Emergency Disconnect Procedures: Industry Approaches to DP Drift-Off Analysis

James N. Brekke, P.E.
Account Manager, Offshore Energy Project Development
American Bureau of Shipping

BSEE Standards Workshop – May 8, 2015
Preview

- Background on DP Drillship Operations
- DP Watch Circles – Emergency Disconnect
- Drift-off Analysis Techniques
- Operations
- Conclusions
Drillship Operations

- Derrick
- Heave Compensator
- Rig Floor
- Riser Tensioners
- Drilling Riser
- DP Thrusters
- Blow Out Preventer
- Casing
Drilling Riser Management

● Objective:
 ■ Protect the vessel, riser and well
 ■ Establish limits on operations

● Scope:
 ■ Riser deployment
 ■ Riser tensioning
 ■ Emergency disconnect
 ■ Riser recoil
 ■ Storm hang-off
Emergency Disconnect

- What is emergency disconnect?
- How often does it happen?
- Allowable limits:
 - Conductor pipe – bending stress
 - Wellhead – bending moment
 - Riser bottom flex joint – limiting angle
 - Riser top flex joint – limiting angle, moonpool contact
 - Riser slip joint – stroke limits
 - Riser tensioners – stroke limits
- How are these managed? Watch Circles and Drift-Off Analysis.
Watch Circles: Concept

- Drift off analysis results
- POD
- EDS Time
- Red Alert Offset
- Yellow Alert Offset

- $T_{pod} = t_{(sec)}$
- $T_{RED} = t - EDS \text{ Time (sec)}$
- $T_{YELLOW} = t - EDS \text{ Time (sec)} - 90 \text{ sec}$
Watch Circles

- Thresholds that are color-coded yellow and red
- Established using drift-off analysis
- Based on scenarios of drift-off under total loss of power, drive-off, degraded thrusters, or other events

Offset definitions:
- Point of disconnect (POD) – offset at which any allowable limit is first exceeded
- Red – offset at which the emergency disconnect sequence (EDS) must be activated. Drillpipe would be sheared during EDS.
- Yellow – offset at which preparations begin prior to EDS
Watch Circles: Compass View
Drift-Off Analysis Results

Drift Off Analysis - Vessel Excursion From Well Centre

- Vessel Excursion - 10 ppg Mud Weight & 1455 k/p Top Tension

POINT OF DISCONNECT

RED ALERT OFFSET

70 sec
Drift-Off Analysis Techniques

- **Fully coupled analysis (state-of-the-art)**
 - Riser analysis fully coupled with vessel analysis
 - Includes riser restoring force, riser dynamics

- **Uncoupled techniques**
 - Vessel drift-off analysis without riser, static riser analysis
 - Vessel drift-off analysis without riser, dynamic riser analysis

- **Fixed offset**
 - Constant watch circle sizes, typically based on % water depth
Operations

- Dynamic Watch Circles (updates on the rig every 6 hours)
 - Prevailing or forecast weather
 - Changes in riser top tension or drilling mud weight
 - Can use coupled or uncoupled drift-off analysis
Fixed vs. Dynamic (Fully Coupled)
Conclusions

- Use of fully-coupled drift-off analysis makes a difference; providing a more realistic solution
- Regular updates of watch circles also make a difference, accounting for:
 - Prevailing weather
 - “What-if” forecast weather
 - Changes in top tension and mud weight
- Fully-coupled drift-off analysis is referenced as part of marine drilling riser assessments in ISO 13624-1 and ISO 13624-2.