PREDICTION OF UNDERWATER EXPLOSION
SAFE RANGES FOR SEA MAMMALS

BY JOHN F. GOERTNER
RESEARCH AND TECHNOLOGY DEPARTMENT

16 AUGUST 1982

Approved for public release, distribution unlimited
The Navy is required to assess the environmental consequences of all its activities and to take appropriate measures to avoid or mitigate adverse effects. In the case of underwater explosion testing, the effect on marine life of most concern is the possible killing of fish. Marine mammals are rarely encountered at test sites, but the effects on these animals are given special attention because of legislation such as the Endangered Species Act and the Marine Mammal Protection Act. Although a low level of fish-kill can be tolerated in most cases, harmful effects on marine mammals are not acceptable.

This study was conducted to determine the ranges within which sea mammals could be injured. Its purpose is to provide guidance to personnel engaged in underwater explosion testing, but the method is also useful for planning underwater blasting for channel clearance or construction.

This work was funded by the Naval Sea Systems Command (SEA-62R) under Program Element 63721N, Work Unit: Environmental Effects of Explosive Testing. This report is one of a series published under this sponsorship during a period of about ten years.

The assistance of George A. Young in reviewing this report is gratefully acknowledged.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION AND SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. METHOD OF SOLUTION</td>
<td>2</td>
</tr>
<tr>
<td>3. SAMPLE PROBLEMS</td>
<td>8</td>
</tr>
<tr>
<td>3-1. WHALES - KEY WEST</td>
<td>8</td>
</tr>
<tr>
<td>3-2. WHALES - NORTH ATLANTIC</td>
<td>12</td>
</tr>
<tr>
<td>3-3. PORPOISES</td>
<td>17</td>
</tr>
<tr>
<td>3-4. MANATEES</td>
<td>21</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

Figure	Description	Page
3.1.1 | Contours for slight injury to whales: 1200-lb charge at 125-ft depth | 9
3.1.2 | Contours for slight injury to whales: 10,000-lb charge at 200-ft depth | 10
3.1.3 | Contours for slight injury to whales: 40,000-lb charge at 200-ft depth | 11
3.2.1 | Contours for slight injury to whales: 10,000-lb charge at 1,312 feet | 13
3.2.2 | Contours for slight injury to whales: 10,000-lb charge at 4,265 feet: surface disk | 14
3.2.3 | Contours for slight injury to whales: 10,000-lb charge at 4,265 feet: deep sphere | 15
3.3.1 | Contours for slight injury to porpoises: 1200-lb charge at 125 feet | 18
3.3.2 | Contours for slight injury to porpoises: 10,000-lb charge at 200 feet | 19
3.3.3 | Contours for slight injury to porpoises: 40,000-lb charge at 200 feet | 20
3.4.1 | Contours for slight injury to manatees: 12-lb charge at 5-ft depth | 22
3.4.2 | Contours for slight injury to manatees: 12-lb charge at 40-ft depth | 23

TABLES

Table	Description	Page
3.2.1 | Horizontal extent of regions of slight injury to whales by 10,000-pound explosions | 16
3.4.1 | Maximum horizontal extent of slight injuries to manatees by 12-pound explosions | 24
1. INTRODUCTION AND SUMMARY

The problem is to determine the region of injury to sea mammals such as whales, porpoises and manatees for explosion tests and blasting operations. Our starting point is the body of experimental data which has been obtained by the Lovelace Foundation from underwater explosion tests using dogs, sheep and monkeys. The solution consists of scaling these results using plausible physical models to large sea mammals and to different charge sizes and explosion geometries.

The method has been used at this Center in the planning and in the environmental assessments for Navy underwater explosion tests. It has been implemented by a computer program (MAMDAM) which outputs the predicted contour (locations) corresponding to slight injury for a given weight mammal. This is a level of injury from which the animals would recover on their own.

The purpose of this report is to describe both this computer program (Section 2) and typical results (Section 3). This information can be used to avoid injuries to animals by postponing explosive operations if the animals are within the zone of possible injury.

2. METHOD OF SOLUTION

The Lovelace Foundation studies\(^1,2\) indicate that hemorrhaging in and around the lungs is the primary source of injury to submerged mammals. These studies also indicate that another significant source of injury to submerged mammals is excitation of radial oscillations in the small gas bubbles which are normally present in the small and large intestines. These are two distinct mechanisms for injury. We will scale them separately for each location in the explosion pressure field and then use the more severe of these two mechanisms to define our injury region.

Lung Hemorrhaging. The severity of lung hemorrhaging appears to be related to the amplitude of the excitation of the lung cavity by the explosion. For our purposes this motion can be approximated by the radial oscillation response of an equal volume spherical air bubble in water subjected to the same pressure wave.

We will assume that the explosion loading is impulsive. We will get around the difficulty that this is not true for long duration positive pressures by using a modification of the concept of partial positive impulse used by Bowen et al to describe air-blast mammal mortality test results.\(^3\)

For this purpose we compute the small amplitude oscillation period \(\overline{T}\) for the substitute air bubble,

\[
\overline{T} = 2\pi A_0 \sqrt{\frac{\rho}{3\gamma p_0}} \tag{2.1a}
\]

where \(A_0\) is the at-rest bubble radius, \(\rho\) is the water density (\(= 1.940 \text{ slugs/ft}^3\)), \(\gamma\) is the adiabatic exponent for air (\(= 1.40\)), and \(p_0\) is the hydrostatic pressure.\(^4\)

Inserting the values for the water density and adiabatic exponent, equation 2.1a becomes

\[T = 29.7 \frac{A_0}{\sqrt{P_0}} \text{ milliseconds} \]

(2.1b)

where \(A_0 \) is in inches and \(P_0 \) is in pounds per square inch.

The at-rest bubble radius \(A_0 \) is calculated from the estimated lung volume \(V_0 \) at hydrostatic pressure \(P_0 \) using

\[A_0 = \left[\frac{V_0}{(4/3)\pi} \right]^{1/3} \]

(2.2)

\(V_0 \) in turn is estimated from the estimated lung volume \(V_1 \) at atmospheric pressure assuming isothermal compression to hydrostatic pressure \(P_0 \), i.e.,

\[V_0 = V_1 \times \left(\frac{P_1}{P_0} \right) \]

(2.3)

where \(P_1 \) is the atmospheric pressure (generally taken equal to 14.7 psi). \(V_1 \) in turn is estimated from the body mass of the sea mammal under the assumption that like large land mammals – dogs, sheep and monkeys of the experimental data set – the lung volume in liters is approximately 3% of the body mass in kilograms. Thus,

\[V_1 = 1.83 \, M \]

(2.4)

where \(V_1 \) is the lung volume in cubic inches and \(M \) is the body mass in kilograms.

Next we compute the positive pressure duration, TPOS, from the difference in travel times for the direct and surface-reflected pressure waves, using a constant velocity of sound.
In order to compute the impulse, I, to be used for calculating the lung cavity response, we define a parameter, τ, which we take as the lesser of the times, T_{POS} and $0.2 \bar{T}$. We use the parameter, τ, as the integration limit for computing the impulse, I, to be used in this analysis. Thus,

$$I \equiv \int_0^\tau p(t) \, dt$$

where

$$p(t) = \begin{cases}
PMAX \cdot \exp(t/\theta) & (t < 1.8\theta) \\
PMAX \cdot \exp(-1.8) \cdot \exp\left(-\frac{t - 1.8\theta}{4.3\theta}\right) & (t > 1.8\theta)
\end{cases}$$

and $PMAX$ and θ are the peak pressure and decay constant for the incident explosion pressure wave. Through the introduction of the parameter, τ, we are attempting to define an effective (or partial) impulse for the excitation due to long duration pressures.

The peak pressure $PMAX$ in psi and the decay constant θ in milliseconds can be calculated from the similitude relations for pentolite developed at this Center.

$$PMAX = 2.46 \times 10^4 \left(\frac{R}{W^{1/3}}\right)^{-1.19}$$

$$\theta = 0.052 \ W^{1/3} \left(\frac{R}{W^{1/3}}\right)^{0.26}$$
where \(W \) is the explosive mass in pounds and \(R \) is the slant range from the charge in feet. For these environmental studies we have not accounted for differences in explosive output among detonating explosives.

Assuming that the lung hemorrhaging is related to the amplitude of the induced oscillation, described for example by \(\text{AMAX}/\text{AMIN} \), where \(\text{AMAX} \) and \(\text{AMIN} \) are the maximum and minimum radii of the oscillations, we are led to a damage parameter for scaling lung injuries in the form of the product,

\[
I/(A_0 \rho^{1/2} \rho_0^{1/2})
\]

(2.9)

where \(\rho \) is the water density, since under impulsive loading, \(\text{AMAX}/\text{AMIN} \) can be computed as a function of this dimensionless product\(^5\).

For a diving mammal the equivalent lung radius \(A_0 \) at ambient pressure is related to \(A_1 \) the radius at atmospheric pressure by

\[
A_0 = A_1 (p_1/p_0)^{1/3}
\]

(2.10)

where \(p_1 \) is the atmospheric pressure. Substituting (2.10) into (2.9) our damage parameter becomes

\[
I/(A_1 p_1^{1/3} \rho^{1/2} \rho_0^{1/6})
\]

(2.11)

Since the lung volume is assumed proportional to the body mass of the mammal, for the equivalent lung radius A_1 we have

$$A_1 \propto M^{1/3}$$ \hspace{1cm} (2.12)

where M is the body mass of the mammal. Substituting (2.12) into (2.11) and dropping the constant water density ρ, the damage parameter for scaling lung injuries becomes

$$I/(M^{1/3} \rho_1^{1/3} \rho_0^{1/6})$$ \hspace{1cm} (2.13)

Note that this scaling parameter is no longer dimensionless. (Using the equations developed in this section, I found it convenient to express the impulse I in psi-milliseconds, the body mass M in kilograms, the atmospheric pressure ρ_1 in psi, and the hydrostatic pressure ρ_0 in psi.)

The critical values used for the damage parameters in this study are those values at which the animals sustained only slight injuries. These values were taken from the Lovelace Foundation sheep-dog-monkey data.\(^2\) For lung related injuries slight injury occurred at an impulse of 20 psi-milliseconds for a 40 kilogram animal. Atmospheric pressure ρ_1 was about 12 psi and the hydrostatic pressure ρ_0 was about 12.9 psi (corresponding to 2-foot immersion depth).*

Intestinal Injuries. Since we do not know the sizes of air bubbles in the intestines we will make the conservative assumption that their oscillation periods are short relative to the duration of the incident pressure wave. This leads to a

* For most of these tests the animals were held vertically in the water with their lungs 1, 2, or 10 feet below the surface. For the tests at 2 and 10 feet, sheep were supplied air thru a face mask tied to their heads. The average atmospheric pressure at the Lovelace Foundation is about 12 psi.
damage parameter for injuries due to the excitation of these bubbles of the form

\[\text{PMAX}/p_0 \]

(2.14)

where PMAX is the maximum or peak incident overpressure. From the Lovelace Foundation sheep-dog-monkey data we estimate slight injuries to occur by this mechanism at about 600 psi at an ambient pressure of about 12.9 psi.

What we do now is compute two injury regions - one by the lung injury mechanism, the other by the intestinal injury mechanism. We then take the outer boundary of these two regions as the contour for incurring slight injury to the mammal.

Contouring Parameters. We accomplish our task by computing two contouring parameters - one for lung injuries, the other for intestinal injuries. These contouring parameters have the mathematical form of an injury probability as a function of the appropriate damage parameter, i.e.,

\[P = \frac{1}{1 + \exp[-\lambda(\mu - \bar{\mu})]} \]

(2.15)

where P is the contouring parameter, \(\lambda \) is a constant assigned some arbitrary value based on the computation mesh size, \(\mu = \log_{10} [\text{DAMAGE PARAMETER}] \), and \(\bar{\mu} \) is the value of \(\mu \) computed from the damage parameter value corresponding to the desired contour. Note that regardless of the value assigned to \(\lambda \), P-values greater than 0.5 lie inside the contour corresponding to \(\bar{\mu} \) and P-values less than 0.5 lie outside. Thus if at each mesh point of the region surrounding the explosion we compute both the contouring parameter for lung injury and the contouring parameter for intestinal injury, we can obtain the contouring parameter for injury by either of the two mechanisms by simply selecting at each
mesh point the greater of the two computed values. The corresponding contour for injury by either of the two mechanisms is then obtained by interpolating for a value of 0.5 over the entire grid.

3. SAMPLE PROBLEMS

3-1. WHALES - KEY WEST

These computations were done as part of a Preliminary Environmental Assessment for an ongoing program of routine shock testing of Naval targets, including ships, with large conventional explosive charges placed under water. The current site is in the Atlantic Ocean about 19 nautical miles SSE of Key West, Florida. The average water depth is 900 feet. The explosive is HBX-1, a standard Navy explosive, placed in steel cases. There are three typical explosion test geometries: a 1,200 pound charge at a depth of 125 feet, a 10,000 pound charge at a depth of 200 feet, and a 40,000 pound charge at a depth of 200 feet.

The results are shown in Figures 3.1.1, 3.1.2, and 3.1.3 for the three explosion configurations employed at the test site and for 20-foot and 55-foot whales. For these computations it was assumed that the body mass versus length for whales is given by

\[M = 6.23 L^3 \] \hspace{1cm} (3.1.1)

where M is the body mass in kilograms and L is the length in meters. For 20-foot and 55-foot whales this gives:

FIGURE 3.1.1. CONTOURS FOR SLIGHT INJURY TO WHALES: 1200-LB CHARGE AT 125-FT DEPTH
FIGURE 3.1.2 CONTOURS FOR SLIGHT INJURY TO WHALES: 10,000-LB CHARGE AT 200-FT DEPTH
FIGURE 3.1.3. CONTOURS FOR SLIGHT INJURY TO WHALES: 40,000-LB CHARGE AT 200-FT DEPTH
Note that the extent of the predicted regions for incurring injuries are larger for the smaller whales.

3.2. WHALES - NORTH ATLANTIC

These computations were done as part of a Preliminary Environmental Assessment for explosion tests employing 10,000 pound HBX-1 charges fired under water in the North Atlantic. The water depth was about 15,000 feet. The charge depths were 400 meters (1312 feet) and 1300 meters (4265 feet).

The results for 20-foot and 55-foot whales are shown in Figures 3.2.1, 3.2.2 and 3.2.3 for the two charge depths. For explosive charges fired at such great depths, two separate injury regions will often occur - a deep roughly spherical region enclosing the charge, and a shallow disk directly over the charge near the water surface. Two such regions occur with the 4,265-foot depth explosion. Figure 3.2.2 shows the shallow disk regions for the two whale sizes. Figure 3.2.3 shows the deeper spherical regions surrounding the charge.

The rough overall dimensions from these 10,000-pound explosion computations are summarized in Table 3.2.1. In Table 3.2.1 the small (insignificant) shallow disk region for the 55-foot whale (shown in Figure 3.2.2) has been omitted.
FIGURE 3.2.1. CONTOURS FOR SLIGHT INJURY TO WHALES: 10,000-LB CHARGE AT 1,312 FEET
FIGURE 3.2.2. CONTOURS FOR SLIGHT INJURY TO WHALES: 10,000-LB CHARGE AT 4,265 FEET: SURFACE DISK
FIGURE 3.2.3. CONTOURS FOR SLIGHT INJURY TO WHALES: 10,000-LB CHARGE AT 4,265 FEET: DEEP SPHERE
TABLE 3.2.1. - HORIZONTAL EXTENT OF REGIONS OF SLIGHT INJURY TO WHALES BY 10,000-POUND EXPLOSIONS

<table>
<thead>
<tr>
<th>Depth of Explosion (feet)</th>
<th>Length of Whale (feet)</th>
<th>Near Water Surface (feet)</th>
<th>At Explosion Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,312</td>
<td>20</td>
<td>6500</td>
<td>1060</td>
</tr>
<tr>
<td>1,312</td>
<td>55</td>
<td>3300</td>
<td>930</td>
</tr>
<tr>
<td>4,265</td>
<td>20</td>
<td>7200</td>
<td>420</td>
</tr>
<tr>
<td>4,265</td>
<td>55</td>
<td>None</td>
<td>390</td>
</tr>
</tbody>
</table>
3-3. PORPOISES

These computations are new for this report and were done for the Navy shock testing conditions at the Key West, Florida test site (see Section 3-1). The computations were done for the two sizes of Atlantic Bottlenose Dolphin (Tursiops Truncatus) - 8-foot long adults and 3.3-foot long newborn calves. For the body mass we assumed that the body mass versus length is given by

\[M = 12 L^3 \] \hspace{1cm} (3.3.1)

where \(M \) is in kilograms and \(L \) is in meters.

For a 3.3-foot long and an 8-foot long Bottlenose Dolphin this gives:

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Body Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(feet)</td>
<td>(meters)</td>
</tr>
<tr>
<td>Calf</td>
<td>3.3</td>
<td>1.01</td>
</tr>
<tr>
<td>Adult</td>
<td>8.0</td>
<td>2.44</td>
</tr>
</tbody>
</table>

The computed results - locations (contours) where slight injuries to the porpoise are predicted - are shown in Figures 3.3.1, 3.3.2 and 3.3.3.

These computations can also be used for other similar size dolphins or porpoises, such as the variety of Bottlenose Dolphin found in the Western Atlantic which are a bit larger, and the Common Dolphin (Delphinus delphi) which are a bit smaller. Note that this section and Figures 3.3.1 through 3.3.3 have been labelled "porpoises" rather than "dolphins" in order to avoid confusion with the dolphin fish which is not related to these deep diving mammals.
FIGURE 3.3.1. CONTOURS FOR SLIGHT INJURY TO PORPOISES: 1200-LB CHARGE AT 125 FEET
FIGURE 3.3.2. CONTOURS FOR SLIGHT INJURY TO PORPOISES: 10,000-LB CHARGE AT 200 FEET
FIGURE 3.3.3. CONTOURS FOR SLIGHT INJURY TO PORPOISES: 40,000-LB CHARGE AT 200 FEET

- ADULTS
- CALVES
3-4. MANATEES

These computations were done in response to a request from the Army Corps of Engineers for information on the effects of underwater blasting on manatees. A 12-pound explosive charge was used to represent the effect of charges weighing from 6 to 24 pounds. Computations were done for two charge depths, 5-feet and 40-feet, in order to bracket the situations ordinarily encountered by the Corps of Engineers; and for two mammal weights, 70-pounds (to represent calves), 1200-pounds (for juveniles and adults).

While the effects of the water surface are a major component of the computations, effects of bottom proximity are ignored. Bottom effects are considered to be of secondary importance, and, as yet, have not been considered in any of our environmental studies.

The results of these computations are presented in Figures 3.4.1 and 3.4.2, and are summarized in Table 3.4.1.
FIGURE 3.4.1. CONTOURS FOR SLIGHT INJURY TO MANATEES: 12-LB CHARGE AT 5-FT DEPTH
FIGURE 3.4.2. CONTOURS FOR SLIGHT INJURY TO MANATEES: 12-LB CHARGE AT 40-FT DEPTH

- Juveniles & Adults
- Calves
TABLE 3.4.1.- MAXIMUM HORIZONTAL EXTENT OF SLIGHT INJURIES TO MANATEES BY 12-POUND EXPLOSIONS

<table>
<thead>
<tr>
<th>Depth of Explosion (feet)</th>
<th>Juveniles and Adults2 (feet)</th>
<th>Calves3 (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>130</td>
<td>280</td>
</tr>
<tr>
<td>40</td>
<td>220</td>
<td>450</td>
</tr>
</tbody>
</table>

1 For multiple blasts from submerged boreholes (simultaneous and/or time-delay), with 6 to 24 pounds explosive per hole, measure horizontal range to manatee from nearest borehole.

2 Range for juveniles and adults computed using 1200-pound animal weight.

3 Range for calves computed using 70-pound animal weight.
REFERENCES

DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td>Naval Sea Systems Command</td>
<td>Cameron Station</td>
</tr>
<tr>
<td>Attn: SEA-55X1 (J. Sullivan)</td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>SEA-55X11 (D. M. Hurt)</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>SEA-55X13R. E. Fuss)</td>
<td>Attn: Code 480</td>
</tr>
<tr>
<td>SEA-55X1 (W. Forehand)</td>
<td>Code 441</td>
</tr>
<tr>
<td>SEA-62R32 (G. D. Edwards)</td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>SEA-62R (W. W. Blaine)</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>Washington, D.C. 20362</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Library of Congress</td>
</tr>
<tr>
<td>David Taylor Naval Ship Research & Development Center</td>
<td>Attn: Gift and Exchange Division</td>
</tr>
<tr>
<td>Bethesda, MD 20084</td>
<td>Washington, D.C. 20540</td>
</tr>
<tr>
<td>Underwater Explosions Research Division</td>
<td>Chief of Naval Material</td>
</tr>
<tr>
<td>Attn: Code 17</td>
<td>Office of Naval Technology</td>
</tr>
<tr>
<td>Code 1740 1</td>
<td>Attn: MAT-07 (J. W. Enig)</td>
</tr>
<tr>
<td>Code 1740.1 1</td>
<td>Washington, D.C. 20360</td>
</tr>
<tr>
<td>Code 1750 1</td>
<td>Director</td>
</tr>
<tr>
<td>Code 1720 1</td>
<td>Waterways Experiment Station</td>
</tr>
<tr>
<td>Code 1720.3 1</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>Code 042 1</td>
<td>Kim Davis</td>
</tr>
<tr>
<td>Bethesda, MD 20084</td>
<td>P.O. Box 631</td>
</tr>
<tr>
<td>Director</td>
<td>Waterways Experiment Station</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Vicksburg, MS 39180</td>
</tr>
<tr>
<td>Attn: Code 2027</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Code 8400 1</td>
<td>Naval Biosciences Laboratory</td>
</tr>
<tr>
<td>Code 8406 1</td>
<td>Attn: Dr. Harold E. Guard</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td>LCDR Andre B. Cobet</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Naval Underwater Systems Center</td>
<td>Naval Biosciences Laboratory</td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>Attn: Dr. Harold E. Guard</td>
</tr>
<tr>
<td>Newport, RI 02840</td>
<td>LCDR Andre B. Cobet</td>
</tr>
<tr>
<td>(1)</td>
<td>Bldg. 844, Naval Supply Center</td>
</tr>
<tr>
<td></td>
<td>Oakland, CA 94625</td>
</tr>
</tbody>
</table>
Commanding Officer
Naval Underwater Systems Center
Attn: Code EA 11 (Roy R. Manstan) 1
Newport, RI 02840

Commander
Naval Ocean Systems Center
Attn: Code 406 (S. Yamamoto) 1
D. A. Wilson 1
Code 5104 (F. G. Wood) 1
Code 6565 1
Michael H. Salazar 1
Code 311 (C. L. Brown) 1
Code 311 (A. L. Brooks) 1
San Diego, CA 92152

Commander
Naval Ocean Systems Center
Attn: Jack W. Hoyt 1
Code 2531 (J. D. Warner) 1
Code 4013 (W. C. Cummings) 1
Technical Library 1
San Diego, CA 92152

Naval Ocean Systems Center
Hawaii Laboratory
Attn: William Friedl 1
Evan C. Evans, III 1
Head Marine Environmental Management Office 1
P.O. Box 997, Kailua, Oahu
Hawaii 96734

Naval Ocean Systems Center
Civil Engineering Laboratory
Attn: Code L70 1
Code L71 1
Code L43 1
Code L65 1
Naval Construction Battalion Center
Port Hueneme, CA 93043

Naval Ocean Systems Center
Naval Air Station
Attn: A. L. Clark, Environmental Protection Coordinator
Public Works Department 1
Patuxent River, MD 20670

Naval Ocean Systems Center
Naval Air Station
Attn: Tom Crews, III, Environmental Branch 1
100 McAllister Street
San Francisco, CA 94102

Naval Ocean Systems Center
Naval Air Station
Attn: Michael T. Lee, Biologist 1
Environmental Section
Bldg. 230, Ft. Shafter
APO San Francisco 96558

Naval Ocean Systems Center
Naval Air Station
Attn: J. C. Cornette 1
ADTC/DLV
Eglin AFB, FL 32542

Naval Ocean Systems Center
Naval Air Station
Attn: Theodore Merrell 1
National Marine Fisheries Service
Auke Bay Bilingual Laboratory
P.O. Box 155
Auke Bay, AK 99821

Naval Ocean Systems Center
Naval Air Station
Attn: Dale R. Evans, Chief 1
National Marine Fisheries Service
Water Resources Division
P.O. Box 1668
Juneau, AK 99801

Naval Ocean Systems Center
Naval Air Station
Attn: Albert B. Brooks 1
Code TA13 (C. L. Brown, Jr.) 1
New London, CT 06329

Commanding Officer
Naval Explosive Ordnance Disposal Facility
Attn: Library Division 1
Code 5D (L. A. Dickinson) 1
Richard Burdette 1
Lyle Malotky 1
Indian Head, MD 20640
<table>
<thead>
<tr>
<th>National Marine Fisheries Services</th>
<th>South Carolina Marine Resources Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwest Fisheries Center</td>
<td>Attn: Michael D. McKenzie</td>
</tr>
<tr>
<td>P.O. Box 271</td>
<td>2024 Maybank Highway</td>
</tr>
<tr>
<td>La Jolla, CA 92037</td>
<td>Charleston, SC 29412</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Commerce</th>
<th>Trust Territory Environmental Protection Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Laboratory</td>
<td>Attn: M. Falanruw, Staff Ecologist</td>
</tr>
<tr>
<td>Midford, CT 06460</td>
<td>P.O. Box 215</td>
</tr>
<tr>
<td></td>
<td>Yap, W.C.I. 96943</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of the Interior</th>
<th>State of Alaska Department of Fish and Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Karen Bachman</td>
<td>Attn: L. L. Trasky, Fisheries Research Biologist</td>
</tr>
<tr>
<td></td>
<td>333 Raspberry Road</td>
</tr>
<tr>
<td>1107 NE 45th Street</td>
<td>Anchorage, AK 99502</td>
</tr>
<tr>
<td>Suite 110</td>
<td></td>
</tr>
<tr>
<td>Seattle, WA 98105</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of the Interior</th>
<th>Deputy Commissioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bureau of Sports Fisheries and</td>
<td>Alaska Department of Fish and Game</td>
</tr>
<tr>
<td>Wildlife</td>
<td>Attn: Joseph R. Blum</td>
</tr>
<tr>
<td>Interior Building</td>
<td>Support Building</td>
</tr>
<tr>
<td>Washington, D.C. 20240</td>
<td>Juneau, AK 99801</td>
</tr>
</tbody>
</table>

State of Maryland	State of Alaska Department of Fish and Game
Fish and Wildlife Administration	Habitat Section
Attn: Charles Frisbie	333 Raspberry Road
1	Anchorage, AK 99502
Barbara Holden	
Howard J. King	
Annapolis, MD 21404	

State of North Carolina	State of California Marine Resources Division
Department of Natural and	Attn: D. Gates, Regional Manager
Economic Resources	1
Attn: Willard Lane, Artificial Reef Program	350 Golden Shore
Jim Tyler, Artificial Reef Program	Long Beach, CA 90802
Division of Marine Fisheries	
Box 769	
Morehead City, NC 28557	

State of Florida Department of	State of Florida
Natural Resources	Attn:
Larson Building	D. Gates, Regional Manager
Tallahassee, FL 32304	1

(3)
Title: PREDICTION OF UNDERWATER EXPLOSION SAFE RANGES FOR SEA MAMMALS

Authors: John F. Goertner

Abstract:
This report describes a method for the prediction of the water regions in the vicinity of an underwater explosion where significant injuries to sea mammals can occur. The method is based on an approximate scaling of underwater explosion test data obtained by the Lovelace Foundation using live sheep, dogs, and monkeys. The scaling is based on the calculated radial oscillation responses of the lung cavity and of small bubbles of intestinal gas. At each point in the water the more significant of the two effects is used to define the predicted injury region. (Continued)
The method has been used in preparing Preliminary Environmental Assessments for explosion test programs. Results from several such computations done for sea mammals (whales, dolphins and manatees) are presented.