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ABSTRACT 

Stochastic differential equations and classical techniques related to the Fokker-Planck 
equation are standard bases for the analysis of nonlinear systems perturbed by noise. 
An alternative, complementary approach applicable to systems featuring heteroclinic 
or homoclinic orbits uses phase space :Bux as a measure of noise-induced chaotic 
dynamics. We continue our development of this method, extending our previous 
treatment of additive noise to the more general case of multiplicativ noise. This 
extension is used with a new model of shot noise to treat the Duffing osl.~....tor with 
shot noise-like dissipation. 

INTRODUCTION 

Two fundamental paradigms are used to account for the seemingly unpredictable and 
erratic motions exhibited by many dynamical systems: the first is that of a dynamical 
system perturbed by noise - a differential equation, say, driven by white noise or jump 
noise. This type of motion is called stochastic chaos and is typically studied using 
stochastic differential equations and classical techniques related to the Fokker-Planck 
equation. Stochastic chaos exhibited by nonlinear systems is an ongoing object of 
intense interest [1, 2, 3, 4, 5]. Noise-induced state transitions in nonlinear systems, in 
particular, have received much recent attention [6, 7, 8, 9]. 

The second paradigm of erratic motion posits a purely deterministic dynamical 
system with 1) an uncertainty (perhaps very, very small) in its initial state and 2) a 
:Bow structure admitting intersecting stable and unstable manifolds. Such a system is 
capable of bounded motion which becomes increasingly unpredictable with the time 



• 


evolution of the system. In effect, the special structure of the system fl.ow amplifies the 
uncertainty in the initial state of the system to the point that system states sufficiently 
far in the future are essentially unpredictable. Such systems are said to be sensitively 
dependent on initial conditions and the motion they exhibit is termed deterministic 
chaos. 

Understanding of each of these paradigms has now matured to the point where 
they are being actively compared and contrasted in many ways. We mention three 
important studies of this type. Arecchi, Badii and Politi [10], investigating the ef­
fect of noise on the forced Duffing oscillator in the region of parameter space where 
different attractors coexist, found that the noise may be viewed as inducing jumps 
between attractors with the noise-induced transitions obeying simple kinetic laws. 
In related work, Kautz [11] obtained basin of attraction rate of escape results for a 
Josephson junction excited by thermal noise. Taking a different approach, Kapitaniak 
[12] studied numerical solutions of the Fokker-Planck equation obtained for randomly 
and periodically forced nonlinear oscillators. Choosing oscillator parameters known 
to result in deterministic chaos, he found that the probability density function of the 
motion exhibited multiple spiked maxima. 

Deterministic chaos and stochastic chaos are not mutually exclusive; one may have 
a system sensitively dependent upon initial conditions which is randomly perturbed 
by noise. Indeed, the presence of noise is inevitable in any real system. This fact un­
dermines any attempt to identify system dynamics as simply deterministic chaos or 
stochastic chaos. Nevertheless, in a line of work beginning with Sigeti and Horsthemke 
[13], the spectrum of the system dynamics has been investigated as a way to distin­
guish deterministic chaos from noise-driven stochastic chaos. Sigeti and Horsthemke 
argued that the two types of motion could be distinguished by the order of the rate of 
spectral decay. The practical limitation of this approach has been quantified in a se­
ries of investigations of weakly forced systems with attracting homoclinic/heteroclinic 
orbits. Brunsden and coworkers [14, 15] found the power spectrum of the chaotic mo­
tion for the noiseless case of this class of systems, basing their derivation on the crucial 
assumption (affirmed by numerical simulations) that the time history of the motion 
could be represented as a random superposition of deterministic structures. Corre­
sponding results were obtained by Stone and Holmes [16] and Stone [17] for white 
noise perturbation and then by Simiu and Frey [18] for colored noise plus periodic 
forcing, the conclusion in each case being that the spectrum of noise-induced motion 
and that of deterministic chaos are essentially (to first order) indistinguishable. A 
recent nonspectral approach is that of Kennel and Isabelle [19]. They propose a com­
·putational method of distinguishing between deterministic chaos and stochastic chaos 
with similar spectra based on the short-term nonlinear predictability of the system 
dynamics. 

Model systems in which the motion is a combination of both deterministic and 
stochastic chaos are ideal for investigating the relationship between stochastic and 
deterministic chaos. Grassberger and Procaccia [20] and Ben-Mizrachi, Procaccia 



and Grass berger [21] have proposed a scheme based on the correlation dimension to 
investigate this relationship. They theorize that in the case of noise-perturbed systems 
the correlation dimension increases with increases in the embe.dding dimension while 
for deterministic chaos it is constant. For deterministic chaos perturbed by weak 
noise they predict that the correlation dimension will increase with the embedding 
dimension to a point and then stop. However, examples contradicting this have been 
reported by Fichthorn, Gulari and Ziff [22] and by Chen [23]. 

In systems whose motion is a combination of deterministic and stochastic chaos 
the role of noise in the supression or promotion of deterministic chaos is an area of 
active study. Typically, systems must exceed a certain parametric threshold for deter­
ministic chaos to occur. Noise-induced changes to this threshold were first considered 
for cases of discrete-time systems. Mayer-Kress and Haken [24] and Crutchfield and 
Huberman [25] found that for the logistic map external noise broadened the power 
spectrum and caused the maximal Liapounov exponent to switch from negative to 
positive - two indications of a transition to chaos. Tsuda and Matsumoto [26, 27], 
looking for similar behavior in the B-Z map, found that the introduction of external 
noise produced spikes in the spectrum, indicating the suppression of chaos. More re­
cently, Kapitaniak [12] defined a random maximal Liapounov exponent and reported 
that, for the class of continuous-time systems he considered, the introduction of weak 
noise tended to decrease this quantity. Interpreting Kapitaniak's work to suggest 
that weak noise may suppress deterministic chaos that would otherwise occur in the 
absence of noise, Bulsara, Schieve and Jacobs [28], [29] formulated a theory to ac­
count for this using the Melnikov function - a key quantity from Melnikov's theory of 
separated manifolds. These investigators redefined the Melnikov function to address 
the presence of weak noise and found that it acted to raise the parametric threshold, 
suppressing deterministic chaos. In an analysis of this work, Simiu, Frey and Grigoriu 
[30] concluded that this redefined Melnikov function addressed only one second-order 
effect of the noise. Taking a different tack which obviated the need to redefine the 
Melnikov function, Simiu et al. concluded that in the weak noise limit the parametric 
threshold for chaos was, for a wide class of continuous-time systems, never raised by 
the presence of noise. This conclusion was further developed by Frey and Simiu in [31] 
using the notion of phase space flux transport. An application of this methodology 
to the technologically interesting case of systems perturbed by noise with finite-tailed 
marginal distributions (e.g., wave heights limited by physical factors) was given by 
Simiu and Grigoriu in [32]. 

This brief survey of recent work in stochastic and deterministic chaos shows that 
many fundamental questions remain unresolved and it will, we hope, stimulate further 
interest in the subject. The remainder of this chapter is divided into five sections. In 
the first two sections we briefly review the calculation in [31] of phase space flux f<;>r 
systems perturbed by additive near-Gaussian noise and present a new calculation of 
the flux factor in the case of the Duffing oscillator with additive near Gaussian noise. 
In the third section, the more general case of multiplicative noise is treated. Presented 



in the following section is a new model of shot noise tailored to the requirements of 
Melnikov's method. This shot noise model is analogous to the modified Shinozuka 
noise model used to represent Gaussian noise in [31]. In the last section, we treat 
the Duffing oscillator with shot noise-like dissipation as a system with multiplicative 
noise and calculate the flux factor. 

ADDITIVE EXCITATION 

We consider the integrable, two-dimensional, one-degree-of-freedom Newtonian dy­
namical system [33] with energy potential V governed by the equation of motion 

x = -V'(x), x ER. (1) 

System ( 1) is assumed to have two hyperbolic fixed points connected by a hetero­
clinic orbit x11 = (x 11 (t), x11 (t)). If the two hyperbolic fixed points coincide, then x11 is 
homoclinic. A perturbative component is introduced into system (1), giving 

x= -V'(x) +ew(x, x, t). (2) 

The perturbative function w : R 2 x n -+ n is assumed to satisfy the Meyer-Sell 
uniform continuity conditions [34] and only the near-integrable case, 0 < e ~ 1, is 
considered. In this section we restrict our attention to the case of additive excitation 
and linear damping treated in [31]. For this case, 

w(x, x, t) = ')'g(t) + pG(t) - K.x (3) 

and system (2) takes the form 

x = -V'(x) + e['Yg(t) + pG(t) - 1t:i:]. (4) 

Here g and G represent deterministic and stochastic forcing functions, respectively. g 
is assumed to be bounded, lg(t)I ~ 1, and uniformly continuous (UC). The parameters 
p, 'Y and K. are nonnegative and fix the relative amounts of damping and external 
forcing in the model. 

The random forcing Gin (3) is taken to be a randomly weighted modification of 
the Shinozuka noise model [35], [36], 

U 
G(t) = y f2N;N 

S(vn) cos(vnt + 'Pn)· (5) 

'11 

where {vn, 'Pn; n = 1, 2, ... , N} are independent random variables defined on a proba­
bility space (n, B, P), {vn; n = 1, 2, ... , N} are nonnegative with common distribution 

0 , { 'Pni n = 1, 2, ... ,N} are identically uniformly distributed_ over the interval [O, 211"] 
and N is a fixed parameter of the model. 

Let F denote the linear filter with impulse response h(t) = :i: 11 (-t) where :i: 11(t) is 
the velocity component of the orbit x of system (1 ). F is called the system orbit11 



filter and its output is F[u] = u *h where u = u(t) is the filter input and u * h is the 
convolution of u and h. Sin (5) is then defined to be modulus S(v) = IH(v)I of the 
orbit filter transfer function 

H(v) = h(t)e-ivtdt (6) 

and u in (5) is 

fo00 

u = S2(v)w(dv). 

1_: 

Let the distribution '11 0 of the angular frequencies Vn in (5) have the form 

(7) 


wh~re A is any Borel subset of R. Sis assumed to be bounded away from zero on 
the support of W, S(v) > Sm > 0 a.e. W. Under this condition S is said to be 
W-admissible. If S is W-admissible, then it is also bounded away from zero on the 
support of '11 0 and 1/S(vn) < 1/Sm a.s. '11 0 • We have the following results for G and 
its filtered counterpart F[G]. 

Fact G1: G and F[G] are each zero-mean and stationary. 

Fact G2: If Sis W-admissiblethen G is uniformly bounded with IG(t,w)I ~ 

J2N/Sm for all t ER and w En. 

Fact GS: The marginal distribution of F[G] is that of the sum 

where {Un; n = 1, ... , N} are independent random variables uniformly 
distributed on the interval (0, 271"]. 

Fact G4: G and F[G) are each asymptotically Gaussian in the limit as 
N --+ oo. In particular, the random variables G(t) and F[G)(t) are, for 
each t, asymptotically Gaussian. 

Fact G5: The spectrum of G is 27rW and G has unit variance. 

Fact G6: The spectrum of F[G) is 27rW0 and its ·variance is u 2• 

Fact G7; Let the spectrum W of G be continuous. Then F[G) is ergodic. 

Proof of the first six of these results can be found in [31]. Fact G7 is related to the fact 
that Gaussian processes with continuous spectra are ergodic [37, 38). Five realizations 
of G with bandlimited spectrum are shown for comparison in Figure 1 together with 



Bandlimited Modified Bandlimited 
Shinozuka Noise (N=40) Gaussian Noise 

Figure 1. Realizations of modified Shinozuka and Gaussian noise processes 
whh identical bandlimited spectra and .S (v) = sechv. · 



five realizations of Gaussian noise with the same spectrum. S(v) = sechv is used in 
this example. 

The system orbit filter :F enters into the construdion of Gin two ways. First, S 
appears as a random scaling factor in (5) and, second, S appears in (7) in the expres­
sion for the distribution W of the frequencies Vn· Concerning the effect on the mean,0 

covariance and spectrum of G, these two uses of S completely cancel one another. 
Effectively, S is a free parameter of the model subject only to the constraint that it 
be W-admissible. Although the choice of S has no effect on G, it does significantly 
affect the filtered process :F[G]. Choosing the parameter S to be the modulus of the 
orbit filter makes the process :F[G] ergodic. 

Let us now consider the effect of the perturbation ew(x, x, t) on the global geometry 
of (1). For sufficiently small perturbations, the hyperbolic fixed points of (1) persist 
and remain hyperbolic and the stable and unstable manifolds associated with the orbit 
of (1) separate [39]. The distance between the separated manifolds is expressible 
as an asymptotic expansion eM + O(e2 ) where M is a computable quantity called 
the Melnikov function. The separated manifolds may intersect transversely and, if 
such intersections occur, they are infinite in number and define lobes marking the 
transport of phase space [40]. The amount of phase space transported, the phase 
space flux, is a measure of the chaoticity of the dynamics [41]. The lobes defined 
by the intersecting manifolds generally have twisted, convoluted shapes whose areas 
are difficult to determine, making analytical calculation of the flux difficult, if not 
impossible. For the case of small perturbations, however, the phase space flux can 
be expressed in terms of the Melnikov function. The average phase space flux has 
the asymptotic expansion e<P + 0(e2 ) where <.P, here called the flux factor, is a time 
average of the Melnikov function: 

1
<.P = lim T 1T M+(fJi - t, 82 - t)dt (8)

T-+oo 2 -T 

where M+ is the maximum of M and 0. 

To apply Melnikov theory to a deterministic excitation g, g must be bounded and 
UC. In the case of random perturbations G, the theory requires that G be uniformly 
bounded and uniformly continuous across both time and ensemble. The noise model 
Gin (4) is uniformly bounded as noted in Fact G2. However, G does not necessarily 
have the needed degree of continuity. 

We define a stochastic process X to be ensemble uniformly continuous (EUC) if, 
given any 51 > 0, there exists 52 > 0 such that if t1, t2 E R and it1 - t21 < 62 then 
IXt1(w) - Xt2(w)I < 61 for all w En. A stochastic process can have UC paths and 
fail to be EUC. The derivative G'(w) of the noise path G(w) is bounded, 

U {2 N 

·IG~(w)I < Sni yN ~ Vn(w) 



for all t E n. Thus G is EUC if the sum of its angular frequencies {v1, ... )ZIN} is 
bounded. This sum is bounded if and only if G is bandlimited. Thus G is EUC if it 
is bandlimited. 

Conditions on the perturbation function w sufficient for the Melnikov function to 
exist are [34]: for every compact set K ER x R, (i) w is UC on K, x Rand (ii) there 
is a constant k such that 

for all t ER and (xi, :i:1), (x2, :i:2) EK. These conditions are met in (3) provided g is 
UC and G is EUC. Under these conditions, the Melnikov function for system (4) is 
given by the Melnikov transform M[g, G] of g and G: 

M(t1, t2) - M[g, G] (9) 

- -1t 1-: x~(t)dt +r 1-: :i:a(t)g(t + t1 )dt 

+p 1-: :i:a(t)G(t + t 2 )dt. 

Recall that h(t) = x6 (-t) is the impulse response of the orbit filter :F. Denoting the 
integral of :i:~ by I, we obtain 

(10) 

bstituting (10) into (8) yve obtain Su

q, = lim 1T 1T [r:F[g]( 81 - s) + p:F[G](92 - s) - I K:]+ds. (11)
T-+oo 2 -T 

Existence of the limit in (11) depends on the nature of the excitations g and G and 
their corresponding convolutions :F[g] = g * h and :F[G] = G * h. 

To ensure the existence of the limit in (11), we assume that g is asymptotic mean 
stationary (AMS): a stochastic process X(t) is defined to be AMS if [42] the limits 

1 fT 
µx(A) =t~ 2T J_T E[lA(X(t))]dt (12) 

exists for each real Borel set A E 'R. Here lA is the indicator function, lA(x) = 1 for 
_a: E A and lA(x) = 0 otherwise. If the limits in (12) exist then µx is a probability 
measure (43]. µx is called the stationary mean (SM) distribution of the process X. 

The deterministic forcing function g is assumed to be AMS so, due ~o the linearity 
of :F, :F[g] is also AMS and we denote the SM distribution of :F[g] by µ.r[g]· Assume the 
spectrum of G is continuous. Then, according to Fact G7, :F[G] is ergodic. Ergodicity 
implies asymptotic mean stationarity so :F[G] is AMS also with SM distribution µ.r[G]· 

All AMS deterministic functions are ergodic so :F[g], like :F[G], is ergodic. Inasmuch as 



F[g] is deterministic, F[g] and F[G] are jointly ergodic with SM distribution µ.r(g] x 
µ.r[G] [31]. Then the limit (11) exists and can be expressed in terms of the SM 
distributions µ.r(g] and µ.r[G]. 

Theorem 1 [31]: Suppose g is AMS and F[G] is ergodic. Then the limit in (11) 
exists, the flux factor ~ is nonrandom and 

~ = E[(rA + pB - Jx:rJ 
where A is a random variable with distribution equal to the SM distribution µ.r(g] of the 
function F[g], Bis a random variable with distribution equal to the SM distribution 
µ.r[G] of the process F[G] and A and Bare independent. 

Theorem 1 applies broadly to uniformly bounded and EUC noise processes G with 
ergodic filtered counterpart F[G]. The modified Shinozuka process (5) belongs to this 
class provided it is '11-admissible with continuous, bandlimited spectrum. Moreover, G 
in (5) is stationary and F[G] is asymptotically Gaussian. Hence µ.r[G] is the marginal 
distribution of F[G] and, for large N, B is approximately Gaussian with zero mean 
and variance u 2 • 

Theorem 2 [31]: Suppose g is AMS and G is a '11-admissible modified Shinozuka 
process with continuous bandlimited spectrum. Then the flux factor ~ is approxi­
mately 

(13) 

where Z is a standard Gaussian random variable. The error in this approximation 
decreases as N is made larger. 

Most remarkable about (13) is the fact that, for Gaussian excitation without a 
deterministic component g, the detailed nature of the system is expressed in the flux 
factor ~ solely through the constant I and the scaling factor u where 

0"2 = fooo S2( ZI )'1f(dv) 

represents the degree of "match" of the noise spectrum W to the orbit filter. Further 
analysis of (13) is given in [31]. . 

DUFFING OSCILLATOR WITH ADDITIVE NEAR-GAUSSIAN NOISE 

The Duffing oscillator [44] is one of the simplest one-degree-of-freedom Newtonian 
dynamical systems capable of deterministic chaotic motion and has been extensively 
studied via mechanical laboratory and numerical computer models as well as analyti­
cally. The potential energy for this system is V(x) = x4 /4-:z:2 /2. Consider the forced 
Duffing oscillator with additive noise and linear damping: 

x = x - x 3 + e['Yg(t) + pG(t) - 1ex]. (14) 



Here"'( ~ 0, "'~ 0 and p > 0 are constants, g is deterministic and bounded lg(t)I :::;; 1, 
and G is the modified Shinozuka noise process reviewed in the previous section. 

x3The unperturbed Duffing oscillator i = x - has a hyperbolic fixed point at 
the origin (x,x) = (0,0) in phase space connected to itself by symmetric homoclinic 
orbits. These orbits are given by 

( ~:~!~ )= ± ( ~~;~~~!nh t ) . 

The impulse response h of the righthand (+)orbit is h(t) = x.(-t) = v'2sechttanh t. 
Thus I= 4/3. 

The flux factor q> for this system is given exactly in Theorem 1 and approximately 
in Theorem 2. The approximation in Theorem 2 was obtained by representing the 
marginal distribution µF[G] of F[G] by a Gaussian distribution and is appropriate 
for large N. However, because the Gaussian distribution has infinite tails, Theorem 2 
indicates that the flux factor is nonzero for all levels p > 0 of noise. We now present a 
different approximation to the flux factor based on the beta distribution which better 
describes the effect of the finite tails of µ.F[G]. We consider the case "'( = 0. This is the 
case in which there is no deterministic forcing or, equivalently, the case in which the 
mass of the distribution µ.F[g] is concentrated at zero by the orbit filter F. The latter 
occurs, for instance, when the spectrum of g is located outside the passband of F. 

For the Duffing oscillator (14) with no deterministic forcing ("'( = 0), linear 
damping and additive Shinozuka noise (5), we have, according to Theorem 1, q> = 
E[(puBN - 411:;/3)+]. Using Fact G3 we take 

and define 
I 3 pUq>' - 3q> B'- BN+VW 

- 411:;' p = v'2~' - 2vm . 
Then 

q>' = E[(p\fN(B' - 1/2) - 1)+]. 

The support of B' is the interval (0, 1) and is approximately beta-distributed [48] with 
density 

r(a. + f3) ta-1(1 - t)~-l 0 < t < 1 
r(a.)r(.B) ' 

where the parameters a > 0 and f3 > 0 of the distribution are chosen so that the 
mean and the variance of the beta distribution are the same as. those of B'. The mean 
and the variance of the beta distribution with parameters Ct and f3 are, respectively, 

a: af3 
a:+ .B' (a+ f3) 2(a + f3 +1) 



and E[B'] = 1/2 and Var[B'] = (BN)-1 so 

a 1 a/3 1 
a+ /3 = 2' (a+ f3)2(a + /3+1) =SN. 

Therefore a= /3 = N - 1/2 and 

~I - ~'(p', N) 

f
1 

- [p'VN(x - 1/2) - 1]+ r(2N - l) XN-3/2(1 - x)N-3l2dx (15)
lo P(N - 1/2) . 

Equation (15) shows that ~' = 0 for p'VN/2 < 1. In other words, ~ = 0 for 

pu < ~ /2 
~ 3VN· 

Ahove this threshold, 

~I • {1 [p'VN(x - 1/2) - 1] r(2N - 1) XN-3/2(1 - x )N-3/2dx 
lt+ P'~ r 2 (N - 1/2) 

- p'VN ~1 r(2N - 1) xN-1/2(1 - x)N-3/2dx 
t+ /m r 2 (N - 1/2) 

-(1 + p'VN) 11 r(2N - 1) XN-3/2(1 - x)N-3/2dx 
2 t+ P'~ P(N - 1/2) 

p'~ [1 - Beta(l/2 + 1/(p'VN); N + 1/2, N -1/2)] 

-(1 + p'~ )[1 - Beta(l/2 + 1/(p'VN); N -1/2, N - 1/2)] (16) 

where Beta(x; a,/3) is the regularized incomplete Beta function 

rea + /3) r a-1(1 )f3-1d 0Beta(Xj a, /3) = r(a)r(/3) lo t - t t, < X < 1. 

~' = ~'(p', N) is plotted in Figure 2 as a function of p' for various values of N using 
(16). For comparison, the limiting Gaussian noise case N --+ oo is also plotted using 

the righthand side of (13). 


MULTIPLICATIVE EXCITATION 


We turn now to a more general form for w, the multiplicative excitation model: 


w(x, x, t) = 1(x, :i:)g(t) + p(x, :i:)G(t). (17) 
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Figure 2. Th~ flux factor <I>' as a function of the noise 
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As in the additive excitation model, the function g represents deterministic forcing 
while G(t) = G(t,w), w E n is a stochastic process representing a random forcing 
contribution. 

The Melnikov function is calculated as in (9) to be 

M(ti, t2) = M[g, G] = :i:,,(t)b(x,,(t), :i:,,(t))g(t +ti)+ p(x,,(t), :i:,,(t))G(t + t2)]dt. 

We define orbit filters :F1 and :F2 with impulse responses 

h1(t) = :i:,,(-t)'y(x,,(-t), :i:,,(-t)), h2(t) = x.(-t)p(x,,(-t), x.(-t)) 

and corresponding transfer functions H 1 (v) and H 2 (v). Then 

M(t1, t2) = :F1[g](ti) + :F2[G](t2). (18) 

1_:

Generalizing the additive excitation model (3) by allowing the coefficients 'Y and p 
to depend on the state (x, :i:) of the system has, according to (18), two significant 
consequences. First, the orbit filter :Fin the additive model is replaced in the mul­
tiplicative model by two different orbit filters :F1 and :F2 and, second, the filters :F1 
and :F2 are, like :F, linear, time-invariant and noncausal with impulse responses given 
solely in terms of the orbit x,, of the unperturbed system and the functions 'Y and p. 

Substituting (18) into (8) gives 

(19) 

Just as in the case of the additive excitation model, existence of the limit in (19) hinges 
on the joint ergodicity of the function :F1[g] = g *hi and the process :F2[G] = G * h2. 

Theorem 3: Consider system (2) with perturbation function was in (17) such that 
g is AMS and :F2 [G] is ergodic. Let µ,r-1 [g] and µ.r2 [G] be the SM distributions of :Fi [g] 
and :F2 [G], respectively. Then the limit in (19) exists, the flux factor~ is nonrandom 
and 

~ = E[('YA pB)+] +
where A is a random variable with distribution µ.r1 [g], B is a random variable with 
distribution µ.r2 [GJ and A and Bare independent. 

Theorem 3 is an extension of Theorem 1 to the general case of multiplicative 
excitation. Theorem 3 can in turn be extended to systems with more general planar 
vector fields than that of system (2) and to third and higher order one degree-of­
freedom systems. Only the orbit filters :Fi and :F2 change in these more general cases; 
the form of the flux factor ~ given in Theorem 3 remains the sarrie. 

BOUNDED,EUCSHOTNOIBE 

Shot noise is a frequently used model of physical noise phenomena. Well-known 
applications include noise modelling in electrical and electronic systems. Shot noise 



is also used to model impulsive loads on mechanical systems - automotive traffic on 
bridges, for instance. Potential new applications include models of friction and noise 
modelling for micromachines. 

The usual model K of constant-rate shot noise is a stochastic process of the form 
[45], [46] 

K(t) r(t - Tk) (20) 
kEZ 

= L 

where Z is the set of integers, {T1c, k E Z} are the epochs (shots) of a Poisson process 
with rate A > 0 and r is bounded and square-integrable, 

j_: r2(t)dt < oo. 

r is call the shot response of the process K. Define 

(21) 

The shot noise K can be viewed as the output of the linear filter with transfer function 
R excited by a Poisson process with rate A and, according to Campbell's theorem [45], 

E[K(t)] =). r(T)dT = .XR(O), 

Cov[K(t1), K(t2 )] =A j_: r(t1 - T)r(t2 - T)dT 

and, in particular, 

Var[K(t)] =). j_: r2(T)dT. 

The spectrum Wof K is 

w(A) = .x LQ2(v)dv (22) 

1-:

where Q(v) = IR(v)I is the modulus of the transfer function R. 

The usual shot noise model K in (20) is neither bounded nor EUC and cannot 
be used in conjunction with Melnikov theory in calculating the phase space flux in 
chaotic systems. A modification of K is needed which approximates K and yet has 
the requisite path properties. We now describe a model of shot noise which meets 
these requirements. 

Let KN be a stochastic process of the form 

2N 

KN(t) = L L:r(t-T;1cN -A; -T) (23) 
jEZ k=l 

where N is a positive integer, A;= 2N(j -1/2)/.X and {T, T;kN,j E Z, k = 1, ... , 2N} 
are independent random variables such that for each N and j, {T;kN, k = 1, 2, ... , 2N} 



are identically uniformly distributed in the interval (A;, A;+1 ] and T is uniformly 
distributed between 0 and 2N/ ).. As in the usual shot noise model (20), ). is here 
again the rate of the process; it is the mean number of epochs (shots) T;kN per unit 
time. We assume just as for K, that r in (23) is bounded and ·square-integrable. We 
further assume that r is UC and that the radial majorant 

r*(t) = sup Ir(T )I
l'Tl::::ltl 

of the shot response is integrable; i.e. 

j_: r*(t)dt < oo. 

According to this specification of KN, realizations of the process are obtained by parti­
tioning the real line into the intervals (A;, A;+1] of length 2N/>.with common random 
phase T and then placing 2N epochs independently and at random in each interval. 
The random phase T eliminates the (ensemble) cyclic nonstationarity produced by 
the partitioning by (A;, A;+i]· 

Let :F be a linear, time-invariant :filter with impulse response h. Define the transfer 
function Hof :Fas in (6) and let S = IHI be the modulus of H. We now list some 
important properties of KN and :F[KN]· Multivariate, multiparameter and time­
varying shot rate generalizations of these results exist. The proofs of these more 
general results will be presented in a separate paper. 

Fact K1: E[KN(t)] = >. f~00 r(r)dr = ).R(O) for all N and t. 

Fact K2: E[:F[KN](t)] = ).f~00 (r * h)(r)dr = ).R(O)S(O) for all N and t. 

Fact K3: KN and :F[KN] are stationary processes. 

Fact K4: Let N-+ oo. KN converges in distribution [47] to the shot noise 
K with the same shot responser and rate ).. :F[KN] is also a shot noise 
of the form (22) with shot response r * h. Hence, :F[KN] converges in 
distribution to the shot noise K with shot response r * h and rate ).. 

Fact K5: The variances of KN and :F[KN] converge, respectively, to those 
of Kand :F[K]: 

Var[KN(t)]-+). j_: r2(r)dr, 

Var[:F[KN](t)]-+). j_:(r * h)2(r)dr. 

Fact K6: The spectrum of KN converges weakly [47] to the spectrum (21) 
of the shot noise K with the same shot response r and rate ).. Similarly, 



the spectrum of F[KN] converges weakly to the spectrum of the shot noise 
K with shot responser* hand rate >.. 

Fact K7: KN is uniformly bounded for all N, IKN(t)I ~ >.f~00 r*(t)dt. 

Fact KB: KN is EUC for all N. 

Fact K9: KN and F[KN] are each ergodic for all N. 

Facts Kl-6 establish that for large N the shot noise KN closely approximates the 
standard shot noise model K in all important respects. Facts K7-9 show that KN, 
unlike K, can be used in Melnikov's method-type calculations of the flux factor. 
Five realizations of KN with Gaussian shot response r(t) = exp(-t2

) are shown for 
comparison in Figure 3 together with five realizations of K with the same shot response 
and shot rate. 

DUFFING OSCILLATOR WITH SHOT NOISE-LIKE DISSIPATION 

As an example of a system with multiplicative shot noise, we consider the Duffing 
oscillator with weak forcing and non-autonomous damping: 

i = x - x 3 + e["Yg(t) - K(KN(t) +17)x]. (24) 

Here 'Y ~ 0, K. ~ 0 and 17 ~ 0 are constants, g is deterministic and bounded lg(t)I < 1, 
and KN is the shot noise model introduced in the previous section. The perturbation 
in (24) is a particular case of the multiplicative excitation model (17) with 'Y(x, :i:) = 'Y, 
p(x, :i:) = -K.x, and G(t) = KN(t) + 17. K(KN(t) + 17) in (24) serves as a time-varying 
damping factor and plays the same role as the constant K. in ( 4). The two terms 
K.17 and KKN represent, respectively, viscous and shot noise-like damping forces. The 
contribution of the viscous term to the flux factor has already been considered. We 
therefore choose 17 = 0 and only consider the shot noise-like component of the damping. 
We also assume the shot responser of KN to be nonnegative in this example so that 
the factor KKN is nonnegative. 

According to Theorem 3, the Melnikov function for this example is 

where 
h1(t) = "fX.,(-t) = 'Y./2sechttanht 

and 
h2(t) = -K.:i:~(-t) = -2K.sech2t tanh2 t. 

The corresponding moduli of the filters F1 and F2 are 



Approximate Shot Noise True Shot Noise 

Fi~ 3. Realizations of approximate shot noise and true shot noise 
with identical shot responses r (t) = exp(-t2). 



and 
4K fo00 

S2 (v) = sech2ttanh2 tcosvtdt. 

We have S1(0) = 0 so the d.c. component (if any) of g is completely removed by :F1 
and has no effect on the Melnikov function. KN does have a d.c. component; KN is 
ergodic so its d.c. component is E[KN] = .XR(O) where 

R(O) = 1-: r(t)dt > 0. 

S2 (0) = 4r;,/3 > 0 so the d.c. component of KN passed by :F2 is 

Assume the deterministic forcing function g is AMS. KN is uniformly bounded 
and EUC and :F2 [KN] is ergodic. Thus :F1 [g] and :F2 [KN] are jointly ergodic. By 
Theorem 3, the flux factor <I? exists and 

<I? = E[(A - EN)+] (25) 

where the distribution of A is µ.r1 [g]i the distribution of EN is µ.r2 [KN] and A and EN 
are independent. 

The distribution of :F2 [KN] is, for large N, approximately that of the shot noise 
:F2 [K] as noted in Fact K4. This is the basis for the following theorem. 

Theorem 4: The flux factor <I? for the Duffing oscillator (24) with weak forcing and 
shot noise damping coefficent KKN is approximately 

where A is µ.r1 [g1-distributed, E is µ.r2 [KJ-distributed, A and E are independent and 
K is the shot noise (20). This approximation improves as N increases. 

<I? can be calculated numerically as follows for given system parameters v, "Y and 
K- and shot parameters .X and r. Make the following definitions: 

where 
J = 1-:(r * h)2(t)dt. 

Then 
<I?'= E[(A' - E 1)+]. 



The random variable B' is approximately gamma-distributed [48) with density 

ta-le-tf~ 

,aar(a) ' t > 0 . 

where the parameters a and.Bare determined by the condition that E[B'] and Var[Bj 
equal the mean and the variance, respectively, of the gamma distribution. The mean 
and variance of the gamma distribution are a,B and a.,82 , 

a= E 2 [B'] = E 2 [BN] ..:... (4>.11:R(0)/3)2 = 16 >.R2 (0) = >.' 
Var[B'] Var[BN] 11:2 >.J 9 J 

and 

,8 = Var[Bj = 1 Var[BN] ..!.. 1 3>.11:2 J _ 311:J 
= 11:'. 

E[B'] rS1(v) E[BN] rS1(v) 4>.11:R(O) 4rR(O)S1(v) 

respectively, so 

The gamma approximation performs well for large a, and hence for >. ~ JjR2(0). 
For g(t) =sin vt, the random variable A' is equal in distribution to cos U where U is 
uniformly distributed over the interval [O, 7r]. Thus, 

(26) 

(26) shows in particular that, in dimensionless units, the flux factor ~ depends only 
on /1: and). - the shape of the shot responser has only a scaling effect. ~' = ~'(11:', >.') 
is shown in Figure 4. 

Figure 4 shows that for large >. (the regime where the gamma approximation is 
most accurate), <I> is nearly linear for small /1: with a turning point after which ~ falls 
off exponentially with K. In fact, this large-K exponential decay is an artifact of the 
gamma approximation - for our approximate shot noise KN, the flux factor can be 
shown by a further analysis to actually fall to zero at some finite threshold value of 
11:. As N--+ oo, however, this threshold is pushed higher and higher to infinity. 

<I> in (25) is nonzero if P{A > BN} > 0. lg(t)i ~ 1 so A has bounded support. For 
sinusoidal forcing, for example, the support of A is [-')'S1(v),')'S1(v)]. Let [-')'ar,')'au] 
be the support of A. Then P{A > BN} > 0 if P{BN <')'au} > 0. For N sufficiently 
large, this latter probability is indeed positive for any given arbitrarily small value of 1'· 
Thus, in the shot noise limit KN --+ K, <I> > 0 for all values of the parameters K.; >. and 
r of the shot noise-like dissipation. This conclusion is analogous to that reached earlier 
for additive Gaussian excitation for which we showed that for bounded, approximately 
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Figure 4. The flux factor 4>' as a function of the damping 
constant K' for various shot rates '>..'. 



Gaussian noise, the flux factor drops to zero below a certain threshold. This threshold 
moves closer and closer to zero as the Gaussian approximation improves, leading to 
the conclusion that in the limit N ---+ co of true Gaussian excitation the :flux factor is 
nonzero for arbitrarily low levels of forcing. 
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