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CORRELATION OF SHEAR BEHAVIOR OF ICE WITH BIAXIAL STRESS 
RESPONSE 

ABSTRACT 

At high temperatures and low strain rates ice may be 

approximately incompressible. We.show that if it were truly 

incompressible, conventional triaxial tests would provide no 

more information concerning its response to multiaxial 

·loading than would uniaxial tests. Howevert biaxial tests 

do provide multiaxial -response information.. At low 

temperatures and high strain rates conventional triaxial 

tests may provide more information than biaxial tests. 

INTRODUCTION 

Any useful model of the mechanical behavior of ice must 

describe response to general multiaxial loading. Present 

knowledge is limited almost entirely to results of uniaxial 

compression tests, which cannot determine response to 

general multiaxial loading. This requires tests with three 

independent components of loadinge Since such tests are 

difficult to performs we consider how completely multiaxial 

response is determined by two simpler tests: conventional 

triaxial and biaxial tests. We find that when response is 

strongly pressure dependent (at high strain rates and low 

temperatures), conventional triaxial tests provide more 

information than biaxial testse If response is relatively 

independe>:rt-of pre_~-~!!!:!L_{high temperature and low strain 
........:...-.~~-·--=-----~-~,.,.-----~~·--'·-· ------------..~.-..--

rates), the reverse is true. 

While uniaxial tests cannot determine multiaxial response~ 


they can provide a basis for a heuristic construction of 


multiaxial relations. In a series of papers, Morland and 
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Spring have constructed multiaxial nonlinear viscoelastic 

constitutive. relations of the differential type, /1/, /2/, 

and /4/ and of the integral type, /3/ and /5/. An example 

is the following isotropic incompressible solid relation of 

the differential type from /4/: 

• . . . 2 

~ + ~ (!?. + ~J + (!?. - ~)~ - 3 tr (~ !?_) !. + ~ 


(1) 

This relates.the tensor quantities, deviatoric stress~; 

strain- rate !?.; rate of rotation !:!; and strain ]!, 

through the (scaler) response coefficients ~' ~l' 

~2 , w
1

, Wio ·These later are material properties which 

depend in general on S, B, D, and their products and/or,.., ,.., ..... 
derivativeso The operator tr is the suin. of diagonal 

elements,-and 1 is the unit tensor. tit is sufficient to-
consider only stress to make our point. Since we will 

compare compressible with incompressible behavior, it is 

convenient to use ~" This is related to stress f!., by 

S=a+pl, (2) 

where 

(3). 1=-­
• 

Sp 
is the pressure fnere a

1
, a

2
, and cs3~ are the principal 

components of stress. The principal components of ....S are 

thus 

2 1 2 151 .. 3 csl - 3 (cs2 + a3), 82 = 3 °2 - 3 (al + a3), <4> 

s3 .. - (sl + s2) 

In the following we assume only that the constitutive 

relations are isotropic. This is equivalent to requiring 

that response coefficients depend on a only through its...., 

invariants J~. A complete set of stress invariants is 
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(5) 

For completeness, note that the model leading to equation 1 

could be extended to.account for compressibility by adding a 

relation between change in volume and pressure. 

APPROACH 

Our approach is based on the observation that to completely 

determine response to multiaxial loading we must know each 

of the response co_eff-ieients for all possible sets of values 

(p, J2, J3)• Let p, J 2 and J3 be axes in a cartesian 

coordinate system., -The point (p, J2 , J 3) is in the stress 

invariants space for a type of test if in that test we may 

control the stress so that the invariants of the stress 

tensor have the values p, J 2 and J 3• Only a true triaxial 

test can cover the entire spaceo The more of this space a 

test can cover, the more completely it can determine multi­

axial response. 

Multiaxial Stress Geometries 

• 
First we introduce precise terminology for four possible 

situations~ The case of three· independent principal stress 

a1 , a2 , a will be denoted_triaxial stress, abbreviated by
3 

TS. Conventional triaxial stress refers to two independent 

components a and a (say), with a = a2 , so is correctly1 2 3 
described as transversely isotropic stress, abbreviated to 

TIS. That is, there is an axial stress a with isotropic
1 

stress in the normal plane. The case with two independent 

components a and a2 and a = 0 is biaxial stress (zero1 3 
stress in the third direction) abbreviated to BS. Finally, 

uniaxial ~tress, abbreviated to US, has one nonzero 

component c1• In summary, 
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TS 	 (triaxial stress):. 

3 independent components a1 , a2 , and a ; (6)
3 

TIS (transversely isotropic stress): 

2 independent components a and o , with a = a ; (7)
1 2 3 2 

BS 	 (biaxial stress): 

2 independent components a and a
2

, with a = O; (8)
1 	 3 - ­

US (uniaxial stress): 

1 independent component al> with cr2 = a • O. (9)
3 

In TS, p, J 2, and J 3 are given by equation Se In TIS (7) 

with 0'3 - <1211 

Here there is only one independent deviatoric stress s1, so 

even though two independent stresses a and a~ are applied
1 

and varied, only one deviatoric relation is obtained. That 

is, the deviatoric behavior cannot be determined, noted by 

1-k>rland /1/ .. 

In 	BS (8) with 0'3, 

2 l 2 1
s1 	 ... 3 O'l -3 0'2" s2 =- 0'2 - 3 °1'3 

p - - !Ccr1 + 0'2) t J2 l ( 2 2 ) ( 11)= 3 al + 0 2 - al 0'2 ' 

J 3"' i1 (01 + 0'2 )(al - 20'2 )(2a1 - a2), 

so s1 and s2 are independent, and J 2 and J3 are independent. 

Flnally,"US (9) with a = a = 0 is a special case of TIS,3 2 
giving 

... 

~_c.--
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2 1 1
sl = 3 O'l' 53 = 52 = - -3 CJ1, = - 2 sl, 

(12) 

1 1 2 2 3 


3 
0p = -3 0 1, J2 = - Gp J3 = 27 0'1 

As with TIS, only one independent deviatoric relation is 

obtained .. 

Dependence Domains in Stress Invariants Space 

Since in either BS or TIS tests only two components of 

stress can ba varied, it is not possible to determine 

response independently to all of p, J 2 , and J3 • If response 

is relatively independent of one of these, we may interpret 

test results in terms of the other two. 

For examp~e, ice is occasionally assumed incompressible, 

which is equivalent _to assuming the response is independent 

of p. There is reason to believe this is approximately true 

at high temperatures and low strain rates (see reference 

/6/). Response then depends primarily on J 2 and J 3• Thus 

we first consider the stress invariant space (J2 , J3 )& Ice 

response is pressure dependent in other temperature-strain 

rate regimes /6/, so we subsequently consider response in 

the (p, J 2) space. 

In practice, multiaxial tests will be commonly restricted to .. 
compressive stresses i O, a ~ O, a < O, which limitsa1 2 3 
the domain of the (J2 P J 3) plane covered in the US, TIS, and 

BS geometries. Note. that J 2 2'_ 0 by definition, but J3 can 

be positive or negativee Dependence on J 3 (or p) is 

necessary if compression and tension responses are not 

symmetric .. 

PRESSURE INDEPENDENCE 

First consider the invariants in US (12) with cr < Oo Only
1 

a single path 

(13) 
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TIS 
. . 3/2

J3n-2(J2/3) 

27J3 
2 

us 


Now set 

= T)O'p a1 .$_ 0, Tl ~ O, (14)a2 
so each positive constant Tl represents a ray in the . 

compressive (a1, a ) quadrant. US is defined by ~ = O. For2
TIS (10), . 

(15) 
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in the (J2, J3) plane is covered, illustrated in Fig. 1. 

• 

Hence the US path (13) is covered for T} < 1 Clo I < la 1J, ;
2 1 

when ~ > 1, the alternative branch with J 3 > 0 is covered. 

This corresponds to uniaxial tension and is also shown in 

Fig. 1. Thus TIS extends the (~z, J3} domain of US for 

compressive stress, but both are confined to a curve. Note 

that the range of J2 is maximum when Tl = O; that is, for US. 

In contrast, BS (11) yields· 
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(16) 

. J 11-f 

which we will ~how are independent for independenta and ~81 

Eliminate a (< O).between the relation (16) to optain1 

(17) 

In (15), for any given value of J2 there are precisely two 

possible values of J 3 , and these differ only ~n signo In 

contrast, for any giv~ J 2 in (17) there <@ ~ a 
!> 

range of 

possible values of J 3 t defined by the range of k(TJ) • 

For_ a1 > 0 the sign of k would be changed and 

Tl ~ O.{.:::;> a
2 
~ O. At. a fixed stress ratio Tl > O, hence fixed 

k, as a is decreased from zero (17) describes a path in the
1 

(J2 , J 3) plane similar to one of the TIS branches (15), 

with J ~ 0 as k ~ O. Clearly k is antisymmetric3 
about Tl=~ and has the following properties in TJ2 0: 

k(O) = - 1, k (21)· -- O, k + - 1 as fl + m, 
(18) 

km.in = k(O) = -1, kmax = k(l) = 1. .. 
Thus the minimum value k = - 1 occurs when a = 0 (US) and 

2 
when.a +0 at finite a (US in the lateral direction), and

1 2 
the maximum value k = 1 occurs when a = a • Renee a2 1
practical range 0 ~ ( a2I ~ ja1I covers the maximum possible 

range of k, and the magnitude of a determines the minimum11 2­
range of J 2 covered, since J2 ~ 4 a1 by (16~ 1 • The range of 

k is duplicated for ja21~ la 1which could provide. a test1
of model consistency. The range limits k = .:t, l give 

precisely the two TIS branches (15), corresponding to 

uniaxial tension and compression, so the BS domain for 

compressi~e stress shown in Fig. 1 is the complete sector 
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between the uniaxial tension and compression branches. In 

addition, of course, BS provides two deviatoric relations. 

PRESSURE DEPENDENCE 

Suppose that response depends on mean pressure p _and J2 • 

Restriction to compressive stress implies p 2_ O, so results 

are restricted to the first quadrant of the (p, J 2) plane& 

With a2 • ria1 < O, TJ ~ O, we have from (12), (lo)-~- and (11): 

US: (19) 


1 J 2 • 
2 2

TIS: !> ... -j a (1 + 2TJ) ~ O, j o~(l - TJ) .., µ{fJ)p , 

-(20) 
1-TJ/2)0µ{ t)) ~ 3 7
1 + 2TJ - , C-· 

Again US covers only a single curve, shown in Fig. 2t but 

now both TIS and BS cover two-dimensional domains as 

µ(T)) and v{T)) change continuously with.variation of the 

stress ratio TJ• While both TIS and BS covered the uniaxial 

tension branch of the (J2 , J 3) plane, neither can approach .. 
this stress configuration in the (p, J 2) plane which would 

require p < O. 

From (20) and (21), 

O_ ,5. TJ < 1dµ ~ 0 as {22)td11 , 11 > 1 

µ{O) = 3, µmin = µ(1) 

and 
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d O<T1<l (23)~SOas -Tl)l 
3

v(O) = 3, vmin = v(l) = 4 , A + 3 as Tl -t m. 

.. . 

. . . . . ... 
, ,...._ " , •. ,,,,....,,~·.,,,,;;:...,,t,,.>,,;,,_,.,;;_,,•,.1...._ __.• ~,,.,.~,,;: ,,._,.,-"'*""'""'"°'• .,;;.,!;..:., """:>,,. .,,., .~..";,,._<.;, ~,,/,o•,;,,. ,.,,.._ o..:~d1t _.,,._,·•"•"'>I.,·.•,' 
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Now we see that TIS covers the sector between the US 

parabola J 2 = 3p2 and the axis J 2 = 0 for 
• 

0 i Ia2 I i Ia1 j , shown in Fig. 2, with the range 

0 < µ <t duplicated .when !a2 j > la11. However, BS.c6vers 
. 2 3 2

only the smaller sector between J2 = 3p and J 2 =1i p for 

~ i c ~ c shown in Fig. 2,. with the same range I 2I I 1I 
4 < v < 3 duplicated when la21> la1 lo This is striking 

reversal of the domains covered by TIS and BS in the (J2 , 

J 3) plane, but it is only BS that yields the two deviatoric 
2relations. The excluded domains J 2 > 3p2 and ~2 < j. p are 

of practical significance and cannot be dismissed in model 

construct:t_on. It can be shown that allowing axial 

tension a > 0 with lateral compression a ( O, Tl < 0,
1 2 
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extends the domains of both TIS and BS to J2 = 3p2 in p < O, 

3
but the domain 0 < J2 < 4 in p > 0 is still excluded in 


BS. Both axial tension and lateral tension are required in 


BS to obtain complete coverage in p > O. 
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Fig. ·1 - Shear invariant domains for compressive stress. 

Fig. 2 - Pressure-shear invariant domains 
for compressive stressc 

.. 
.. 
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