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CORRELATION OF SHEAR BEHAVIOR OF ICE WITH BIAXIAL STRESS
RESPONSE ; .

ABSTRACT

'At high témperaturesvand low strain rates ice may be
approximately incompressible. We show that if it were truly
incoﬁpressible; coﬁventional triaxial tests would provide‘nob
i mora information concerning its reéponse to multiaxial
loading than would uniaxial tests. However, biaxial tests

. do provide mhltiaxial'respohse information. At low

temperatures and high strain rates conventional triaxial

tests may provide more information than biaxial tests.

' INTRODUCTION

Any useful model of the mechanical behavior of ice must

describe response to general multiaxial loading. Present

" knowledge is limited almost entirely to results of uniaxial
'coﬁpression tests, which cannot determime response to

' general multiaxial loading. Thls requires tests with three

1ndependent,combonents of loading. Since such tests are

difficult to perform, we consider how completely multiaxial

- response is determined by two simpler tests: conventional

triaxial and biaxial tests. We find that when response is
strongly pressure dependent {at high strain rates and Jow

temperatures), conventional triaxial tests provide more

information than biaxial tests. If response is reldtively .

. rates), the reverse is true.

While uniaxial tests cannot determine multiaxial response,
they can provide a basis for a heuristic construction of

multiaxial relations. In a series of papers, Morland and




i e R B i e i el

,E-4/Ear1e

Spring bave'constructed multiaxial nonlinear'viscoelastio H
constitutive relations of the differential type, /1/, /2/,

and /4/ and of the integral type, /3/ and /5/. An example

is the following isotropic incompressible solid relation of
the differential type from /4/:

é+§(n+g)+(nnw)s'--2—tr (D) 1L+ 4s

~

=¢12+¢2 R --—(trD)l +w1E 3(n.-B)]

sa[f-destn]

This relates the tensor quantities deviatoric stress §;
straln rate D; rate of rotation W- and strain B,
through the (scaler) response coefficlents ¢, ¢1,
¢2, Wys Wyo These later are material properties which
- depend in general on §, B, D, and their products and/or

~derivatives. The operator tr is the sum of diagonal

elements,-and 1 is the unit tensor. It is sufficient to
consider only stress to make our point. Since we will

compare comoressible with incompressible behavior, it is

convenient to use §§"This is related to stress g, by e
$=g+tel. o @ )
where ) g ‘ ‘ 3 .
:—}. :—'-... - : -”é‘—'
P 3 tr g (o) + 0, + q3) (3) .

is the pressure&ﬁere o 02, and oséé are the principal

l’
cOmponents of stress. The principal components of S are
thus
2 _1 2, .1 | |
5,739 "5+ 5)85=50-3(q+q) &

3

In the following we assume only that the constitutive

.8, = - (51_”" 32)

relations are isotropic. This is eqnivalent to requiring
that response coefficients depend on g only througﬁ its

invariants Ji. A complete set of stress invariants is

-2 -
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Jl =p

[
H

1, 2y _ 172 2 2
3 tr(87) = 3 [ojtotay-(o)optayoptaye )] ()

1
Jy = det § = o= [(201-02—63)(202—03- ol)(203-61~02)]

For completenesé, note that the model leading to equation 1
could be extended to ‘account for compressibility by adding a
relation between change in volume and pressure.

APPROACH
Our abproaéh is based on the observation thaﬁ to completely

- determine response to mulfiaxial loading we must know each
of the response cogfficients for all possible sets of values
- ‘ (p, Jy, J3). Let p, Jy and J3 be axes in a cartesian
o coordinate_systeme,-The point (p, JZ’ J3) is in the stress

invariants space for a type of test if in that test we may
contrdl the stress so that the invariants of the stress
tensor have the values p, J, and J3. Only a true triaxial
‘test can cover the entire space. The more of this space a
test can cover, the more completely it can determine multi-
~axial response.

Multiaxial Stress Geometries

First we introduce precise terminology for four possible
situations. The case of three independent principal stress
Ul’ 02, 03 will be denoted triaxial stress, abbreviated by
TS. Conventional triaxial stress refers to two independent
c0mponen£s o and o, (say), with Oy = Gy, so is correctlyv

described as transversely isotropic stress, abbreviated to

1
stress in the normal plane. The case with two independent

TIS. That is, there is an axial stress o, with isotropic
components 61 and Sy and 03 = 0 is blaxial stress (zero
stress in the third direction) abbreviated to BS. Finally,
uniaxial stress, abbreviated to US, has one nonzero

component.cl. In summary,
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US (uniaxial stress):

TS (triaxial stress):

3 independent components Ops Tys and 2% (6)

- TIS (transversely isotropic streés):

2 independent. components 61 and 62, with.os = 02; (7

BS (biaxial stress): '
2 independent components % and Oys with 2 ='0; (8)

With g, =g, = 0. (9)

1 independent component ¢ > 3

1’

In TS, p, Jy, and J5 are given by equation 5. In TIS (7)

withv037= s
' =20 - P Y =1 :
§; = 3'("1 °2)’ S5 = Sz 3(0) = 0)s = -5 5,
) . . ' (10) -
1 \2 2 3
P = "'—3-'(0 + 20 ) J ( 1 0'2) s J3 = —2=—7—(0'1 - 02) ’

Here thére is only one independent deviatoric stress Sy, so

even though two independent stresses % and oé arévapplied

and varied, only one deviatoric relation is obtained. That

1s, the deviatoric.behavior cannot be &etermined, noted by

Morland /1/;

In BS (8) with

Ty»
2 1 2 1

S1=39 "3 %5 =309 "3 %

P '”%("1 +9,) 3, ’%("%* "g - "1“2)'. - ay

I, =-77(01 + 02)(01 - 202)(20'1 - 02),

8o Sl and Szrare independent, and J, and J3 are independent.

Finally, US (9) with o, = o, = 0 is a special case of TIS,

3 2
giving -
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2 11
S =39 853=5,="39,="38

(12)
1 1 2 2 3
P=-39,30"3% 33379 "
As with TIS, only one independent deviatoric relation is

obtained. o _ ¢

Dependence Domains in Stress Invariants Space

Since in either BS or TIS tests only two components of
stress can be varied, it is not possible to determine
respopse'independently to all of p, 32, and J3. If response
is relatively independent of one of these, we may interpret

teet results in terms of the other two.

For examp_le, ice is occasionally assumed incompressible,
whieh is equivalent_to assuming the response is independent‘
of p. There'is reason to believe this is approximately true
at high teﬁperatures aﬁd low strain rates (see reference

/6/). Response then depends primarily on J; and J3. Thus

we first consider the stress invariant space (JZ, J3)° Ice

response is pressure dependent in other temperature-strain

‘rate regimes /6/, so we subsequently consider response in

the (p, J,) space.

In practice, multiaxial tests will be commonly restricted to

compressive stresses GI‘S 0, GQ.S 0, os_ﬁ 0, which limits

- the domain of the (J,, J3) plane covered in the US, TIS, and

BS geometries. Note that Jg 2 0 by definition, but Jg can

be positive or negative. Dependence on Jq (or p) is

necessary 1f compression and temsion responses are not

-symmetric.

PRESSURE INDEPENDENCE

First consider the invariants in US (12) with oy < 0. Only
a single path '

Jy=3 20,3, =-2 (32_/3)3‘/2 <o, -~ an

- § -
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in the (Jp, J3) plane is covered, illustrated in Fig. 1.

§

, : | |

3J2 | o L o {
i

T1S ~ T1S & US!
B o a, 4 3.
Jgn—chzxa)'é, Jg=2(J2/3) 2
) | 2733
ii 2 -
v ANow set-;
o, = 19, 0, £0, n>0, . (14)

80 each positive constant 7 represents a ray in the
compressive (GL’ oi) quadrant . US is defined by n = 0. For
TIS (10), ' |

1
J2 '-5' 0'1 (1‘1‘]) > 0, v
s R (15}
3y -_227 a:: a-qd-= + 2(32/3)3/2 as 11

Hence the'US path (13) is covered for < 1 (Iczi < lcli), H
when 7 > 1, the alternative branch with J3 > 0 is covered.
This corrésponds to uniaxial tension and is also shown in
Fig. 1. Thus TIS extends the (J;, J3) domain of US for
compressive stress, but both are confined to a curve. Note

that the range of J; is maximum when n = 0; that is, for US.

In contrast, BS (11) yields
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1, = 1 E(nf-m1) > 0,3, = 1 &} (2n7-3n2-30+2), (16)
, E 1‘”
which we will show are independent for independentcl and N
- Eliminate o) (< 0) .between the relation (16) to obtain . ——f7b i
v | 32)3/2 : ('ﬂ"%)(‘%‘ 11"‘92
J3 = 2k(n)(§— »k(n) = 3 A 373/3 ° (17)
i ( 7:‘*‘(""7) )
‘In4(15); fér any given value of Jy there are precisely two
possible values of Jg3, and these differ only in sign. In
contrast, for any given Jy in (17) there<§§§)a range of “
possible values of J3, defined by the range of k(n) . -
For % > 0 the sign of k would be changed and
' > 04;>ra At a fixed stress ratio 1 > 0, hence fixed
k as’ Gl is decreased from zero (17) describes a path in the

(J5, J3) plane similar to one of the TIS branches (15), : ; S
with ;3 2 0 gs k Z 0. Cleariy k.is antisymmétric o :
about 7 =1 and has the following properties in n2> O:

2
k(0) = - I, k (%)”= O,k»>-1as n -+ o
- (18) .
kmin = 3(0).= -1, kmax = k(1) = L. ‘ ' -
- Thus the minimum value k = - 1 occurs when g, = 0 (US) and - :
when 61 > 0 at finite Sy (US in the lateral direction), and

the maximum value k = 1 occurs when o, = O;. Hence a
practical range 0 < {oéi ﬁ_!cli covers the maximum possible

range of k, and the magnitude of o, determines the minimum
2-

range of J, covered, since J2 > Z o) by (16)1. The range of
k i1s duplicated for [6 ' > lc ’ which could provide4a test
of model consistency. The range limits k = + 1 give
precisely the two TIS branches (15), corresponding to
unfaxial tension and compression, so the BS domain for

compressive stress shown in Fig. 1 is the complete sector
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between the uniaxial tension and compression branches. In

addition, of course, BS provides two deviatoric relations.

PRESSURE DEPENDENCE

Suppose that response depgnds on mean pressure p and J,.

~ Restriction to compressive stress implies p > 0, so results

are festricted to the first quadtant of the (p, JZ) plane.
With o

, = no; £ 0, n> 0, we have from (12), (10); and (11):
o1 1 2_.2 o
Us: 5 02_?_ 0, 3, =3 ¢ = 3", | (19)

TIS° ‘p = —<3- 1(1 + 2n) > 0, J 3- 1(l ’n)z = p(n)PZ,
‘ -€20)
p(m) = 3 T+ 20 .
BS: p = __\_:1; gl +mn) 20, J, =% "%(ﬂz - n+ 1) = w(mp?,
e _ “{21)
3(1 n+ 'ﬂ ) > 0. '
1+ n)

w(n) =

Again US covers dnly a single‘curve; shown in Figc 2, but
now both TIS and BS cover two-dimensional domains as

p(n) and v(n)-chénge continuously with. variation of the

stress ratio n. While both TIS and BS covered the uniaxial

tension branch of the (Jz, J3) plane, neither can approach
this stress configuration in the (p, Jz) plane which would
require p < O.

From (20) and (21),
d
-a—%§ 0 as (22)

W0 = 3, wy = w(l) =0, p>3as n> =

and
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0<

dv » n<1

dv ¢ o =

Vdn§k'a$- n>1 > - ,
v(0) = 3, v av(1)=z,7\.+3asn-,»w.

min

Now we see that TIS covers the sector between the US

y4

parabola)Jé = 3p and the axis J, = 0 for

0 S.EOQ'.S Iclf,‘shown in Fig. 2, with the range

0<p (-z>duplicated_when lczl > !61[. However, BS covers
only the smaller sector between Jg = 3p2 and J
0 S.!OQi_S Ioli_shown in Fig. 2, with the same range

This is striking
reversal of the domains covered by TIS and BS in the (J,,

Z'< v < 3 duplicated when‘iozl >'l61[°

J3) plane, but it is only BS that yields the two deviatoric
relations. The excluded domains J, > 3p2 and qz <-§-p2 are
of practical significance and cannot be dismissed ian model

It can be shown tﬁat allowing axial
<0, 3<o0,

construction.

tension di > 0 with lateral éompression %,

-9—

=

%

(23)

pz'for
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extends the domains of both TIS and BS to Jy = 3p2 in p < 0,

but the domain 0O S.Jz £ %-1n p > 0 is still excluded in

BS. Both axial tension and lateral tension are required in

BS to obtain complete coverage in p > 0.
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Fig. 1 - Shear invariant domains for compressive stress.

Fig. 2 —- Pressure-shear invariant domains
for compressive stress.
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