

API 17TR8 – HPHT Design Guideline for Subsea Equipment API 17D Future with HPHT

Brian Skeels – FMC Technologies
API 17TR8 Task Group Chair
API 17D Task Group Co-Chair

In the Beginning...

API 6HP – primarily focused on burst before leak and 25k BOP equipment being too heavy – 1.5 x RWP vs. 1.25 x RWP? External hydrostatic pressure to compensate?

Next was **API PER 15K** to identify *all* wellbore issues and challenges associated with HPHT (anything above 15k RWP) from sand face to pipeline – looked at things holistically

But PER 15K points to the problems that each API Subcommittee needs to address – never intended to “solve” them... *it is not a design guideline*

API 17TR8 is Subsea’s attempt at providing some of the guideline solutions.

Holistic View – 1PER15K-1

Figure 1—System Analysis Specification Breaks (Completion)

Figure 2—System Analysis Specification Breaks (Drilling)

How is HPHT Defined? What Code Rules?

Source: OTC 17927, 23943, 25376

15k to 25k a design transition zone

Thicker wall sections changes the “pressure vessel model”, but where?
Don’t know where leak before burst ends and fast fracture failure begins

17TR8: The HPHT Method

- Design Methodology – roadmap for transition from Div 2 to Div 3
- Populate oil field material data sheets at elevated temperatures
 - Establish physical properties and QA lists
- Establish HPHT validation tests
 - Extended function testing standard
 - Guidance for project specific testing

17TR8: HPHT Design Flow Chart

*Path selected determines:
Test pressure,
Design margins,
QA*

*"All codes are
created equal:
some more equal
than others"*

Quality and Qualification Requirements

“Buckets” to capture physical properties and performance tests:

PSL 5 to address tighter QA requirements in material strength (+/- range), ovality, cross section thinning, chemistry, prolongations, stress relaxation properties, etc.

PR 3 to address extended functioning component at HPHT conditions; gas test medium, blow down safety, more temperature cycles, etc.

PR 4 to address cyclic loading, fracture mechanics S-N fatigue, criticality and project specific cyclic design life

17TR8: HPHT Materials Properties

Design Properties *

- ▶ **Mechanical Properties**
 - *Tensile Properties (including tensile modulus)*
 - *Fracture Toughness (K_{Ic})*
 - *Crack Growth Rate (da/dN)*
 - *Fatigue S-N curve*
- ▶ **Physical Properties**
 - *Thermal conductivity*
 - *Specific heat capacity*
 - *Density*
 - *Thermal expansion*
 - *Poisson Ratio*
 - *NACE Test (2% or defined strain limit)*
 - *Stress Relaxation*

Quality Control **

- ▶ **Chemistry / Composition Requirements**
- ▶ **Mechanical Properties**
 - *Tensile Properties (tight range)*
 - *Charpy, CTOD*
 - *Hardness*
- ▶ **Microstructure and Grain Size**
 - *NDE*
 - *Minimum Crack Size*
- ▶ **Process Control**
 - *Melting, Forging*
 - *Heat Treatment, QTC Prolongation Testing*
 - *Dimensional - Ovality, Thinning*

- * For discrete temperatures 75, 350, 450, 550, 650 F
- ** For QC temperatures defined by ASME VIII, Div 3

17TR8: Design Flow Chart – Fatigue Assessment

Fatigue Assessment:

- Determine if equipment is fatigue sensitive
 - ASME fatigue screening criteria (ASME Div. 2 Section 5.5.2)
 - internal – pressure/temperature; external – mechanical
- Fatigue analysis:
 - S-N approach
 - Fracture Mechanics (FM) approach
- May require:
 - Load-monitoring
 - NDE method capability and its probability of detection (PoD) to identify flaws
 - Multiple flaws assessment

Non-uniform stress field – gray “above yield”
Autofrettage Effect
Source: OTC 23063, 23621

Leak-Before-Burst

Replaced by Loss of Barrier

- *Both Leak or Burst are catastrophic events because it's hard to turn off a reservoir.*
- Need a different differentiator
- Oil industry has “two barrier” rule for safe operation.
- Locations where a fatigue failure could compromise primary barrier are critical and more detailed analysis – fracture mechanics

17TR8: HPHT Validation

- ▶ Can define within a “standard”
- ▶ Additional Function Testing
 - Extended testing at Temperature

HPHT Future of 17D

- Task Group to start Next Revision in 2015 – 16 time frame
- Task Group's intent is to stay synchronized with API 6A ; especially manufacturing
- HPHT intent is to offer higher RWP and Operating Temperature by expanding tables.
 - Keep 5ksi increments
 - 50 or 100 °F temperature class increments
- Decide how much extended testing at temperature (% more) is required for PR 3
- Intent is to cite as much of 17TR8 and 6A/6X instead of re-writing
 - 15ksi & below – API 6X
 - 25ksi & above – Div 3 path of 17TR8
 - 20ksi ? – but can't have multiple paths or test pressures

Future of 17TR8

- First edition to be balloted for publication in 2014
- Second edition – work still to be done in 2014 – 15
 - Welding and cladding and associated crack design issues
 - Reconcile ASME and NACE
 - Refine cyclic and fatigue analysis
 - Add Sensors and Monitoring for cycle life
 - Systems engineering of spec breaks and interfaces
 - Work with ASME Div 3 to submit a “code case”

API 17TR8 – HPHT Design Guideline for Subsea Equipment API 17D Future with HPHT

Questions?