

BSEE Domestic and International Standards Workshop: Systems Reliability Evaluations

Joseph Levine May 8, 2015

SFF

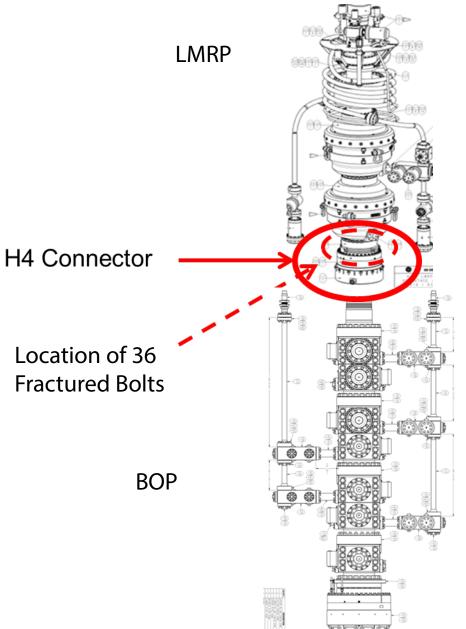
Bureau of Safety and

"To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement."

Presentation Overview

- BSEE, Systems Reliability Section (SRS)
 - o Purpose
 - Evaluations To Date
 - Evaluation Findings
 - Outstanding Issues

SRS – Purpose and Function


- SRS was formed in 2/2013, located in Herndon, VA.
- Functions
 - Establish meaningful communication with original equipment manufacturer (OEM)
 - Conduct QA/QC evaluations on manufactured equipment
 - Evaluate "Fitness for Service" capabilities of manufactured equipment
 - o Identify gaps in industry practices/standards and/or regulations
 - Enhance knowledge base of regulator and industry in regards to evaluation findings
- SRS Technical Evaluations
 - Focus on issues that have potential industry wide (global) impacts
 - Are not the same as traditional BSEE OIR, 2010 or panel report investigations

SRS Evaluations To Date

Five evaluations since 2/2013

- o H4 Connector Bolt Failure
 - Completed 8/2014
 - <u>http://www.bsee.gov/uploadedFiles/BSEE/Enforcement/Accidents_and_Incidents/Bolt%20report%20Final%208-4-14.pdf</u>
- Seal Assembly/Cement Failure
 - Completed 12/2014
 - <u>http://www.bsee.gov/uploadedFiles/BSEE/Inspection_and_Enforcement/Accidents_and_Incidents/QC-FIT_Reports/QC-FIT%20Report%20Apache%20Liner%20Seal%20.pdf</u>
- o Three evaluations in progress
 - Wing-Valve Assembly
 - HC Connector Bolt Failure
 - May have similar issues as the 8/2014 evaluation
 - Marine riser sub seal assembly

8/2014 BSEE REPORT: H4 CONNECTOR BOLT FAILURE

SCHEMATIC OF LMRP H4 CONNECTOR AND MANDREL INDICATING LOCATION OF 36 CONNECTOR BOLTS

- While drilling, the LMRP separated from the subsea BOP (12/2012)
- Separation resulted in a 432 bbl. SBM discharge through the LMRP H4 connector
- Evaluation identified a global issue
 - 10,982 replacement bolts provided by OEM for use on
 361 LMRP connectors worldwide
 - o 1,318 bolts returned to OEM (494 in the GOM)
 - OEM Safety Notice and BSEE Safety Alerts issued (1/2013)

H4 Connector and Bolt Failure Causes

- Industry RCA found concerns with bolt
 - Material Properties (Hardness, YS, UTS)
 - Lack of post-bake procedure
- QC-FIT additionally noted Hydrogen Induced Stress Corrosion Cracking may be due to any combination of
 - Bolts' high material hardness, yield strength and ultimate tensile strength
 - Stray voltage
 - o Coatings
- Concerns identified with OEM Quality Management System (QMS)

- Inconsistent Hardness, YS, and UTS requirements in subsea standards as related to bolts show wide range of values
 - o Hardness (22-35 HRC)
 - o YS (360-1036 MPa)
 - o UTS (1000-1380 MPa)
- Standards with different bolt related material property requirements include
 - o API 6A/16A/16F/17A
 - o NACE MR0175
 - o NORSOK-M001

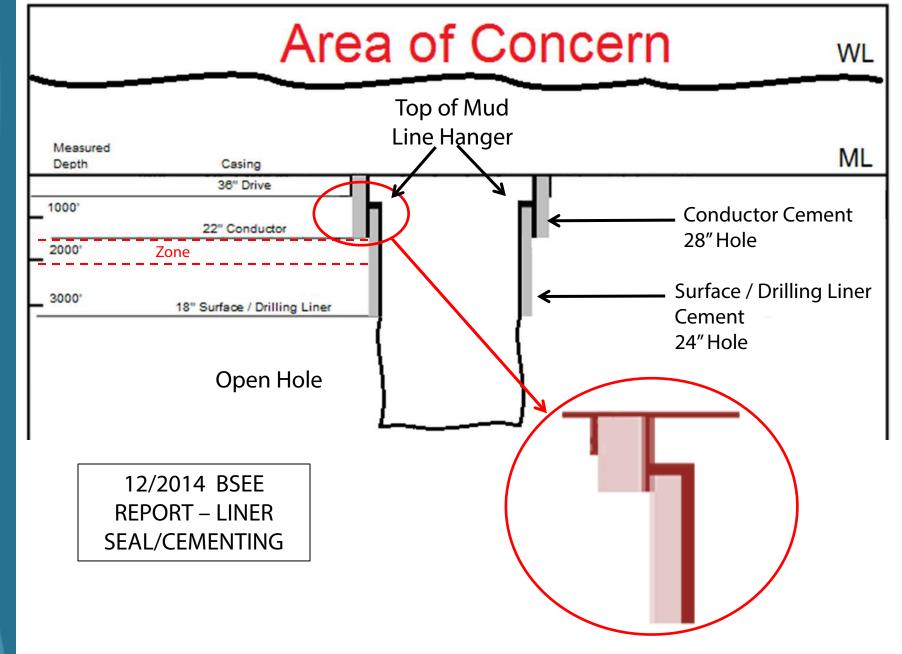
Coatings

- Subcontractor relied on an older 1998 edition of ASTM
 B633 rather than the latest 2007 edition
 - In accordance with the 1998 edition bolts did not receive required post bake electroplating which may have reduced the risk of hydrogen embrittlement
 - 2007 edition requires post bake treatment
- Standards with different coating requirements include
 - ASTM B633/B849/B850/F1941/F1137

- Quality Management System(s) (QMS)

 OEM's QMS qualified/audited only first-tier suppliers
 - OEM QMS did not require qualification and audit of second/third tier subcontractors
 - Neither operator or contractor detected an issue with the sub-tier supplier during their assessment of OEM
 - Need improved oversight of second and third tier subcontractors

H4 Connector and Bolt Failure Opportunities for Improvement


- Harmonization of material property requirements, particularly hardness, for subsea equipment in general and connector bolts specifically
 - Issue was mentioned by BSEE at the 1/2015 API Winter Standards Conference in New Orleans
 - What has been accomplished since then?
- How deep should your (operator, contractor, OEM) management system dig to ensure a quality product?
 - How deep is deep enough to assure a "fit for service" product?
- Research opportunities?

11

Critical Drill Through Equipment Fastener 2015 Research

- There is a need for an independent assessment of critical drill through equipment fasteners used in offshore oil and gas operations
 - o Identify and asses fastener systems currently in use
 - Offshore, domestic and global
 - Onshore, domestic and global
 - Other industries
 - Assess design, manufacture, installation, maintenance, and inspection processes
 - Evaluate the performance of current fastener systems
 - Identify similarities and differences in industry standards and regulations globally

- While drilling operator took a gas kick (2/2013)
- Kick resulted in a gas flow into a shallow sand below the conductor casing shoe culminating in an underground blowout
- Event created risk of broaching to the seafloor
- Possible failure points
 - Casing hanger seal
 - o Cement column in conductor/surface liner annulus
 - Hole in casing
 - Damaged casing threads

Major Issues

- Is the Shallow Liner Seal/Cement Column a single or dual barrier system when it comes to well control?
- Can cement requirements for shallow sections of the well be improved upon?
 What criteria need to be evaluated to ensure the Shallow Liner Seal is "Fit for Service"?

- Is the Shallow Liner Seal/Cement Column a single or dual barrier?
- If the liner seal is faulty are you actually testing the cement column?
 - How would you know?
- Does a successful liner pressure test mask a poor cement job?
 - How would you know?
- o Is the integrity of the cement column behind the liner truly understood?
 - How could you determine the cement integrity?

- Surface Drilling Liner Cement Concerns
 - Is the BSEE liner lap/liner pressure test sufficient to prove reliability of the barrier(s)?
 - Can not decline more than 10 percent in a 30-minute test
 - Annular fill at least 200 feet above conductor shoe
 - WOC of 12 hours with cement held under pressure
 - Is there an ideal open hole diameter/surface liner OD ratio?
 - What Annular space is too large/small?

What criteria need to be evaluated to ensure Shallow Liner Seals are "Fit for Service"?

- Temperature Rating
 - Seal Assembly was rated to 75°F but was exposed to 90°F during operation
 - Inconsistencies between operator and OEM concerning seal's temperature rating
- Gas vs Liquid Rating
 - Seal design was not qualified for gas, yet gas was "seen" in the well
- Are there other criteria that need to be evaluated?
 - o Pressure
 - Axial loads

Seal Assembly/Cement Failure Opportunities for Improvement

- Do existing standards provide adequate design/qualification for seals?
 - API 17D Design & Operation of Subsea Production Systems Subsea Wellhead & Tree Equipment - Second Edition (2011)
 - o API 19LH Liner Hangers First Edition (Publish 2016)
 - Should they be modified? How?
- Do existing standards provide adequate design/use for cements?
 - RP 65 Cementing Shallow Water Flow Zones in Deepwater Wells First Edition,
 - RP 65-2 Isolating Potential Flow Zones During Well Construction Second Edition
 - o Should they be modified? How?
- Possible Shallow Liner/Cement Research
 - o Best cementing practices for shallow sections of a well
 - Engineering design of shallow liner seals
 - Are existing BSEE regulations on cements and testing of liner adequate?
 - o Possible JIP?

Summary

- Connector Bolts
 - Standard Harmonization
 - o QMS
 - o BSEE research
- Shallow Liner Seal/Cement Systems
 - o Barrier
 - o Fit For Service
 - Shallow Cementing Practices
 - o JIP?

BSEE Website: www.bsee.gov

"To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement."