DRAG COEFFICIENTS OF LONG FLEXIBLE CYLINDERS

SUBJECT TO VORTEX INDUCED OSCILLATIONS

by

James Carl McGlothlin

B.S., Texas A&M University
1980

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
IN OCEAN ENGINEERING

at the

Massachusetts Institute of Technology

January, 1982

Signature of Author

[Signature]

Department of Ocean Engineering
January 29, 1982

Certified by

[Signature]

J. Kim Vandiver
Thesis Supervisor

Accepted by

[Signature]

Chairman, Department Committee
DRAG COEFFICIENTS OF LONG FLEXIBLE CYLINDERS
SUBJECT TO VORTEX INDUCED OSCILLATIONS

by

JAMES CARL MCGLOTHLIN

Submitted to the Department of Ocean Engineering on January 28, 1982 in partial fulfillment of the requirements for the Degree of Master of Science in Ocean Engineering

ABSTRACT

Field tests were conducted to measure the drag force on long flexible cylinders subject to vortex-induced oscillations. Four different types of cylinders, each 75.0 feet long, were used in the experiments. These cylinders included a uniform cable, a cable with lumped masses, a cable with a vibration suppression fairing, and a steel tube. Flow velocities ranged from 0 to 2.4 feet/second. Drag force, current, and the horizontal and vertical acceleration of the cylinder at seven locations were simultaneously recorded. In addition, the tension on the cylinder was constantly monitored. From the data taken, drag coefficients and the horizontal and vertical RMS displacements of the cylinders were calculated. The drag coefficients for the vibrating flexible cylinders are much greater than their stationary values and show a strong dependence on the amplitude of vibration of the cylinder. A method for predicting the drag coefficient on a vibrating cylinder is used in several cases to compare with the measured values.
ACKNOWLEDGEMENTS

This research was part of a joint industry and government sponsored project supported by the American Bureau of Shipping, Brown and Root, Inc., Chevron Oil Field Research, Conoco, Inc., Exxon Production Research, Shell Development Company, Union Oil Research, the Office of Naval Research, and the U.S. Geological Survey.

An eight member team led by Professor J. Kim Vandiver participated in the field experiments. Prof. Vandiver was assisted during these experiments by Charles Mazel, Jen-Yi Jong, Ed Moas, Peter Stein, Mark Whitney, Pam Vandiver, and myself.

Prof. Vandiver also served as my thesis supervisor and his patience and guidance during my stay at M.I.T. was invaluable.

Finally, I would like to thank Anna Markowitz for typing this thesis and Bill McLaren for proofreading it.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>7</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>10</td>
</tr>
<tr>
<td>Chapter I INTRODUCTION</td>
<td>12</td>
</tr>
<tr>
<td>Chapter II BACKGROUND THEORY</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Basic Vortex Shedding Theory</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Natural Frequencies and Mode Shapes</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1 Cable</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2 Steel Tubing</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Drag Coefficients</td>
<td>18</td>
</tr>
<tr>
<td>Chapter III THE EXPERIMENT</td>
<td>24</td>
</tr>
<tr>
<td>3.1 Test Site</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Drag Measuring System</td>
<td>26</td>
</tr>
<tr>
<td>3.3 Current Measuring System</td>
<td>29</td>
</tr>
<tr>
<td>3.4 Tension Measuring System</td>
<td>29</td>
</tr>
<tr>
<td>3.5 Test Cylinders</td>
<td>31</td>
</tr>
<tr>
<td>3.5.1 Cable</td>
<td>31</td>
</tr>
<tr>
<td>3.5.2 Steel Tubing</td>
<td>33</td>
</tr>
<tr>
<td>3.5.3 Lumped Masses</td>
<td>34</td>
</tr>
<tr>
<td>3.5.4 Faired Cable</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Data Recording Equipment</td>
<td>35</td>
</tr>
<tr>
<td>Chapter IV DATA REDUCTION PROCEDURES</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Drag and Current Data</td>
<td>36</td>
</tr>
<tr>
<td>4.2 Accelerometer Data</td>
<td>36</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>PAGE</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
</tr>
<tr>
<td>Chapter V RESULTS</td>
<td>46</td>
</tr>
<tr>
<td>5.1 2 1/2 Hour Drag Coefficient Records</td>
<td>46</td>
</tr>
<tr>
<td>5.2 Drag Coefficients at Lock-In</td>
<td>54</td>
</tr>
<tr>
<td>5.3 Non Lock-In Drag Coefficients</td>
<td>64</td>
</tr>
<tr>
<td>5.4 Predicted Drag Coefficients</td>
<td>67</td>
</tr>
<tr>
<td>Chapter VI CONCLUSIONS</td>
<td>69</td>
</tr>
<tr>
<td>References</td>
<td>77</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A. Integration of Equation 2.11</td>
<td>79</td>
</tr>
<tr>
<td>B. Errors in the Drag Coefficient</td>
<td>81</td>
</tr>
<tr>
<td>Calculations</td>
<td></td>
</tr>
<tr>
<td>C. Mechanical Properties and Dimensions</td>
<td>83</td>
</tr>
<tr>
<td>of Test Cylinders and Lumped Masses</td>
<td></td>
</tr>
<tr>
<td>D. Drag Coefficients for Cables with</td>
<td>85</td>
</tr>
<tr>
<td>Attached Lumped Masses</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uniform Flow Around a Stationary Cylinder</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Drag Coefficient vs. Reynolds Number for a Smooth Stationary Cylinder</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Mean In-Line Drag Coefficient of a Rigid Cylinder vs. (\frac{d}{VT}) for (A/d = 0.25, 0.50, 0.75,) and 0.84 [13].</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Experiment Site</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Schematic Diagram of the Experiment Test Section</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>Diagram of the Drag Measuring Device</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>Schematic Diagram of the Tension Measuring Device</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Cross Section and Side View of the Composite Cable</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>Raw Vertical Acceleration Signal</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Acceleration Signal After Initial Least-Square Fit</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>Velocity Signal Before High-Pass Filter</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Velocity Signal After High-Pass Filter</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>Displacement Signal Before Final Least-Square Fit</td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>Displacement Signal After the Final Least-Square Fit</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>2 1/2 Hour Drag Coefficient Record for the Steel Tubing</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>Drag Coefficient Error Bounds for the 2 1/2 Hour Steel Tubing Record</td>
<td>48</td>
</tr>
<tr>
<td>17</td>
<td>2 1/2 Hour Drag Coefficient Record for the Bare Cable</td>
<td>49</td>
</tr>
<tr>
<td>18</td>
<td>Drag Coefficient Error Bounds for the 2 1/2 Hour Bare Cable Record</td>
<td>50</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>19</td>
<td>2 1/2 Hour Drag Coefficient Record for the Faired Cable</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td>Drag Coefficient Error Bounds for the 2 1/2 Hour Faired Cable Record</td>
<td>52</td>
</tr>
<tr>
<td>21</td>
<td>Vertical Displacement Time History of the Steel Tubing at Lock-In</td>
<td>55</td>
</tr>
<tr>
<td>22</td>
<td>Lock-In Motion of the Steel Tubing at Position L/6</td>
<td>56</td>
</tr>
<tr>
<td>23</td>
<td>FFT of the Steel Tubing at Lock-In</td>
<td>58</td>
</tr>
<tr>
<td>24</td>
<td>FFT of the Bare Cable at Lock-In</td>
<td>59</td>
</tr>
<tr>
<td>25</td>
<td>Drag Coefficient Record of the Steel Tubing During Third Mode Vertical and Fifth Mode Horizontal Response</td>
<td>60</td>
</tr>
<tr>
<td>26</td>
<td>Drag Coefficient Record of the Steel Tubing Changing from Third Mode Vertical and Fifth Mode Horizontal Response to Random Response</td>
<td>61</td>
</tr>
<tr>
<td>27</td>
<td>Drag Coefficient Record of the Steel Tubing Changing from Second Mode Vertical and Third Mode Horizontal Response to Random Response</td>
<td>62</td>
</tr>
<tr>
<td>28</td>
<td>Drag Coefficient Record of the Bare Cable During Third Mode Vertical and Fifth Mode Horizontal Response</td>
<td>63</td>
</tr>
<tr>
<td>29</td>
<td>Non Lock-In Vertical Displacement Time History of the Steel Tubing</td>
<td>65</td>
</tr>
<tr>
<td>30</td>
<td>Non Lock-In Motion of the Steel Tubing at Position L/6.</td>
<td>66</td>
</tr>
<tr>
<td>31</td>
<td>Non Lock-In FFT of the Steel Tubing</td>
<td>71</td>
</tr>
<tr>
<td>32</td>
<td>Non Lock-In FFT of the Bare Cable</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>Drag Coefficient Record of the Steel Tubing During Non Lock-In Response</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

a Local vertical displacement (in.)
A Modal amplitude of vibration for a flexible cylinder and vertical amplitude of vibration for a rigid cylinder (in.)
C_D Drag coefficient calculated from the experiment data.
C_Dl Predicted local drag coefficient
C_DL Lower error bound on the calculated drag coefficient
C_DO Drag coefficient for a stationary cylinder.
C_DT Predicted average drag coefficient for a flexible vibrating cylinder.
C_DU Upper error bound on the calculated drag coefficient
d Cylinder diameter (in.)
D Measured drag force on the flexible vibrating cylinders (lbs.)
f_n Cylinder natural frequency (Hz)
f_s Frequency at which vortex pairs are shed (Hz)
g Acceleration of gravity (in/S^2)
L Length of cylinder (ft.)
m Mass per unit length of test cylinders (slugs/ft.)
n Mode number
P Tension (lbs.)
ρ Density of fluid (slugs/ft.³)
S Projected area of the cylinder normal to the direction of flow (ft.²)
St Strouhal number
LIST OF SYMBOLS
(continued)

\(T \) Period of transverse oscillation (s)
\(V \) Velocity of flow (ft/s)
\(V_r \) Reduced velocity
\(W_r \) Wake parameter
\(y \) Mode shape of the pinned-pinned flexible cylinder
CHAPTER I
INTRODUCTION

Vortex shedding from a cylindrical shaped object is a result of flow separation. These shed vortices cause unsteady forces to be imposed on the cylinder by varying the local pressure distribution. If the cylinder is able to respond to these unsteady forces, motion may result in both the transverse and in-line direction. In addition to the reduced fatigue life due to this motion, the transverse oscillations cause an increase in the steady drag force that may greatly exceed the design limits. Marine drilling risers, hydrophone cables, and deep water moorings used to anchor floating platforms are all examples of cylinders in the marine environment that may experience vortex induced oscillations.

The purpose of the research work presented here was to determine the drag forces on a long flexible cylinder that was excited by vortex shedding. To accomplish this, a series of field tests were performed during the summer of 1981. In the tests, 75 foot long cylinders were placed between supports on a sandbar that was exposed at low tide and submerged at high tide. During these tide changes, the current caused vortices to be shed from the cylinders and as a result the cylinders were excited. Measurements taken during this time included the drag force on the cylinder, cylinder tension, current, and the horizontal and vertical acceleration
of the cylinder at seven locations along its length.

Two basic types of cylinders were used in the tests. First, a composite cylinder with negligible bending rigidity was designed specifically for the tests to house seven accelerometer pairs and to act as a model for a cable. Second, steel tubing was used as a model for a marine riser. The steel tubing had a slightly larger I.D. than the cable's O.D. so the cable could be placed inside the steel tubing. In this way, the response of the steel tubing could be measured by the accelerometers in the cable. In addition to the tests run on these two cylinders, tests were also performed using the cable with either fairings or lumped masses attached to it. However, only a limited amount of data will be presented on the faired cable and on the cable with lumped masses.

The drag force data is presented in terms of the drag coefficient and is plotted alongside the current and RMS displacement of the cylinder. In addition, results from a method for predicting the drag coefficient for an oscillating cylinder will be compared to measured results.
CHAPTER II
BACKGROUND THEORY

2.1 Basic Vortex Shedding Theory

When a stationary rigid cylinder is placed in a steady current with its axis normal to the direction of the flow, vortices are shed as a result of flow separation. This vortex shedding process is described best by its relation to the Reynolds number. At Reynolds numbers less than 1, the flow around a stationary cylinder is uniform with no vortices being shed. The flow resembles that of an ideal fluid where viscous effects have been neglected [Figure 1a]. As the Reynolds number is increased, vortices begin to shed symmetrically from the cylinder [Figure 1b]. This symmetric shedding will continue up to Reynolds numbers around 40. At this point, instabilities begin to develop in the wake region and the vortices start to shed in an alternating fashion [Figure 1c].

As a result of these vortices being shed, forces are imposed on the cylinder. In the flow direction, in addition to a steady drag force, there is also a fluctuating drag force associated with the individual shedding of vortices. If the Reynolds number is above 40, an alternating lift force will also be present. This alternating lift force is a result of the transverse pressure gradient set up by the non-symmetric shedding of vortices and acts in a direction away from the last detached vortex [14]. The lift force frequency
a) Reynolds number less than 1

b) Reynolds number between 1 and 40

c) Reynolds number greater than 40

Figure 1. Uniform Flow Around a Stationary Cylinder
is equal to the frequency at which pairs of vortices are
shed while the fluctuating drag force frequency is twice this
since it is associated with individual shedding of vortices.

The Strouhal number, \(St = \frac{f_s d}{V} \), is a non-dimensional
number which relates the frequency at which pairs of vortices
are shed \((f_s) \) and the diameter of the cylinder \((d) \) to the
flow velocity \((V) \). The Strouhal number is a function of the
Reynolds number. However, over a wide range of Reynolds num-
bers \((100 \text{ to } 10^5) \) the Strouhal number for a smooth station-
ary cylinder is nearly constant and equal to about \(.2 \) [10].

If the cylinder is flexible or flexibly mounted and
lightly damped, the fluctuating forces cause oscillations to
occur in both the in-line and transverse direction. The os-
cillations in the transverse direction will dominate with
amplitudes generally believed to be an order of magnitude
greater than those in the in-line direction. These oscilla-
tions cause lift and drag forces to increase and also result
in a reduction in the shedding frequency. If the vortex
shedding frequency is within a range of about \(\pm 25\% \) of one of
the natural frequencies of the cylinder, a phenomena known
as lock-in can occur [14]. When lock-in occurs, the vortex
shedding frequency moves to the frequency of oscillation of
the cylinder in a violation of the Strouhal relationship.
Lock-in causes a resonant excitation of the cylinder with
_corresponding increases in response amplitude and drag. This
lock-in condition will continue until the predicted vortex
shedding frequency is out of the \(\pm 25\% \) range. At this time
the vortex shedding frequency will jump to a frequency close to that predicted by the Strouhal relationship.

2.2 **Natural Frequencies and Mode Shapes**

2.2.1 **Cable**

A cable with negligible bending rigidity can be modeled as an ideal string. The differential equation governing the motion of the cable as given by the ideal string equation is:

\[
\left(\frac{P}{m} \right) \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2}
\]

(2.1)

where: \(P = \text{Tension} \)

\(m = \text{Mass per unit length of the cylinder.} \)

If the cable is vibrating in water, added mass effects must be considered. The theoretical added mass coefficient for a stationary cylinder is 1.0. However, the added mass coefficient for a vibrating cylinder may be less than 1.0. Solution of this differential equation leads to the following expressions for the natural frequencies of the cable:

\[f_n (\text{Hz}) = \left(\frac{n \pi}{L} \right) \sqrt{\frac{P}{m}} \]

(2.2)

where: \(n = \text{Mode number} \)

\(L = \text{Length of the cylinder} \)

The mode shapes for the ideal string are simple sinusoids given by:

\[y = A \sin \left(\frac{n \pi x}{L} \right) \]

(2.3)

where: \(A = \text{The modal response amplitude.} \)
A limited number of tests were conducted on a cable with fairings. The natural frequencies of the cable with fairings will be somewhat lower due to the additional mass and added mass of the fairings. However, no formal analysis of the faired cables dynamic behavior will be presented.

2.2.2 Steel Tubing

Since the steel tubing used in the experiments had a bending rigidity that cannot be neglected, it is not possible to model it as an ideal string. Instead, a good model for the steel tubing is a beam under tension with pinned ends. The natural frequencies for a beam under tension are given by [2]:

\[f_n (Hz) = \frac{\lambda_n^2}{2\pi L^2} \sqrt{\frac{EI}{m}} \] \hspace{1cm} (2.4)

where:

\[\lambda_n^2 = n^2 \pi^2 \sqrt{1 + \frac{PL^2}{EIn^2 \pi^2}} \] \hspace{1cm} (2.5)

and EI is the bending rigidity of the cylinder.

The effects of rigidity on the natural frequencies of the steel tubing become more prevalent at the higher mode numbers. In addition, the rigidity causes the modal frequencies to be spaced further apart than the corresponding cable values. The mode shapes for a beam under tension are exactly the same as those for the cable.

2.3 Drag Coefficients

For a smooth cylinder in a steady flow, the dominant contribution to the drag force is due to separation.
Separation causes an area of reduced pressure to form in the wake of the cylinder. This substantial pressure difference between the forebody and afterbody of the cylinder results in a net force being applied to the cylinder in the flow direction. The expression for the mean drag force on a cylinder is given by:

\[D = \frac{1}{2} C_D \rho S V^2 \]

(2.6)

where:
\(C_D \) = Drag coefficient
\(\rho \) = Density of the fluid
\(S \) = Projected area normal to the direction of the flow.

For smooth stationary cylinders, there is a great deal of experimental data relating drag coefficient to Reynolds number. An example is shown in Figure 2 [8, 15]. However, if the cylinder is allowed to respond dynamically to the vortex shedding forces this relationship is no longer valid.

The drag force on a vibrating rigid cylinder is not only a function of flow speed but also the amplitude of vibration of the cylinder. The drag force increases with amplitude because the cylinder presents a larger apparent projected area to the flow. This force peaks when the cylinder is locked-in and responding resonantly. Sarpakaya [13] has performed tests in recirculating water tunnels using short rigid aluminum tubes. The results from these tests are shown in Figure 3. The data in the figure was taken at flow speeds of .84 and 1.3 ft/s with cylinder diameters of .7 and 1.0 inches. In Sarpakaya's tests, the cylinder was sinusoidally driven
and the drag force was measured directly. The drag coefficient results show a distinct dependence on the amplitude to diameter ratio A/d. In addition, the drag coefficients are also affected by the period of oscillation T. Sarpakaya uses the non-dimensional parameter d/VT and the data shows a peak at values between .18 and .20.

Griffin and Ramberg [7] also measured the drag forces on a vibrating rigid cylinder. Their technique for measuring the drag force involved measuring various wake parameters and applying the von Karman drag formulation. The data was taken at a Reynolds number of 144 and their results show that vib-
FIGURE 3. MEAN IN-LINE DRAG COEFFICIENT OF A RIGID CYLINDER VS. d/VT FOR A/d = 0.25, 0.50, 0.75, AND 0.84. [13]
ration can cause an increase of up to 184 percent in the stationary drag coefficient.

When a cylinder is flexible and placed in a flow, the flow can excite the cylinder to respond in both the in-line and transverse directions. This response causes increases in drag and makes the force mechanism even more difficult to understand because the in-line response couples with the transverse response to affect the magnitude and path of the cylinder motion. Thus, the drag forces on the flexible cylinder are functions not only of current, density, and projected area but also response frequency, modal amplitude and mode shape.

Skop, Griffin and Ramberg [17] did a least-squares fit of data taken from the SEACON II project and derived the following empirical expression for the local drag coefficient as a function of the amplitude and frequency of vibration of a cylinder:

$$\frac{C_{D_{l}}}{C_{D_0}} = 1 + 1.16(W_r - 1)^{0.65}$$ \hspace{1cm} (2.7)

where: C_{D_0} = Drag coefficient for a stationary cylinder

W_r = Wake stability parameter.

The wake stability parameter contains the important dynamic properties of the cylinder and is given by:

$$W_r = \frac{(1+2a/d)(StV_r)}{(StV_r)^{-1}}$$ \hspace{1cm} (2.8)

where: a = Local vibration amplitude

V_r = Reduced velocity ($V/f_n d$)

Substituting values into the wake stability parameter for
St and \(V_r \) gives:

\[
W_r = (1+2a/d)(f_n/f_s)
\] \hspace{1cm} (2.9)

Furthermore, if we confine ourselves to cases at lock-in we can reduce \(W_r \) to:

\[
W_r = (1+2a/d)
\] \hspace{1cm} (2.10)

The expression for the local drag coefficient for a vibrating cylinder then becomes:

\[
\frac{C_{D1}}{C_{DO}} = 1+1.16(2a/d)^{0.65}
\] \hspace{1cm} (2.11)

To find the average drag coefficient for the vibrating flexible cylinder, we must replace the local amplitude with the mode shape, integrate over the length of the cylinder and then divide by the length. Using the mode shape given in Equation 2.3, the above equation can be numerically integrated [Appendix A] to give the following expression for the drag coefficient of a vibration flexible cylinder:

\[
C_{DT} = C_{DO}[1+.833 \left(\frac{2A}{d} \right)^{0.65}]
\] \hspace{1cm} 2.13

where \(A \) is the modal amplitude. By limiting ourselves to cases at lock-in where the mode shapes and shedding frequency are known, the drag coefficient relationship has been reduced to one which depends only upon the modal amplitude.
CHAPTER III
THE EXPERIMENT

3.1 Test Site

The site chosen for the experiment, shown in Figure 4, was a sandbar located at the mouth of Holbrook Cove near Castine, Maine. This was the same site used in previous experiments in 1975 and 1976 by Vandiver, Mazel and Kan [12, 18]. At low tide, the sandbar was exposed allowing easy access to the test equipment while at high tide it was covered by about 10 feet of water. The test section was oriented normal to the direction of the current which varied from 0 to 2.4 ft/s over the tidal cycle with only small spatial differences over the section length at any given moment.

The data taking station for the experiment was the R/V Edgerton chartered from the MIT Sea Grant Program. The Edgerton was moored for the duration of the experiment approximately 300 feet from the sandbar and connected to the instruments on the sandbar by umbilicals.

Prior to the data taking part of the experiment, a few days were needed to prepare the site. A foundation for the experiment was needed to anchor the supports that were to hold the ends of the test cylinders. To accomplish this, six 4.5 inch diameter steel pipes were water jetted into the sandbar utilizing the fire pump aboard the Edgerton. These six pipes were made of two five foot sections joined by
FIGURE 4. EXPERIMENT SITE
couplings so that the overall length of each was 10.0 feet. In addition, one 2.0 inch steel pipe 6 feet long was jetted into the sandbar to be used as a current meter mount. Finally, a section of angle iron was clamped to the pipe used to support the drag measuring mechanism and attached to another support pipe to prevent any rotation of the drag mechanism mount. Figure 5 shows a schematic diagram of the experiment test section.

3.2 Drag Measuring System

The drag measuring mechanism was located at the west end of the experiment test section. A 3 foot pipe was coupled to the inner support pipe. Onto this short pipe the drag mechanism was welded 2.5 feet above the mudline. The outer two support pipes were guyed to this short pipe to prevent any creep when the system was under load. The drag measuring mechanism [Figure 6] consisted of a .25 inch stainless steel triangular plate that was welded to a 1.0 inch stainless steel shaft. The shaft was supported by a pillow block bearing at either end. These bearings were bolted through 1.0 inch spacers to a 15.25 x 8.0 x .25 inch steel plate which was welded to the 3 foot pipe section. Along the backside of the triangular plate, a 1.0 inch piece of angle iron was attached to serve as a contact point for a Sensotec Model 41 load cell. The test cylinders were pin connected to the triangular plate at the forward corner. The drag mechanism was designed so that a drag force applied by the test cylinder at the pin would generate a moment about the 1.0 inch shaft. This moment
FIGURE 5. SCHEMATIC DIAGRAM OF THE EXPERIMENT TEST SECTION
FIGURE 6. DIAGRAM OF THE DRAG MEASURING DEVICE
would be in equilibrium with the moment generated by the force on the load cell. The load cell could be moved to different locations to obtain the most favorable moment arm ratio. The signal from the load cell traveled through wires in the test cylinder and through the umbilicals to the Edgerton where they were conditioned and recorded.

3.3 **Current Measuring System**

The current was measured by a Neil Brown Instrument Systems DRCM-2 Acoustic Current Meter located 12.5 feet from the west end of the test cylinder and 2 feet upstream. It was set so that it determined the current at the level of the test cylinders. Signals from the current meter traveled through umbilicals to the Edgerton where they were monitored and recorded. In addition, a current meter traverse was performed using an Endeco current meter to determine the spatial differences in current along the test section. The current was found to be spatially uniform to within $\pm 3.0\%$ from end to end for all but the very low current speeds ($V < 0.5$ ft/s).

3.4 **Tension Measuring System**

The tension measuring and adjusting system [Figure 7] was located at the east end of the experiment test section. Extensions were made to the two inner water jetted posts at this end. As shown in the diagram, a 5 foot extension was made to the center post and a 3 foot extension was made to the inner most post. What made this 3 foot extension different from the rest was that its attachment to the jetted pipe
FIGURE 7. SCHEMATIC DIAGRAM OF THE TENSION MEASURING SYSTEM
at the mudline was a pin connection as compared to the standard pipe couplings used on the other extensions. This pin connection gave it the ability to pivot in the plane of the posts. Onto this pivoting post, a hydraulic cylinder was mounted 2.5 feet above the mudline. The test cylinders used in the experiments were connected at one end to this hydraulic cylinder and at the other end to the drag measuring device. The test cylinders were attached 2.5 feet above the mudline, a sufficient distance to avoid any boundary layer effects caused by the sandbar. A cable ran from the back of the hydraulic cylinder to a Sensotec Model RM In-Line load cell which was anchored at the other end to the center post. In this way, the force on the test cylinders was the same force seen by the load cell minus a small amount of friction in the pin. The output from the tension load cell passed through the umbilicals to the Edgerton where it was monitored. Hydraulic hose ran from a hand operated pump on the Edgerton to the hydraulic cylinder so that the tension could be changed as desired.

3.5 Test Cylinders

3.5.1 Cable

A 75 foot long composite cable was developed specifically for the experiments that were performed in the summer of 1981. Figure 8 shows a cross-section and side view of the test cable. The outer sheath for this cable was a 75 foot long piece of clear flexible PVC tubing, which was 1 1/4 inches O.D. by 1.0 inch I.D. Three 1/8 inch stainless steel cables
FIGURE 8. CROSS SECTION AND SIDE VIEW OF THE COMPOSITE CABLE
ran through the tubing and served as the tension carrying members. A cylindrical piece of 1/2 inch neoprene rubber was used to keep the stainless steel cables spaced 120 degrees apart. The neoprene rubber spacer was continuous along the length except at seven positions where biaxial pairs of accelerometers were placed. Starting at the east end, these positions were at L/8, L/6, L/4, 2L/5, 5L/8, and 3L/4. These accelerometers were used to measure the response of the cable as the shed vortices excited it. The accelerometers were Sundstrand Mini-Pal Model 2180 Servo Accelerometers which were sensitive to the direction of gravity. The biaxial pairing of these accelerometers made it possible to determine their orientation and hence extract real vertical and horizontal accelerations of the cable at the seven locations. Three bundles of ten wires each ran along the sides of the neoprene spacer to provide power and signal connections to the accelerometers and also to provide power and signal connections to the drag measuring system. Finally, an Emerson and Cuming flexible epoxy was used to fill the voids in the cable and make it watertight. The weight per unit length of this composite cable was .7704 lbs/ft.

3.5.2 Steel Tubing

In a second set of experiments, the composite cable was placed inside a 1.631 inch O.D. by 1.493 inch I.D. steel tubing so that stiffness effect could be studied. The tubing was made of four equal sections that were joined together to be the same length as the cable. The tubing was connected
to the hydraulic cylinder and to the drag cell mechanism by special connectors. At the internal joints steel nipples were welded to each end and stainless steel couplings were used to join them. The special end connectors kept the cable inside the tubing under a slight tension and neoprene spacers at intervals of 18 inches between the cable and tubing inhibited any relative motion between the two. The remaining cavity was allowed to fill with water. The weight per unit length of the steel tubing with the cable inside and the voids flooded with water was 2.2344 lbs/ft.

3.5.3 Lumped Masses

In another set of experiments, lumped masses were fastened to the bare cable and their effects studied. The lumped masses were made of cylindrical PVC stock each 12.0 inches long with a 3.5 inch diameter. A 1.25 inch hole was drilled through the center of each lumped mass so that the cable could pass through. In addition, four .625 inch holes were drilled symmetrically around this 1.25 inch center hole so that copper tubes filled with lead could be inserted to change the mass of the lumps. In the field, it was difficult to force the cable through the holes drilled in the PVC so the masses were cut in half along the length of their axis. The masses could then be placed on the cable in halves and held together by hose clamps. Different tests were run by varying the number and location of lumps and by changing the mass of the lumps. An example of these tests is reported on in Appendix D.
3.5.4 Faired Cable

Finally, 11.6 x 1/16 inch diameter Endeco plastic stranded fairings were applied to the cable to see what effects they would have on the response amplitude and drag of the cable.

The mechanical properties and dimensions of the test cylinders and lumped masses and fairings are summarized in Appendix C.

3.6 Data Recording Equipment

During the experiment, data taken from the instruments on the sandbar was recorded in two ways. First, analog signals from the 14 accelerometers as well as current and drag were digitized, at 30.0 Hz per channel, onto floppy disks using a Digital Equipment MINC-23 Computer. Second, analog signals from the drag cell, current meter, and 6 accelerometers were recorded by a Hewlett-Packard 3968A Recorder onto 8-track tape. The floppies were limited to record lengths of 8 1/2 minutes and were used to take data at several times in each 2 1/2 hour data taking period. A Hewlett-Packard 3582A Spectrum Analyzer was set up to monitor the real time outputs of the accelerometers. The 8-track tape was used to provide a continuous record of the complete 2 1/2 hour data cycle.
CHAPTER IV

DATA REDUCTION PROCEDURES

4.1 Drag and Current Data

Drag and current data was taken to obtain the steady drag coefficients for the test cylinders. The drag data was block averaged to try to eliminate the high frequency effects associated with individual shedding of vortices. The current data was handled in a similar manner so that the drag coefficients could be calculated discretely using Equation 2.1. For the long records showing the drag coefficients over a 2 1/2 hour cycle, the average was taken over every 8.55 seconds of data and for the short records showing specific examples of the cylinders behavior the average was over every 2.33 seconds of data.

4.2 Accelerometer Data

Acceleration data taken from the seven biaxial pairs of accelerometers was used to find the horizontal and vertical RMS response of the test cylinder. The accelerometers were placed in biaxial pairs at seven locations along the test cylinder to give the best indication of modal response.

The initial step in dealing with the acceleration data was to find the real vertical and horizontal acceleration of the accelerometer pairs. The accelerometer pairs could not be set in the test cylinders with one exactly horizontal and the other exactly vertical, they were usually off by some
angle. The problem was to determine this angle and rotate the signals back to true horizontal and vertical accelerations. Each accelerometer used was sensitive to gravity and gave a DC offset that was a function of the angle its sensitive axis made to the direction of gravity. For the case where the sensitive axis was in the direction of gravity, the DC offset would be 1.0 volts, since the sensitivity was 1.0 volt/g, and if the sensitive axis was normal to the direction of gravity the DC offset would be 0. Since the accelerometers were fixed in biaxial pairs, the combination of the two DC offsets could be used to obtain the angle necessary to rotate the signals through to get true vertical and horizontal acceleration. Equation 4.1 shows the relation between the DC offsets and the rotation angle. In this case K is a constant whose value depends on which quadrant the accelerometer used to measure vertical acceleration was located.

$$\theta = \arctan \left(\frac{|\text{HORIZONTAL DC}|}{|\text{VERTICAL DC}|} \right) + K\pi \quad (4.1)$$

Once the true vertical and horizontal accelerations had been found, a double integration was performed on the data to obtain vertical and horizontal displacement. A seven step process was developed by Jen-Yi Jong of MIT to perform this double integration. The first step least-square fits the raw acceleration data to remove any linear trends that might be present. Second, an integration technique based on work done by Schuessler and Ibler [16] is applied to the data to give velocity. After this initial integration, a least-square fit
followed by a high-pass filter is applied to the velocity data to eliminate any low frequency noise that may have been expanded in the integration process. The integration-least-square fit-high-pass filter sequence is then repeated to give the displacements of the cylinder at each accelerometer pair. Figures 9 through 14 show an example of the integration process on a vertical acceleration signal.

The displacement data from the fourteen accelerometers was used to determine the vertical and horizontal mode shapes of the cylinder. This was done by filtering the displacement data from the fourteen accelerometers to the known theoretical mode shapes of the cylinders, using a least square technique.

The displacement data was also used to obtain the RMS response amplitude of the test cylinders at the location of the accelerometer pairs. The RMS expression is given in Equation 4.2. The summation period for the RMS data was the same as that used in the averaging of the drag and current data.

\[
RMS = \sqrt{\frac{\sum_{i=1}^{N} (X_i)^2}{N}}
\]

(4.2)

Finally, if the displacement data exhibited single mode response characteristics, the vertical RMS displacement data for an accelerometer location could be scaled to the modal amplitude and used in conjunction with Equation 2.12 to predict the steady drag coefficient for the oscillating cylinder. The stationary drag coefficient used in these predictions was
1.175 which corresponds to the typical Reynolds numbers seen in the experiments.
FIGURE 9. RAW VERTICAL ACCELERATION
FIGURE 10. ACCELERATION AFTER INITIAL LEAST-SQUARE FIT
FIGURE 11. VELOCITY BEFORE HIGH-PASS FILTER
FIGURE 12. VELOCITY AFTER HIGH-PASS FILTER
FIGURE 13. DISPLACEMENT BEFORE FINAL LEAST-SQUARE FIT
FIGURE 14. DISPLACEMENT AFTER THE FINAL LEAST-SQUARES FIT
CHAPTER V
RESULTS

5.1 2 1/2 Hour Drag Coefficient Records

Drag coefficients, for a 2 1/2 hour data cycle, were calculated for the steel tubing, bare cable, and faired cable. These records are shown in Figures 15, 17, and 19 and are plotted alongside current, vertical RMS displacement, and horizontal RMS displacement. Immediately following each of these 2 1/2 hour records, in Figures 16, 18, and 20, are the error bounds associated with each record. These error bounds are discussed in detail in Appendix B. The horizontal and vertical RMS displacements were taken from location L/6 for the steel tubing and bare cable, and from location 2L/5 for the faired cable. These RMS results represent the motion at those points and have not been adjusted or corrected for mode shape. Over the 2 1/2 hour test, many different modes are excited. Some may have nodal points near the location for which the results are plotted.

The steel tubing data gives the best illustration of the relationship between the drag coefficient and cylinder displacement. The drag coefficient and vertical RMS displacement signals show similar behavior. A sustained increase in the vertical displacement is matched by a similar increase in the drag coefficient. In addition, when the displacement exhibits large fluctuations, large fluctuations also appear in the drag coefficient. The periods of sustained increase in
FIGURE 15. 2 1/2 HOUR STEEL TUBING RECORD.
VERTICAL AND HORIZONTAL RMS DISPLACEMENT FROM
ACCELEROMETER PAIR LOCATED AT L/6.
FIGURE 16. DRAG COEFFICIENT ERROR BOUNDS FOR 2 1/2 HOUR STEEL TUBING RECORD.
FIGURE 17. 2 1/2 HOUR BARE CABLE RECORD.
VERTICAL AND HORIZONTAL RMS DISPLACEMENT FROM ACCELEROMETER PAIR LOCATED AT L/6.
FIGURE 18. DRAG COEFFICIENT ERROR BOUNDS FOR 2 1/2 HOUR BARE CABLE RECORD.
FIGURE 19. 2 1/2 HOUR FAIRED CABLE RECORD.
VERTICAL AND HORIZONTAL RMS DISPLACEMENT FROM
ACCELEROMETER PAIR LOCATED AT 2L/5.
FIGURE 20. DRAG COEFFICIENT ERROR BOUNDS FOR 2 1/2 HOUR FAINED CABLE RECORD.
the displacement occur when the steel tubing is locked-in and responding in a single mode. During this single mode response, the fluctuations in the displacement and drag coefficient signals decrease dramatically. The regions of single mode response are much more visible in the steel tubing data than in either the bare cable or faired cable data. This is because the bending rigidity of the steel tubing causes the natural frequencies to be spaced further apart. As a result, the steel tubing is more likely to respond in a single mode and to remain in that mode for a longer period of time. The steel tube also has the lowest damping.

At one point in the steel tubing data, there is a sharp increase in the drag coefficient coinciding with a sharp increase in the horizontal displacement and no corresponding rise in the vertical displacement. In this instance, the location of the accelerometer pair was probably near a node for the vertical response.

Fewer simple observations can be made about the bare cable than the steel tubing. As was stated above, the fact that the natural frequencies of the bare cable are so close together makes it difficult for the cable to respond in one mode for very long. The drag coefficients for the bare cable are somewhat larger than those for the steel tubing. This may be due to the larger A/d ratio of the cable.

The drag coefficients for the cable with fairings are about 25% smaller than those for the bare cable. In addition, the fluctuations in the displacement and drag coefficient
signals for the fairied cable are greatly reduced. The location of the accelerometer pair used in determining the vertical and horizontal displacement of the fairied cable was probably near a node for one of the common vertical modes of oscillation and near and anti-node for another. This would explain the step-like appearance of the vertical RMS displacement signal.

Another interesting observation to be made from Figures 15, 17, and 19 is the difference in magnitude between the horizontal and vertical displacement of the cylinders. Previously, the concensus of opinion was that the vertical displacement was an order of magnitude greater than the horizontal displacement. However, in the results shown here, the vertical RMS displacement is only 2 to 5 times greater than the horizontal RMS displacement.

5.2 Drag Coefficients at Lock-In

The largest drag coefficients for the vibrating cylinders occur when the cylinders lock-in. During lock-in, the horizontal and vertical displacements of the cylinder are regular sinusoidal time histories. At some locations, the axis of the cylinder may exhibit a figure-eight motion. Typical examples of the vertical displacement and motion of the cylinder at lock-in are shown in Figures 21 and 22, respectively. The figure-eight motion of the cylinder illustrates the fact that the horizontal response frequency of the cylinder is twice the vertical response frequency when the cylinder is locked-in. For every vertical cycle, the cylinder
FIGURE 22. LOCK-IN MOTION OF THE STEEL TUBING AT POSITION L/6.
must go through two horizontal cycles to complete a figure-eight. The horizontal and vertical motions represent the response of different modes. In one example, the vertical motion of the pipe was third mode, while the horizontal motion was fifth mode. This is because for the pipe the fifth mode natural frequency is two times the third mode.

FFTs of the tubing and cable at lock-in are shown in Figures 23 and 24, respectively. These figures show that at lock-in the motion of the cylinders is dominated by one mode.

Plots of the drag coefficient along with current, vertical RMS displacement, and horizontal RMS displacement for the steel tubing and bare cable at lock-in are shown in Figures 25 through 28. The location of the accelerometer pair used to determine the RMS displacements was at L/6.

In Figure 25, the steel tubing is oscillating vertically in the third mode and horizontally in the fifth mode. Since the accelerometer pair was located at L/6, the vertical RMS displacement will be that of an anti-node and the horizontal RMS displacement will be for a position near a node. For this example, the drag coefficient has a fairly constant value of about 2.5 except at several points where, for some unknown reason, dropouts occur. Similar dropouts also occur at the same time in the vertical and horizontal RMS displacement of the tubing which supports the theory that the drag force on an oscillating cylinder is highly dependent on its displacement. In Figure 26, the steel tubing is again responding
FIGURE 23. FFT OF THE STEEL TUBING AT LOCK-IN. VERTICAL DISPLACEMENT AT POSITION L/6.
FIGURE 24. FFT OF THE BARE CABLE AT LOCK-IN. VERTICAL DISPLACEMENT AT POSITION L/6.
FIGURE 25. STEEL TUBING DURING THIRD MODE VERTICAL AND FIFTH MODE HORIZONTAL RESPONSE. ACCELEROMETER PAIR LOCATED AT L/6.
FIGURE 26. STEEL TUBING. THIRD MODE VERTICAL AND FIFTH MODE HORIZONTAL RESPONSE DECAYING TO RANDOM RESPONSE. ACCELEROMETER PAIR AT L/6.
FIGURE 27. STEEL TUBING. SECOND MODE VERTICAL AND THIRD MODE HORIZONTAL RESPONSE DECAYING TO RANDOM RESPONSE. ACCELEROMETER PAIR AT L/6.
FIGURE 28. BARE CABLE DURING THIRD MODE VERTICAL AND FIFTH MODE HORIZONTAL RESPONSE. ACCELEROMETER PAIR LOCATED AT L/6.
vertically in the third mode and horizontally in the fifth mode. However, this locked-in behavior decays to a non locked-in state about 2 1/2 minutes into the record. During this 2 1/2 minutes of lock-in behavior, the drag coefficient has a value of 3.0. In Figure 27, the steel tubing is initially responding vertically in the second mode and horizontally in the third mode. However, as in the previous figure, the locked-in behavior decays to a non locked-in state after about 2 minutes. For this case, the accelerometer pair is located at an anti-node for the horizontal mode and at an intermediate position for the vertical mode. The drag coefficient has an average value of about 2.5 while the steel tubing is locked-in and this drops to around 1.9 with large fluctuations when the tubing begins to respond randomly.

Figure 28 shows an example of the bare cable when it was responding vertically in the third mode and horizontally in the fifth mode. For this case, the average drag coefficient can be seen to be about 3.15. The drag coefficients calculated from the bare cable data are higher than those from the steel tubing. As was stated before, one possible explanation for this is the larger A/d ratio of the bare cable.

5.3 Non Lock-In Drag Coefficients

When the vortex shedding process and the cylinder motion are not locked-in, the cylinder will respond in some random manner. Typical examples of the vertical displacement and real time motion of the cylinder during this random response are given in Figures 29 and 30, respectively. These figures
FIGURE 29. NON LOCK-IN VERTICAL DISPLACEMENT TIME HISTORY OF THE STEEL TUBING. POSITION L/6.
FIGURE 30. NON LOCK-IN MOTION OF THE STEEL TUBING AT POSITION L/6.
show that, unlike the locked-in case, the displacement of
the cylinder is no longer uniform and the motion of the cy-
linder is no longer a distinct figure-eight.

FFT's of the steel tubing and bare cable during non
lock-in response are given in Figures 31 and 32, respec-
tively. These figures show how the energy in the cylinder
is spread over a wider frequency range when the cylinder
is not locked-in.

Drag coefficient examples for the steel tubing and bare
cable during this non lock-in behavior are shown in Figures
33 and 34, respectively. These figures show that the drag
coefficients during non lock-in response are lower than
their locked-in counterparts. In addition, the fluctua-
tions in the drag coefficient, vertical RMS displacement,
and horizontal RMS displacement signals are larger in the
non locked-in examples.

5.4 Predicted Drag Coefficients

Drag coefficient predictions were performed for a
locked-in steel tubing test and a locked-in bare cable
test using Equation 2.12. The results of these predictions
are shown in Figures 35 and 36. The amplitude (A) used in
Equation 2.12 was the vertical RMS displacement of the cy-
linders at position L/6. In the predicted drag coefficient
examples, both the steel tubing and the bare cable were
responding vertically in the third mode. Therefore, posi-
tion L/6 is an antinode and represents the model amplitude
of the cylinder. In the steel tubing case, the predicted
drag coefficient underestimated the measured drag coefficient by about 14% except at the dropouts where the measured and predicted values were almost the same. In addition, the form of the predicted and measured drag coefficient signals were quite similar. On the other hand, the shapes of the predicted and measured drag coefficient signals for the bare cable were quite different and the predicted values underestimated the measured values by 28%.

Appendix D presents an example of drag coefficient data for a cable with lumped masses.
CHAPTER VI
CONCLUSIONS

The drag coefficient for a long flexible cylinder excited by vortex shedding is much larger than that for stationary cylinders. Maximum drag coefficients of about 3.3 for the bare cable and 3.0 for the pipe are seen in the data. The stationary drag coefficient value for the Reynolds number encountered is about 1.175.

For the steel tubing, the largest drag coefficients occurred when the cylinder was locked-in. During lock-in, the RMS displacement of the steel tubing was also maximum and the fluctuations in both the drag coefficient and RMS displacement signals reduced dramatically. At non-lock-in the mean drag coefficient was lower, but was accompanied by large fluctuations in drag coefficient and response amplitude.

The bare cable's lock-in regions are less distinct than the steel tubing's. The closer spacing of natural frequencies in the bare cable makes it more difficult for it to respond in a single mode for very long. The bare cable drag coefficient time history shows less variation over the 2 1/2 hour record than the steel tubing making it more difficult to detect regions of locked-in response. On the other hand, the high frequency fluctuations in the drag coefficient and RMS displacement signals are greater in the bare cable data than in the steel tubing data.
The application of the long stranded plastic fairings to the bare cable reduced the drag coefficient by about 25%. In addition, these fairings reduced the fluctuations in both the drag coefficient and RMS displacement signals.

Finally, the predicted drag coefficients, found by using the method described by Griffin [5], underestimated the measured drag coefficient by 14% in the steel tubing test and 28% in the bare cable test.
FIGURE 32. FFT OF THE BARE CABLE DURING NON LOCK-IN RESPONSE. VERTICAL DISPLACEMENT AT POSITION L/6.
FIGURE 33. STEEL TUBING DURING NON LOCK-IN RESPONSE.
ACCELEROMETER PAIR AT L/6.
FIGURE 34. BARE CABLE DURING NON LOCK-IN RESPONSE. ACCELEROMETER PAIR AT L/6.
FIGURE 35. PREDICTED DRAG COEFFICIENT FOR STEEL TUBING DURING THIRD MODE VERTICAL AND FIFTH MODE HORIZONTAL RESPONSE. VERTICAL RMS AT L/6.
FIGURE 36. PREDICTED DRAG COEFFICIENT FOR BARE CABLE DURING THIRD MODE VERTICAL AND FIFTH MODE HORIZONTAL RESPONSE. VERTICAL RMS AT L/6.
REFERENCES

REFERENCES
(continued)

APPENDIX A
INTEGRATION OF EQUATION 2.11

The expression for the local drag coefficient of an oscillating cylinder was given in Equation 2.11 as:

\[
\frac{C_{DL}}{C_{DO}} = 1 + 1.16 \left(\frac{2a}{d} \right)^{0.65}
\]

(A.1)

To find the average drag coefficient for a vibrating flexible cylinder, we must replace the local vibration amplitude with the mode shape, integrate over the length of the cylinder, and then divide by the length. Substituting the mode shape of the flexible cylinder into Equation A.1 gives:

\[
\frac{C_{DT}}{C_{DO}} = 1 + 1.16 \left[\frac{2A}{d} \sin \left(\frac{n\pi x}{L} \right) \right]^{0.65}
\]

(A.2)

The average drag coefficient for the flexible cylinder is then:

\[
C_{DT} = \frac{1}{L} \int_{0}^{L} C_{DL} = \frac{C_{DO}}{L} \int_{0}^{L} 1 + 1.16 \left[\frac{2A}{d} \sin \left(\frac{n\pi x}{L} \right) \right]^{0.65} dx
\]

(A.3)

This expression can be reduced to:

\[
C_{DT} = \frac{C_{DO}}{L} \int_{0}^{L/n} dx + \int_{0}^{L/n} 1.16 \left[\frac{2A}{d} \sin \left(\frac{n\pi x}{L} \right) \right]^{0.65} dx
\]

(A.4)

Integrating the first expression on the right-hand side and making the substitution \(z = \frac{n\pi x}{L} \) into the second leads to:
\[
C_{DT} = C_{DO}[1 + \frac{1.16}{\pi} (\frac{2A}{d})^{.65} \pi^{.65} \int_{0}^{\pi} (\sin Z)^{.65} dZ]
\] (A.5)

The integral expression on the right-hand side can then be integrated numerically using Simpson's rule to give:

\[
\int_{0}^{\pi} (\sin Z)^{.65} dZ = 2.255
\] (A.6)

The expression for the average drag coefficient for a vibrating flexible cylinder with mode shapes satisfying Equation 2.3 is then:

\[
C_{DT} = C_{DO}[1 + .833 (\frac{2A}{d})^{.65}]
\] (A.7)
APPENDIX B

ERRORS IN THE DRAG COEFFICIENT CALCULATIONS

The major source of error in the drag coefficient calculations was thought to be attributable to errors in the drag measurements. The current, projected area, and water density are also important parameters, but any error in their values was considered to be comparatively small. There were two sources of error in the measurement of the drag force on the test cylinders. First, the slope of the calibration line for the drag load cell could only be confirmed to within ±5%. Second, the pin that connected the test cylinders to the drag measuring device had a small amount of friction in it that was estimated to be equivalent to at most ±1.0 lbs. of drag. The combination of these two errors provide an upper and lower bound on the calculated drag coefficients. The upper bound is given by:

\[
C_{DU} = \frac{(D \times 1.05) + 1.0}{\frac{1}{2} \rho SV^2} \quad (B.1)
\]

and the lower bound is:

\[
C_{DL} = \frac{(D \times .95) - 1.0}{\frac{1}{2} \rho SV^2} \quad (B.2)
\]

The percent error in the drag coefficient is the percent error in the drag force or:

\[
\% \text{ Error} = (\pm .05 + \frac{1.0}{D}) \times 100 \quad (B.3)
\]
From this relationship, we can see that as the drag force increases the error due to pin friction will become small and the \(_{\pm}5\%\) calibration error will dominate. The pin friction error can become very important as the drag force becomes small. However, for most of the results presented, the drag force was large enough to keep the pin friction error below 5\%. The drag force becomes small enough to cause problems when the current velocity dropped below 1.26 ft/s for the pipe tests and 1.43 ft/s for the cable.

Errors in the velocity measurements have been neglected in these calculations. The absolute calibration of the acoustic current meter is better than 1\%. However, it only provided information at one point in the flow 2 feet upstream of the cable at a location 12.5 feet from the drag cell. Spatial non-uniformities on the order of \(_{\pm}3\%\) could be responsible for additional errors in the drag coefficient calculations. These errors will vary as the square of the velocity error and hence imply an additional error of perhaps \(_{\pm}6\%\) in \(C_D\).
APPENDIX C

MECHANICAL PROPERTIES AND DIMENSIONS OF TEST CYLINDERS AND LUMPED MASSES

Cable Specifications:

Length: 75.0 ± .1 feet
Diameter: 1.25 ± 0.02 inches
Weight per foot in air: 0.7704 pounds per foot
Mass per foot: 0.0239 slugs per foot in air
Specific gravity: 1.408

Pipe Specifications:

Length: 75.0 ± 0.02 feet
Outside Diameter: 1.631 ± .003 inches
Inside Diameter: 1.493 ± .003 inches
Weight per foot in air: 1.231 pounds per foot
Weight per foot in air including weight of the internal cable: 2.001 pounds per foot
Weight per foot including cable and trapped water: 2.236 pounds per foot
Specific gravity of pipe with cable and trapped water: 2.40

Measured bending stiffness, $E I$: $3.106 \times 10^6 ± .05 \times 10^6$ pound inches²
Lumped Mass Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials:</td>
<td>PVC plastic, copper, lead</td>
</tr>
<tr>
<td>Length:</td>
<td>12.0 inches</td>
</tr>
<tr>
<td>Outside Diameter:</td>
<td>3.5 inches</td>
</tr>
<tr>
<td>Inside Diameter:</td>
<td>1.25 inches</td>
</tr>
<tr>
<td>Ballast Hole Diameter:</td>
<td>0.625 inches</td>
</tr>
<tr>
<td>Weight in air</td>
<td></td>
</tr>
<tr>
<td>no lead ballast:</td>
<td>4.41 pounds (2.0 kg)</td>
</tr>
<tr>
<td>Weight of water</td>
<td></td>
</tr>
<tr>
<td>trapped in empty</td>
<td></td>
</tr>
<tr>
<td>ballast holes</td>
<td>.55 pounds (.25 kg)</td>
</tr>
<tr>
<td>when submerged in water:</td>
<td></td>
</tr>
<tr>
<td>Weight with ballast:</td>
<td>9.97 pounds (4.52 kg)</td>
</tr>
</tbody>
</table>
Figure 37 is a 2 1/2 hour plot of drag coefficient current and RMS response of the cable with lumped masses. The physical properties of the lumps may be found in Appendix C. This particular test was one of ten different combinations of the number, location, and weight of lumps used. In this particular case, two light weight lumps were located at points equal to 1/8 and 1/2 of the cable length from the tensionmeter end, and heavy weight lumps were located at the 1/3, 5/8, 3/4, and 7/8 points on the cable. The RMS response data for Figure 37 was taken at the 3/4 point, the location of one of the lumps.

On the plot there are several plateaus in RMS response, which correspond to plateaus in drag coefficient. These regions are likely times of single mode lock in response.

This plot is given as an example of the data set on cables with lumped masses. Much data analysis remains to be completed and will be reported on in subsequent theses, papers, and reports.
FIG 37. CABLE WITH LUMPED MASSES 10-AUG-81
RMS DATA AT X=3/4 L