MET, ISO 19902 and NORSOK N-003.

The wave loads were computed using each standard for 8 wave headings and 36 wave steps and reported in the listing files; see Appendix B. WAJAC creates two separate load cases based on the calculated maximum base shear force and maximum overturning moment which occur at two different phase angles (see Table 11-3).

11.1.2.2 Comparison of Member and Joint Utilizations

The main focus of this part of the comparison study was the member utilization formulas. To assure that the results obtained from the analyses are comparable, the permanent, variable and environmental loads were kept identical. This assumption was made to isolate from the results an impact of differences in the requirements regarding the environmental loads on final member utilizations. For the LRFD method (ISO and NORSOK), action factors were applied. After the FE Analysis was completed, computed element forces were mapped to the capacity model, and member and joint utilizations were calculated for the jacket structure. All parameters utilized in the code check (e.g. member buckling lengths, moment reduction factors) were applied according to the Design Standards requirements. Only one case for each of the code checks was analyzed – peak wave case for the 100-yr hurricane for Central GoM.

Figure 11-1 shows the capacity model defined in GeniE. The code check was performed on the main structural members of the jacket structure. Utilization of the deck structure was not evaluated since it is not as significantly influenced by the environmental loads. The GeniE software

recognizes the joint type (Y, X, or K) based on the geometry of joints and the load path and categorizes the members (chord or brace) intersecting at the considered joint.

Figure 11-1 Capacity Model in GeniE

11.1.3 Boundary conditions

In order to define identical boundary conditions, the same pile-soil model properties were defined for all cases analyzed within the case study. The composition and properties of the soil simulated in the analyses represent soil, which can be found in the GoM. Four (4) groups of three (3) piles, with approximate penetration of 110 m provide the foundation for the jacket structure. The pile-soil model consists of 8 (eight) soil layers, with properties as presented in Table 11-1. API methods

were used to generate the soil property curves: the lateral soil resistance P-Y (API-87), the axial pile load transfer-displacement T-Z (API-93), and the pile tip load-displacement Q-Z (API-93).

Layer	Soil type	From	То	Submerged Unit Weight	Undrained Shear Strength	Angle of Internal Friction	API-J Factor
	-	[m]	[m]	[kN/m3]	[kPa]	[deg]	-
1	clay	0	5.0	8	5 to 20		0.25
2	clay	5.0	22.0	10	80		0.25
3	sand	22.0	27.5	9.5		30	
4	clay	27.5	36.0	10	100		0.25
5	sand	36.0	54.0	9.5		35	
6	sand	54.0	100.9	10		37	
7	clay	100.9	110.5	11	290		0.25
8	sand	110.5	140.0	10.5		35	

Table 11-1 Properties of Soil Layers

The pile capacity evaluation was excluded from the scope Scope of work Work of this study, therefore the pile-soil model was utilized to only formulate realistic boundary conditions for the structural model.

11.1.4 Loads and Load Combinations

Only the extreme 100-year hurricane environmental scenario was analyzed – corresponding to the peak wave case (ULS-b in LRFD). A total of 16 load combinations were analyzed in each analysis. For simplicity, the number of load combinations was reduced from that of the original model, analyzing only one position of the drilling module. All permanent and variable loads, as per original design report, were applied to the model.

Wave loads were calculated by WAJAC and applied to the structure, eight (8) wave headings with 45 deg increments were analyzed (see Figure 11-2). Single design wave approach was employed. Only the peak wave case for extreme condition was analyzed. The conductor shielding factor defined in the program was calculated based on transverse and longitudinal distance between the conductors. The wave kinematics factor of 0.88 was used. Uniform marine growth with 38.1 mm thickness was modeled for 60 m below waterline. Current blockage factor, varying between analyzed wave headings, was used in the analysis (0.70 for end-on, 0.85 for diagonal, and 0.80 for broadside heading). The "Wheeler" current stretching was used in the analyses.

Figure 11-2 Analyzed Wave Headings

The environmental loads analyzed in the global loads comparison study, are presented in Table 11-2. It should be highlighted, that the NORSOK standard does not include any direct guidance regarding the environmental loads for hurricane condition in the GoM, therefore the wave, current and wind loads model has been specified based on API 2INT-MET requirements, and load combinations were created based on the NORSOK N-003 standard (ref. Section 2.4.1 for details).

In all runs analyzed in the member utilization comparison study, the environmental loads were computed according to requirements of API 2INT-MET. This decision was based on the fact, that all considered design codes allow using site-specific Metocean data in the design. It is also believed that the Metocean data for the GoM included in the API standard has most recently been updated (in 2007) and is therefore adopted herein.

	v	1	v	
		API	ISO	NORSOK
Water Depth (Including Surge)	m	110	110	110
Max Wave Height ¹	m	26.0	24.3	26.0
Max Wave Period	s	13.9	13.2	13.9
Wind Direction (Relative to Wave)	deg	-15	0	0
Avg. Wind Speed	m/s	45.6	46.1	48
Current Direction (Relative to Wave)	deg	15	0	0
Current Speed ¹ @ Surface	m/s	1.68	2.1	1.32
Current Speed ¹ @ Middle of Profile (Elev.)	m/s	1.46 (32)	1.76 (35)	1.11 (35)
Current Speed ¹ @ Bottom of Profile (Elev.)	m/s	0.00 (64)	0.09 (70)	0.00 (70)
Current Speed @ Mudline	m/s	0.00	0.09	0.00

¹) Adjusted to the water depth, as per Standards requirements

The environmental loads presented above illustrate different philosophies behind creating the load combinations for FE analyses. Input to the wave analysis for API and NORSOK runs was assumed to be identical; however the guidance for creating the load combinations (only peak wave case was considered) differs between standards. Table 5-1 in API 2INT-MET /11/ provides factors for combining independent extremes into load cases (i.e. for 100-yr hurricane wind speed is reduced by 0.95, and current speed by 0.75), whereas NORSOK N-003 recommends combining the 10-yr current with 100-yr wind and 100-yr wave actions. ISO follows similar philosophy to API factoring the loads with the same return period, however the adjustment is limited to the current speed only (factor of 0.90 is recommended in the ISO 19901-1, Table C.21).

11.1.5 Results

This section presents the results summary only. The detail results can be found in Appendix B.

11.1.5.1 Comparison of the Global Loads

Table 11-3 presents summary of the results from the comparison of the global loads, induced on the structure by the environment. It can be seen; that the loads and load combinations formulated as per API Standards requirements resulted in largest magnitude of the calculated Base Shear, while the maximum calculated Overturning Moment was observed in the ISO run. The loads computed by software show only minor differences between the runs with smallest and largest loads (~1% difference for both Base Shear and Overturning Moment).

	Heading	Max Ba	se Shear	Max Overtu	rning Mom. ¹
	deg	MN	Phase	MNm	Phase
	0	70.5	340	6829	350
	45	67.7	350	6872	350
	90	71.2	350	7551	350
	135	67.8	350	7002	0
API	180	67.8	0	6541	0
	225	66.8	350	6221	0
	270	71.4	350	6908	350
	315	70.0	350	6711	350
	MAX	71.4	-	7551	_
	0	68.0	340	6707	340
	45	67.3	350	6982	350
	90	70.7	350	7634	350
	135	66.3	350	6794	0
ISO	180	65.2	0	6403	0
	225	66.5	350	6322	0
	270	70.8	350	6990	350
	315	67.5	350	6516	350
	MAX	70.8	-	7634	
	0	69.0	340	6725	350
	45	66.6	350	6849	350
	90	70.7	350	7592	350
	135	65.7	350	6660	0
NORSOK	180	66.3	350	6438	0
	225	65.8	350	6183	0
	270	70.8	350	6948	350
	315	66.8	350	6382	350
	MAX	70.8	-	7592	-

Table 11-3 Results of the Global Loads Com	parison
--	---------

¹) Reference point [0,0,0] – CL of the platform, at the Mudline elevation

The results shown above represent the global loads induced on the structure, calculated by WAJAC. These results however do not include applicable load/action factors for LRFD methods (ISO and NORSOK), which normally would be considered during the structural analyses (not performed at this stage of the study). It is believed that for the analyzed ULS-b limit state, considering applicable factors (1.35 for the ISO, and 1.3 for NORSOK), the largest factored global loads would be calculated for the ISO run.

11.1.5.2 Comparison of the Members and Joints Utilization

This section presents the result summary for the comparison of the structure utilization. These results were divided into two separate sub-sections, where results for members and joints are summarized separately.

a) Member Results

Member utilization results are presented in Tables 11-4 through 11-6.

Table 11-4 presents the results for the base case (API), with corresponding utilization for the remaining Code Check runs (ISO and NORSOK). Utilization Factors (UF) of fifteen (15) highest utilized members from the API Code Check were presented side-by-side with UFs calculated for the corresponding members, for the same Load Cases, from the ISO and NORSOK runs. The maximum UF reported for each member is compared, without considering the position along the member, where it was calculated.

			A DI		C	orrespondin	g Utiliza				
	Member		Ari		Ι	ISO NORSOK			Katio of Total Utilization		
		UF ¹	Formula	LC	UF	Formula	UF	Formula	UF _{API} /UF _{ISO}	UF _{API} /UF _{Norsok}	
1	513	1.00	3.3.4-3	8	0.93	13.2-31	0.80	6.15	1.08	1.25	
2	505	0.99	3.3.4-3	1	0.93	13.2-31	0.79	6.15	1.06	1.25	
3	1651	0.98	3.3.4-3	15	0.90	13.2-31	0.80	6.15	1.09	1.23	
4	1622	0.97	3.3.4-3	13	0.90	13.2-31	0.80	6.15	1.08	1.21	
5	96	0.89	3.3.3-1	2	0.81	13.2-31	0.62	6.15	1.10	1.44	
6	342	0.77	3.3.3-1	15	0.72	13.2-31	0.52	6.15	1.07	1.48	
7	2707	0.75	3.3.3-1	7	0.54	13.2-31	0.50	6.42	1.39	1.50	
8	350	0.73	3.3.3-1	3	0.54	13.2-31	0.48	6.42	1.35	1.52	
9	348	0.72	3.3.3-1	11	0.54	13.2-31	0.47	6.42	1.33	1.53	
10	343	0.72	3.3.3-1	5	0.72	13.2-31	0.51	6.15	1.00	1.41	
11	2708	0.72	3.3.3-1	11	0.54	13.2-31	0.47	6.42	1.33	1.53	
12	351	0.71	3.3.3-1	7	0.54	13.2-31	0.48	6.42	1.31	1.48	
13	3083	0.68	3.3.3-1	15	0.54	13.2-31	0.47	6.42	1.26	1.45	
14	448	0.68	3.3.3-1	8	0.51	13.2-12	0.51	6.42	1.33	1.33	
15	346	0.67	3.3.3-1	13	0.54	13.2-31	0.44	6.42	1.24	1.52	

Table 11-4 Maximum Member Utilization Results – Base Case (API)

¹) 33% increase of the allowable stresses included (only extreme load case was analyzed)

Results presented in

Table 11-4 for the base case show that the UF calculated according to the API code check formulae are consistently higher than results for remaining codes by up to 39% for ISO and 53% for NORSOK for those 15 members. The lowest utilization was calculated for members according to the NORSOK code check. For the base case, no member was found to fail the code checks (i.e.; there was no overstressed elements).

The results for the highest utilized members for the ISO and NORSOK Code Check runs are presented in Table 11-5. The results show good correlation in the order in which members are listed, showing only two member differences (last two in the table).

		ISO		LC	NORSOK			Corresponding Utilization (API)		
	Member	UF	Formula		Member	UF	Formula	UF ¹	Formula	
1	740	1.46	13.6-21	13	740	1.36	6.71	0.62	API Cone	
2	462	1.41	13.6-21	13	462	1.31	6.71	0.60	API Cone	
3	1690	1.36	13.6-21	5	1690	1.26	6.71	0.58	API Cone	
4	461	1.30	13.6-21	5	461	1.21	6.71	0.56	API Cone	
5	41	1.28	13.6-21	5	41	1.16	6.71	0.61	API Cone	
6	36	1.18	13.6-21	13	36	1.06	6.71	0.56	API Cone	
7	31	1.14	13.6-21	7	31	1.04	6.71	0.46	API Cone	
8	749	1.04	13.6-21	15	749	0.96	6.71	0.61	API Cone	
9	10	1.02	13.6-21	5	10	0.93	6.71	0.47	API Cone	
10	21	1.01	13.6-21	3	21	0.93	6.71	0.38	API Cone	
11	647	0.96	13.6-21	3	647	0.89	6.71	0.56	API Cone	
12	646	0.95	13.6-21	8	646	0.88	6.71	0.57	API Cone	
13	2	0.94	13.6-21	13	2	0.86	6.71	0.43	API Cone	
14	505	0.93	13.6-31	1 / 12 ²	748	0.85	6.71	$0.99 / 0.59^{\ 2}$	3.3.4-3 / Cone ²	
15	513	0.93	13.6-31	1 / 13 ²	1647	0.83	6.71	$0.98 / 0.44^{\ 2}$	3.3.4-3 / Cone ²	

 Table 11-5 Maximum Member Utilization Results – ISO and NORSOK

¹) 33% increase of the allowable stresses included

²) corresponding to ISO / NORSOK

It should be highlighted that the formulae giving the maximum utilization factors for the members presented in Table 11-5 describes the utilization of the conical transitions (except Members 505 and 513 in ISO run). There is 10 (ten) members failing the ISO-, and 7 (seven) failing the NORSOK code check. It can also be seen that the difference between the results for the ISO and NORSOK code checks is rather consistent and the ISO calculated utilization is about 10% higher. Corresponding utilization for the API Code Check for these members were found to be significantly lower (about 50%) with no member has failing the unity check.

In order to complete the case study summary, results for the 6 (six) chosen members for all Code Check runs are presented and compared in Table 11-6 and Table 11-7. The member selection was based on the type and location (one brace and one leg member from the top, middle and bottom sections of the jacket), to capture an impact of the ratio of the dynamic to total load on the utilization. The total and partial utilizations (due to axial force and bending moment) are reported.

	Utilization Factor											
	Member			UF _{API}			UFISO			UF _{NORSOK}		
ID	Location	Туре	TOTAL	Axial	Bending	TOTAL	Axial	Bending	TOTAL	Axial	Bending	
1674	Tar	Leg	0.29	0.26	0.03	0.40	0.33	0.07	0.37	0.30	0.07	
1678	тор	Brace	0.56	0.39	0.18	0.71	0.42	0.29	0.70	0.39	0.30	
43	Middle	Leg	0.47	0.43	0.04	0.50	0.47	0.03	0.48	0.43	0.05	
662	Middle	Brace	0.64	0.59	0.05	0.73	0.66	0.07	0.69	0.62	0.06	
1286	Pottom	Leg	0.49	0.42	0.07	0.61	0.48	0.13	0.58	0.44	0.14	
442	DOUIOIII	Brace	0.41	0.36	0.05	0.49	0.42	0.07	0.49	0.41	0.08	

Table 11-6 Member Utilization Results – Chosen Members

Table 11-7 Ratio of Total Utilization – Chosen Members

	Member		Ratio of Tot	al Utilization
ID	Location	Туре	UF _{API} /UF _{ISO}	UF _{API} /UF _{NORSOK}
1674	Ton	Leg	0.74	0.79
1678	rop	Brace	0.79	0.81
43	Middle	Leg	0.94	0.97
662	windule	Brace	0.88	0.93
1286	Pottom	Leg	0.81	0.85
442	DOILOIII	Brace	0.83	0.83

Results presented in Table 11-6 and Table 11-7 show that member results for the API code check are less conservative than for remaining codes. However, it is an expected difference for the analyzed case (extreme condition for the API run and ULS-b for the ISO and NORSOK), due to a significant increase of the environmental loads for the LRFD method. The difference between the API code check and remaining results is less significant in the middle section of the jacket, where the effect of the environmental load is expected to be lower than at the top and the bottom of the structure.

It can also be seen, that the utilization calculated for the ISO code check is roughly 5% higher than for the NORSOK. The code check formulae are very similar or identical for most of the failure modes in these two codes (ref. Section 3 for details). The difference in calculated utilizations can be caused by different load/action factors applied to the load cases with permanent and variable loads in ISO and NORSOK runs (1.1 vs. 1.0, respectively).

b) Joint Results

The original structure of the platform was designed without overlapping joints. However, due to resizing of the jacket members (described in Section 11.1.1), several members originally designed as non-overlapping were overlapping, causing the joints to fail. The results for these joints were not reported. This was not deemed significant for this study which is not concerned with design optimization but rather only code comparison.

Tables 11-8 through 11-10 present the results summary for the joint utilization. Similar to the member results, the results are presented in three separate tables. Table 11-8 presents the maximum calculated utilization for the base case – the API Code Check run. Only maximum utilizations calculated for the 15 (fifteen) highest utilized joints are reported. Unlike for the member check comparison, the results for the maximum utilized joints for the ISO and NORSOK runs are not presented separately, due to good correlation and similar order of results for all of the runs. More detailed results can be found in Appendix B.

	Loint	AP	API		ng Utilization	Ratio of Total Utilization		
	JUIII	UF _{API} ¹	LC	UF _{ISO}	UF _{NORSOK}	UF _{API} /UF _{ISO}	UF _{API} /UF _{Norsok}	
1	33	2.48	13	2.76	3.02	0.90	0.82	
2	321	1.88	10	2.06	2.25	0.91	0.84	
3	373	1.37	2	1.52	1.58	0.90	0.87	
4	335	1.00	15	1.03	1.07	0.97	0.93	
5	341	0.91	13	0.98	1.02	0.93	0.89	
6	324	0.88	10	0.96	0.97	0.92	0.91	
7	339	0.83	11	0.84	0.87	0.98	0.95	
8	35	0.68	5	0.78	0.8	0.88	0.86	
9	320	0.68	2	0.75	0.78	0.90	0.87	
10	16	0.63	13	0.79	0.82	0.80	0.77	
11	298	0.61	15	0.81	0.84	0.75	0.73	
12	319	0.58	2	0.69	0.72	0.84	0.80	
13	366	0.56	3	0.75	0.78	0.74	0.71	
14	188	0.56	1	0.68	0.72	0.82	0.77	
15	117	0.56	15	0.65	0.67	0.86	0.83	

 Table 11-8 Maximum Joints Utilization Results – Base Case (API)

¹) 33% increase of the allowable stresses included

	Tuble 11 / John Chilzardon Results – Chosen Johns										
	Joint		Utilization Factor								
	Joint			UFAPI			UF _{ISO}		UF _{NORSOK}		
ID	Location	Elev. [m]	TOTAL	Axial	Bending	TOTAL	Axial	Bending	TOTAL	Axial	Bending
22 @ Mem1629	Тор	111	0.29	0.07	0.22	0.29	0.07	0.22	0.30	0.07	0.23
195 @ Mem728	Middle	72.3	0.46	0.44	0.02	0.51	0.49	0.02	0.54	0.52	0.02
298 @ Mem432	Bottom	2.7	0.61	0.55	0.07	0.81	0.75	0.06	0.84	0.77	0.07

Table 11-9 Joint Utilization Results – Chosen Joints

Table 11-10 Ratio of Total Utilization – Chosen Joints

Me	mber	Ratio of Total Utilization				
ID Location		UF _{API} /UF _{ISO}	UF _{API} /UF _{NORSOK}			
22 @ Mem1629	Тор	1.02	0.98			
195 @ Mem728	Middle	0.90	0.85			
298 @ Mem432	Bottom	0.75	0.73			

These results indicate that for this particular platform, the API calculated joint utilizations are lower than those predicted by the ISO and NORSOK codes by about 10% for the highest loaded joints (UF greater than approximately 0.7). Also the joint utilizations for near top section of platform appear to be better than that for middle and bottom section joints.

11.2 Floater - SPAR

11.2.1 Introduction

The main purpose of this case study is to compare the strength utilizations of the structure of the floater calculated in accordance with the different design codes. The Client had requested DNV to use a SPAR model which is a floater type commonly used by operators in the Gulf of Mexico. A functional FE model of an existing spar platform installed in the Gulf of Mexico waters was made available for use in this study through BOEMRE with the full cooperation and assistance from both the Operator and the Designer. The main focus of the work was directed towards the global strength analysis (yield and buckling checks) of the hard tank structure. Other components of the structure such as the truss, soft tank and topsides and aspects of the structural design related to local design and fatigue strength were not included in the Scope of Work.

It should be noted that although the model was developed by the Designer in the FEED phase of the project and may not represent the final configuration of the structure, it was deemed to be satisfactory for the purpose of this code comparison study. It is realized that due to modeling simplifications, the calculated utilizations for several elements of the structure exceeded allowable limits. Such results were reported herein 'as is' without any special consideration or further modification of the model (e.g., by local reinforcement of the critical connections). These aspects were addressed as usual in the detail design stage.

The following standards were used as basis for this comparison:

- API 2FPS and API 2T
- ISO 19904-1
- NORSOK N-004/N-001

The main difference between the API and the other two standards is the design format. API is employing the WSD methodology, whereas ISO and NORSOK adopt the limit state design format. Due to this basic difference, the analysis setup (load combination) and the post-processing needed to be performed separately. The NORSOK N-004 (Design of steel structures) does not include special design provisions for SPARs, as it does for other types of floaters. However, the generic action and material factors recommended for steel structures in the N-001 are identical with those given in the ISO requirements. Therefore the results for these two codes will be identical for the ULS assessment. Furthermore, the ISO 19904-1 provides guidance for a WSD based analyses as an alternative to the LRFD design format. In such a case ISO 19904-1 recommends the use of RCS (Recognized Classification Society) allowable utilization factors. Considering the basic usage factor for the extreme loading conditions recommended in the DNV OS C-201, the allowable stress limit is identical to API WSD requirements.

11.2.2 Analysis Methodology

The global performance and strength analysis of a SPAR platform is a complex task, with requirements to analyze several loading conditions representing the most unfavorable realistic load combinations. In the current analysis several simplifications were made in order to limit the Scope of Work to a manageable level within available resources. Therefore, only one extreme loading condition was analyzed.

The global response of the SPAR composed of two evenly important parts. These are caused by the wave frequency and the low frequency loading conditions. In the original design analysis the Designer computed the response of the platform in two separate steps:

- a frequency domain analysis in WADAM for the wave frequency part, and
- a time domain analysis in MULTISIM for the low frequency forces

In the current study, DNV had undertaken a simplified approach where the results for the low frequency part reported by the Designer (i.e. pitch angle due to combined current and wind action) were combined with the results of the independent wave frequency analysis performed by DNV. To verify this approach the results of DNV analysis were compared with the results reported by the Designer. The comparison yielded a very close correlation between the results of these two analyses. Figure 11-3 presents side-by-side graphic comparison of the calculated global von Mises stress for one combined (static + dynamic) result case.

Figure 11-3 Comparison of the Designer's (left) and DNV's (right) Global Stress Results, (ksi, Nodal Von Mises Stress, 100 year Hurricane)

a) Hydrodynamic Analysis

The hydrodynamic wave load analysis was carried out using the 3D potential theory program SESAM WADAM, which calculates RAO's for motions and loads in long crested regular waves. WADAM is a general purpose hydrodynamic analysis program for calculation of wave loading and wave induced responses of fixed and floating marine structures with zero or low forward speed. WADAM computations take place in the frequency domain.

Two types of calculations were carried out using WADAM:

- Hydrostatic calculations, in which the hydrostatic and inertia properties of the structure are calculated, together with the loading from weight and buoyancy. This loading is important for equilibrium checking, and the static load must also be included in the subsequent structural analysis.
- Load calculations, in which the detailed pressure distribution on an element level is calculated. These pressures are transferred to the structural FEM model for subsequent quasi-static structural analysis. Mapping of the hydrostatic and dynamic pressure on the structural model is shown in Figure 11-4.

In this study only one environmental scenario, the extreme 100-yr hurricane condition (ULS-b for the LRFD), and one mass distribution were analyzed. The draft for this condition (provided by the Designer) was 153.9 m.

The panel and mass models provided by the Designer were re-used in the analysis. In the WADAM analysis the SPAR was analyzed as a free floating body, without considering the coupling effect of the mooring lines and risers on the spar motion response. It is assumed that this simplification leads to more conservative results; however this effect is not expected to be significant.

It should be noted that DNV did not perform a global performance analysis as a part of this study. Instead, the design wave selection and headings from the original Designer's analysis were used. Table 11-11 presents the design wave selection for analyzed cases. The analyzed wave headings with reference to the platform coordinate system are shown in Figure 11-1.

Design Wave Case	Wave Amplitude [m]	Wave Period [s]
Max Shear	10.2	12
Max Moment	11.1	14
Max Axial	4.3	20

Table 11-11 Design Waves for 100-year hurricane

Figure 11-4 Static and Dynamic Pressure Distribution on the Structure

Figure 11-5 Analyzed Wave Headings

b) Structural Analysis

Structural analysis limited in this comparison study to the hard tank structure was performed to verify the global strength of the SPAR. In the analyzed configuration the SPAR model consists of the hard and soft tanks and the truss section with two (2) heave plates. The 3-level topside structure is supported on the hard tank by four (4) jacket legs. Structural integrity was checked with respect to yield and buckling. Yield checks are performed based on membrane von Mises stress (element average), checked against allowable stress limits specified in the compared standards. The standards allow using the rules of RCS for the buckling calculations; therefore for simplicity the buckling checks were performed in accordance with DNV RP-C201. In the current study no consideration was given to the code checking of the beam members in the truss section since beam utilization formulae were compared in the fixed structure case study.

The global structural model was generated using the pre-processor Patran PRE. The super-element technique was utilized; five super-elements were assembled using PRESEL (see Figure 11-6). Decks, bulkheads and web frames were modelled using 4-node shell elements. Flanges of web frames were modelled using 2-node beam elements. Stiffeners were also modelled with 2-node beam elements with eccentricity. Mesh size was based on the stiffener spacing (one element between stiffeners).

A steel density of 7.85 t/m³ with a Poison's ratio of 0.3 and a Young's modulus of 2.1×10^5 MPa was applied to the structural model. The yield strength of the structural steel is 345 MPa.

The rigid body motions of the model were restrained by means of fixing translations in the x, y and z directions (pinned) for the nodes at the fairlead locations (9 nodes around perimeter of the hard tank, at elevation 110m ABL). The sum of the reaction forces was checked and confirmed to be similar to the mooring line forces reported by the Designer.

Following loads were applied to the structural model:

- 12 Gravity acceleration
- 13 Static pressure (on the outer shell and the moon pool bulkheads)
- 14 Riser loads (SCR and TTR)
- 15 Tilted gravitational acceleration (corresponding to 6.6° low frequency pitch angle)
- 16 Dynamic wave loads (pressures and inertia loads from WADAM analysis)

The local effect of the wind and current loads on the hard tank structure is considered negligible compared to extreme wave loading, therefore these loads were not applied to the model directly. The global effect of the current and wind loads on the behaviour of the platform (i.e. inclination) was implemented in the analysis by applying tilted gravitational acceleration.

The action factors presented in Table 2-1 were applied to the ISO/Norsok (LRFD) runs. The utilization of the structure was calculated based on the recommended for the ULS limit state resistance (material) factor γ_M =1.15.

Table 11-12 Action Factors Applied to the ULS-b Limit State					
Action Category					
Permanent (G)	Variable (Q)	Environmental (E)			
1.0	1.0	1.3			

Table 11-13 below presents API and ISO recommended usage factors applicable to the extreme loading condition.

Table 11-13 Usage Factors Applied to Extreme 100 yr Hurricane Loading Condition

	API	ISO
Usage Factor	$\frac{1}{1.67} \cdot 1.33$	0.8*

*) Based on DNV OS-C201

Figure 11-6 Structural Model Overview

11.2.3 Results a) Yield Check

A yield check was performed based on membrane von Mises stresses (element average). Stresses induced by each complex wave load case were combined with the static load cases. These combined cases were scanned in order to find the maximum von Mises stress for each element along all wave cases. The results are presented for three (3) panels for each of the four (4) regions of the hard tank (defined by the distance between watertight decks): outer shell, radial bulkhead and center well (moonpool) bulkhead.

Two sets of the results are reported – for the elements with maximum von Mises stress and for the elements in the centre of each of the panels. The maximum stresses indicate the local stress concentrations (caused by the modelling simplifications or lack of the local reinforcements added to the structure in the detail engineering phase of the project) and may not represent the stress level in the actual structure. Simultaneously, the stress level for the elements closer to the geometric centre of the panel are governed by the global and local loads on the structure, and are not significantly impacted by the local modelling approximations.

Table 11-14 and Table 11-15 present result of the comparison of the von Mises stresses. It can be seen, that the utilization calculated based on the maximum observed stress is slightly higher for the LRFD runs (about 10%). Comparison of the utilizations calculated based on the stresses in the middle of the panel yielded close correlation between the results for WSD and LRFD utilizations.

It is worth mentioning, that the comparison is based on one loading condition only – extreme 100-yr hurricane for the GOM (ULS-b for the LRFD method) and is only reflective of the magnitudes of the static and dynamic loadings on this structure.

u		WSD (API & ISO)		LRFD (ISO &	– ULS-b z Norsok)	Ratio of Utilization	Stress Location		
Regio	Panel	Stress	UF _{WSD}	Stress	UF _{LRFD}	UF _{WSD} / UF _{LRFD}	Elev. (ABL)	Description	
		[Mpa]	[•]	[Mpa]	[•]		[m]		
	Radial Bhd	251	0.91	260	0.87	1.05	93.7	Intersection with OS	
ş 4	Moonpool Bhd	205	0.74	212	0.71	1.04	88.7	Moonpool CL	
Je 3-	OS	577	2.09	683	2.28	0.92	108.0	Radial bulkhead @ Deck 4	
	Radial Bhd	380	1.38	442	1.47	0.94	108.7	Intersection with OS	
ù ck	Moonpool Bhd	127	0.46	147	0.49	0.94	110.9	Moonpool corner	
De 4	OS	409	1.48	486	1.62	0.91	108.9	Radial bulkhead @ Deck 4	
	Radial Bhd	161	0.58	201	0.67	0.87	128.5	Intersection with OS	
e çk	Moonpool Bhd	88	0.32	101	0.34	0.94	138.4	Moonpool corner	
De 5-	OS	170	0.62	209	0.70	0.89	128.5	Radial bulkhead @ Deck 5	
k.	Radial Bhd	411	1.49	485	1.62	0.92	154.7	Intersection with OS	
)ec]	Moonpool Bhd	105	0.38	118	0.39	0.97	168.7	Moonpool CL	
	OS	408	1.48	477	1.59	0.93	154.7	Radial bulkhead	

Table 11-14 Maximum	Von Mises Stresse	es Reported for Analyzed Panel	ls
		is Reported for Amaryzed Fane	10

Table 11-15 Von Mises Stress for the Centre of Analyzed Panels

gion	Panel	WSD (API & ISO)		LRFD (ISO &	– ULS-b Norsok)	Ratio of Utilization	Elev. (ABL)			
Reş	I and	Stress		Stress		UF _{WSD} / UF _{LRFD}				
				[mpa]	[•]	1.02				
r k	Radial Bhd	155.1	0.56	164	0.55	1.02				
Decl 3-4	Moonpool Bhd	114.4	0.41	119	0.40	1.03	101.0			
	OS	126.2	0.46	133.9	0.45	1.02				
Deck 4-5	Radial Bhd	107.1	0.39	126.9	0.42	0.93				
	Moonpool Bhd	77.3	0.28	82.7	0.28	1.00	118.8			
	OS	140.1	0.51	155.7	0.52	0.98				
k	Radial Bhd	101.1	0.37	120.6	0.40	0.93				
)ec] 5-6	Moonpool Bhd	74.5	0.27	85	0.28	0.96	138.5			
D	OS	103.4	0.37	119	0.40	0.93				
K	Radial Bhd	102.7	0.37	110.8	0.37	1.00				
ecł 6-7	Moonpool Bhd	71.4	0.26	90.1	0.30	0.87	161.2			
Ι	OS	53.6	0.19	69	0.23	0.83				

Where:

$$UF_{WSD} = \frac{\sigma_{V-M}}{\left(\frac{\sigma_{Y}}{1.67}\right) \cdot 1.33} \qquad \qquad UF_{LRFD} = \frac{\sigma_{V-M}}{\left(\frac{\sigma_{Y}}{1.15}\right)} \qquad (11.1a) \qquad \qquad (11.1b)$$

b) Buckling Check

A buckling check was performed based on the membrane component stresses (element average). The DNV RP C-201 /-/ was used to calculate the buckling utilization of the panels. The flat panel formulations were used for all panels, including outer shell plate, which is acceptable considering large D/t ratio for the curved panels (D/t > 1400). The comparison focuses on the stiffened panel buckling, exclusive of the girder checks.

The results are presented in Table 11-16 and Table 11-17. It can be seen, that the buckling checks for the plate for the WSD runs indicate higher utilization of the panels. The results for the stiffeners are very similar for both runs.

DN	V-RP-C201		Plate	Plate		Stiffener		Stresses				Unity Check	
	Oct. 2010	Breadth	Length	Thickness	[ype	Spacing	X	Y	Shear	Pressure	Utilization	Utilization	
u		S	L	Т		s	σχ	σγ	$ au_{XY}$	P _{HYD}	η_{PLATE}	η_{STIFF}	
Regio	Panel	m	m	mm		m	MPa	MPa	MPa	MPa	-	-	
4	Radial blk	8.05	1.98	21	HP370x 13	0.75	-55	-122	65	0.000	0.56	0.63	
eck 3.	Moonpool blk	14.02	1.98	24	HP340x 12	0.79	-40	-115	30	0.504	0.45	0.60	
D	Outer shell	28.21	1.98	23	HP400x 14	0.76	-55	-98	70	0.543	0.54	0.64	
Ś	Radial blk	8.05	1.98	20	HP370x 13	0.75	-48	-115	51	0.000	0.48	0.56	
eck 4	Moonpool blk	14.02	1.98	21	HP340x 12	0.79	-37	-92	22	0.321	0.37	0.48	
D	Outer shell	28.21	1.98	21	HP340x 12	0.76	-60	-142	28	0.379	0.48	0.71	
ę	Radial blk	8.05	1.98	15	HP280x 12	0.75	-39	-99	39	0.000	0.40	0.55	
eck 5-	Moonpool blk	14.02	1.98	16	HP260x 10	0.79	-30	-79	19	0.119	0.28	0.48	
D	Outer shell	28.21	1.98	20	HP300x 12	0.76	-48	-99	16	0.185	0.33	0.50	
۲.	Radial blk	8.05	2.13	15	HP280x 12	0.75	-14	-75	55	0.000	0.43	0.46	
eck 6-	Moonpool blk	14.02	2.13	15	HP260x 10	0.79	-15	-26	23	0.000	0.17	0.16	
D	Outer shell	28.2	2.13	20	HP280x 12	0.76	-15	-75	67	0.000	0.49	0.48	

Table 11-16 Results of the Buckling Check – API WSD Run

BOEMRE TA&R No. 677
FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

DN	V-RP-C201		Plate		Stiffener		Stresses				Unity Check	
	Oct. 2010	Breadth	Length	Thickness	Jype	Spacing	X	Y	Shear	Pressure	Utilization	Utilization
u		S	L	Т		s	σχ	σγ	$ au_{XY}$	P _{HYD}	η_{PLATE}	η _{stiff}
Regio	Panel	m	m	mm		m	MPa	MPa	MPa	MPa	-	-
4	Radial blk	8.05	1.98	21	HP370x 13	0.75	-62	-141	73	0.000	0.51	0.71
eck 3.	Moonpool blk	14.02	1.98	24	HP340x 12	0.79	-48	-123	31	0.504	0.42	0.61
Q	Outer shell	28.21	1.98	23	HP400x 14	0.76	-59	-129	68	0.557	0.51	0.71
Ń	Radial blk	8.05	1.98	20	HP370x 13	0.75	-54	-128	45	0.000	0.39	0.56
eck 4.	Moonpool blk	14.02	1.98	21	HP340x 12	0.79	-44	-96	24	0.321	0.34	0.47
Q	Outer shell	28.21	1.98	21	HP340x 12	0.76	-62	-157	30	0.398	0.43	0.72
9	Radial blk	8.05	1.98	15	HP280x 12	0.75	-45	-106	50	0.000	0.37	0.58
eck 5.	Moonpool blk	14.02	1.98	16	HP260x 10	0.79	-35	-86	26	0.119	0.25	0.49
Q	Outer shell	28.21	1.98	20	HP300x 12	0.76	-63	-24	17	0.205	0.32	0.57
Ŀ	Radial blk	8.05	2.13	15	HP280x 12	0.75	-16	-59	64	0.000	0.36	0.41
eck 6.	Moonpool blk	14.02	2.13	15	HP260x 10	0.79	-15	-24	40	0.000	0.21	0.23
D	Outer shell	28.2	2.13	20	HP280x 12	0.76	-8	-74	50	0.000	0.32	0.37

11.3 Summary

API joint check utilizations for the fixed platform case study are about 10% lower than ISO results and 18% lower than NORSOK values. Therefore the NORSOK joints would be significantly more conservative in comparison with ISO and API. This is a conclusion relevant to the case study that may not be generalized without further evaluations.

The Spar case study indicates that the yield check utilization calculated based on the maximum observed hull stress is slightly higher for the ISO/NORSOK LRFD (about 10%) compared to the API WSD results. The buckling checks for the plate for the WSD runs indicate higher utilizations (about 10%) of the panels while the results for the stiffeners show that the LRFD gives higher utilizations (also about 10%) than the WSD.

12 CONCLUSIONS AND RECOMMENDATIONS

This study covers an extensive scope of work comparing API, ISO, and NORSOK structural standards currently in use for design, construction, installation, and in-service inspection of fixed and floating offshore structures with emphasis on application to the US Gulf of Mexico and West Coast. The following salient conclusions are made from the work:

- 1. The design environmental loads such as wind, wave, and current depend on geographical locations. In absence of site-specific data, regional information is defined in all three codes that give minimum requirements of the extreme environmental conditions. ISO 19902 adopts environmental criteria proposed by API for the Gulf of Mexico and by NORSOK for the North Sea.
- 2. For snow and ice loading, NORSOK N-003 and ISO 19901-1 provide more specific information compared to API RP 2A. For earthquake; ISO 19902 and ISO 19901-2 give more comprehensive design guidelines when compared with API or NORSOK standards.
- 3. API RP 2T is more comprehensive than RP 2A in defining the loads and load combinations due to the sensitivity of the Tendon Leg Platform with regards to its payload.
- 4. Both API RP 2A and 2T utilize WSD approach for the design of the structure. Notably, the RP 2T 3rd Edition (latest) specifies the limit states design approach for the tendon design which was not the case in the previous editions of the document.
- 5. The API RP 2FPS 1st Edition issued in 2001 for GOM floating production systems refers to API RP's 2A and 2T for the definition of the environmental criteria and guidance on load conditions.
- 6. Wave kinematics factor is similar in the three standards varying, e.g.; from 0.85 to 0.95 for tropical storms. Marine growth is dependent on the regional conditions with about double the marine growth required in the North Sea compared to the GOM. The same drag and inertia coefficients are specified across the three codes. The wind spatial coherence is the same in API and ISO but is more severe in NORSOK.
- 7. With regards to deck clearance requirements, it is noted that all three codes require 1.5m (5 ft) air gap above the 100-year wave crest elevation. The ISO 19902 gives more details on how to calculate the deck elevation and has an additional criterion of 30% of wave crest elevation as governing clearance if greater than the 1.5m. The NORSOK N-003 and N-004 require a positive air gap for the 10,000 year wave crest in addition to the 1.5m above the 100 year wave crest requirement.
- 8. The load/action factors are similar in 2A LRFD and ISO 19902. The API RP 2A WSD, API RP 2A LRFD, ISO 19902 and NORSOK N-004 provisions for checking the adequacy of tubular members are similar in that all four codes give formulations for each load effect type acting alone and for load effects acting in combination.
- 9. API allows simplified fatigue calculations only for Category L-3 template type platforms that are constructed of notch-tough ductile steels, have redundant inspectable structure, and have natural period of less than 3s or for preliminary design of all structure categories in water depth up to 400 ft (122m). NORSOK refers to DNV-RP-C203, Section 5 for details of the methodology and the allowable stress range as function of the Weibull shape parameter and

applicable fatigue curve (depending on the joint detail and stress field configuration) for 20 years' service life (10^8 cycles).

- 10. Detail fatigue assumptions, loading definitions, hot spot stress range calculation, stress concentration factor formulas, S-N curves for tubular joints, and required DFF values are specified in all three codes. In addition, details of the spectral analysis, utilization of fracture mechanics, and fatigue life improvement techniques are also compared. The requirements are quite similar.
- 11. With regards to the safety related to pile design, code requirements and recommendations are similar in the three standards, and the choice of standard will not therefore be decisive. No calibration of safety factors towards probability of failure is documented as background for the safety factors given in the standards. A small structure with few legs/piles has less redundancy than a structure with many legs and piles and correspondingly a higher probability of failure. The designer's choice of relevant pile capacity calculation method and of related soil shear strength parameters is more important for the overall safety related to pile foundation. Effects not normally accounted for in pile design may have large influence on safety, such as ageing effects and effects of cyclic loading.
- 12. The API RP 2A (WSD) is the main document where specific guidance with regards to the inservice inspection scope and frequency for fixed platforms is available. In-service inspection requirements for floating production units (2FPS) and tension leg platforms (2T) are also given but at a higher level than 2A. The ISO approach to in-service inspection requirements adopts the Structural Integrity Management (SIM) methodology and also applies RBI procedures. NORSOK presents only high level requirements regarding in-service inspection program.
- 13. The assessment criteria in API RP 2A Section 17 allows the use of reduced environmental criteria. ISO 19902 does not have reduced criteria but allows local damage provided reserve strength is verified. NORSOK does not allow any degradation and requires existing structures to be able to resist ULS and ALS conditions at same safety levels as for new structures.
- 14. For design against fire and blast, API RP 2A charts the assessment process in the form of six main tasks and three risk levels utilizing the ALARP principle and assessing the consequences in a structured manner. In ISO 19902 hazards are grouped into three main groups according to a probability of occurrence or return period of being exceeded. NORSOK N-001, N-004 and N-006 state that the structure shall be ALS checked for the design accidental actions defined in the risk analysis recommended in the standards. With regards to ship collision ALS design, NORSOK gives the most comprehensive guidance of the three codes.
- 15. The details of the requirements for temporary conditions in API RP 2A are given in Sections 2.4 and 12. Clauses 8 and 22 of ISO 19902 provide the LSD methods for temporary condition design. NORSOK N-004 Clause K.4.4.6 states that transportation and installation design and operation shall comply with the requirements given in NORSOK J-003. It is noted that NORSOK J-003 (1997) requirements have been completely incorporated in the more recent ISO 19901-6 "Marine Operations" issued in 2009. Therefore, the comparison made here is actually also a comparison between API and ISO, and demonstrates that the three codes are similar with different level of guidance and some minor quantitative differences.

- 16. Seismicity is not normally a design issue in the North Sea. Therefore, Seismic analysis comparisons are herein focused mainly on ISO and API requirements. The structure is designed for two levels of earthquakes in API and ISO: a) strength Level Earthquake (SLE) or Extreme Level Earthquake (ELE) corresponding to 100 200 year return period with stress not exceeding yield, and b) Ductility Level Earthquake (DLE) or Abnormal Level Earthquake (ALE) with 1000-5000 year return with stress allowed to exceed yield leading to damage but without collapse.
- 17. The fixed offshore platform design case study showed that design environmental criteria in the three codes are based on similar reliability analyses and definition of probability of failure. However no details are given in the standards regarding the underlying assumptions employed in these analyses. Some differences exist in defining the load combinations. Applying the load recipes in the three standards to a case study structure in the GOM indicated that similar base shear and over turning moment values are predicted for the same 100-yr extreme environmental condition.
- 18. Member utilization comparison indicates that both ISO and NORSOK give very conservative formulation for members with cone transitions compared to API. Notwithstanding cone checks, member results for the API code check were more conservative with up to 39% higher utilization than the ISO and 53% higher than NORSOK results. One reason may be that API recommends the use of a 0.8 buckling factor brace members compared to 0.7 recommended in ISO and NORSOK. The ISO and NORSOK member utilizations are significantly higher than API values (more than double) due to cone transition formulations adopted by these two codes.
- 19. API joint check utilizations for the fixed platform case study are about 10% lower than ISO results and 18% lower than NORSOK values. Therefore the NORSOK joints would be significantly more conservative in comparison with ISO and API.
- 20. The Spar case study indicates that the yield check utilization calculated based on the maximum observed hull stress is slightly higher for the ISO/NORSOK LRFD (about 10%) compared to the API WSD results. The buckling checks for the plate for the WSD runs indicate higher utilizations (about 10%) of the panels while the results for the stiffeners show that the LRFD gives higher utilizations (also about 10%) than the WSD.

The following recommendations are also made:

- 1. A more comprehensive comparison of the principles and methodology employed in arriving at the action/load factors or safety factors in LRFD and WSD methodologies are recommended.
- 2. More case studies with more in depth specific calculations would add considerable value to the comparisons. Further analysis of the results from the case studies performed herein could yield better understanding of specific code differences.
- 3. Case studies for a TLP and an FPSO are commended.

- 4. A venue where the results from this work are presented and experts are invited to participate would be most valuable. API and ISO committees could be viable options for such a discussion. Discussion of results with operators, designers, regulators and other stakeholders is encouraged.
- 5. Each section of this report could be expanded into an own study. It is recommended to have similar studies carried out on each specialized topic involving industry experts.
- 6. More case studies for fixed and floating structures should be carried out. Also the case studies performed herein could benefit from additional parametric and sensitivity analyses.
- 7. Both ISO 19902 and NORSOK N-003 require very strict air gap compared to existing API requirements. This may be because the platforms in the North Sea are not evacuated during storms. However the question of the air gap still deserves further assessment for GOM structures even with the increased criteria given in the upcoming API RP 2MET 1st Edition and API RP 2A 22nd Edition.
- 8. The degree of conservatism or lack of same between API and ISO/NORSOK member cone unity check formulations (with API predicting much lower member utilizations by a factor of more than 2.0) deserves further evaluation.
- 9. The question of reduced assessment criteria for existing platforms compared to criteria for new designs should be further examined considering risk and reliability principles. New API RP 2SIM and ongoing RBI JIP work are efforts in this direction.
- 10. The comparison performed herein considered only the current (at time of contract award in late 2010) editions of the standards. It is recommended to update the study by incorporating the contemplated significant updates in API, ISO and NORSOK standards.

13 REFERENCES

- /1/ Gerhard Ersdal (2005). "Assessment of Existing Offshore Structures for Life Extension". Doctorial Thesis, University of Stavanger.
- B. Chang and B.-F. Peng (2005). "Comparison of ISO and API Seismic Design Guidelines Using 3 Existing Offshore Platforms". OTC paper 17285.
- /3/ N.S. Potty, Z. Nizamani and A.B. Idrus (2010). "Strength of Tubular Members Numerical Comparison of API RP 2A to ISO Codes". Proceedings of the Ninth (2010) ISOPE Pacific/Asia Offshore Mechanics Symposium
- /4/ MSL Engineering Limited for the Health and Safety Executive (2000). "Load Factor Calibration for ISO 13819 Regional Annex: Component Resistance". Technology Report 2000/072
- ^{/5/} Bomel Limited for the Health and Safety Executive (2001). "Comparison of Fatigue Provisions in Codes and Standards". Offshore Technology Report 2001/083
- /6/ PAFA Consulting Engineers (2000). C031-002-R Rev2, "Implications for the Assessment of Existing Fixed Steel Structures of Proposed ISO 13819-2 Member Strength Formulations".
- /7/ API RP 2A (WSD) Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design, 21st Edition, December, 2000, with Supplements in December, 2002, September, 2005, and October 2007.
- API RP 2FB Recommended Practice for the Design of Offshore Facilities Against
 Fire and Blast Loading, 1st Edition, April, 2006.
- /9/ API RP 2T Planning, Designing, and Construction Tension Leg Platforms, third edition, July 2010.
- /10/ API RP 2FPS Recommended Practice for Planning, Designing, and Constructing Floating Production Systems, 1st edition, March 2001
- /11/ API Bulletin 2INT-MET Interim Guidance on Hurricane Conditions in the Gulf of Mexico, May 2007
- /12/ API RP 2A (LRFD) Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Load and Resistance Factor Design, 1st edition reaffirmed, May 2003
- /13/ ISO 19900 Petroleum and natural gas industries General Requirements for Offshore Structures, 1st edition, December 2002
- ISO 19901-1 Petroleum and natural gas industries Specific requirements for offshore structures Part 1: MetOcean Design and Operating Conditions, 1st edition, November 2005

- /15/ ISO 19901-2 Petroleum and natural gas industries Specific requirements for offshore structures – Part 2: Seismic Design Procedures and Criteria, 1st edition, November 2004
- /16/ ISO 19901-6 Petroleum and natural gas industries Specific requirements for offshore structures Part 6: Marine Operations, 1st edition, December 2009
- /17/ ISO 19902 Petroleum and natural gas industries Fixed Steel Offshore Structures, 1st edition, December 2007
- /18/ ISO 19904-1- Petroleum and natural gas industries Floating offshore structures Part 1: Monohulls, Semi-submersibles and Spars, 1st edition, November 2006
- ^{/19/} NORSOK Standard N-001 Integrity of Offshore Structures, 7th edition, June 2010
- /20/ NORSOK Standard N-003 Action and Action Effects, 2nd edition, September 2007
- ^{/21/} NORSOK Standard N-004 Design of Steel Structures, 2nd edition, October 2004
- /22/ NORSOK Standard N-006 Assessment of Structure Integrity for Existing Offshore Loadbearing Structures, 1st edition, March 2009
- /23/ http://www.texaspelagics.com/GOMocean.html
- /24/ DNV-RP-C203, "Fatigue Design of Offshore Steel Structures", April 2010.
- /25/ DNV-RP-C206, "Fatigue Methodology of Offshore Ships", October 2010.
- /26/ DNV CN 30.7, "Fatigue Assessment Of Ship Structures", June 2010.
- /27/ NORSOK Standard N-005 Condition Monitoring of Loadbearing Structures, Rev. 1, December, 1997.
- ^{/28/} DNV-RP-C201, "Buckling Strength of Plated Structures", October 2010
- /29/ DNV-OS-C101, "Design of Offshore Structures, General (LRFD Method)", April 2011
- /30/ Ghoneim, G.A., "Recent Developments in Offshore Codes, Rules and Regulations for E&P Systems", ISOPE-CCC-01, Vancouver, 2008.
- /31/ Ghoneim, G.A., "The Balance between Risk and Reliability for Gulf of Mexico Production Systems", Deep Offshore Technology Conference, Houston, Texas, 2006.
- /32/ API Bulletin 2INT-DG Interim Guidance for Design of Offshore Structures for Hurricane Conditions, May 2007
- /33/ API Bulletin 2INT-EX Interim Guidance for Assessment of Existing Offshore Structures for Hurricane Conditions, May 2007

APPENDIX A: MATHCAD UNITY CHECK SHEETS

A.1 MATHCAD - API RP 2A

DET NORSKE VERITAS

API RP 2A Axial Tension, Bending and Hoop Buckling

Member No. 533, LC752_8, Pos 1.0

 $\label{eq:linear_line$

INPUT DATA

D := 1066.8	$D = 1.067 \times 10^{3}$	
t := 17.8	t = 17.8	$\frac{D}{t} = 59.933$
F _y := 345	$F_y = 345$	
E := 210000	$E = 2.1 \times 10^5$	
f _t := 0	$f_t = 0$	
f _a := 29		
£ _{by} := 3.93734375	$f_{by} = 3.937$	
f _{bz} := 11.016950	$f_{bz} = 11.017$	
f _h := 29.462564	$f_{h} = 29.463$	
1;= 16178	$1 = 1.618 \times 10^4$	
k := 0.8		
v := 27922.17	$v = 2.792 \times 10^4$	

$$I := \pi \cdot \frac{\left[D^4 - (D - 2 \cdot t)^4\right]}{64} \qquad I = 8.071 \times 10^9$$

area := $\frac{\pi}{4} \cdot \left[D^2 - (D - 2 \cdot t)^2\right] \qquad \text{area} = 5.866 \times 10^4$
 $r := \sqrt{\frac{I}{\text{area}}} \qquad r = 370.931$
 $\frac{k \cdot 1}{r} = 34.892$

3.2.1 - Axial tension, , $f_t \leq F_y$

$$F_{t} := 0.60 \cdot F_{y} \qquad F_{t} = 207$$
$$UR_{3.2.1_{1}} := \frac{f_{t}}{F_{t}} \qquad UR_{3.2.1_{1}} = 0$$

3.2.2 Axial Compression

3.2.2.a Column Buckling

The allowable axial compressive stress, F_{a} , should be determined from the following AISC formula for members with D/t ratio equal to or less than 60:

$$C_{c} := \left(2 \cdot \pi^{2} \cdot \frac{E}{F_{y}}\right)^{\frac{1}{2}} \qquad C_{c} = 109.614$$

$$F_{a} := \left| \frac{\left[1 - \frac{\left(\frac{k \cdot 1}{r}\right)^{2}}{2 \cdot C_{c}^{2}}\right] \cdot F_{y}}{\left(\frac{5}{3} + \frac{3\left(\frac{k \cdot 1}{r}\right)}{8 \cdot C_{c}} - \frac{\left(\frac{k \cdot 1}{r}\right)^{3}}{8 \cdot C_{c}^{3}}\right]} \cdot if \frac{k \cdot 1}{r} < C_{c} \qquad (3.2.2 - 1)$$

$$\frac{12 \cdot \pi^{2} \cdot E}{23 \cdot \left(\frac{k \cdot 1}{r}\right)^{2}} \quad if \frac{k \cdot 1}{r} \ge C_{c} \qquad (3.2.2 - 2)$$

$$F_a = 183.794$$

DNV Reg. No.: EP034373-2011-01 Revision No.: 1 Date : 2012-01-12

3.2.2.b Local Buckling

1. Elastic Load Buckling Stress

$$C_{crt} := 0.3$$

$$F_{xe} := 2 \cdot C_{crt} \cdot E \cdot \frac{t}{D}$$

$$F_{xe} = 2.102 \times 10^{3}$$
(3.2.2 - 3)

2. Inelastic Local Buckling Stress

$$F_{xc} := \begin{bmatrix} F_{y} \cdot \begin{bmatrix} 1.64 - 0.23 \left(\frac{D}{t}\right)^{\frac{1}{4}} \end{bmatrix}$$
 equal or less than F_{xe}
(3.2.2 - 4)
$$F_{y} \quad \text{if } \left(\frac{D}{t}\right) \le 60$$

 $F_{xc} = 345$

3.2.3 Bending

$$F_b := \left(0.75F_y \right) \text{ if } \frac{D}{t} \le \frac{10340}{F_y}$$
 (3.2.3 - 1a)

$$\begin{bmatrix} \left(0.84 - 1.74F_{y}\frac{D}{E \cdot t}\right)F_{y} \end{bmatrix} \text{ if } \frac{10340}{F_{y}} < \frac{D}{t} \le \frac{20680}{F_{y}}$$
(3.2.3 - 1b)
$$\begin{bmatrix} \left(0.72 - 0.58 \cdot F_{y} \cdot \frac{D}{E \cdot t}\right)F_{y} \end{bmatrix} \text{ if } \frac{20680}{F_{y}} < \frac{D}{t} \le 300$$
(3.2.3 - 1c)

 $F_b = 230.694$

Combined bending stress is given by, $f_b = (f_{by}^2 + f_{bz}^2)^{0.5}$

$$f_b := (f_{by}^2 + f_{bz}^2)^{0.5}$$
 $f_b = 11.699$

$$UR_{3.2.3} := \frac{f_b}{F_b}$$
 $UR_{3.2.3} = 0.051$

BOEMRE TA&R No. 677

3.2.4 Shear

3.2.4.a Beam Shear

The maximum beam shear stress, fv , for cylindrical member is:

$$f_V := \frac{v}{0.5 \cdot area}$$
 $f_V = 0.952$ (3.2.4 - 1)

The allowable beam shear stress:

$$F_v := 0.4 \cdot F_y$$
 $F_v = 138$ (3.2.4 - 2)

$$UR_{3.2.4.a} := \frac{f_v}{F_v}$$
 $UR_{3.2.4.a} = 6.899 \times 10^{-3}$

3.2.4.b Torsional Shear

Input the following data:

$$\begin{split} \mathrm{M}_t &\coloneqq 32827.6 & \mathrm{M}_t &= 3.283 \times 10^4 & \text{Torsional Moment} \\ \mathrm{I}_p &\coloneqq \frac{\pi}{2} \cdot \left[\left(\frac{\mathrm{D}}{2} \right)^4 - \left[\frac{(\mathrm{D} - 2 \cdot \mathrm{t})}{2} \right]^4 \right] & \mathrm{I}_p &= 1.614 \times 10^{10} & \text{polar moment of inertia} \end{split}$$

The maximum torsional shear stress, $F_{v_{1}}$ for cylindrical members caused by torsion is:

$$f_{vt} := M_t \cdot \frac{\left(\frac{D}{2}\right)}{I_p}$$
(3.2.4 - 3)

The allowable torsional shear stress:

$$F_{vt} := 0.4 \cdot F_y$$
 $F_{vt} = 138$ (3.2.4 - 4)
 $UR_{3.2.4.b} := \frac{f_{vt}}{F_{vt}}$ $UR_{3.2.4.b} = 7.861 \times 10^{-6}$

3.2.5 Hydrostatic Pressure (Stiffened and Unstiffened Cylinders)

3.2.5.a Design Hydrostatic Head

Input the following data:

- $\rho := 1025$ density of the sea water which may be taken as 1025 kg/m³
- g_:= 9.810 the acceleration due to gravity (m/s²)

DET NORSKE VERITAS

d := 110.000the still water depth to the sea floor (m) $H_{w} := 26$ wave height (m) $T_{p} := 13.9$ wave period (s) z := -95.38the depth of the member relative to still water level (measured positive upwards) (m) $L_{wave} := \frac{g \cdot T_{p}^{-2}}{2 \cdot \pi}$ $L_{wave} = 301.661$ $H_{z} := -z + \frac{H_{w}}{2} \cdot \left[\frac{\cosh \left[2 \cdot \frac{\pi}{L_{wave}} (d + z) \right]}{\cosh \left(2 \cdot \frac{\pi}{L_{wave}} d \right)} \right]$ (3.2.5 - 3)

 $H_z = 98.105$

Hydrostatic Pressure (N/mm²):

$$p_0 := \frac{\rho \cdot g \cdot H_Z}{1000000} \qquad \qquad p_0 = 0.986$$

$$f_{hp} := p_0 \cdot \frac{D}{2 \cdot t}$$
 $f_{hp} = 29.561$

3.2.5.b Hoop Buckling Stress

1. Elastic Hoop Buckling Stress

Length of cylinder between stiffening rings, diaphragms, or end connections:

$$L_{stiff} := 16178$$
 $L_{stiff} = 1.618 \times 10^4$ (Input)

The geomtric parameter, M, is defined as:

$$M := \frac{L_{stiff}}{D} \cdot \left(2 \cdot \frac{D}{t}\right)^{\frac{1}{2}} \qquad M = 166.031$$

The critical hoop buckling coefficient C_h includes the effect of initial geometric imperfections within API Spec 2B tolerance limits.

$$\begin{split} C_{\mathbf{h}} &:= & 0.44 \cdot \frac{t}{D} \quad \text{if } M \geq 1.6 \cdot \frac{D}{t} \\ & 0.44 \cdot \frac{t}{D} + 0.21 \cdot \frac{\left(\frac{D}{t}\right)^3}{M^4} \quad \text{if } 0.825 \cdot \frac{D}{t} \leq M < 1.6 \cdot \frac{D}{t} \\ & [0.736 \cdot (M - 0.636)] \quad \text{if } 3.5 \leq M \leq 0.825 \cdot \frac{D}{t} \\ & [0.755 \cdot (M - 0.559)] \quad \text{if } 1.5 \leq M < 3.5 \\ & 0.8 \quad \text{if } M < 1.5 \end{split}$$

$$C_{h} = 7.342 \times 10^{-3}$$

Elastic hoop buckling stress:

$$F_{he} := 2 \cdot C_h \cdot E \cdot \frac{t}{D} \qquad \qquad F_{he} = 51.449$$

2. Critical Hoop Buckling Stress

The material yield strength relative to the elastic hoop buckling stress determines whether elastic or inelastic hoop buckling occurs and the critical hoop buckling stress, F_{hc} , is defined by the approriate formula.

Elastic buckling (3.2.5-6)

$$\begin{split} F_{hc} &\coloneqq \quad F_{he} \ \ \text{if} \ \ F_{he} \leq 0.55 \cdot F_y & \text{Elastic Buckling} \\ & \left(0.45 \cdot F_y + 0.18 \cdot F_{he} \right) \ \ \text{if} \ \ 0.55F_y < F_{he} \leq 1.6 \cdot F_y & \text{Inelastic Buckling} \\ & \frac{1.31 \cdot F_y}{1.15 + \left(\frac{F_y}{F_{he}} \right)} & \text{if} \ \ 1.6 \cdot F_y < F_{he} < 6.2 \cdot F_y \\ & F_y \ \ \text{if} \ \ F_{he} > 6.2 \cdot F_y \end{split}$$

$$F_{hc} = 51.449$$

$$F_{hp} := min(F_{hc}, F_{he})$$

 $UR_{3.2.5} := \frac{f_{hp}}{F_{hp}}$
 $UR_{3.2.5} = 0.575$

3.3 Combined Stresses for Cylindrical Members

DNV Reg. No.: EP034373-2011-01 Revision No.: 1 Date : 2012-01-12

DET NORSKE VERITAS

Sections 3.3.1 and 3.3.2 apply to overall member behavior while Sections 3.3.3 and 3.3.4 apply to local buckling.

3.3.1 Combined Axial Compression and Bending

3.3.1.a Cylindrical Members

f _a = 29	Compression Stress due to axial loads
C _{mx} := 0.85	based on Section 3.3.1.d
C _{my} := 0.85	based on Section 3.3.1.d
k = 0.8	
1 _{by} := 1	Actual unbraced length in the plane of bending
1 _{bz} := 1	Actual unbraced length in the plane of bending
r _y := r	Corresponding radius of gyration
r _z := r	Corresponding radius of gyration

Euler stress divided by a factor of Safety

Euler stress divided by a factor of Safety

$$F_{ey} = 888.237$$
 $F_{ez} = 888.237$

$$UR_{3,3,1a} := \begin{cases} \left(\frac{f_a}{F_a} + \sqrt{\frac{f_{by}^2 + f_{bz}^2}{F_b}^2}\right) & \text{if } \frac{f_a}{F_a} \le 0.15 \\ \\ \frac{f_a}{F_a} + \sqrt{\frac{\left(\frac{C_{mx} \cdot f_{by}}{1 - \frac{f_a}{F_{ey}}}\right)^2 + \left(\frac{C_{my} \cdot f_{bz}}{1 - \frac{f_a}{F_{ez}}}\right)^2}}{F_b} \end{cases}$$
(3.3.1 - 3)

 $UR_{3.3.1a} = 0.202$

3.3.2 Combined Axial Tension and Bending

$$UR_{3.3.2} := \frac{f_a}{0.6 \cdot F_v} + \frac{\sqrt{f_{by}^2 + f_{bz}^2}}{F_b} \qquad UR_{3.3.2} = 0.191$$

3.3.3 Axial Tension and Hydrostatic Pressure

3.3.4 Axial Compression and Hydrostatic Pressure

 $\begin{array}{ll} \mathbf{f}_x := \mathbf{f}_a + \mathbf{f}_b + 0.5 \cdot \mathbf{f}_h & \text{should reflect the maximum compressive stress combination} \\ \mathbf{f}_x = 55.431 & \mathbf{f}_a = 29 & \mathbf{f}_b = 11.699 & \mathbf{f}_h = 29.463 \\ \mathbf{F}_{aa} := \frac{\mathbf{F}_{xe}}{\mathbf{SF}_x} & \mathbf{F}_{aa} = 1.259 \times 10^3 \\ \mathbf{F}_{ha} := \frac{\mathbf{F}_{he}}{\mathbf{SF}_{t_h}} & \mathbf{F}_{ha} = 25.724 \end{array}$

$$\begin{split} & \mathrm{SF}_{\mathrm{b}} := \frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{F}_{\mathrm{b}}} & \mathrm{SF}_{\mathrm{b}} = 1.495 \\ & \mathrm{UR}_{3.3.4.1} := \frac{\mathrm{f}_{\mathrm{a}} + 0.5 \cdot \mathrm{f}_{\mathrm{h}}}{\mathrm{F}_{\mathrm{xc}}} \cdot \mathrm{SF}_{\mathrm{x}} + \frac{\mathrm{f}_{\mathrm{b}}}{\mathrm{F}_{\mathrm{y}}} \cdot \mathrm{SF}_{\mathrm{b}} & \mathrm{UR}_{3.3.4.1} = 0.262 \\ & \mathrm{UR}_{3.3.4.2} := \frac{\mathrm{SF}_{\mathrm{h}} \cdot \mathrm{f}_{\mathrm{h}}}{\mathrm{F}_{\mathrm{hc}}} & \mathrm{UR}_{3.3.4.2} = 1.145 \\ & \mathrm{UR}_{3.3.4.3} := \frac{\mathrm{f}_{\mathrm{x}} - 0.5 \cdot \mathrm{F}_{\mathrm{ha}}}{\mathrm{F}_{\mathrm{aa}} - 0.5 \cdot \mathrm{F}_{\mathrm{ha}}} + \left(\frac{\mathrm{f}_{\mathrm{h}}}{\mathrm{F}_{\mathrm{ha}}}\right)^2 & \mathrm{UR}_{3.3.4.3} = 1.346 & \text{when } \mathrm{f}_{\mathrm{x}} > 0.5\mathrm{F}_{\mathrm{ha}} \end{split}$$

If $f_b > f_a + 0.5 f_h$, both UR_{3.3.3.1} and UR_{3.3.4.1} must be less than 1.

4.3 Simple Joints

4.3.1 Validity Range

 $0.2 \le \beta \le 1.0$ $10 \le \gamma \le 50$ $30^{\circ} \le \theta \le 90^{\circ}$ $F_{y} \le 72 \text{ksi}$ $\frac{g_{b}}{2} \ge -0.6 \text{(for K})$

$\frac{g_b}{D} > -0.6(\text{for K Joints})$

INPUT: Basic Geometric Parameters for Simple Tubular Joints

F_{yb} := 345

θ := 49.6°	Brace included angle
g _b := 1058	Gap between braces
t := 22.2	Brace wall thickness at intersection
T _c := 53.3	Chord wall thickness at intersection
d := 853	Brace outside diameter
D := 2560	Chord outside diameter

$\mathbf{A}_{\mathbf{c}} := \frac{\pi}{4} \cdot \left[\mathbf{D}^2 - \left(\mathbf{D} \right)^2 \right]$	$(-2T_c)^2 = 4.197 \times 10^5$	Chord cross sectional area
$\beta := \frac{d}{D}$	$\beta = 0.333$	
$\gamma := \frac{D}{2 \cdot T_c}$	$\gamma = 24.015$	
$\tau := \frac{t}{T_c}$	$\tau = 0.417$	
$\phi := \frac{t \cdot F_{yb}}{T_c \cdot F_y}$	φ = 0.417	
$\frac{g_b}{D} = 0.413$		

4.3.3. Strength Factor Qu

K joint only with positive gap

$$Q_{g1} := \begin{bmatrix} 1 + 0.2 \cdot \left(1 - 2.8 \cdot \frac{g_b}{D}\right)^3 & \text{if } \frac{g_b}{D} > 0.05 = 0.999 & \text{Gap factor} \\ \text{"gap too small" otherwise} \end{bmatrix}$$

$$Q_g := max(1, Q_{g1})$$

 $Q_g = 1$

 ${\rm Q}_{\rm u}$ varies with the joint and load type, as given in Table 4.3-1.

• Q_u for Axial Loads

$$\begin{aligned} q_u \text{ for rotal Locals} & \gamma = 24.015 \\ Q_{u_a1} &\coloneqq (16 + 1.2 \cdot \gamma) \cdot \beta^{1.2} \cdot Q_g \\ Q_{u_a} &\coloneqq \min \left(Q_{u_a1}, 40 \cdot \beta^{1.2} \cdot Q_g \right) & \beta = 0.333 \end{aligned}$$

$$Q_{u_a} = 10.698$$

• Q_u for In-Plane Bending

$$Q_{u_ipb} := (5 + 0.7 \cdot \gamma) \cdot \beta^{1.2}$$
$$Q_{u_ipb} = 5.833$$

• Q_u for Out-Of-Plane Bending

$$Q_{u_opb} := 2.5 + (4.5 + 0.2 \cdot \gamma) \cdot \beta^{2.6}$$

 $Q_{u_opb} = 3.034$

4.3.4 Chord Load Factor Q_f

Q_f is a factor to account for the presence of nominal loads in the chord.

$$Z_{\mathbf{p}} := \frac{1}{6} \cdot \left[\mathbf{D}^3 - \left(\mathbf{D} - 2\mathbf{T}_{\mathbf{c}} \right)^3 \right]$$

Plastic section modulus

$$\begin{split} M_p &:= F_y \cdot Z_p = 1.156 \times 10^{11} & \text{Plastic moment capacity of the chord} \\ P_y &:= F_y \cdot A_c = 1.448 \times 10^8 & \text{Yield axial capacity of the chord} \\ FS &:= 1.6 & \text{Safety factor} \\ P_c &:= -1462340 & \text{Chord axial force} \\ M_{c_ipb} &:= 2472810000 \\ M_{c_opb} &:= -75653000 \\ M_c &:= \sqrt{M_{c_ipb}^2 + M_{c_opb}^2} = 2.474 \times 10^9 \\ \text{AA} &:= \left[\left(\frac{FS \cdot P_c}{P_y} \right)^2 + \left(\frac{FS \cdot M_c}{M_p} \right)^2 \right]^{0.5} & (4.3 - 3) \\ \text{AA} &= 0.038 \end{split}$$

INPUT the following coefficients:

Coefficients depending on joint and load type as given in Table 4.3-2.

$$C_{1_a} := 0.2$$

$$C_{2_a} := 0.2$$

$$C_{3_a} := 0.3$$

$$Q_{f_a} := \left[1 + C_{1_a} \cdot \left(\frac{FS \cdot P_c}{P_y} \right) - C_{2_a} \cdot \left(\frac{FS \cdot |M_{c_ipb}|}{M_p} \right) - C_{3_a} \cdot AA^2 \right]$$

$$(4.3 - 2)$$

$$Q_{f_a} = 0.989$$

$$C_{1_b} := 0.2$$

$$C_{2_b} := 0$$

$$C_{3_b} := 0.4$$

$$Q_{f_ipb} := \left[1 + C_{1_b} \cdot \left(\frac{FS \cdot P_c}{P_y}\right) - C_{2_b} \cdot \left(\frac{FS \cdot M_c_ipb}{M_p}\right) - C_{3_b} \cdot AA^2\right]$$

 $Q_{f_{ipb}} = 0.996$

$$Q_{f_opb} := \left[1 + C_{1_b} \cdot \left(\frac{FS \cdot P_c}{P_y} \right) - C_{2_b} \cdot \left(\frac{FS \cdot M_{c_opb}}{M_p} \right) - C_{3_b} \cdot AA^2 \right]$$
$$Q_{f_opb} = 0.996$$

4.3.2 Basic Capacity

Tubular joints without overlap of principal braces and having no gussets, diaphragms, grout or stiffeners should be designed using the following guidelines.

$$\begin{split} P_{a} &:= Q_{u_a} \cdot Q_{f_a} \cdot \frac{F_{y} \cdot T_{c}^{-2}}{FS \cdot \sin(\theta)} & \text{allowable capacity for brace axial load} \\ P_{a} &= 8.515 \times 10^{6} \\ M_{a_ipb} &:= Q_{u_ipb} \cdot Q_{f_ipb} \cdot \frac{F_{y} \cdot T_{c}^{-2} \cdot d}{FS \cdot \sin(\theta)} & \text{allowable capacity for brace BM} \\ M_{a_ipb} &= 3.987 \times 10^{9} \\ M_{a_opb} &:= Q_{u_opb} \cdot Q_{f_opb} \cdot \frac{F_{y} \cdot T_{c}^{-2} \cdot d}{FS \cdot \sin(\theta)} & \text{allowable capacity for brace BM} \\ M_{a_opb} &:= 2.074 \times 10^{9} \\ \textbf{4.3.6 Strength Check} \\ P &:= 4720646 \end{split}$$

M_{ipb} := 194146000

$$\begin{split} \mathbf{M}_{opb} &\coloneqq -56799000\\ \mathrm{IR} &\coloneqq \left| \frac{\mathbf{P}}{\mathbf{P}_{a}} \right| + \left(\frac{\mathbf{M}_{ipb}}{\mathbf{M}_{a_ipb}} \right)^{2} + \left| \frac{\mathbf{M}_{opb}}{\mathbf{M}_{a_opb}} \right|\\ \mathrm{IR} &= 0.584\\ \left| \frac{\mathbf{P}}{\mathbf{P}_{a}} \right| = 0.554 \qquad \left(\frac{\mathbf{M}_{ipb}}{\mathbf{M}_{a_ipb}} \right)^{2} = 2.371 \times 10^{-3} \qquad \left| \frac{\mathbf{M}_{opb}}{\mathbf{M}_{a_opb}} \right| = 0.027 \end{split}$$

A.2 MATHCAD – ISO 19902

ISO19902 Axial Tension, Bending and Hoop Buckling

Member No. 533, LC752_8, Pos. 1.0

INPUT the following data:

Diameter, D (mm)

Wall thickness, t (mm)

Yield strength, σ_v (N/mm²)

Young's Modulus, E (N/mm²)

Axial tension stress due to factored loads, σ_t (N/mm²)

Axial compression stress due to factored loads, σ_c (N/mm²)

Bending stress due to factored loads about y axis, f_{bv} (N/mm²)

Bending stress due to factored loads about z axis, $\rm f_{bz}(\rm N/mm^2)$

Hoop stress due to factored loads, f_h (N/mm²)

Unbraced length of member for local y axis, Ly (mm)

Unbraced length of member for local z axis, L_z (mm)

Radius of gyration, r (mm)

D := 1066.8	$D = 1.067 \times 10^{3}$	$\mathbf{m}\mathbf{m}$
t := 17.8	t = 17.8	mm
f _y := 345	f _y = 345	$\frac{N}{mm^2}$
E := 210000	$E = 2.1 \times 10^{5}$	$\frac{N}{mm^2}$
$\sigma_{c} \coloneqq 22.4$	$\sigma_c = 22.4$	$\frac{N}{mm^2}$
$\sigma_t := 0$	$\sigma_t = 0$	$\frac{N}{mm^2}$
σ _{by} := 5.1	$\sigma_{by} = 5.1$	$\frac{N}{mm^2}$
σ _{bz} := 11.8	$\sigma_{bz} = 11.8$	$\frac{N}{mm^2}$
L _y := 16178	$L_y = 1.618 \times 10^4$	mm

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$L_z := 16178$$
 $L_z = 1.618 \times 10^4$ mm

Combined bending stress is given by, $\sigma_b = (\sigma_{by}^2 + \sigma_{bz}^2)^{0.5}$

$$\sigma_{b} := \left(\sigma_{by}^{2} + \sigma_{bz}^{2}\right)^{0.5} \qquad \qquad \frac{N}{mm^{2}}$$

13.2.2 Axial tension, $\sigma_{t \le f_t / \gamma_{Rt}}$ (13.2-1)

 $\gamma_{\rm Rt} := 1.05$

$$\mathbf{f}_t := \mathbf{f}_y$$

$$UR_{13.2.2} := \frac{\sigma_t}{\frac{f_t}{\gamma_{Rt}}} \qquad UR_{13.2.2} = 0$$

13.2.3.3 Local buckling

13.2.3.2 Column buckling

INPUT following parameter:

$$L_y = 1.618 \times 10^4$$

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$L_{z} = 1.618 \times 10^{4}$$

$$I := \frac{\pi}{64} \cdot \left[D^{4} - (D - 2 \cdot t)^{4} \right]$$

$$I = 8.071 \times 10^{9}$$

$$Area := \frac{\pi}{4} \cdot \left[D^{2} - (D - 2 \cdot t)^{2} \right]$$

$$Area = 5.866 \times 10^{4}$$

$$r := \sqrt{\frac{I}{Area}}$$

$$r = 370.931$$

Column slenderness parameter:

$$\lambda := \frac{\mathbf{k} \cdot \mathbf{L}_{y}}{\pi \cdot \mathbf{r}} \sqrt{\frac{\mathbf{f}_{yc}}{E}} \qquad \lambda = 0.394 \qquad 13.2 - 7$$

$$\mathbf{f}_{\mathbf{c}} := \begin{bmatrix} \left(1.0 - 0.278 \cdot \lambda^2\right) \cdot \mathbf{f}_{\mathbf{y}\mathbf{c}} \end{bmatrix} \text{ if } \lambda \le 1.34 \qquad 13.2 - 5 \\ \left(\frac{0.9}{\lambda^2} \cdot \mathbf{f}_{\mathbf{y}\mathbf{c}}\right) \text{ if } \lambda > 1.34 \qquad 13.2 - 6 \end{bmatrix}$$

f_c = 330.119

13.2.3.1 General, $\sigma_{\rm c}$ <= $\rm f_{c}$ / $\gamma_{\rm Rc}$ (13.2-3)

$$\sigma_{c} = 22.4$$

 $\gamma_{Rc} := 1.18$
 $UR_{13.2.4} := \frac{\sigma_{c}}{\frac{f_{c}}{\gamma_{Rc}}}$
 $UR_{13.2.4} = 0.08$

13.2.4 Bending, $\sigma_{b} = M/Z_{e} \le f_{b}/\gamma_{Rb}$ (13.2-11)

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\mathbf{f}_{b} := \left(\frac{Z_{p}}{Z_{e}} \cdot \mathbf{f}_{y} \right) \quad \text{if} \quad \frac{\mathbf{f}_{y} \cdot \mathbf{D}}{\mathbf{E} \cdot \mathbf{t}} \leq 0.0517 \tag{13.2 - 13}$$

$$\left[\left(1.13 - 2.58 \cdot \frac{\mathbf{f}_y \cdot \mathbf{D}}{\mathbf{E} \cdot \mathbf{t}} \right) \cdot \frac{\mathbf{Z}_p}{\mathbf{Z}_e} \cdot \mathbf{f}_y \right] \quad \text{if } 0.0517 < \frac{\mathbf{f}_y \cdot \mathbf{D}}{\mathbf{E} \cdot \mathbf{t}} \le 0.1034 \quad (13.2 - 14)$$

$$\left(0.94 - 0.76 \cdot \frac{\mathbf{f}_y \cdot \mathbf{D}}{E \cdot t}\right) \cdot \frac{Z_p}{Z_e} \cdot \mathbf{f}_y \quad \text{if } 0.1 < \frac{\mathbf{f}_y \cdot \mathbf{D}}{E \cdot t} \le 120 \cdot \mathbf{f}_y \quad (13.2 - 15)$$

 $f_b = 391.24$

 $\gamma_{\rm Rb} := 1.05$

partial resistance factor for bending stress

 $\sigma_{\rm b} = 12.855$

$$UR_{13.2.11} := \frac{\sigma_b}{\frac{f_b}{\gamma_{Rb}}} UR_{13.2.11} = 0.034$$

13.2.5.1 Beam shear $\tau_b = 2V/A \le f_v/\gamma_{Rv}$

 $\gamma_{Rv} \coloneqq 1.05$

V_{shear} := 38529

$$f_{v} := \frac{f_{y}}{\sqrt{3}} \qquad f_{v} = 199.186$$

$$UR_{13.2.17} := \frac{\frac{2 \cdot V_{shear}}{Area}}{\frac{f_{v}}{\gamma_{Rv}}} \qquad UR_{13.2.17} = 6.925 \times 10^{-3}$$

13.2.5.2 Torsional shear

$$I_p := \frac{\pi}{32} \cdot \left[D^4 - (D - 2 \cdot t)^4 \right] \qquad \qquad I_p = 1.614 \times 10^{10} \qquad \text{polar moment of inertia}$$

M_{vt} := 41438000

Torsional moment due to factored actions

$$UR_{13.2.19} := \frac{\frac{M_{vt} D}{2 \cdot I_p}}{\frac{f_v}{\gamma_{Rv}}} UR_{13.2.19} = 7.218 \times 10^{-3}$$

13.2.6 Hydrostatic pressure

$\gamma_{fG1} := 1.3$	partial action factor for permanent actions 1, see Table 9.10-1
$\rho_{_{ m W}} \coloneqq 1025$	density of the sea water which may be taken as 1025 kg/m ³
g _c := 9.810	the acceleration due to gravity (m/s ²)
d := 110.000	the still water depth to the sea floor (m)
H _w := 26	wave height (m)
$T_p := 13.9$	wave period (s)
z := -95.38	the depth of the member relative to still water level (measured positive upwards) (m)
$L_{wave} := \frac{g_c \cdot T_p^2}{2 \cdot \pi}$	L _{wave} = 301.661

Effective hydrostatic head (m):

$$H_{z} := -z + \frac{H_{w}}{2} \cdot \frac{\cosh\left[\frac{2 \cdot \pi}{L_{wave}}(d+z)\right]}{\cosh\left(\frac{2 \cdot \pi}{L_{wave}} \cdot d\right)} \qquad H_{z} = 98.105$$

The factored hydrostatic pressure (p, N/mm²) shall be calculated:

$$p := \frac{\gamma_{fG1} \cdot g_c \cdot \rho_W \cdot H_z}{1000000}$$

$$p = 1.282 \qquad \qquad \frac{N}{mm^2} \quad (13.2 - 20)$$

13.2.6.2 Hoop buckling

Tubular members subjected to external pressure shall be designed to satisfy the following condition:

 $\sigma_{h} = pD/2t \le f_{h}/\gamma_{Rh} \quad (13.2-22)$ $\gamma_{Rh} := 1.25$

Hoop stress due to the forces from factored hydrostatic pressure:

$$\sigma_{\mathbf{h}} := \frac{\mathbf{p} \cdot \mathbf{D}}{2 \cdot t}$$
 $\sigma_{\mathbf{h}} = 38.429$ $\frac{\mathbf{N}}{\mathbf{mm}^2}$

Geometric Parameter:

L_r := 16178

the length of tubular between stiffening rings, diaphragms, or end connections

$$\mu := \frac{L_r}{D} \cdot \sqrt{\frac{2 \cdot D}{t}}$$

Elastic critical hoop buckling coefficient Ch:

$$C_{h} := \begin{bmatrix} 0.44 \cdot \frac{t}{D} & \text{if } \mu \ge 1.6 \cdot \frac{D}{t} \\ \begin{bmatrix} 0.44 \cdot \frac{t}{D} + 0.21 \cdot \left(\frac{D}{t}\right)^{3} \cdot \mu^{4} \\ \end{bmatrix} & \text{if } 0.825 \cdot \frac{D}{t} \le \mu < 1.6 \cdot \frac{D}{t} \\ \begin{bmatrix} 0.737 \\ \mu - 0.579 & \text{if } 1.5 \le \mu < 0.825 \cdot \frac{D}{t} \\ 0.80 & \text{if } \mu < 1.5 \end{bmatrix} (13.2 - 28) \\ (13.2 - 29) \\ (13.2 - 30) \end{bmatrix}$$

$$f_{he} := 2 \cdot C_h \cdot \frac{E \cdot t}{D}$$
 $f_{he} = 51.449$ (13.2 - 26)

f_h the representative hoop buckling strength

For tubular members satisfying the out-of-roundness tolerance given in Annex G, f_h shall be determined from:

$$\begin{aligned} \mathbf{f}_{h} &\coloneqq \begin{bmatrix} \mathbf{f}_{y} & \text{if } \mathbf{f}_{he} > 2.44 \cdot \mathbf{f}_{y} & (13.2 - 23) \\ & \begin{bmatrix} 0.7 \cdot \left(\frac{\mathbf{f}_{he}}{\mathbf{f}_{y}} \right)^{0.4} \\ & \mathbf{f}_{y} \end{bmatrix} & \text{if } 0.55 \mathbf{f}_{y} < \mathbf{f}_{he} \le 2.44 \cdot \mathbf{f}_{y} & (13.2 - 24) \\ & \mathbf{f}_{he} & \text{if } \mathbf{f}_{he} \le 0.55 \cdot \mathbf{f}_{y} & (13.2 - 25) \end{aligned}$$

 $f_{h} = 51.449$

The utilization of a member under external pressure shall be calculated:

$$UR_{13.2.31} := \frac{\sigma_{h}}{\frac{f_{h}}{\gamma_{Rh}}}$$
(13.2 - 31)

 $UR_{13,2,31} = 0.934$

13.3 Tubular members subjected to combined forces without hydrostatic pressure

13.3.2 Axial Tension and Bending

Tubular members subjected to combined axial tension and bending forces shall be designed to satisfy the following condition at all cross-sections along their length:

$$UR_{13.3.2} := \frac{\gamma_{Rt} \sigma_t}{f_t} + \frac{\gamma_{Rb} \sqrt{\sigma_{by}^2 + \sigma_{bz}^2}}{f_b}$$
(13.3 - 2)

 $UR_{13,3,2} = 0.034$

13.3.3 Axial Compression and Bending

Tubular members subjected to combined axial compression and bending forces shall be designed to satisfy the following conditions at all cross-sections along their length:

Euler buckling strengths corresponding to the member y- and z-axes, respectively, in stress units:

$$k_{y} := .7 \qquad C_{my} := 0.83$$

$$k_{z} := .7 \qquad C_{mz} := 0.85$$

$$f_{ey} := \frac{\pi^{2} \cdot E}{\left(k_{y} \cdot \frac{L_{y}}{r}\right)^{2}} \qquad f_{ey} = 2.224 \times 10^{3} \qquad (13.3 - 5)$$

$$f_{ez} := \frac{\pi^{2} \cdot E}{\left(k_{z} \cdot \frac{L_{z}}{r}\right)^{2}} \qquad f_{ez} = 2.224 \times 10^{3} \qquad (13.3 - 6)$$

$$UR_{13.3.7} := \begin{bmatrix} 0 & \text{if } p > 0 \\ \\ \frac{\gamma_{Rc} \cdot \sigma_c}{f_c} + \frac{\gamma_{Rb}}{f_b} \cdot \left[\left(\frac{C_{my} \cdot \sigma_{by}}{1 - \frac{\sigma_c}{f_{ey}}} \right)^2 + \left(\frac{C_{mz} \cdot \sigma_{by}}{1 - \frac{\sigma_c}{f_{ez}}} \right)^2 \right]^{0.5} & \text{if } p = 0 \quad (13.3 - 7)$$

 $UR_{13,3,7} = 0$

$$UR_{13.3.8} := \begin{bmatrix} 0 & \text{if } p > 0 \\ \left(\frac{\gamma_{Rc} \cdot \sigma_c}{f_c} + \frac{\gamma_{Rb} \cdot \sqrt{\sigma_{by}^2 + \sigma_{bz}^2}}{f_b} \right) & \text{if } p = 0 \end{bmatrix}$$
(13.3 - 8)

$$U_{13,3,3} := \max(UR_{13,3,7}, UR_{13,3,8})$$
 $U_{13,3,3} = 0$

13.4 Tubular members subjected to combined forces with hydrostatic pressure

13.4.1 General

 $\sigma_q := 0.5 \cdot \sigma_h$ (13.4 - 4) compressive axial stress due to the capped-end hydrostatic actions using the value of the pressure from Equ (13.2-20)

INPUT the following parameters:

 $\sigma_{tc} := 0$ the axial tensile stress due to forces from factored actions $\sigma_{cc} := 22.4$ the axial compressive stress due to forces from factored actions

$$\sigma_{nc} := \begin{bmatrix} (\sigma_q - \sigma_{tc}) & \text{if } \sigma_{tc} < \sigma_q \\ (\sigma_{cc} - \sigma_q) & \text{if } \sigma_{cc} > \sigma_q \end{bmatrix}$$
(13.4 - 5)
(13.4 - 6)

13.4.2 Axial Tension, Bending and Hydrostatic Pressure

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\eta := 5 - 4 \cdot \frac{f_h}{f_y}$$
(13.4 - 11) $\eta = 4.403$
B := $\frac{\gamma_{Rh} \cdot \sigma_h}{f_h}$ (13.4 - 10) B = 0.934

The representive bending strength in the presence of external hydrostatic pressure:

$$f_{bh} := f_b \cdot \left(\sqrt{1 + 0.09 \cdot B^2 - B^{2 \cdot \eta}} - 0.3B \right)$$
 (13.4 - 9)
 $f_{bh} = 175.796$

The representive axial tensile strength in the presence of external hydrostatic pressure:

$$f_{th} := f_{y} \cdot \left(\sqrt{1 + 0.09 \cdot B^{2} - B^{2 \cdot \eta}} - 0.3 \cdot B \right)$$
(13.4 - 8)
$$f_{th} = 155.019$$
$$UR_{13.4.12} := \frac{\gamma_{Rt} \cdot \sigma_{tc}}{f_{th}} + \frac{\gamma_{Rb} \cdot \sqrt{\sigma_{by}^{2} + \sigma_{bz}^{2}}}{f_{bh}}$$
(13.4 - 12)

 $UR_{13,4,12} = 0.077$

13.4.3 Axial compression, bending and hydrostatic pressure

If the maximum combined compressive stress, σ_x , and the representative elastic local buckling strength, f_{xe} , exceed the limits given below ($\sigma_{13.4,17.1} > \sigma_{13.4,17.2}$),

$$\sigma_{13.4.17.1} := \frac{0.5 \cdot f_{he}}{\gamma_{Rh}} \qquad \sigma_{13.4.17.1} = 20.58$$

$$\sigma_{13.4.17.2} := \max \left(\sigma_x, \frac{f_{xe}}{\gamma_{Re}} \right) \qquad \sigma_{13.4.17.2} = 1.782 \times 10^3$$

then Equation (13.4-8) shall also be satisfied (less than or equal to 1)

$$UR_{13.4.18} := \frac{\sigma_{x} - \frac{0.5 \cdot f_{he}}{\gamma_{Rh}}}{\frac{f_{xe}}{\gamma_{Rc}} - \frac{0.5 \cdot f_{he}}{\gamma_{Rh}}} + \left(\frac{\gamma_{Rh} \cdot \sigma_{h}}{f_{he}}\right)^{2}$$
(13.4 - 18)

 $UR_{13.4.18} = 0.88$

$$\mathbf{f_{ch}} \coloneqq \left[\frac{\mathbf{f_{yc}}}{2} \cdot \left[\left(1.0 - 0.278 \cdot \lambda^2 \right) - \frac{2 \cdot \sigma_q}{\mathbf{f_{yc}}} + \sqrt{\left(1.0 - 0.278\lambda^2 \right)^2 + 1.12 \cdot \frac{\lambda^2 \cdot \sigma_q}{\mathbf{f_{yc}}}} \right] \right] \quad \text{if } \lambda \le 1.34 \cdot \sqrt{\left(1 - \frac{2 \cdot \sigma_q}{\mathbf{f_{yc}}} \right)^{-1}} \\ \left(\frac{0.9}{\lambda^2} \cdot \mathbf{f_{yc}} \right) \quad \text{if } \lambda > 1.34 \cdot \sqrt{\left(1 - \frac{2 \cdot \sigma_q}{\mathbf{f_{yc}}} \right)^{-1}} \right]$$

 $f_{ch} = 311.775$

$$UR_{13.4.19} := \frac{\gamma_{Rc} \cdot \sigma_c}{f_{yc}} + \frac{\gamma_{Rb} \cdot \sqrt{\sigma_{by}^2 + \sigma_{bz}^2}}{f_{bh}}$$
(13.4 - 19)

$$UR_{13.4.20} := \frac{\gamma_{Rc} \cdot \sigma_{c}}{f_{ch}} + \frac{\gamma_{Rb}}{f_{bh}} \cdot \left[\left(\frac{C_{my} \cdot \sigma_{by}}{1 - \frac{\sigma_{c}}{f_{ey}}} \right)^{2} + \left(\frac{C_{mz} \cdot \sigma_{by}}{1 - \frac{\sigma_{c}}{f_{ez}}} \right)^{2} \right]^{0.5}$$
(13.4 - 20)

$$UR_{13.4.21} := \frac{\sigma_{x} - 0.5 \cdot \frac{f_{he}}{\gamma_{Rh}}}{\frac{f_{xe}}{\gamma_{Re}} - \frac{0.5 \cdot f_{he}}{\gamma_{Rh}}} + \left(\frac{\gamma_{Rh} \cdot \sigma_{h}}{f_{he}}\right)^{2}$$
(13.4 - 21)

$$UR_{13.4.19} = 0.153 \qquad UR_{13.4.20} = 0.122 \qquad UR_{13.4.21} = 0.88$$
$$U_{m} := \max(UR_{13.4.19}, UR_{13.4.20}, UR_{13.4.21}) \qquad U_{m} = 0.88$$

14. Strength of tubular joints

14.3.1 General

Validity	Range
----------	-------

$0.2 \le \beta \le 1.0$
$10 \le \gamma \le 50$
$30^{\circ} \le \theta \le 90^{\circ}$
$\tau \le 1.0$
$F_y \le 500 - \frac{N}{mm^2}$
$g_b \cdot T_c > -1.2\gamma$

For K-joints

INPUT: Basic Geometric Parameters for Simple Tubular Joints

F _w := 345	Yield strength, chord
F _{vb} := 345	Yield strength, brace
A 49.6°	Brace included angle
g ₁ := 1058	Gap between braces
t := 22.2	Brace wall thickness at intersection
T _c := 53.3	Chord wall thickness at intersection
d := 853	Brace outside diameter
D := 2560	Chord outside diameter

$$\begin{split} A_{c} &:= \frac{\pi}{4} \cdot \left[D^{2} - \left(D - 2T_{c} \right)^{2} \right] = 4.197 \times 10^{5} \\ \beta &:= \frac{d}{D} \qquad \beta = 0.333 \\ \gamma &:= \frac{D}{2 \cdot T_{c}} \qquad \gamma = 24.015 \\ \tau &:= \frac{t}{T_{c}} \qquad \tau = 0.417 \\ \varphi &:= \frac{t \cdot F_{yb}}{T_{c} \cdot F_{y}} \end{split}$$

Chord cross sectional area

14.3.3. Strength Factor Qu

K joint only with positive gap

Q_u varies with the joint and load type, as given in Table 14.3-1.

• Q_u for Axial Loads $Q_{u_a} := (1.9 + 19 \cdot \beta) \cdot Q_{\beta}^{0.5} \cdot Q_g$

 $Q_{u_a} = 10.4$

• Q_u for In-Plane Bending

$$Q_{u_ipb} := 4.5 \cdot \beta \cdot \gamma^{0.5}$$

 $Q_{u_ipb} = 7.348$

• Q_u for Out-Of-Plane Bending $Q_{u_opb} := 3.2 \cdot \gamma^{(0.5 \cdot \beta^2)}$ $Q_{u_opb} = 3.818$

14.3.4 Chord Load Factor Q_f

Q_f is a factor to account for the presence of nominal loads in the chord.

$Z_{\mathbf{p}} \coloneqq \frac{1}{6} \cdot \left[\mathbf{D}^3 - \left(\mathbf{D} - 2\mathbf{T}_{\mathbf{c}} \right)^3 \right]$	Plastic section modulus
$M_p := F_y \cdot Z_p = 1.156 \times 10^{11}$	Plastic moment capacity of the chord
$P_y := F_y \cdot A_c = 1.448 \times 10^8$	Yield axial capacity of the chord
P _c := −13396500	Chord axial force
M _{c_ipb} := -1800220000	Chord bending moment, in-plane bending
M _{c_opb} := 125749000	Chord bending moment, out-of-plane bending
$\lambda_a := 0.03$	
$\lambda_{ipb} := 0.045$	
$\lambda_{opb} := 0.021$	
$\gamma_{Rq} := 1.05$	Partial resisitance factor for yield strength

INPUT the following coefficients:

Coefficients depending on joint and load type as given in Table 14.3-2.

$$\begin{split} & C_{1_a} \coloneqq 14 \\ & C_{2_a} \coloneqq 43 \\ & q_{A_a} \coloneqq \left[C_{1_a} \cdot \left(\frac{P_c}{P_y} \right)^2 + C_{2_a} \cdot \left(\frac{M_{c_ipb}}{M_p} \right)^2 + C_{2_a} \cdot \left(\frac{M_{c_opb}}{M_p} \right)^2 \right]^{0.5} \cdot \gamma_{Rq} \quad (14.3-10) \\ & q_{A_a} = 0.379 \\ & Q_{f_a} \coloneqq \left(1 - \lambda_a \cdot q_{A_a}^{-2} \right) \quad (14.3-9) \\ & Q_{f_a} = 0.996 \end{split}$$

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\begin{aligned} & C_{1_b} := 25 \\ & C_{2_b} := 43 \end{aligned}$$

$$q_{A_b} := \left[C_{1_b} \cdot \left(\frac{P_c}{P_y} \right)^2 + C_{2_b} \cdot \left(\frac{M_{c_ipb}}{M_p} \right)^2 + C_{2_b} \cdot \left(\frac{M_{c_opb}}{M_p} \right)^2 \right]^{0.5} \cdot \gamma_{Rq} \qquad (14.3-10) \\ & q_{A_b} = 0.497 \end{aligned}$$

$$Q_{f_ipb} := 1.0 - \lambda_{ipb} \cdot q_{A_b}^2 \qquad (14.3-9) \\ & Chord \text{ force factor, in-plane bending} \\ & Q_{f_opb} := 1.0 - \lambda_{opb} \cdot q_{A_b}^2 \qquad (14.3-9) \\ & Q_{f_opb} := 1.0 - \lambda_{opb} \cdot q_{A_b}^2 \qquad (14.3-9) \\ & Q_{f_opb} := 0.989 \end{aligned}$$

14.3.2 Basic joint strength

Tubular joints without overlap of principal braces and having no gussets, diaphragms, grout or stiffeners should be designed using the following guidelines.

$$P_{uj} := \frac{F_{y} \cdot T_{c}^{2}}{\sin(\theta)} \cdot Q_{u_{a}a} \cdot Q_{f_{a}a}$$

$$P_{uj} = 1.333 \times 10^{7}$$

$$M_{uj_ipb} := \frac{F_{y} \cdot T_{c}^{2} \cdot d}{\sin(\theta)} \cdot Q_{u_ipb} \cdot Q_{f_ipb}$$

$$M_{uj_ipb} = 7.977 \times 10^{9}$$

$$M_{uj_opb} := \frac{F_{y} \cdot T_{c}^{2} \cdot d}{\sin(\theta)} \cdot Q_{u_opb} \cdot Q_{f_opb}$$

$$M_{uj_opb} := \frac{F_{y} \cdot T_{c}^{2} \cdot d}{\sin(\theta)} \cdot Q_{u_opb} \cdot Q_{f_opb}$$

$$M_{uj_opb} := 4.169 \times 10^{9}$$
Reg. No : EP034373-2011-01

BOEMRE TA&R No. 677

 $FINAL \, Report \, on \, Comparison \, of \, API, ISO, \, and \, NORSOK \, Offshore \, Structural \, Standards$

$$\gamma_{Rj} := 1.05$$

$$P_{d} := \frac{P_{uj}}{\gamma_{Rj}} = 1.269 \times 10^{7}$$

$$M_{d_ipb} := \frac{M_{uj_ipb}}{\gamma_{Rj}} = 7.597 \times 10^{9}$$

$$M_{d_opb} := \frac{M_{uj_opb}}{\gamma_{Rj}} = 3.971 \times 10^{9}$$

Partial resistance factor for tubular joints

Joint axial design strength

Design joint bending moment strength, in-plane bending

Design joint bending moment strength, out-of-plane bending

14.3.6 Strength Check

 $M_{B ipb} := -154001000$

M_{B_opb} := 99443000

P _B := -7979041 Axial	force in brace
----------------------------------	----------------

Bending moment in brace, in-plane bending

Bending moment in brace, out-of-plane bending

$$U_{j} := \left| \frac{P_{B}}{P_{d}} \right| + \left(\frac{M_{B_ipb}}{M_{d_ipb}} \right)^{2} + \left| \frac{M_{B_opb}}{M_{d_opb}} \right|$$
$$U_{j} = 0.654$$

A.3 MATHCAD – NORSOK N004

NORSOK N-004 Design of Steel Structures

6.3 Tubular Members

INPUT the following data: Diameter, D (mm) Wall thickness, t (mm) Yield strength, σ_y (N/mm²) Young's Modulus, E (N/mm²) Design Axial Tension Forces due to factored loads, N_{Sdt} (N) Design Axial compression Forces due to factored loads, N_{Sde} (N) Design Bending Moment due to factored loads about y axis, M_{ySd} (N-mm) Design Bending Moment due to factored loads about z axis, M_{zSd} (N-mm) Design Shear Force V_{Sd} (N)

Design Hydrostatic Pressure, p_{Sd} (N/mm²)

Hoop stress due to factored loads, f_b (N/mm²)

Unbraced length of member for local y axis, Ly (mm)

Unbraced length of member for local z axis, L_z (mm)

Radius of gyration, r (mm)

D := 1066.8	$D = 1.067 \times 10^{3}$	mm
t := 17.8	t = 17.8	mm
f _y := 345	f _y = 345	$\frac{N}{mm^2}$
E := 210000	$E = 2.1 \times 10^{5}$	$\frac{N}{mm^2}$
N _{Sdc} := 2330506	$N_{Sdc} = 2.331 \times 10^{6}$	Ν
N _{Sdt} := 0	$N_{Sdt} = 0$	Ν

 $M_{ySd} := 88794000$ $M_{ySd} = 8.879 \times 10^7 \text{ N-mm}$

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

M _{zSd} := 230831000	$M_{zSd} = 2.308 \times 10^{8}$	N – mm
V _{Sd} := 39479	$V_{Sd} = 3.948 \times 10^4$	Ν
p _{Sd} := 0.985	p _{Sd} = 0.985	$\frac{N}{mm^2}$
1 _y := 16178	$1_y = 1.618 \times 10^4$	mm
1 _z := 16178	$1_z = 1.618 \times 10^4$	mm
D		

$$\frac{D}{t} = 59.933$$

6.3.2 Axial tension

Area := $\frac{\pi}{4} \cdot \left[D^2 - (D - 2 \cdot t)^2 \right]$ Cross Section Area Area = 5.866 × 10⁴

 $\gamma_{Mt} := 1.15$

 $N_{tRd} := \frac{Area \cdot f_y}{\gamma_{Mt}} \qquad \qquad N_{tRd} = 1.76 \times 10^7$

$$UR_{6.1} := \frac{N_{Sdt}}{N_{tRd}}$$
 (6.1)

 $UR_{6.1} = 0$

6.3.3 Axial Compression

INPUT the following parameters:

k := .7	See Table 6-2		
L _t := 16178	Length of tubular between stiffening rings, diaphragms, or end connections		
C _e := 0.3	critial elastic buckling coefficient		
$I := \frac{\pi}{64} \cdot \left[D^4 - (D - 2 \cdot t)^4 \right]$	Moment of inertia	$I = 8.071 \times 10^{9}$	mm ⁴
$i := \sqrt{\frac{I}{Area}}$	radius of gyration	i = 370.931	mm
$f_{cle} := 2 \cdot C_e \cdot E \cdot \frac{t}{D}$	characteristic elastic local buckling	strength	

BOEMRE TA&R No. 677

 $FINAL \, Report \, on \, Comparison \, of \, API, \, ISO, \, and \, NORSOK \, Offshore \, Structural \, Standards$

 $f_{cle} = 2.102 \times 10^3$

The characteristic local buckling strength should be determined from:

$$\begin{aligned} \mathbf{f_{cl}} &\coloneqq & \mathbf{f_y} \ \ \text{if} \ \ \frac{\mathbf{f_y}}{\mathbf{f_{cle}}} &\leq 0.170 & (6.6) \\ & \left[\left(1.047 - 0.274 \cdot \frac{\mathbf{f_y}}{\mathbf{f_{cle}}} \right) \cdot \mathbf{f_y} \right] \ \ \text{if} \ \ 0.170 < \frac{\mathbf{f_y}}{\mathbf{f_{cle}}} &\leq 1.911 & (6.7) \\ & \mathbf{f_{cle}} \ \ \text{if} \ \ \frac{\mathbf{f_y}}{\mathbf{f_{cle}}} > 1.911 & (6.8) \end{aligned}$$

 $f_{cl} = 345$

$$\lambda_{y} := \frac{k \cdot l_{y}}{\pi \cdot i} \sqrt{\frac{f_{cl}}{E}} \qquad \text{column slenderness parameter} \qquad (6.5) \qquad \lambda_{y} = 0.394$$

$$\lambda_{z} := \frac{k \cdot l_{z}}{\pi \cdot i} \sqrt{\frac{f_{cl}}{E}} \qquad \text{column slenderness parameter} \qquad (6.5) \qquad \lambda_{z} = 0.394$$

$$\mathbf{f}_{cy} \coloneqq \begin{bmatrix} \left(1.0 - 0.28 \cdot \lambda_y^2\right) \cdot \mathbf{f}_y \end{bmatrix} \text{ if } \lambda_y \le 1.34 \tag{6.3}$$
$$\begin{pmatrix} \frac{0.9}{\lambda_y^2} \cdot \mathbf{f}_y \\ \lambda_y^2 \end{pmatrix} \text{ if } \lambda_y > 1.34 \tag{6.4}$$

$$\mathbf{f}_{cz} \coloneqq \begin{bmatrix} \left(1.0 - 0.28 \cdot \lambda_z^2\right) \cdot \mathbf{f}_y \end{bmatrix} \text{ if } \lambda_z \le 1.34 \tag{6.3}$$
$$\begin{pmatrix} \frac{0.9}{\lambda_z^2} \cdot \mathbf{f}_y \\ \lambda_z^2 \end{pmatrix} \text{ if } \lambda_z > 1.34 \tag{6.4}$$

$$\mathbf{f}_{c} := \min(\mathbf{f}_{cy}, \mathbf{f}_{cz})$$
 $\mathbf{f}_{c} = 330.012$

Define the characteristic elastic hoop buckling strength (Clause 6.3.6.1):

Geometric parameter, µ, :

$$\begin{split} \mu &:= \frac{L_{t}}{D} \cdot \sqrt{\frac{2 \cdot D}{t}} & \mu = 166.031 \\ C_{h} &:= \begin{bmatrix} \left(0.44 \cdot \frac{t}{D} \right) & \text{if } \mu \ge 1.6 \cdot \frac{D}{t} \\ \\ \begin{bmatrix} 0.44 \cdot \frac{t}{D} + \frac{0.21 \cdot \left(\frac{D}{t} \right)^{3}}{\mu^{4}} \end{bmatrix} & \text{if } 0.825 \cdot \frac{D}{t} \le \mu < 1.6 \cdot \frac{D}{t} \\ \\ \frac{0.737}{\mu - 0.579} & \text{if } 1.5 \le \mu < 0.825 \cdot \frac{D}{t} \\ \\ 0.80 & \text{if } \mu < 1.5 \end{split}$$

Then elastic hoop buckling strength, f_{he,} is determined:

$$f_{he} := 2 \cdot C_h \cdot E \cdot \frac{t}{D}$$
 (6.20) $f_{he} = 51.449$

Charateristic elastic buckling strength:

$$\mathbf{f}_{\mathbf{h}} := \begin{bmatrix} \mathbf{f}_{\mathbf{y}} & \text{if } \mathbf{f}_{\mathbf{h}\mathbf{e}} > 2.44 \cdot \mathbf{f}_{\mathbf{y}} & (6.17) \\ \\ \begin{bmatrix} 0.7 \cdot \mathbf{f}_{\mathbf{y}} \cdot \left(\frac{\mathbf{f}_{\mathbf{h}\mathbf{e}}}{\mathbf{f}_{\mathbf{y}}}\right)^{0.4} \end{bmatrix} & \text{if } 2.44 \cdot \mathbf{f}_{\mathbf{y}} \ge \mathbf{f}_{\mathbf{h}\mathbf{e}} > 0.55 \cdot \mathbf{f}_{\mathbf{y}} & (6.18) \\ \\ \mathbf{f}_{\mathbf{h}\mathbf{e}} & \text{if } \mathbf{f}_{\mathbf{h}\mathbf{e}} \le 0.55 \cdot \mathbf{f}_{\mathbf{y}} & (6.19) \end{bmatrix}$$

Define Material Factor (Clause 6.3.7)

$$\begin{split} W_{e} &:= \frac{2 \cdot I}{D} & \text{Elastic Section Modulus} & W_{e} = 1.513 \times 10^{7} \\ N_{sd} &:= N_{Sdc} & N_{sd} = 2.331 \times 10^{6} & N_{sd} \text{ is negative if in tension} \end{split}$$

$$\sigma_{cSd} := \frac{N_{sd}}{Area} + \frac{\sqrt{M_{ySd}^2 + M_{zSd}^2}}{W_e}$$
(6.25)
$$\sigma_{cSd} = 56.074$$

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\begin{split} \sigma_{psd} &:= \frac{p_{Sd} \cdot D}{2 \cdot t} & (6.16) & \sigma_{psd} = 29.517 \\ \lambda_{c} &:= \sqrt{\frac{f_{y}}{f_{cle}}} & \text{and} & \lambda_{h} := \sqrt{\frac{f_{y}}{f_{he}}} & (6.24) \\ \lambda_{c} &= 0.405 & \lambda_{h} = 2.59 \\ \lambda_{s} &:= \frac{\left|\sigma_{cSd}\right|}{f_{cl}} \cdot \lambda_{c} + \left(\frac{\sigma_{psd}}{f_{h}}\right)^{2} \cdot \lambda_{h} & (6.23) & \lambda_{s} = 0.918 \\ \gamma_{M} &:= \begin{vmatrix} 1.15 & \text{if } \lambda_{s} < 0.5 \\ (0.85 + 0.60 \cdot \lambda_{s}) & \text{if } 0.5 \le \lambda_{s} \le 1.0 \\ 1.45 & \text{if } \lambda_{s} > 1.0 \\ \end{vmatrix}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

 $\gamma_{\rm M} = 1.401$

$$N_{cRd} := \frac{Area \cdot f_c}{\gamma_M}$$
 $N_{cRd} = 1.382 \times 10^7$
 $UR_{6.2} := \frac{N_{sd}}{N_{cRd}}$ (6.2) $UR_{6.2} = 0.169$

6.3.4 Bending

$$\begin{split} & Z := \frac{1}{6} \cdot \left[D^3 - (D - 2 \cdot t)^3 \right] & \text{plastic section modulus} \\ & M_{Sd} := \sqrt{M_{ySd}^2 + M_{zSd}^2} & \text{design bending moment} \end{split}$$

Characteristic bending strength:

$$\mathbf{f}_{\mathbf{m}} := \left[\left(\frac{Z}{W_{\mathbf{e}}} \cdot \mathbf{f}_{\mathbf{y}} \right) \quad \text{if} \quad \frac{\mathbf{f}_{\mathbf{y}} \cdot \mathbf{D}}{\mathbf{E} \cdot \mathbf{t}} \le 0.0517 \right]$$
 (6.10)

$$\left[\left(1.13 - 2.58 \cdot \frac{\mathbf{f}_y \cdot \mathbf{D}}{\mathbf{E} \cdot \mathbf{t}} \right) \cdot \frac{Z}{W_e} \cdot \mathbf{f}_y \right] \text{ if } 0.0517 < \frac{\mathbf{f}_y \cdot \mathbf{D}}{\mathbf{E} \cdot \mathbf{t}} \le 0.1034 \quad (6.11)$$

$$\left[\left(0.94 - 0.76 \cdot \frac{\mathbf{f}_{y} \cdot \mathbf{D}}{E \cdot t} \right) \cdot \frac{Z}{W_{e}} \cdot \mathbf{f}_{y} \right] \text{ if } 0.1034 < \frac{\mathbf{f}_{y} \cdot \mathbf{D}}{E \cdot t} \leq 120 \cdot \frac{\mathbf{f}_{y}}{E} \tag{6.12}$$

$$f_m = 391.24$$
 $\gamma_M = 1.401$

$$M_{Rd} := \frac{f_{m} \cdot W_{e}}{\gamma_{M}}$$

$$M_{Rd} = 4.226 \times 10^{9}$$
Moment Resistance
$$UR_{6.9} := \frac{M_{Sd}}{M_{Rd}}$$

$$UR_{6.9} = 0.059$$

$$\begin{split} M_{TSd} &:= 45301000 \\ I_p &:= 2 \cdot I \\ M_{TRd} &:= \frac{2 \cdot I_p \cdot f_y}{D \cdot \sqrt{3} \cdot \gamma_{Ms}} \\ UR_{6.14} &:= \frac{M_{TSd}}{M_{TRd}} \\ UR_{6.14} &= 8.642 \times 10^{-3} \end{split}$$

6.3.6.1 Hoop Buckling

$$UR_{6.15} := \frac{\sigma_{psd}}{\frac{f_h}{\gamma_M}} \qquad \qquad UR_{6.15} = 0.804$$

6.3.8 Tubular members subjected to combined loads without hydrostatic pressure

6.3.8.1 Axial Tension and Bending

 $N_{Sdt} = 0$ $M_{ySd} = 8.879 \times 10^7$ $M_{zSd} = 2.308 \times 10^8$

 $N_{tRd} = 1.76 \times 10^7$ $M_{Rd} = 4.226 \times 10^9$

$$UR_{6.26} \coloneqq \begin{bmatrix} 0 & \text{if } p_{Sd} > 0 \\ \\ \hline \left[\left(\frac{N_{Sdt}}{N_{tRd}} \right)^{1.75} + \frac{\sqrt{M_{ySd}^2 + M_{zSd}^2}}{M_{Rd}} \end{bmatrix} \end{bmatrix} \text{ if } p_{Sd} = 0$$

 $UR_{6.26} = 0$

6.3.8.2 Axial Compression and Bending

INPUT the following parameters: $C_{my} := 0.85 \qquad C_{mz} := 0.85 \qquad \text{reduction factors corresponding to the member y and z axes}$ $N_{ey} := \frac{\pi^2 \cdot E \cdot \text{Area}}{\left[\left(\frac{k \cdot l_y}{i}\right)^2\right]} \qquad \qquad N_{ey} = 1.304 \times 10^8$ $N_{ez} := \frac{\pi^2 \cdot E \cdot \text{Area}}{\left[\left(\frac{k \cdot l_z}{i}\right)^2\right]} \qquad \qquad N_{ez} = 1.304 \times 10^8$ $N_{elRd} := \frac{f_{el} \cdot \text{Area}}{\gamma_{Ne}} \qquad \qquad \text{Design axial local buckling resistence}$

$$N_{cIRd} = 1.445 \times 10^{7}$$

$$UR_{6.27} := \begin{bmatrix} 0 & \text{if } p_{Sd} > 0 \\ \\ \left[\frac{N_{sd}}{N_{cRd}} + \frac{1}{M_{Rd}} \cdot \left[\left(\frac{C_{my} \cdot M_{ySd}}{1 - \frac{N_{sd}}{N_{ey}}} \right)^2 + \left(\frac{C_{mz} \cdot M_{zSd}}{1 - \frac{N_{sd}}{N_{ez}}} \right)^2 \right]^{0.5} \end{bmatrix} \text{ if } p_{Sd} = 0 \quad (6.27)$$

$$UR_{6.28} := \begin{bmatrix} 0 & \text{if } p_{Sd} > 0 \\ \left(\frac{N_{sd}}{N_{c1Rd}} + \frac{\sqrt{M_{ySd}^2 + M_{zSd}^2}}{M_{Rd}} \right) & \text{if } p_{Sd} = 0 \end{bmatrix}$$
(6.28)
$$UR_{6.27} = 0 \qquad \text{and} \qquad UR_{6.28} = 0$$

6.3.8.3 Interaction Shear and Bending Moment

$$\frac{\mathrm{V}_{Sd}}{\mathrm{V}_{Rd}} = 7.771 \times 10^{-3}$$

$$UR_{6.3.8.3} := \begin{cases} \frac{\frac{M_{Sd}}{M_{Rd}}}{\sqrt{1.4 - \frac{V_{Sd}}{V_{Rd}}}} & \text{if } \frac{V_{Sd}}{V_{Rd}} \ge 0.4 \\ \frac{M_{Sd}}{M_{Rd}} & \text{if } \frac{V_{Sd}}{V_{Rd}} < 0.4 \end{cases}$$
(6.31)

$$UR_{6.3.8.3} = 0.059$$

6.3.8.4 Interaction Shear, Bending Moment and Torsional Moment

$$M_{TSd} = 4.53 \times 10^7$$

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\begin{split} \gamma_{M} &= 1.401 \\ \text{Radius} &:= \frac{D}{2} \\ \text{f}_{d} &:= \frac{f_{y}}{\gamma_{M}} \\ \text{f}_{d} &= 246.27 \\ \tau_{TSd} &:= \frac{M_{TSd}}{2 \cdot \pi \cdot \text{Radius}^{2} \cdot t} \\ \tau_{TSd} &:= \frac{1.424}{2 \cdot \pi \cdot \text{Radius}^{2} \cdot t} \\ \text{f}_{mRed} &:= f_{m} \cdot \sqrt{1 - 3 \cdot \left(\frac{\tau_{TSd}}{f_{d}}\right)^{2}} \\ \text{f}_{mRed} &:= \frac{W_{e} \cdot f_{mRed}}{\gamma_{M}} \end{split}$$

$$\text{UR}_{6.33} \coloneqq \left| \begin{array}{c} \frac{M_{Sd}}{M_{RedRd}} \\ \frac{1.4 - \frac{V_{Sd}}{V_{Rd}}}{\sqrt{1.4 - \frac{V_{Sd}}{V_{Rd}}}} & \text{if } \frac{V_{Sd}}{V_{Rd}} \ge 0.4 \\ \frac{M_{Sd}}{M_{RedRd}} & \text{if } \frac{V_{Sd}}{V_{Rd}} < 0.4 \end{array} \right|$$

 $UR_{6.33} = 0.059$

6.3.9 Tubular Members Subjected to Combined Loads with Hydrostatic Pressure

6.3.9.1 Axial Tension, Bending, and Hydrostatic Pressure

INPUT the following data:

$\sigma_{aSd} := -39.7$	design axial stress that excludes the effect of capped-end axial compression arising from the external hydrostatic pressure (tension positive)
$\sigma_{qSd} := 0.5 \cdot \sigma_{psd}$	capped-end design axial compression stress due to external hydrostatic pressure (compression positive)
σ _{mySd} := 5.9	design in plane bending stress

design out-of plane bending stress

 $\sigma_{mzSd} := 15.2$

$$\sigma_{qSd} = 14.758$$
 $f_{hRd} = 36.726$ $f_{m} = 391.24$

Method A ($\sigma_{a,Sd}$ is in Tension)

a). For $\sigma_{aSd} \ge \sigma_{qSd}$ (net axial tension condition)

$$\eta := 5 - 4 \cdot \frac{f_h}{f_y}$$
 $\eta = 4.403$ (6.38)

$$B := \min\left(1, \frac{\sigma_{psd}}{f_{hRd}}\right) \qquad B = 0.804$$
(6.37)

Design bending resistance in the presence of external hydrostatic pressure:

$$f_{mhRd} := \frac{f_m}{\gamma_M} \cdot \left(\sqrt{1 + 0.09 \cdot B^2 - B^{2 \cdot \eta}} - 0.3 \cdot B \right)$$
(6.36)
$$f_{mhRd} = 199.394$$

Design axial tensile resistance in the presence of external hydrostatic pressure:

$$\mathbf{f}_{\text{thRd}} := \frac{\mathbf{f}_{\text{y}}}{\gamma_{\text{M}}} \cdot \left(\sqrt{1 + 0.09 \cdot B^2 - B^{2 \cdot \eta}} - 0.3 \cdot B \right)$$
(6.35)
$$\mathbf{f}_{\text{thRd}} = 175.828$$

$$UR_{6.34} := \begin{bmatrix} 0 & \text{if } \sigma_{aSd} < 0 \\ \left(\frac{\sigma_{aSd} - \sigma_{qSd}}{f_{thRd}} + \frac{\sqrt{\sigma_{mySd}^2 + \sigma_{mzSd}^2}}{f_{mhRd}} \right) & \text{if } \sigma_{aSd} > 0 \end{bmatrix}$$
(6.34)

 $UR_{6.34} = 0$

b). For
$$\sigma_{aSd} < \sigma_{qSd}$$
 (net axial compression condition)
 f_{c1} (6.40)

$$f_{clRd} := \frac{-cl}{\gamma_M}$$
 (6.40) $f_{clRd} = 246.27$

$$UR_{6.39} := \frac{\left|\sigma_{aSd} - \sigma_{qSd}\right|}{f_{c1Rd}} + \frac{\sqrt{\sigma_{mySd}^2 + \sigma_{mzSd}^2}}{f_{mhRd}}$$

BOEMRE TA&R No. 677

FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$UR_{6.39} = 0.303$$

$$\sigma_{mSd} \coloneqq \frac{\sqrt{M_{zSd}^2 + M_{ySd}^2}}{W_e}$$

 $\sigma_{csd} \coloneqq \sigma_{mSd} + \sigma_{qSd} - \sigma_{aSd}$

Reflect the maximum combined compressive stress

$$\sigma_{csd} = 70.803$$

$$UR_{6.41} := \frac{\sigma_{csd} - 0.5 \cdot \frac{\mathbf{f}_{he}}{\gamma_{M}}}{\frac{\mathbf{f}_{cle}}{\gamma_{M}} - 0.5 \cdot \frac{\mathbf{f}_{he}}{\gamma_{M}}} + \left(\frac{\sigma_{psd}}{\frac{\mathbf{f}_{he}}{\gamma_{M}}}\right)^{2}$$
(6.41)

 $UR_{6.41} = 0.681$

Method B ($\sigma_{ac.Sd}$ is in Tension)

$$\sigma_{acSd} := -39.7$$

design axial stress that includes the effect of the capped-end compression arising from the external hydrostatic pressure (tension positive)

$$UR_{6.42} := \frac{\left|\sigma_{acSd}\right|}{f_{thRd}} + \frac{\sqrt{\sigma_{mySd}^{2} + \sigma_{mzSd}^{2}}}{f_{mhRd}}$$
(6.42)

 $UR_{6.42} = 0.308$

6.3.9.2 Axial Compression, Bending, and Hydrostatic Pressure

Method A ($\sigma_{a,Sd}$ is in Compression)

$$\begin{split} \lambda &:= \lambda_y & \lambda = 0.394 \\ \xi &:= 1 - 0.28 \cdot \lambda^2 & \xi = 0.957 \end{split}$$

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\mathbf{f}_{chRd} := \begin{bmatrix} \frac{1}{2} \cdot \frac{\mathbf{f}_{cl}}{\gamma_{M}} \cdot \left(\xi - \frac{2 \cdot \sigma_{qSd}}{\mathbf{f}_{cl}} + \sqrt{\xi^{2} + 1.12 \cdot \lambda^{2} \cdot \frac{\sigma_{qSd}}{\mathbf{f}_{cl}}} \right) \end{bmatrix} & \text{if } \lambda < 1.34 \cdot \sqrt{\left(1 - \frac{2 \cdot \sigma_{qSd}}{\mathbf{f}_{cl}}\right)^{-1}} \\ \frac{0.9 \cdot \mathbf{f}_{cl}}{\lambda^{2} \cdot \gamma_{M}} & \text{if } \lambda \ge 1.34 \cdot \sqrt{\left(1 - \frac{2 \cdot \sigma_{qSd}}{\mathbf{f}_{cl}}\right)^{-1}} \end{aligned}$$
(6.47)

$$f_{chRd} = 225.514$$

$$f_{Ey} := \frac{\pi^2 \cdot E}{\left[\left(\frac{k \cdot l_y}{i}\right)^2\right]}$$

$$f_{Ez} := \frac{\pi^2 \cdot E}{\left[\left(\frac{k \cdot l_z}{i}\right)^2\right]}$$

$$(6.45)$$

$$f_{Ez} = 2.224 \times 10^3$$

$$f_{Ez} = 2.224 \times 10^3$$

Method B ($\sigma_{ac,Sd}$ is in Compression)

 $\sigma_{aacSd} := 39.7$

design axial stress that includes the effect of the capped-end compression arising from the external hydrostatic pressure (compression positive)

$$\begin{aligned} \mathrm{UR}_{6.50} &\coloneqq \frac{\sigma_{\mathrm{aacSd}} - \sigma_{\mathrm{qSd}}}{\mathrm{f}_{\mathrm{chRd}}} + \frac{1}{\mathrm{f}_{\mathrm{mhRd}}} \cdot \left[\left(\frac{\mathrm{C}_{\mathrm{my}} \cdot \sigma_{\mathrm{mySd}}}{1 - \frac{\sigma_{\mathrm{aacSd}} - \sigma_{\mathrm{qSd}}}{\mathrm{f}_{\mathrm{Ey}}}} \right)^2 + \left(\frac{\mathrm{C}_{\mathrm{mz}} \cdot \sigma_{\mathrm{mzSd}}}{1 - \frac{\sigma_{\mathrm{aacSd}} - \sigma_{\mathrm{qSd}}}{\mathrm{f}_{\mathrm{Ez}}}} \right)^2 \right]^{0.5} (6 - 50). \end{aligned}$$
$$\begin{aligned} \mathrm{UR}_{6.50} &= 0.181 \end{aligned}$$

BOEMRE TA&R NO. 677 FINAL REPORT ON COMPARISON OF API, ISO, AND NORSOK OFFSHORE STRUCTURAL STANDARDS

$$\begin{aligned} \mathrm{UR}_{6.51} &\coloneqq \frac{\sigma_{\mathrm{aacSd}}}{f_{\mathrm{clRd}}} + \frac{\sqrt{\sigma_{\mathrm{mySd}}^2 + \sigma_{\mathrm{mzSd}}^2}}{f_{\mathrm{mhRd}}} = 0.243 \end{aligned} \tag{6-51} \\ \mathrm{U}_{\mathrm{m}} &\coloneqq \left[\begin{array}{c} \mathrm{max} \big(\mathrm{UR}_{6.50}, \mathrm{UR}_{6.51} \big) & \mathrm{if} \ \sigma_{\mathrm{aacSd}} > \sigma_{\mathrm{qSd}} \\ \mathrm{UR}_{6.51} & \mathrm{if} \ \sigma_{\mathrm{aacSd}} \leq \sigma_{\mathrm{qSd}} \end{array} \right] \end{aligned}$$

 $U_{m} = 0.243$

6.4. Tubular joints

6.4.3.1 General

Validity Range

$0.2 \le \beta \le 1.0$	
$10 \le \gamma \le 50$	
$30^{\circ} \le \theta \le 90^{\circ}$	
$\tau \leq 1.0$	
$F_y \le 500 \qquad \frac{N}{mm^2}$	
$\frac{g_b}{D} \ge -0.6$	For K-joints

INPUT: Basic Geometric Parameters for Simple Tubular Joints

 $\beta = 0.333$

 $\gamma = 24.015$

 $\tau = 0.417$

F _v := 345	Yield strength, chord
F _{vb} := 345	Yield strength, brace
θ = 49.6°	Brace included angle
g _b := 1058	Gap between braces
t := 22.2	Brace wall thickness at intersection
T _c := 53.3	Chord wall thickness at intersection
d := 853	Brace outside diameter
D := 2560	Chord outside diameter
$A_c := \frac{\pi}{4} \cdot \left[D^2 - (D - 2T_c)^2 \right] = 4.197 \times 10^5$	Chord cross sectional area

 $\beta := \frac{d}{D}$

 $\gamma := \frac{D}{2 \cdot T_c}$

 $\tau := \frac{t}{T_c}$

6.4.3.3. Strength Factor Qu

K joint only with positive gap

Q_u varies with the joint and load type, as given in Table 6-3.

• Q_u for Axial Loads

$$Q_{u_a} := (1.9 + 19 \cdot \beta) \cdot Q_{\beta}^{0.5} \cdot Q_{g}$$

 $Q_{u_a} = 10.347$

• Q_u for In-Plane Bending

$$Q_{u_ipb} := 4.5 \cdot \beta \cdot \gamma^{0.5}$$

 $Q_{u_{ipb}} = 7.348$

• Q_u for Out-Of-Plane Bending $Q_{u_opb} := 3.2 \cdot \gamma^{(0.5 \cdot \beta^2)}$ $Q_{u_opb} = 3.818$
DET NORSKE VERITAS

6.4.3.4 Chord action factor Q_f

Q_f is a factor to account for the presence of nominal loads in the chord.

$$\begin{split} & Z_{\rm E} := \frac{\pi}{32} \left[\frac{{\rm D}^4 - \left({\rm D} - 2 \cdot {\rm T}_{\rm C}\right)^4}{{\rm D}} \right] & {\rm Elastic \ section \ modulus} \\ & Z_{\rm E} = 2.577 \times 10^8 & {\rm Elastic \ section \ modulus} \\ & P_{\rm c} := -12525200 & {\rm Chord \ axial \ force} \\ & M_{\rm c_ipb} := 1827400000 & {\rm Chord \ bending \ moment, \ in-plane \ bending} \\ & M_{\rm c_opb} := 115418000 & {\rm Chord \ bending \ moment, \ out-of-plane \ bending} \\ & \sigma_{\rm aSd} := \frac{{\rm P}_{\rm c}}{{\rm A}_{\rm c}} = -29.84 & {\rm Design \ axial \ stress \ in \ chord} \\ & \sigma_{\rm mySd} := \frac{{\rm M}_{\rm c_ipb}}{{\rm Z}_{\rm E}} = 7.092 & {\rm Design \ in-plane \ bending \ stress \ in \ chord} \\ & \sigma_{\rm mzSd} := \frac{{\rm M}_{\rm c_opb}}{{\rm Z}_{\rm E}} = 0.448 & {\rm Design \ out-of-plane \ bending \ stress \ in \ chord} \\ & \lambda_{\rm a} := 0.03 \\ & \lambda_{\rm inb} := 0.045 & {\rm Design \ out-of-plane \ bending \ stress \ in \ chord} \end{split}$$

INPUT the following coefficients:

 $\lambda_{opb} := 0.021$

Coefficients depending on joint and load type as given in Table 6-4.

$$C_{1_a} := 20$$

$$C_{2_a} := 22$$

$$A_a := \left[C_{1_a} \cdot \left(\frac{\sigma_{aSd}}{F_y} \right)^2 + C_{2_a} \cdot \left(\frac{\sigma_{mySd}^2 + \sigma_{mzSd}^2}{1.62 \cdot F_y^2} \right) \right]^{0.5}$$
(6.55)

A a = 0.394 $Q_{fa} := \left(1 - \lambda_a \cdot A_a^2\right)$ (6.54)Chord action factor, axial force $Q_{f_a} = 0.995$ C_{1 b} := 25 $C_{2 b} := 30$ $A_b := \left[C_{1_b} \cdot \left(\frac{\sigma_{aSd}}{F_y} \right)^2 + C_{2_b} \cdot \left(\frac{\sigma_{mySd}^2 + \sigma_{mzSd}^2}{1.62 \cdot F_v^2} \right) \right]^{0.5}$ (6.55) $A_b = 0.441$ $Q_{f_{ipb}} := 1.0 - \lambda_{ipb} \cdot A_b^2$ (6.54) $Q_{f_ipb} = 0.991$ Chord action factor, in-plane bending $Q_{f opb} := 1.0 - \lambda_{opb} \cdot A_b^2$ (6.54) $Q_{f_opb} = 0.996$ Chord action factor, out-of-plane bending

6.4.3.2 Basic resistance

 $\gamma_{M} := 1.15$

Tubular joints without overlap of principal braces and having no gussets, diaphragms, grout or stiffeners should be designed using the following guidelines.

$$N_{Rd} := \frac{F_{y} \cdot T_{c}^{2}}{\gamma_{M} \cdot \sin(\theta)} \cdot Q_{u_{a}} \cdot Q_{f_{a}}$$

$$N_{Rd} = 1.153 \times 10^{7}$$

$$M_{Rd_{i}pb} := \frac{F_{y} \cdot T_{c}^{2} \cdot d}{\gamma_{M} \cdot \sin(\theta)} \cdot Q_{u_{i}pb} \cdot Q_{f_{i}pb}$$

Resistance factor

(6.52)

Joint design axial resistance

(6.53)

DNV Reg. No.: EP034373-2011-01 Revision No.: 1 Date : 2012-01-12

Det Norske Veritas:

DNV is a global provider of knowledge for managing risk. Today, safe and responsible business conduct is both a license to operate and a competitive advantage. Our core competence is to identify, assess, and advise on risk management, and so turn risks into rewards for our customers. From our leading position in certification, classification, verification, and training, we develop and apply standards and best practices. This helps our customers to safely and responsibly improve their business performance.

Our technology expertise, industry knowledge, and risk management approach, has been used to successfully manage numerous high-profile projects around the world.

DNV is an independent organisation with dedicated risk professionals in more than 100 countries. Our purpose is to safeguard life, property and the environment. DNV serves a range of industries, with a special focus on the maritime and energy sectors. Since 1864, DNV has balanced the needs of business and society based on our independence and integrity. Today, we have a global presence with a network of 300 offices in 100 countries, with headquarters in Oslo, Norway.

Global impact for a safe and sustainable future:

Learn more on www.dnv.com